
Low Power Montgomery Modular Multiplication
on Reconfigurable Systems

Pedro Maat C. Massolino1, Lejla Batina1, Ricardo Chaves2, and Nele Mentens3

1 Radboud University, ICIS - Digital Security Group, The Netherlands
Email:{pmassolino,lejla}@cs.ru.nl

2 Department of Electrical and Computer Engineering, IST INESC-ID, Lisbon -
Portugal

Email:ricardo.chaves@inesc-id.pt
3 ESAT/COSIC, Katholieke Universiteit Leuven, Belgium

Email:nele.mentens@esat.kuleuven.be

Abstract. This paper presents an area-optimized FPGA architecture of
the Montgomery modular multiplication algorithm on a low power recon-
figurable IGLOOR© 2 FPGA of MicrosemiR©. Our contributions consist
of the mapping of the Montgomery algorithm to the specific architecture
of the target FPGA, using the pipelined Math blocks and the embedded
memory blocks. We minimize the occupation of these blocks as well as
the usage of the regular FPGA cells (LUT4 and Flip Flops) through an
dedicated scheduling algorithm. The obtained results suggest that a 224-
bit modular multiplication can be computed in 2.42 µs, at a cost of 444
LUT4, 160 Flip Flops, 1 Math Block and 1 64x18 RAM, with a power
consumption of 25.35 mW. If more area resources are considered, mod-
ular multiplication can be performed in 1.30 µs at a cost of 658 LUT4,
268 Flip Flops, 2 Math Blocks, 2 64x18 RAMs and a power consumption
of 36.02 mW.

1 Introduction

Electronics advancements in the last decades have made communication sys-
tems available to everyone. However, to assure the secure transmission of sen-
sitive information through public channels, cryptographic primitives need to be
employed. Given the costly computation of these primitives, in particular asym-
metric encryption algorithms, hardware implementations are often necessary.
Particularly on embedded systems, hardware implementations allow to achieve
more efficient computations with a lower power consumptions.

When creating a new application, system engineers need to choose an appro-
priate public key primitive. To guide on this choice some public key standards
have been made [1, 14, 16, 25]. With this broad arrange of different standards,
each one being applied/enforced by different countries or application scenarios,
it is necessary to provide implementations that are sufficiently versatile to ac-
commodate them all. Examples of standardized public key cryptosystems are
based on RSA [28] and elliptic curve cryptography (ECC) [22]. Most standards

2 Pedro Maat C. Massolino, Lejla Batina, Ricardo Chaves, and Nele Mentens

based on RSA [16, 25] are compatible with each other, which makes it possible
to use an RSA implementation for various purposes. For ECC [12, 14, 25], the
different flavors of curve parameters and finite fields make the implementations
less versatile than RSA implementations. Some standards, such as NIST-186 [24]
are based on Solinas primes [31], which allow for an efficient modular reduction
algorithm. On the other hand, primes suggested by Brainpool [14] are just ran-
dom primes with no special arithmetic characteristic. Therefore, they only work
with generic reduction algorithms. Newer ECC proposals [3, 6] are using Cran-
dall primes [9], which also have a specific algorithm for modular reduction. Even
with all those differences, all standard algorithms based on ECC and RSA share
the same mathematical basis: modular multiplication of large integers.

Modular multiplication of large integers, can be efficiently implemented
through the Montgomery multiplication algorithm [23]. This algorithm can be
applied for RSA and ECC with prime fields operations. Particularly in ECC, it
is possible to give support for all primes, even those with no special modular
reduction algorithms. Montgomery multiplication avoids the division operation,
which is difficult to implement in an efficient way in hardware. Barrett multi-
plication [4] achieves the same goal. Nevertheless, we choose to focus this paper
on Montgomery multiplication, since it allows to avoid modular addition and
subtraction reduction operations [5,37], those reductions are operand dependent
and therefore introduce a possible side-channel leakage. Besides, if the reductions
were done it would have the same or more cost than avoiding them, therefore it
is preferable to avoid, given it is cost.

We propose two compact hardware co-processors for Montgomery multipli-
cation and integer addition/subtraction. With these operations available it is
possible to implement an ECC co-processor, which can be used for all ECC pa-
rameters and prime fields. Both architectures strive for a low area footprint and
low power consumption, but the second one deploys more resources in order to
provide a better performance.

To implement Montgomery multiplication in scenarios where the inputs are
stored and computed as multiple small words, Koç et al. [18] analyzed 5 al-
gorithms: Separated Operand Scanning (SOS), Coarsely Integrated Operand
Scanning(CIOS), Finely Integrated Operand Scanning (FIOS), Finely Integrated
Product Scanning (FIPS) and Coarsely Integrated Hybrid Scanning(CIHS). All
algorithms were analyzed according to memory space, number of arithmetic oper-
ations and number of memory access. When comparing in respect with multipli-
cations, all 5 algorithms have the same amount. However, SOS requires almost
twice the amount of memory than the others, because it computes the entire
product before applying modular reduction. Given it is higher memory require-
ment it was opted out for not being implemented. From those remaining it is
possible to split them into two groups: operands scanning and product scanning.
CIOS and FIOS apply operand scanning, which means all operations are done
while scanning both inputs, which is straightforward to mapping into hardware.
Product scanning on the other hand requires more control logic, and complex
addressing system, because both inputs are scanning with one being incremented

Low Power Montgomery Modular Multiplication on Reconfigurable Systems 3

and the latter decremented. Given a more complex control logic and addressing
system, both FIPS and CIHS were discarded for this implementation.

In the literature there is a great number of co-processors for modular multipli-
cation with the Montgomery algorithm [2,7,8,13,15,20,30,34,36]. All proposals
show results for modular multiplication, some also give implementation results
for public key cryptosystems like RSA and ECC. For our implementation we
give results for circuit area, execution time and power simulations.

Our first implementation aims at a IGLOOR© 2 [21] FPGA from MicrosemiR©.
This FPGA model is based on FLASH technology as opposed to SRAM tech-
nology used in XilinxR© and AlteraR© FPGAs. Since it is based on a different
technology it is labeled as more energy efficient [21]. With a energy efficient
platform and a area optimized strategy it is expected to have low power results.

The remainder of this article is divided in the following sections. Section 2
gives the necessary background information on Montgomery multiplication and
the FPGA family chosen for this study. Section 3 shows our two hardware ar-
chitectures and the scheduling of the resources. Section 4 compares our results
with the literature. Finally, Section 5 gives some final considerations and future
works.

2 Background

In the first part of this section we discuss the Montgomery algorithm and two
word based level variants, CIOS and FIOS algorithms [18]. In the second part
we give details on the FPGA applied in this work, IGLOOR© 2 from MicrosemiR©.

2.1 Montgomery algorithm

Modular multiplication of large integers is essential for various cryptosys-
tems [11, 22, 28], but if implemented naively it does not fulfill the performance
requirements of certain applications. Montgomery [23] discovered that comput-
ing a · b/r mod n, where r is a power of 2 greater than n, with n being a non-
multiple of 2, is more efficient than computing a·b mod n directly. This efficiency
results from increasing each partial product by a multiple of n and then divid-
ing by r, being less expensive than computing the modular reduction through a
division by n. Montgomery multiplication, shown in Algorithm 1, first computes
the product p of a and b. Then it multiplies the result by n′, which gives m, a
number that when multiplied by n and added to p, makes the result a multiple
of r. This multiple is divided r through a shift operation.

In the original Montgomery algorithm [23], after the division by r there is an
extra reduction step. In this extra step, n is subtracted from p if p is bigger than
n. This extra step can lead to side-channel leakages [19]. To counter this problem,
Walter proposed to increase r by at least two extra bits, thus eliminating the
need for the final subtraction [37].

The inputs a and b of Algorithm 1 should be less than or equal to 2n. If r
is expanded by 4 bits, instead of only 2, inputs a and b can be up to 4n [5].

4 Pedro Maat C. Massolino, Lejla Batina, Ricardo Chaves, and Nele Mentens

Algorithm 1 Montgomery multiplication algorithm [23], without final subtrac-
tion [37]
Require: a, b ≤ 2n, r = 2dlog2(n)e+2, r · r−1 − n′ · n = 1
Ensure: o = a · b/r (mod n)
1: p← a · b
2: m← n′ · p (mod r)
3: o← (p+m · n)/r
4: return o

Therefore, in case a and b are less than n, it is possible to add and/or subtract
another variable less than n to a and b before multiplication. By increasing the
number of bits even more it is possible to avoid two or more consecutive additions
or subtractions, thus allowing for the optimization of ECC formula.

In the CIOS algorithm, described in Algorithm 2, the partial products of the
entire value a times, a particular word of b, are computed first, and then m is
computed, just as in Algorithm 1. In this case m has the size of one word as
opposed to the double operand size in Algorithm 1. As consequence, n′ also has
the same size as m. After computing the partial product and m, a reduction is
applied on word-size variables. This process is repeated in the next partial prod-
uct computation. CIOS works by exploiting the fact that each partial product
needs a different number of zeroes is added, before reduction.

In the FIOS algorithm, shown in Algorithm 3, instead of computing each
partial product and then applying the modular reduction, as CIOS, both oper-
ations occur at the same time. In the first iteration step, after computing a0 · bi,
the result is multiplied by n′, resulting in m. Then, a new iteration computes
aj times bi and adds the result to m times nj . This process is repeated for all
words of a and b. Because both partial product computation and reduction are
done at the same loop, FIOS have to access more memory positions than CIOS.
Hence, this extra memory access can insert wait states on the architecture, so
for such architectures CIOS or other algorithms are preferable.

2.2 IGLOOR© 2 FPGAs

The target FPGA, IGLOOR© 2 [21] from MicrosemiR©, is a flash based archi-
tecture with some specialized block like memories and Math Blocks. The Math
Blocks behave like Digital Signal Processors (DSPs) in the sense that they can do
some multiplications in combination with additions and accumulations. These
Math Blocks have a total of 3 inputs available to the user, two operands for
multiplication and one operand for addition with the multiplication result (it is
also possible to negate the multiplication result). It is also possible to add the
result, or have the result shifted to the right by 17 bits. Another option includes
a special lane to connect the input of one Math Block with the output of a pre-
vious one. This dedicated lane allows for a fast result propagation, producing an
efficient way to process larger operands.

Low Power Montgomery Modular Multiplication on Reconfigurable Systems 5

Algorithm 2 Word based Montgomery multiplication algorithm (CIOS) [18],
without final subtraction [37]
Require: a, b ≤ 2n, r = 2(d(dlog2(n)+4e/word size)e·word size), r · r−1 − n′ · n = 1, w =

2word size, l = dlog2(r/w)e
Ensure: o = a · b/r (mod n)
1: for i ← 0 to l − 1 by 1 do
2: c← 0
3: for j ← 0 to l − 1 by 1 do
4: t← o− j + aj · bi + c
5: pj ← t (mod w), c← t/w
6: end for
7: t← ol + c
8: pl ← t (mod w)
9: pl+1 ← t/w
10: m← n′ · p0 (mod w)
11: c← (p0 +m · n0)/w
12: for j ← 1 to l − 1 by 1 do
13: t← pj +m · nj + c
14: oj−1 ← t (mod w), c← t/w
15: end for
16: t← ol + c
17: ol−1 ← t (mod w)
18: ol ← t/w
19: end for
20: return o

6 Pedro Maat C. Massolino, Lejla Batina, Ricardo Chaves, and Nele Mentens

Algorithm 3 Word based Montgomery multiplication algorithm (FIOS) [18],
without final subtraction [37]
Require: a, b ≤ 2n, r = 2(d(dlog2(n)+4e/word size)e·word size), r · r−1 − n′ · n = 1, w =

2word size, l = dlog2(r/w)e
Ensure: o = a · b/r (mod n)
1: for i ← 0 to l − 1 by 1 do
2: t← o0 + a0 · bi
3: p← t (mod w), c1← t/w
4: m← n′ · p (mod w)
5: c2← (p+m · n0)/w
6: for j ← 1 to l − 1 by 1 do
7: t← oj + aj · bi + c1
8: p← t (mod w), c1← t/w
9: t← p+m · n[j] + c2
10: oj−1 ← t (mod w), c2← t/w
11: end for
12: t← ol + c1
13: p← t (mod w), c1← t/w
14: t← p+ c2
15: ol−1 ← t (mod w), c2← t/w
16: ol ← c1 + c2
17: end for
18: return o

This FPGA also includes Dual-Port Large SRAM with two inputs and two
outputs. It can do 2 reads, 1 read and 1 write or 2 writes at the same time. Both
ports behave independently and share the same memory region. This memory
can be configured to 1024 words of 18 bits.

Another available memory to work with is the Three-Port Micro SRAM,
which has 2 read outputs and 1 write input. With this memory it is possible to
do 2 reads and 1 write at the same time. However, this memory can only store
64 words of 18 bits. As a side note, this memory does not have a collision system
in case the same position is being read and written at the same time. For this
reason, loads and stores on the memory need to be carefully designed.

3 Implementation Considerations and Proposed
Structure

Since the CIOS and FIOS algorithm are word-based, either the size of r needs
to be increased to a multiple of the word size or the last round of the algorithms
needs to be adapted to work on variables with a size smaller than the word size.
To minimize the control logic and to maximize the re-use of resources, we opted
for increasing the size of r to be a multiple of the word size. This comes with a
negligible decrease of speed.

In the first proposed architecture, we try to minimize the number of Math
Blocks and the number of memories to 1, as depicted in Figure 1. Because of the

Low Power Montgomery Modular Multiplication on Reconfigurable Systems 7

internal memory size, it is only possible to store the multiplication operands. The
Math Block has internal registers for inputs and outputs which can be leveraged,
however for one input it was necessary to add an external one. This extra register
is necessary for applying subtraction operations.

To decrease the response time, another architecture, Figure 2, is proposed.
In this architecture it was opted to increase the number of Math Blocks and
Block RAMs, to only 2. With two, it is possible to compute the partial product
in one Math Block and apply the reduction in the second. However, for both
operations to work properly it is necessary to have two memories to provide the
necessary values. In this architecture, 2 extra registers were added, one for each
Math Block. Just as the previous architecture this is to support the subtraction
operation.

Fig. 1. Architecture version 1 of the Montgomery multiplier using 1 Math Block and
1 memory

For the control system, some address registers were added to indicate the
location of each variable in the memory, except for the variable n which is always
at the first location in the memory and n′ followed by n. These registers in the
architecture allow to use the output of an operation directly as the input of the
next operation.

To get minimum latency, the system leverages the internal Math Block as
much as possible. All operations follow each other closely, so during a multiplica-
tion both the Math Block and the memory are working. The Math Block works
in a pipeline mode, loading values for next computation, while processing the

8 Pedro Maat C. Massolino, Lejla Batina, Ricardo Chaves, and Nele Mentens

Fig. 2. Architecture version 2 of the Montgomery multiplier using 2 Math Blocks and
2 memories

current computation and writing the result of the previous computation to the
memory.

The sequence of execution of Algorithm 2 on the architecture in Figure 1
is given in Table 1. In the beginning, the first word of b is loaded. In the next
cycle, the first word of a is loaded and the Math Block registers RegC and RegP
are reset to 0. Then with all three ready, Math Block register RegP receives
RegA · RegB + RegC + (RegP << 17), which explains the reason Math Block
register RegP and RegC are reset. This process is repeated by loading the next
word of a and computing RegP = RegA ·RegB +RegC + (RegP << 17). The
shifted value of RegP is the carry out of the previous computation. Therefore,
the complete process computes a · bi.

After loading the last word of a, the process to compute m begins, while
the last results of the partial product are computed. First, RegA is loaded with
n′ and RegB is reset to 0. This reset occurs so the multiplication of RegA
and RegB does not interfere with the last partial product. Then, one cycle
is lost because the Math Block needs to wait for the partial product psize+1

computation. In the next cycle, p0 is loaded into RegB and then value m is
computed by RegP = RegA ·RegB +RegC, and has to wait one extra cycle to
be loaded into RegA. This extra wait is necessary because it is not possible to
do a direct connect to RegA. However, it is possible to add an extra multiplexer
after RegA output. This approach was not chosen because it would decrease
the operating frequency, thus resulting in an efficiency loss, and introduce extra
hardware resources for the multiplexer.

After m is computed, words n0 and p0 are loaded into register RegB and
RegC, also RegP is reset. After loading all values, RegP = RegA · RegB +
RegC + (RegP << 17) is computed and the result is kept in RegP for carry
purposes on the next values n1 and p1, but is not stored in memory. Then the
computation with n1 and p1 is stored in memory as o0. The process is repeated
for all words in n and p. In the last stages both RegA and RegB are reset, so
in the next cycle RegB can receive a0 without interrupting the computation of

Low Power Montgomery Modular Multiplication on Reconfigurable Systems 9

osize . At the next cycle, word b1 and p0 are loaded and the process can continue
until all bi words have been processed.

The architecture in Figure 2 executes Algorithm 3 as seen in Table 2. In the
beginning register RegB1 receives b0, and in the next cycle RegC1 is reset and
RegA1 receives a0. With those values, RegP1 = RegA1 · RegB1 + RegC1 is
computed and the first partial product is computed. Unlike Algorithm 2, in this
algorithm the value m is computed after computing the first partial product,
so Math Block 2 can apply the reductions. In the next cycle, p0 is loaded into
register RegM2 and n′ is loaded into RegB2 , also RegC2 is reset. After all values
loaded, value m is computed and loaded into register RegM2 . To reduce waiting
cycles, whenm is computed, register RegA1 receives the next word a1 to continue
the partial product computation. When m is in register RegM2 , register RegB2
is loaded with n0 and RegC2 with p0. The process continues with Math Block
1 generating the partial product and Math Block 2 applying the Montgomery
reduction.

This process continues until all words of a have been computed, then register
RegA1 and RegB1 are reset. After resetting it waits for one cycle, then begins
loading the next word b1 into RegB1 , and in the next cycle a0 and o0. This wait
is necessary to compute the last psize and psize+1 words and the last word osize.
The process then begins again for the next word of b, and continues until all
words have been computed.

In case of an addition, for the architecture with one multiplier each operand
word is added together with the previous carry. Register RegA is reset to 1, RegB
receives one operand and RegC receives the other operand. For the architecture
with two multipliers the approach is almost the same, except RegB1 is reset to
1 and it is RegA1 that receives one of the operands. One downside, is that the
computation has to pass through Math Block 2 until the result is written in one
of the memories.

Subtraction on the other hand is more difficult for the first architecture. The
reason is because it does not only involve the subtraction of both operands,
but also an addition with 2n [5]. Just as for the addition, RegA is reset to 1,
RegB receives one operand and RegC receives the other operand, however the
output of the multiplier is negated. After the first word subtraction, instead of
computing the next word, the same is fed through the accumulator without the
right shift. With the value being fed through the accumulator, both RegC and
RegB receive one word of n, therefore doing the final add of 2n. The result is
kept to be used as carry in the next operation and also stored in memory.

Subtraction in the architecture with two multipliers works similarly as the
addition. In the first Math Block, operands words are subtracted and the result
goes to the second Math Block. In addition, the second Math Block would add
0, however during subtraction it is used to apply the final addition with 2n.

In case is necessary to increase the number of extra bits from 4 to a higher
value, the value multiplied by n during the subtraction also has to increase.
In the architecture with two multipliers, there will be almost no modifications,
except one register will receive a different value to reset. In the architecture with

10 Pedro Maat C. Massolino, Lejla Batina, Ricardo Chaves, and Nele Mentens

one multiplier there will be more changes. The reason is because register RegA
has to be reset with value 1 or the other new value, and also RegC will have to
be reset to 0.

Table 1. Scheduling for the architecture with one Math Block based on Figure 1 and
Algorithm 2

Time RegA RegB RegC RegP

1 b0
2 b0 a0 0 0
3 b0 a1 0 p0
.

l + 1 b0 al−1 0 pl−2

l + 2 n′ 0 0 pl−1

l + 3 n′ 0 0 pl
l + 4 n′ p0 0 pl+1

l + 5 n′ p0 0 m

l + 6 m n0 p0 0

l + 7 m n1 p1
l + 8 m n2 p2 o0
.

2l + 5 m nl−1 pl−1 ol−3

2l + 6 0 0 pl ol−2

2l + 7 0 a0 pl+1 ol−1

2l + 8 b1 a0 o0 ol
2l + 9 b1 a1 o1 p0
.

The internal memory is configured as a three-port 64x17 (it is 18, but only 17
are necessary) and in little-endian format. For the first architecture, the memory
is split into 4 positions of 16 words each, where the first position is reserved for
the modulus nfollowed by the constant n′. In case of the second architecture
there are two memories and each one can hold up to 2 values of 32 words each.
The first memory position is also reserved for constants n and n′. In both cases
the other three remaining positions can be used for two inputs and one output
variables. The two input variables can share the same address, therefore allowing
a square or double operation. However, it is not possible for an input variable
to share the address with an output.

During additions and subtractions not all three positions are available as
the output. The addition and subtraction operations are implemented as Out =
Out + In and Out = Out − In. Therefore addition and subtraction operations
has to be schedule taken this into account.

In the first architecture, at glance each variable can hold up to 16 words of 17
bits, therefore 272 bits. However, the processor can only work up to 14 words of
17 bits during the multiplication process, therefore 234 bits only, including the

Low Power Montgomery Modular Multiplication on Reconfigurable Systems 11

Table 2. Scheduling for the architecture with two Math Blocks based on Figure 2 and
Algorithm 3

Time RegA1 RegB1 RegC1 RegP1 RegM2 RegB2 RegC2 RegP2

1 b0
2 a0 b0 0
3 a0 b0 0 p0
4 a0 b0 0 p0 p0 n′ 0
5 a1 b0 0 p0 m

6 a2 b0 0 p1 m n0 p0 0

7 a3 b0 0 p2 m n1 p1
8 a4 b0 0 p3 m n2 p2 o0
.

l + 3 al−1 b0 0 pl−2 m nl−3 pl−3 ol−5

l + 4 0 0 pl−1 m nl−2 pl−2 ol−4

l + 5 0 b1 0 pl m nl−1 pl−1 ol−3

l + 6 a0 b1 o0 pl+1 0 pl ol−2

l + 7 a0 b1 o0 p0 0 pl+1 ol−1

l + 8 a0 b1 o0 p0 p0 n′ 0 ol
l + 9 a1 b1 o1 p0 p0 n′ 0 m

l + 10 a2 b1 o2 p1 m n0 p0 0

l + 11 a3 b1 o3 p2 m n1 p1
l + 12 a4 b2 o4 p3 m n2 p2 o0
.

extra 4 bits to avoid reductions during additions [5]. This two words loss in each
variable is because the CIOS algorithm needs to store some carry results. For
this architecture version, only some ECC curves with less than 234 bits prime
fields can work. Within 234 bits it is possible to use prime standard curves of 192
bits or 224 bits [3,14,25]. It is possible to deploy a second memory and increase
to 510 bits, including the extra 4 bits, or even more memories.

If the user increases the amount of memory, it would be more interesting to
consider the second architecture that can only work up to 527 bits, including the
extra 4 bits. In the FIOS algorithm, the intermediate value during multiplication
only increases with one word, while in the second architecture increases with
two words. Because it can work with 527-bit primes, the second architecture can
directly be applied with all standard prime ECC curves published so far. This
characteristic makes the second architecture a generic solution, while the first
architecture is more suitable for power constrained environments. One possible
solution for these extras intermediate values is to store in external registers, thus
increasing the number of registers in the entire architecture. However, the prime
size for each architecture is not a bottleneck.

Communication between our both architectures is made through 4 instruc-
tions and a direct interface with the 64x17 memory. The considered instructions
are modular multiplication, addition, subtraction and no operation. During the
no operation instruction it is possible to access the 64x17 memory and to read

12 Pedro Maat C. Massolino, Lejla Batina, Ricardo Chaves, and Nele Mentens

and write at any memory location. To increase the operating frequency, both
the input and outputs values are registered.

4 Results and Related Works

The results of both proposed architectures are summed up in Table 3 and 4,
together with some literature results. For space and visualization sake, only
results for primes which can be directly compared are shown.

From all work shown in Table 3 only our results provide power estimations in
Table 4. Those power estimations were obtained by computing o = (a+b)·(c−d)
100 times, for random inputs a, b, c, d in the MicrosemiR© synthesis tool. The same
100 random inputs and output values generated by a script with SageMath [32]
were applied to verify our architecture.

According to Table 4, our architecture’s static power does not change, even
when the circuit is bigger. This invariable power simulation can be explained by
the value precision and the circuit size difference of only 2% of the FPGA’s total
area. On the other hand, the dynamic power has a higher difference between
architectures sizes, but a slight variance between inputs sizes. This small differ-
ence can be attributed to a variance in the 100 random samples. For example,
for the one multiplier architecture, the average dynamic power is 16.76mW and
the highest difference is 2% from the average.

With the power and time consumed by each architecture, it is possible to
estimate the energy consumed for 224-bit modular multiplication. The first ar-
chitecture does a multiplication in 2.46µs with 25.35mW , therefore it needs
61.35nJ . The second architecture does the multiplication faster in 1.30µs with
36.02mW , thus consuming only 46.83nJ . The second architecture, when com-
paring with the first, has an increase of 48% in area, a decrease of 46% in time
and an increase of only 42% in terms of power. The power has increased less
than the latency, which explains the second architecture being more energy effi-
cient. In some scenarios, like RFID applications, the power consumption is more
important than the energy efficiency. In those scenarios architecture 1 is more
suitable.

Only a few ECC hardware implementations with prime based finite fields are
shown in Table 3. Since some do not provide multiplication results for the same
prime size in XilinxR© or MicrosemiR© FPGAs [2,7,15,27,30,33]. Also, some other
works [17,26] have a project strategy have a low latency and/or high throughput
approach, so most FPGA resources are required. In contrary, our strategy is to
minimize the number of occupied resources, therefore it is not a meaningful
comparison.

McIvor et al. [20] analyzed the SOS, CIOS and FIOS algorithms proposed
in [18] under the following metrics: area, cycles, latency and throughput for a
Virtex II ProR© FPGA. For their analysis the architecture applied was almost
the same for all 3 algorithms: an ALU based architecture. In this architecture
there is one ALU that can do multiplication or addition, and this ALU keeps
iterating over the values. This architecture has an approach that is similar to

Low Power Montgomery Modular Multiplication on Reconfigurable Systems 13

Table 3. Comparison of our results to the literature on hardware implementations for
ECC. The speed results are for one modular multiplication.

Work Field FPGA LUT4 FF Emb. BRAM BRAM Frequency Add. Sub. Mult. Time
Mult. 64x18 1kx18 (MHz) Cycles Cycles Cycles

Only Finite Field Multiplication
[20] 128 Virtex II ProR© 1434? 1434? 1 0 0 101.87 – – 310 1.9
[20] 256 Virtex II ProR© 2866? 2866? 4 0 0 101.87 – – 582 5.7
[29] 128 VirtexR© E 1612? 1612? 0 0 0 97.63 – – 388† 3.97
[29] 256 VirtexR© E 3096? 3096? 0 0 0 100.44 – – 772† 7.69
[29] 512 VirtexR© E 5944? 5944? 0 0 0 95.22 – – 1540† 16.17

Finite Field Addition, Subtraction and Multiplication
Our 1 116-132 IGLOOR© 2 444 160 1 1 0 200 14 22 184 0.92
Our 1 150-166 IGLOOR© 2 444 160 1 1 0 200 16 26 268 1.34
Our 1 184-200 IGLOOR© 2 444 160 1 1 0 200 18 30 368 1.84
Our 1 218-234 IGLOOR© 2 444 160 1 1 0 200 20 34 484 2.42
Our 2 116-132 IGLOOR© 2 658 268 2 2 0 200 16 16 108 0.54
Our 2 150-166 IGLOOR© 2 658 268 2 2 0 200 18 18 148 0.74
Our 2 184-200 IGLOOR© 2 658 268 2 2 0 200 20 20 200 1.00
Our 2 218-234 IGLOOR© 2 658 268 2 2 0 200 22 22 260 1.30
Our 2 252-268 IGLOOR© 2 658 268 2 2 0 200 24 24 328 1.64
Our 2 320-336 IGLOOR© 2 658 268 2 2 0 200 28 28 488 2.44
Our 2 371-387 IGLOOR© 2 658 268 2 2 0 200 31 31 629 3.15
Our 2 405-421 IGLOOR© 2 658 268 2 2 0 200 33 33 733 3.67
Our 2 439-455 IGLOOR© 2 658 268 2 2 0 200 35 35 845 4.23
Our 2 507-523 IGLOOR© 2 658 268 2 2 0 200 39 39 1093 5.47

Finite Field with Inversion
[10] 128 Virtex IIR© 3234? 3234? 0 0 0 45.17 1 1 129 2.86
[10] 160 Virtex IIR© 3708? 3708? 0 0 0 40.28 1 1 161 4.00
[10] 192 Virtex IIR© 4694? 4694? 0 0 0 35.99 1 1 193 5.36
[10] 224 Virtex IIR© 5442? 5442? 0 0 0 33.06 1 1 225 6.81
[10] 256 Virtex IIR© 6218? 6218? 0 0 0 31.92 1 1 257 8.05

Full ECC Processors
[35] 224 SmartFusionR© 3690 3690 0 0 12 109 46 46 360 3.3
[35] 256 SmartFusionR© 3690 3690 0 0 12 109 46 46 401 3.7
[35] 224 Virtex II ProR© 1546? 1546? 1 0 3 210 46 46 360 1.7
[35] 256 Virtex II ProR© 1546? 1546? 1 0 3 210 46 46 401 1.9
[35] 224 Virtex II ProR© 2316? 2316? 4 0 3 210 28 28 135 0.64
[35] 256 Virtex II ProR© 2316? 2316? 4 0 3 210 28 28 157 0.75
[36] 256 Virtex II ProR© 3664? 3664? 2 0 9 108.2 44 44 637 5.89
? Maximum possible value assumed from the number of slices. † Values estimated by multiplying

time by frequency.

14 Pedro Maat C. Massolino, Lejla Batina, Ricardo Chaves, and Nele Mentens

Table 4. Power simulation results for our hardware implementations.

Work Field FPGA LUT4 FF Emb. BRAM BRAM Frequency Power (mW)
Mult. 64x18 1kx18 (MHz) Dyn. Sta.

Finite Field Addition, Subtraction and Multiplication
Our 1 116-132 IGLOOR© 2 444 160 1 1 0 200 17.09 8.89
Our 1 150-166 IGLOOR© 2 444 160 1 1 0 200 16.86 8.89
Our 1 184-200 IGLOOR© 2 444 160 1 1 0 200 16.62 8.89
Our 1 218-234 IGLOOR© 2 444 160 1 1 0 200 16.46 8.89
Our 2 116-132 IGLOOR© 2 658 268 2 2 0 200 26.88 8.89
Our 2 150-166 IGLOOR© 2 658 268 2 2 0 200 27.01 8.89
Our 2 184-200 IGLOOR© 2 658 268 2 2 0 200 27.11 8.89
Our 2 218-234 IGLOOR© 2 658 268 2 2 0 200 27.13 8.89
Our 2 252-268 IGLOOR© 2 658 268 2 2 0 200 27.16 8.89
Our 2 320-336 IGLOOR© 2 658 268 2 2 0 200 27.08 8.89
Our 2 371-387 IGLOOR© 2 658 268 2 2 0 200 27.06 8.89
Our 2 405-421 IGLOOR© 2 658 268 2 2 0 200 27.07 8.89
Our 2 439-455 IGLOOR© 2 658 268 2 2 0 200 27.00 8.89
Our 2 507-523 IGLOOR© 2 658 268 2 2 0 200 26.97 8.89

ours, having one ALU on which all operations are performed. Our strategy differs
from theirs in the sense that our architecture is optimized to compute in one
cycle a · b+ d+ carry while theirs performs this operation in more cycles. Also,
when they implemented FIOS the same strategy with one ALU was applied,
instead of an architecture that benefits more from the algorithm. If we do a
direct comparison of implementations, ours is 69% smaller and 52% faster than
theirs for 128-bit primes when comparing the architectures with one multiplier.
For the architecture with two multipliers for 256-bit primes, ours is 77% smaller
and 71% faster than theirs. Part of this improvement can be explained by the
FPGA distinct architectures. In the Virtex II ProR© architecture there are only
standalone multipliers, while IGLOOR©2 has multipliers and adders embedded
together, which reduces the amount of area required and increases the operating
frequency.

Örs et al. [29] designed a systolic array architecture for Montgomery modular
multiplication. It could be said they also applied the FIOS algorithm, since they
do multiplication and reduction at the same time. In their approach each cell
computes one bit for the entire multiplication process. Their strategy is to com-
pose an array of those cells to compute the modular multiplication, while ours
is to iterate on a 17 bits cell. The systolic array is more suitable for platforms,
where embedded multipliers are not available directly, like ASICs. It should be
noticed that their architecture was devised for the RSA cryptosystem, but it
works for ECC as well. By doing a direct comparison, our implementation is
72% smaller and 77% faster for 128-bit primes with one multiplier. For two mul-
tipliers and 512-bit primes, our proposal is 89% smaller and 66% faster. This big
difference in results is mainly because their architecture doesn’t leverage from
embedded DSPs, Math Blocks or multipliers.

In the same strategy of not applying any embedded primitive on the FPGA,
besides memories, Daly et al. [10] projected a circuit for all prime field operations.
The architecture strategy is to make an adder of the entire size of the input,

Low Power Montgomery Modular Multiplication on Reconfigurable Systems 15

and use the adder iteratively to compute a multiplication. A multiplication can
be computed at each iteration by multiplying one bit of one of the inputs by
the other entire input. With this strategy an entire multiplier can be made
out of one adder. However, in their architecture they opted for two adders for
performance reasons. While this strategy reduces greatly the circuit area it also
increases operation time, since it is directly proportional with the bit length of
the field. This strategy shares some similarities with the systolic array. But in the
systolic array some intermediate flip flops can be placed to increase the operating
frequency, or it can work in a cyclic way. By comparing directly operations on
224-bit primes and different FPGAs, our proposal is 92% smaller and 52% faster
for one multiplier. Their proposal has the inversion operation, while our proposal
features all necessary operations to implement.

In more recent work Varchola et al. [35] proposed a small ECC architecture
for only NIST primes curves. The work has the same objective to make an ECC
architecture as small as possible, therefore using only a small number of DSPs,
if available, were demanded. Their architecture follows the same approach as
ours, of one ALU that keeps receiving values to be processed. Their ALU is also
one multiplier, using the built-in FPGA multiplier if it is available, and followed
by final addition that is done through FPGA LUTs. In their case two FPGA
implementations were made, one with a SmartFusionR© FPGA from MicrosemiR©
and another one for a XilinxR© Virtex II ProR©. Since SmartFusion does not
have embedded multipliers, none were deployed, while they were exploited on
Virtex II ProR©. Since the circuit area is for the entire ECC co-processor with
scalar point multiplication, only the timing results for modular multiplication
can be compared. For the SmartFusion our architecture is slightly better, but
for the Virtex II ProR© our proposal is slower. When comparing the latency, their
proposal is 30% faster than ours with one multiplier for 224 bits and 54% faster
than ours for two multipliers. The reason for this difference is a more efficient
modular reduction algorithm, that only works for Solinas primes.

Another recent work with the same minimization strategy was conducted
by Vliegen et al. [36]. The strategy applied was also to reduce the number of
memories and embedded multipliers on a Virtex II ProR© FPGA. For their archi-
tecture the CIOS algorithm was followed in a straightforward manner. For this
reason, two multipliers were used, instead of 1 like in our proposal. More than
one circuit was made, there were 3 circuits of the same architecture, but each
one with two bigger basic multipliers. A comparison of the cycle count of our
two-multiplier architecture following the FIOS algorithm and their architecture
for 256 bits, shows a speed-up of 49% in favor of our solution. This speed-up
is achieved thanks to a more efficient scheduling of the operations on the two
multipliers.

5 Final Considerations

We have shown two different architectures with the same approach of minimizing
the number of multipliers and memories. While our first proposal is smaller and

16 Pedro Maat C. Massolino, Lejla Batina, Ricardo Chaves, and Nele Mentens

more power efficient, our second proposal is faster and can work with primes up
to 523 bits. Both architectures have advantages and disadvantages, and therefore
can be used in different scenarios.

A comparison of our work with the literature shows a considerable reduction
of both the resources and the latency for a Montgomery multiplication allowing
generic primes. Moreover, we managed to achieve these results on an FPGA
based on a low power Flash technology, namely the Microsemi IGLOO 2 FPGA.
This makes our 1-multiplier and 2-multiplier solutions suitable for power and
energy efficient applications, respectively. The most important contribution of
our work is the optimal scheduling of the CIOS and FIOS algorithms on the
internal architecture of the IGLOO 2. This results in a minimization of the
number of occupied LUTs and Flip Flops in combination with a minimization
of the number of cycles consumed for one multiplication.

For future work, our proposal is to integrate this solution into a bigger co-
processor that can do ECC scalar multiplication. The main challenge will be
to minimize the additional memory and control resources needed to store and
process the intermediate values in the computation.

References

1. Agence nationale de la sécurité des systèmes d’information: Mécanismes cryp-
tographiques - Règles et recommandations. Tech. rep., ANSSI (2014)

2. Alrimeih, H., Rakhmatov, D.: Fast and Flexible Hardware Support for ECC Over
Multiple Standard Prime Fields. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on 22(12), 2661–2674 (Dec 2014)

3. Aranha, D.F., Barreto, P.S.L.M., Pereira, G.C.C.F., Ricardini, J.: A note on high-
security general-purpose elliptic curves (2013), http://eprint.iacr.org/2013/
647

4. Barrett, P.: Implementing the Rivest Shamir and Adleman Public Key Encryption
Algorithm on a Standard Digital Signal Processor. In: Advances in Cryptology -
CRYPTO’ 86, Lecture Notes in Computer Science, vol. 263, pp. 311–323. Springer
Berlin Heidelberg (1987)

5. Batina, L., Muurling, G.: Montgomery in Practice: How to Do It More Efficiently in
Hardware. In: Topics in Cryptology — CT-RSA 2002, Lecture Notes in Computer
Science, vol. 2271, pp. 40–52. Springer Berlin Heidelberg (2002)

6. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Public key
cryptography—PKC 2006, 9th international conference on theory and practice in
public-key cryptography. Springer, New York, NY, USA (2006)

7. Blum, T., Paar, C.: High-radix Montgomery modular exponentiation on reconfig-
urable hardware. IEEE Transactions on Computers 50(7), 759–764 (Jul 2001)

8. Chen, G., Bai, G., Chen, H.: A High-Performance Elliptic Curve Cryptographic
Processor for General Curves Over GF(p) Based on a Systolic Arithmetic Unit.
Circuits and Systems II: Express Briefs, IEEE Transactions on 54(5), 412–416
(May 2007)

9. Crandall, R.E.: Method and apparatus for public key exchange in a cryptographic
system (1992), u.S. Patent number 5159632

Low Power Montgomery Modular Multiplication on Reconfigurable Systems 17

10. Daly, A., Marnane, W., Kerins, T., Popovici, E.: An FPGA implementation of a
GF(p) ALU for encryption processors. Microprocessors and Microsystems 28(5–6),
253 – 260 (2004), special Issue on FPGAs: Applications and Designs

11. Diffie, W., Hellman, M.E.: New directions in cryptography. Information Theory,
IEEE Transactions on 22(6), 644–654 (1976)

12. nationale de la sécurité des systèmes d’information, A.: Publication d’un paramé-
trage de courbe elliptique visant des applications de passeport électronique et de
l’administration électronique française. Tech. rep., ANSSI (2011)

13. Eberle, H., Gura, N., Shantz, S., Gupta, V., Rarick, L., Sundaram, S.: A public-key
cryptographic processor for RSA and ECC. In: Application-Specific Systems, Ar-
chitectures and Processors, 2004. Proceedings. 15th IEEE International Conference
on. pp. 98–110 (Sept 2004)

14. ECC Brainpool: ECC Brainpool standard curves and curve generation. Tech. rep.,
Brainpool (2005)

15. Ghosh, S., Alam, M., Chowdhury, D.R., Gupta, I.S.: Parallel crypto-devices for
GF(p) elliptic curve multiplication resistant against side channel attacks. Com-
puters & Electrical Engineering 35(2), 329 – 338 (2009), circuits and Systems for
Real-Time Security and Copyright Protection of Multimedia

16. J. Jonsson and B. Kaliski: Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1. Tech. rep., RSA Laboratories (2003)

17. Javeed, K., Wang, X.: Efficient Montgomery Multiplier for Pairing and Elliptic
Curve Based Cryptography. In: Communication Systems, Networks Digital Signal
Processing (CSNDSP), 2014 9th International Symposium on. pp. 255–260 (July
2014)

18. Koç, Ç.K., Acar, T., Kaliski Jr., B.S.: Analyzing and comparing Montgomery mul-
tiplication algorithms. Micro, IEEE 16(3), 26–33 (Jun 1996)

19. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Advances in Cryptol-
ogy – CRYPTO’ 99, Lecture Notes in Computer Science, vol. 1666, pp. 388–397.
Springer Berlin Heidelberg (1999)

20. McIvor, C., McLoone, M., McCanny, J.V.: FPGA Montgomery multiplier archi-
tectures - a comparison. In: Field-Programmable Custom Computing Machines,
2004. FCCM 2004. 12th Annual IEEE Symposium on. pp. 279–282 (April 2004)

21. Microsemi: IGLOO2 Product Information Brochure. Tech. rep., Mi-
crosemi (2014), http://www.microsemi.com/document-portal/doc_download/
132013-igloo2-product-information-brochure

22. Miller, V.: Use of Elliptic Curves in Cryptography. In: Advances in Cryptology -
CRYPTO 85 Proceedings, Lecture Notes in Computer Science, vol. 218, pp. 417–
426. Springer Berlin / Heidelberg, Berlin, Germany (1986)

23. Montgomery, P.L.: Modular Multiplication without Trial Division. Mathematics of
Computation 44(170), 519–521 (1985)

24. National Institute for Standards and Technology: Federal information processing
standards publication 186-2. digital signature standard. Tech. rep., NIST (2000)

25. National Institute for Standards and Technology: Federal information processing
standards publication 186-4. digital signature standard. Tech. rep., NIST (2013)

26. Orlando, G., Paar, C.: A Scalable GF(p) Elliptic Curve Processor Architecture for
Programmable Hardware. In: Cryptographic Hardware and Embedded Systems —
CHES 2001, Lecture Notes in Computer Science, vol. 2162, pp. 348–363. Springer
Berlin Heidelberg (2001)

27. Pöpper, C., Mischke, O., Güneysu, T.: MicroACP - A Fast and Secure Recon-
figurable Asymmetric Crypto-Processor. In: Reconfigurable Computing: Architec-

18 Pedro Maat C. Massolino, Lejla Batina, Ricardo Chaves, and Nele Mentens

tures, Tools, and Applications, Lecture Notes in Computer Science, vol. 8405, pp.
240–247. Springer International Publishing (2014)

28. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (feb
1978)

29. Örs, S.B., Batina, L., Preneel, B., Vandewalle, J.: Hardware implementation of a
Montgomery modular multiplier in a systolic array. In: Parallel and Distributed
Processing Symposium, 2003. Proceedings. International. p. 8 (April 2003)

30. Sakiyama, K., Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: Reconfig-
urable Modular Arithmetic Logic Unit for High-Performance Public-Key Cryp-
tosystems. In: Reconfigurable Computing: Architectures and Applications, Lecture
Notes in Computer Science, vol. 3985, pp. 347–357. Springer Berlin Heidelberg
(2006)

31. Solinas, J.A.: Generalized Mersenne Numbers. Tech. rep., Center for Applied Cryp-
tographic Research, University of Waterloo (1999)

32. Stein, W., et al.: Sage Mathematics Software (Version 7.0). The Sage Development
Team (2016), http://www.sagemath.org

33. Tamura, S., Yamada, C., Ichikawa, S.: Implementation and Evaluation of Modular
Multiplication Based on Coarsely Integrated Operand Scanning. In: Proceedings
of the 2012 Third International Conference on Networking and Computing. pp.
334–335. ICNC ’12, IEEE Computer Society, Washington, DC, USA (2012)

34. Tenca, A.F., Koç, Ç.K.: A Scalable Architecture for Montgomery Multiplication.
In: Cryptographic Hardware and Embedded Systems, Lecture Notes in Computer
Science, vol. 1717, pp. 94–108. Springer Berlin Heidelberg (1999)

35. Varchola, M., Güneysu, T., Mischke, O.: MicroECC: A Lightweight Reconfigurable
Elliptic Curve Crypto-processor. In: Reconfigurable Computing and FPGAs (Re-
ConFig), 2011 International Conference on. pp. 204–210 (Nov 2011)

36. Vliegen, J., Mentens, N., Genoe, J., Braeken, A., Kubera, S., Touhafi, A., Ver-
bauwhede, I.: A compact FPGA-based architecture for elliptic curve cryptography
over prime fields. In: Application-specific Systems Architectures and Processors
(ASAP), 2010 21st IEEE International Conference on. pp. 313–316 (July 2010)

37. Walter, C.: Montgomery exponentiation needs no final subtractions. Electronics
Letters 35(21), 1831–1832 (Oct 1999)

