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Abstract. The meet-in-the-middle (MITM) attack has prove to be efficient in analyzing

the AES block cipher. Its efficiency has been increasing with the introduction of various

techniques such as differential enumeration, key-dependent sieve, super-box etc. The recent

MITM attack given by Li and Jin has successfully mounted to 10-round AES-256.

Crypton is an AES-like block cipher. In this paper, we apply the MITM method to the

cryptanalysis of Crypton-256. Following Li and Jin’s idea, we give the first 6-round dis-

tinguisher for Crypton. Based on the distinguisher as well as the properties of Crypton’s

simple key schedule, we successfully launch MITM attacks on Crypton-256 reduced to 9 and

10 rounds. For 9-round Crypton-256, our MITM attack can recover the 256-bit key with a

time complexity 2173.05, a memory complexity 2241.17. For the 10-round version, we give two

MITM attacks. The basic attack requires a time complexity 2240.01 and memory complexity

2241.59. The time/memory complexity of the advanced MITM attack on 10-round Crypton is

2245.05/2209.59. Our MITM attacks share the same data complexity 2113 and their error rates

are negligible.

Keywords: Cryptanalysis, Crypton, MITM, Efficient Differential Enumeration Technique, Key-

Dependent Sieve, Super-Box

1 Introduction

The SPN-structural block cipher Crypton [1] was proposed by Lim in 1998 as a candidate algorithm

for the Advanced Encryption Standard. It process 128-bit message blocks and supports key lengths

vary from 64 to 256 bits. Later at FSE 1999, the designer introduced a revisited version of this block

cipher named Crypton v1.0 [2] with the Sboxes and the key schedule modified (since the method

used in this paper is applicable to both Crypton and Crypton v1.0, we only use “Crypton” referring

both versions without specifical announcement). Although it was Rijindael [3] rather than Crypton

that was selected as the official AES standard [4], Crypton share many similarities with AES and

has been studied with various methods under both single-key and related-key models.

For the conventional single-key model, D’ Halluin et al. proposed a square attack [5] on 6-round

Crypton at FSE 1999. In ICISC 2001, an impossible differential attack on 6-round Crypton was

given in [6]. In 2010, two improved impossible differential differential attacks were given by Mala

et al. [7] and mount to 7-round Crypton. In ICISC 2013, Lin et al. launched a meet-in-the-middle



attack on 7-round Crypton [8]. Improved meet-in-the-middle attacks are later given by Liu et al. in

[9] that reach 8- and 9-round Crypton. There is also biclique attacks that can attack full 12-round

Crypton [10]. As to the related-key model, a related-key impossible differential attack has mounted

to 9-round Crypton [11].

According to previous cryptanalytic results, we can regard MITM as the most efficient method

for attacking Crypton since biclique is a brute-force-like method that exhaust the whole key space

with marginal complexities. The current meet-in-the-middle attack on Crypton can reach 9 rounds.

In this paper, we focus on the key-recovery attacks under the single-model. We are to give improved

meet-in-the-middle results on Crypton-256 utilizing the techniques that have been successfully

applied to the cryptanalysis of AES.

Related Works. The meet-in-the-middle (referred as MITM hereafter) method was first intro-

duced by Diffie and Hellman in 1977 [12]. In the past decade, we have witnessed a large number

of MITM results on block ciphers ( [13,14,15,16] just to name some). Its popularity can be largely

attributed to its high efficiency for attacking the AES block cipher [17,18,19,20,21,22,23]. Demir-

ci and Selçuk launched the first MITM attack on AES at FSE 2008 [17]. At ASIACRYPT 2010,

Dunkelman, Keller and Shamir [20] introduced the differential enumeration technique to MITM

attacks and largely reduced the memory complexities. At EUROCRYPT 2013, Derbez, Fouque and

Jean [21] modified Dunkelman et al.’s attack with the rebound-like idea. They gave MITM results

mounting to 8-round AES-192 and 9-round AES-256. At FSE 2014, Li et al. [22] introduced the

key-dependent sieve technique and achieved the most efficient attacks on 9-round AES-192/256.

This work also introduce a method of spliting the whole attack into some weak-key attacks accord-

ing to the relations between the subkeys in the online phase and the precomputation phase so that

the memory complexities can be diminished. Recently, Li and Jin propose new MITM attacks on

AES-256. They wisely construct a unique 6-round distinguisher and, using the technique of [22],

successfully attack 10-round AES-256 [23].

Our Contributions. In this paper, we only focus on the Crypton with 256-bit key length referred

as Crypton-256. Following idea in [23], we construct a 6-round distinguisher for Crypton-256. With

this distinguisher, we propose MITM attacks on 9-round Crypton-256. Comparing with the previous

9-round attack, our result has lower time and memory complexities. We also propose two MITM

attacks, referred as the basic attack and the advanced attack respectively, on 10-round Crypton-

256. The basic attack requires a time complexity 2240.01, a memory compleixty 2241.59 and a data

complexity 2113. The advanced attack applies the idea in [22] to split the whole attack into 232 weak-

key attacks which lowers the memory requirement significantly. The time/memeory/data complexity

of our advanced attack is 2245.05/2209.59/2113. To the our knowledge, these are the best key recovery

results on Crypton-256 under the single key model (except for biclique). We summarize our results

along with all existing single-key results on Crypton in Table 1.

Organization of the Paper. In Section 2, we give a brief introduction to Crypton-256 and provide

some properties used in our attacks. In Section 3, we construct the 6-round distinguisher on Crypton-

256. Section 4 details our improved MITM attack on 9-round Crypton-256. We describe our basic

and advanced MITM attack on 10-round Crypton-256 in Section 5 Finally, Section 6 concludes the

whole paper.
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Table 1. Key-Recovery attacks on Crypton under the single-key model.

Round Data Time Memory Method Source

7 2121 2116.2 - ID [7]

7 2113 2113 291 MITM [8]

7 232 281.19 2189.78 MITM [9]

8 232 2209 2189.58 MITM [9]

9 2120 2208.83 2230.15 MITM [9]

9 2104 2208.83 2246.15 MITM [9]

9 2113 2173.05 2241.17 MITM Section 4

10 2113 2240.01 2241.59 MITM Section 5.1

10 2113 2245.05 2209.59 MITM Section 5.2

12 244 2254 - Biclique [10]

ID: impossible differential; MITM: meet-in-the-middle

2 Preliminary

In the first part of this section, we give a brief introduction to Crypton-256 that omits all details

irrelevant to our attacks. We refer interested reader to [1,2] for more information. In the second

part, we give some definitions and properties that are used in our attacks.

2.1 Description of Crypton-256

Crypton is a 128-bit block cipher based on SPN design. It consists of 16 8-bit bytes represented by

a 4× 4 matrix numbered as follows:

A =


a12 a8 a4 a0
a13 a9 a5 a1
a14 a10 a6 a2
a15 a11 a7 a3

 (1)

Full Crypton has 12 rounds and each round consists of the 4 transformations as follows:

Nonlinear Substitution γ. This transformation consists of nibble-wise substitutions using four

8-bit S-boxes S0, S1 satisfying S0 = S−11 . The Sboxes of Crypton share the same property with that

of AES:

Property 1. Given ∆in and ∆out F28\{0}, the equation Si(x)⊕S(x⊕∆in) = ∆out, has one solution

on average.

Bit Permutation π. The bit permutation transformation π is a linear transformation that mix

each byte column of the 4×4 array with XOR operations. It consists of 4 column-wise permutations

namely π0, . . . , π3 that used in parallel in each Crypton round. We denote the i-th (i = 0, . . . , 3)

column of A (defined as (1)) by Ai = (a4i, a4i+1, a4i+2, a4i+3)T . For the even-number rounds (Round

0,2,4,...,10), we have π(A) =
(
π3(A3), π2(A2), π1(A1), π0(A0)

)
; for the odd-number rounds (Round
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1,3,...,11), we have π(A) =
(
π0(A3), π3(A2), π2(A1), π1(A0)

)
. Since we will use the property of π0,

we detail the operation of π0. Let (b0, b1, b2, b3)T = π0((a0, a1, a2, a3)T ), we have

b0 = (m0 ∧ a0)⊕ (m1 ∧ a1)⊕ (m2 ∧ a2)⊕ (m3 ∧ a3)

b1 = (m1 ∧ a0)⊕ (m2 ∧ a1)⊕ (m3 ∧ a2)⊕ (m0 ∧ a3)

b2 = (m2 ∧ a0)⊕ (m3 ∧ a1)⊕ (m0 ∧ a2)⊕ (m1 ∧ a3)

b2 = (m3 ∧ a0)⊕ (m0 ∧ a1)⊕ (m1 ∧ a2)⊕ (m2 ∧ a3)

(2)

where m0 = 0xfc, m0 = 0xf3, m0 = 0xcf, m3 = 0x3f, and ∧ represents the bit-wise AND operation.

We refer readers to [1] for the definition of π1, π2 and π2. The branch number of πi (i = 0, . . . , 3)

is 4. So we have Property 2.

Property 2. With the knowledge of any 5 out of the 8 input/output bytes of πi operation, the other

3 bytes can also be determined uniquely.

Transposition τ The τ operation simply rearrange the positions of the bytes as follows:
a12 a8 a4 a0
a13 a9 a5 a1
a14 a10 a6 a2
a15 a11 a7 a3

 τ−→


a3 a2 a1 a0
a7 a6 a5 a4
a11 a10 a9 a8
a15 a14 a13 a12


Key Addition σ: σK is a simple bit-wise XOR the 16-byte state with the 16-byte key K, which

is exactly the same with the AddRoundKey operation of AES.

Before the ecryption, Crypton-256 expand its 256-bit masterkey K to 13 subkeys 128-bit denoted

as k0, . . . , k12 through a key schedule that will described later. Then, for round number r = 1, . . . , 12,

we define the round function

ρr(·) = σkr ◦ τ ◦ π ◦ γ(·)

We also define the linear transformation Φ(·) = τ ◦ π ◦ τ(·) So, for the plaintext P , the ciphertext

C after a r-round Crypton-256 encryption can be summarized as:

C = Φ ◦ ρr ◦ . . . ◦ ρ1 ◦ σk0(P )

Key Schedule. For the 256-bit masterkey K, Crypton-256 first process it with a nonlinear op-

eration to another 256-bit expanded key. Since this is a 1-to-1 projection, we can still use K to

represent the expanded key. The 128-bit subkeys k0 and k1 are first initialized with the lowest

significant 128 bits and the most significant 128 bits of K respectively. Then, for i = 1, . . . , 6, k2i
(k2i+1) is derived from k2i−2 (k2i−1) with simply rotations and XORing round constants. So we

have the following property.

Property 3. The subkeys k0, . . . , k12 of Crypton-256 satisfy: the knowledge of any k2i (k2i+1) for

any i ∈ [0, 6] (i ∈ [0, 5]) is sufficient to deducing all k0, k2, . . . , k12 (k1, k3, . . . , k11). Furthermore,

the knowledge of one byte in k2i (k2i+1) can uniquely one byte in every subkey k0, k2, . . . , k12
(k1, k3, . . . , k11).
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Property 3 exists in both Crypton and Crypton v1.0. We need to utilize the key-byte relationship

between k5 and k1 in our construction of distinguishers, so we specify the following two properties

for Crypton and Crypton v1.0 respectively.

Property 4. In Crypton, the knowledge of k5[0, . . . , 7] can deduce 8 bytes of k1 namely: k1[0, 7, 9, 10, 11, 12, 13, 14];

the knowledge of k4[4, 7, 10, 13] can deduce 4 bytes k0[0, . . . , 3].

Property 5. In Crypton, the knowledge of k5[0, . . . , 7] can deduce 8 bytes of k1 namely: k1[2, 3, 5, 7, 8, 9, 12, 14];

the knowledge of k4[2, 4, 9, 15] can deduce k0[0, . . . , 3]

Properties 3, 4 and 5 can be easily deduced referring to the key schedules in [1] and [2]. They can

help us reduce the complexities of our attacks on a large scale.

2.2 Definitions and Properties of Crypton-256

Throughout the paper we use the following definitions and properties in our attack. Before our

descriptions, we give the following notations that we use through this paper.

State xi
r: The 128-bit Crypton states are represented by different small letters (except for plain-

texts P and ciphertexts C). We denote the internal state after σkr transformation by xr, after

γ by yr, after π by zr and after τ by wr. kr represents the round key while ur is calculated

linearly from kr with ur = τ ◦ π(kr). The difference of state x is denoted by ∆x. Besides, the

superscript represents the position that the state lies in a sequence (or set).

Byte x[i]: We refer to the i-th nibble of a state x by x[i], and use x[i, · · · , j] for nibbles at positions

from i to j. The nibbles of the state is numbered as the matrix in equation (1).

Bit-wise operators:

∧ bit-wise AND.

‖ concatenate two strings of bits.

⊕ bit-wise XOR.

Definition 1. (σ-set of Crypton) A σ-set is a set of 256 128-bit Crypton-states that are all

different in one byte (the active byte) and all equal in the other state bytes (the inactive bytes).

Definition 2. (Super-box of Crypton) Consider a 1-round encryption of Crypton:

xr
γ−→ yr

π−→ zr
τ−→ wr

⊕kr−−→ xr+1
γ−→ yr+1

The whole process can be divided into 4 Super-boxes SSB0, . . . , SSB3 as

SSBi : xr[4i, . . . , 4i+ 3]→ yr+1[i, i+ 4, i+ 8, i+ 12], for i ∈ [0, 3].

The operation of SSBi requires the knowledge of 4 key bytes kr[i, i + 4, i + 8, i + 12] and it can

be regarded as a 32-to-32 Sbox operation. Applying Property 1 to the super-boxes of Crypton, we

acquire Property 6.

Property 6. Given ∆in and ∆out F232\{0}, the equation SSBi(x)⊕SSB(x⊕∆in) = ∆out, has one

solution on average.
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3 The 6-Round Distinguisher for Crypton-256

Using [23]’s ideas, we construct a 6-round distinguisher on Crypton-256 using the differential enu-

merate technique and key-dependent sieve technique. According to Property 2, we further establish

the equation in π of round 6 that

(m0 ∧ y6[0])⊕ (m3 ∧ y6[2]) = (m1 ∧m3 ⊕m0) ∧ z6[0]

⊕ (m0 ∧m1 ⊕m2 ∧m3) ∧ z6[1]

⊕ (m0 ∧m2 ⊕m3) ∧ z6[2]

(3)

Let ein = m0 ∧ y6[0]⊕m3 ∧ y6[2] and

eout = (m1 ∧m3 ⊕m0) ∧ z7[0]

⊕ {(m0 ∧m1)⊕ (m2 ∧m3)} ∧ x7[4]

⊕ (m0 ∧m2 ⊕m3) ∧ x7[8]

then we have

eout = ein ⊕ (m1 ∧m3 ⊕m0)⊕ k7[0]

⊕ {(m0 ∧m1)⊕ (m2 ∧m3)} ⊕ k7[4]

⊕ (m0 ∧m2 ⊕m3)⊕ k7[8].

According to Property 4 and Property 5, the knowledge of k5[0, . . . , 7] can deduce k1[12] for

both Crypton and Crypton v1.0. Therefore, we construct a truncated differential characteristic in

Figure 1 that can be used in both Crypton and Crypton v1.0. We also prove Theorem 1 that bounds

the memory requirements of our attacks. The distinguisher as well as Theorem 1 follows the idea

of Li and Jin in [23]. The proof of Theorem 1 uses both the differential enumeration technique of

[21] and the key-dependent sieve of [22].

Theorem 1. Let (w0, . . . , w255) be a σ-set where the position of the active byte is w0[12], and

wt0[12] = t for t ∈ [0, 255]. Consider the encryption of the first 33 values (w0, . . . , w32) of the σ-set

through 6-round Crypton-256, in the case of that a message pair (wi0, w
j
0) of the σ-set conforms to

the truncated differential characteristic in Figure 1, then the corresponding 256-bit ordered sequence

(e1out ⊕ e0out, . . . , e32out ⊕ e0out) only takes about 2240 values (out of the 2256 theoretical ones).

Proof. Firstly, we show that, without the condition that a message pair (wi0, w
j
0) of the σ-set

conforms to the truncated differential characteristic in Figure 1, the sequence (e1out ⊕ e0out, e2out ⊕
e0out, . . . , e

32
out ⊕ e0out) is computed by the 46 bytes:

wi0[12]‖xi1[12]‖xi2[3, 7, 11, 15]‖xi3‖k4‖k5[0, . . . , 7] (4)

In the following proof, we denote difference xm⊕xi by ∆xm (m ∈ [0, 255]). In round 0, it is explicit

to compute ∆xm1 [12] by the equation ∆xm1 [12] = ∆wm0 [12] = wm0 [12] ⊕ wi0[12] with wi0[12]. As the

value xi1[12] is known, we can compute ∆ym1 [12] with ∆ym1 [12] = S(xi1[12])⊕ S(∆xm1 [12]⊕ xi1[12]).

Since the π, τ and σkr operations are linear, we can further obtain the difference ∆xm2 [3, 7, 11, 15]
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since ∆ym1 [t] = 0 for t 6= 12. Similarly, the knowledge of xi2[3, 7, 11, 15] enable us to acquire ∆xm3 .

Since xi3 and xm3 are both known, we acquire the state values wm3 and wi3. We can encrypt one

more rounds with k4 to acquire wm4 and wim. With the knowledge of wm4 , wim and k5[0, . . . , 7], we

can acquire wm5 [0, . . . , 7] and wi5[0, . . . , 7]. Since we can deduce k6[0, 1] from k4 and acquire ym6 [0, 1]

and yi6[0, 1], we finally acquire emin. According to (3), we have emin⊕ e0in = emout⊕ e0out for m ∈ [1, 32],

which proves (4).

Adding the condition that wi belongs to a pair (wi, wj) conforming the truncated differential

Figure 1, we can determine the sequence with the following 33 bytes.

∆jy1[12]‖xi2[3, 7, 11, 15]‖yi4‖yi5[0, . . . , 7]‖yi6[0, 1]‖∆yj6[0, 1] (5)

We start by deducing forward. Since (wi, wj) follows the differential propagation in Figure 1, the

knowledge of ∆yj1[12] is sufficient for us to acquire the difference ∆xj2[3, 7, 11, 15]. Adding the value

xi2[3, 7, 11, 15], we can compute xj2[3, 7, 11, 15] and further deduce the difference ∆xj3.

In the backward direction, we have known ∆jy6[0, 1] and ∆zj6[0] = ∆yj6[0, 1] = 0 so we can

acquire the differences ∆zj6[0, 1, 2] according to Property 2. Combining the difference ∆yj6[0, 1] with

the value yi6[0, 1], we can compute backward to ∆yj5[0, . . . , 7]. With the knowledge of the value

yi5[0, . . . , 7], we can compute backward to acquire ∆yj4. Finally, adding yi4, we deduce the difference

of ∆yj3.

For each pair of difference (∆xj3, ∆y
j
3), we can acquire 1 corresponding xi3‖yi3 on average (Prop-

erty 1). Besides, we can also deduce k4 with xi3 and yi4, deduce k5[0, . . . , 7] with yi5[0, . . . , 7] and yi4,

deduce k6[0, 1] from yi6[0, 1] and yi5[0, . . . , 7]. Since the knowledge of k4 can also deduce the value of

k6[0, 1] according to Property 3, k6[0, 1] is a 16-bit filter. There is another limitation in ∆jy6[0, 1]:

when ∆yj6[2, 3] = 0, only 28 out of the 216 possible ∆jy6[0, 1]’s can make sure ∆zj6[0] = 0. There-

fore, the 2-byte difference ∆jy6[0, 1] can only take 28 rather than 216 values. We list all conforming

∆jy6[0, 1]’s in Appendix A. So the strength of filtering is 16 + 8 = 24 bits.

The knowledge of k5[0, . . . , 7] enable us to deduce k1[12] (Property 4 and Property 5). We can

also acquire k2 from k4. With k2 and k1[12], we can decrypt xi2[3, 7, 11, 15] and finally acquire wi0[12].

Considering the 24-bit filtering, the sequence (e1out ⊕ e0out, . . . , e32 ⊕ e0out) can take 28×33−24 = 2240

values. ut

4 The Attack on 9-Round Crypton-256

We apply the 6-round distinguisher in Section 3 to attack 9-round Crypton-256 by adding 1 round

at the beginning and 2 rounds at the end. The extended truncated differential characteristic can be

seen in Figure 2. The probability for a plaintext pair (P, P ′) to conform the characteristic is 2−144.

The procedure of the attack can be detailed as follows:

Precomputation Phase. In the precomputation phase, we construct a lookup table T0 containing

the 2240 sequences (e1out ⊕ e0out, . . . , e32 ⊕ e0out) along with additional information to enhance the

success probability of our attacks. We also construct another table T1 to further save the time

complexity of the online phase. The procedure of constructing T0 and T1 is described as follows:
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Figure 1. The 6-round distinguisher used in our attacks.
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1. Initialize the lookup table T0 as empty. For 2128 possible k4, we do the following steps to

construct T0:

(a) With the knowledge of k4, deduce the 8 key bytes k6[0, . . . , 7].

(b) Construct a table T2 containing the information on the backward deduction by taking the

following substeps:

i. Guess y5[0, . . . , 7] and compute forward to y6[0, 1] using k6.

ii. Guess ∆y6[0, 1] and assign ∆y6[2, 3] = 0. Compute forward to ∆z6[0, . . . , 3] and reserve

the 28 possible ∆y6[0, 1]’s (Appendix A) that makes ∆z6[3] = 0.

iii. Combining the acquired information, we can compute backward to acquire both x5[0, . . . , 7]

and ∆x5[0, . . . , 7].

iv. Store all possible x5[0, . . . , 7]’s in T2 under the index ∆x5[0, . . . , 7]. For each of the 264

possible ∆x5[0, . . . , 7]’s, there are averaging 28 possible x5[0, . . . , 7] attached.

(c) Construct a table T3 containing the information on the forward deduction by taking the

following substeps:

i. Guess the 96-bit ∆y2[3, 7, 11, 15]‖∆x5[0, . . . , 7] and deduce the differences ∆x3‖∆y4.

ii. With k4, we acquire 1 conforming x3‖y4 on average according to Property 6.

iii. We store x3‖∆x5[0, . . . , 7] in T3 indexed by∆y2[3, 7, 11, 15]. Each of the 232 ∆y2[3, 7, 11, 15]

is followed by 264 corresponding x3‖∆x5[0, . . . , 7]’s.

(d) For all 240 possible ∆y1[12]‖x2[3, 7, 11, 15]’s, we match the two tables T2, T3 and gradually

construct T0 by taking the following steps:

i. Deduce k2 from k4 (Property 4) and further acquire y1[12]‖x1[12] with the knowledge

of k2‖x2[3, 7, 11, 15].

ii. Combine y1[12] and∆y1[12] to acquire∆x2[3, 7, 11, 15]. Adding the knowledge of x2[3, 7, 11, 15],

we further deduce ∆y2[3, 7, 11, 15].

iii. Lookup the acquired∆y2[3, 7, 11, 15] in T3 and find averaging 264 corresponding x3‖∆x5[0, . . . , 7]’s.

iv. For each of the 264 x3‖∆x5[0, . . . , 7]’s, we lookup T2 and find 28 x5[0, . . . , 7]’s. As k4 is

known, we can deduce w4 from x3 and further acquire k5[0, . . . , 7] with the knowledge

of x5[0, . . . , 7].

v. After deducing k1[12] from k5[0, . . . , 7], we acquire the value w0[0] through partial de-

cryptions from y1[12].

vi. Compute the sequence (e1out ⊕ e0out, . . . , e32out ⊕ e0out).
vii. Deduce k0 from k4 and store k0[0, . . . , 3] along with the sequence in T0 as (e1out ⊕

e0out, . . . , e
32
out ⊕ e0out)‖k0[0, . . . , 3].

2. We construct another table T1 for saving the time in the online phase:

(a) For all the 120-bit subkey of u9[λ]||u8[0, 4, 8] and the 96-bit value of w8[λ] and obtain the

values eout where λ is the set of indices defined as

λ := {0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14} (6)

and will be frequently referred in the remainder of this paper.

(b) Store eout with the index of u8[0, 4, 8]‖u9[λ]||w8[λ] in table T1.
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Round 1

6-Round Distinguisher

Round 8

Round 9

Figure 2. The truncated differential characteristic for attacking 9-round Crypton-256. The key bytes in

shadow are deduced in Step 3 of the online phase.

Online Phase. We first find one message pair satisfying the truncated differential characteristic in

Figure 2. Then we identify the σ-set, calculate the sequence (e1out⊕ e0out, . . . , e32out⊕ e0out) and detect

whether it belongs to the table T0 built in the precomputation phase. The procedure of our attack

is as follow:

1. Construct 281 plaintext structures and query for their ciphertexts. In each structure, there

are 232 plaintexts s.t. P [0, . . . , 3] take all the possible values, and the remaining 12 bytes are

fixed to some constants. There are
(
232

2

)
≈ 263 plaintext pairs only having non-zero differences

in byte positions 0,1,2,3. Therefore, we have now acquired 281+63 = 2144 plaintext (P, P ′)’s

(whose corresponding ciphertexts are (C,C ′)) conforming the starting point of the truncated

characteristic. Since the characteristic has a probability 2−144, we expect to find 1 pair follows

the whole differential propagation in Figure 2.

2. Within each structure, select the pairs satisfying ∆C[12, . . . , 15] = 0. This is a 32-bit filter so

2112 out of the 2144 pairs will remain.

3. For each of the remaining pair (P, P ′) (the corresponding (C,C ′) is also known), we do the

following substeps:
(a) Guess ∆w0[12] and, assuming ∆w0[0, 4, 8] = 0, deduce the difference ∆y0[0, . . . , 3]. Combin-

ing ∆x0[0, . . . , 3] = ∆P [0, . . . , 3], we can deduce 1 value x0[0, . . . , 3]‖y0[0, . . . , 3] on average

(Property 1). We also deduce k0[0, . . . , 3] with the knowledge of P [0, . . . , 3]‖x0[0, . . . , 3].

(b) Guess ∆y7[0, 1, 2] and, assuming ∆y7[3, . . . , 15] = 0, deduce linearly the difference ∆x8.

Compute ∆y8 as ∆y8 = ∆w8 = π ◦ τ(∆C). For each nonlinear difference ∆x8[λ]‖∆y8[λ],

we can find 1 corresponding x8[λ]‖y8[λ] according to Property 1 where λ is defined as (6).

Since x9 = τ ◦ π ◦ τ(C) ,we linearly deduce w8 = τ ◦ π(x9) and further acquire the key

u9[λ] = y8[λ]⊕ w8[λ].
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(c) Guess the subkey u8[0, 1, 2]. With the knowledge of k0[0, . . . , 3], we start from P and acquire

w0[0, 4, 8, 12]. Assign w0[0] to 0, . . . , 32, acquire the corresponding P 0, . . . , P 32 through par-

tial decryptions and identify the ciphertexts C0, . . . , C32 simultaneously. With u9[λ]||u8[0, 4, 8]

and wt8 (linearly deduced from Ct for t = 0, . . . , 32), we can acquire etout as well as

the sequence (e1out ⊕ e0out, . . . , e
32
out ⊕ e0out) by referring to the table T1. Check whether

the string (e1out ⊕ e0out, . . . , e32out ⊕ e0out)‖k0[0, . . . , 3] lies in T0. If a match has been found,

we identify the subkey u9[λ]‖u8[0, 4, 8] as the correct key guess. Otherwise, go back to

Step (a) (or change a new pair (P, P ′) and restart Step (a) when the all 256 possible

∆w0[0]‖∆y7[0, 1, 2]‖u8[0, 1, 2]’s have been tested). The probability for a wrong guess to

pass this test is 2240 × 2−8×36 = 2−48

4. Now that we have acquired a candidate u9[λ]‖u8[0, 1, 2], we exhaustively search the remaining

136-bit u9[3, 7, 11, 15]‖u8[3, . . . , 15] to recover the whole 256-bit masterkey.

Complexity Analysis: For each of the 2128 k4’s, the construction of T2 in Step 2 requires

28×(8+2) = 280 encryptions. T2 contains 264+8 = 272 records. The table T3 in Step 3 requires 296

encryptions and contains 296 entries. The matching operations in Step 4 requires 240 × 28 × 264 ×
33 ≈ 2117.05 encryptions. So the time complexity of the precomputation phase is 2128 × (280 +

296 + 2117.05) ≈ 2245.05. The table T0 contains 2240 entries and each of them has 36 bytes. We

need 2240 × 36/16 ≈ 2241.17 128-bit blocks to store T0, which is also the memory complexity of

the whole attack. The time complexity of the online phase is dominated by Step 3.(c) which is

2112 × 28 × 224 × 224 × 33 ≈ 2173.05. The data complexity is 281 × 232 = 2113. The successful

probability of this attack is 1− 2−48 according to Step 3(c).

5 Meet-in-the-Middle Attacks on 10-Round Crypton-256

We extend the attack in Section 4 by 1-round and acquire attacks on 10-round Crypton-256. We

first describe the our basic attack in Section 5.1. Then, in Section 5.2, we show the advanced attack

that optimizes the complexities by dividing the whole attack into a series of weak-key attacks, which

is exactly the method used in [22,23]. The truncated differential characteristic can be seen in Figure

3

5.1 The Basic Attack

Our basic attack on 10-round Crypton-256 also consists of the precomputation phase and the online

phase.

Precomputation Phase. The precomputation phase is identical to that of the previous section

except for Step 1.(c).vii which is slightly changed as

– Deduce k10 from k4 and store k10 along with the sequence in T0 as (e1out ⊕ e0out, . . . , e
32
out ⊕

e0out)‖k10.

With this change, we can acquire a higher success probability in the 10-round attack.

Online Phase. The identification of the pair conforming the truncated differential characteristic

in Figure 3 is slightly complicated. The procedure is as follow:
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Round 1

6-Round Distinguisher

Round 8

Round 9

Round 10

Figure 3. The truncated differential characteristic for attacking 10-round Crypton-256.

1. Exactly the same with the 9-round attack, we construct 281 plaintext structures, query for their

ciphertexts and acquire 2144 pairs in total.

2. For each of the 2144 pairs (P, P ′), we do the following substeps:

(a) Guess ∆y8[λ] and deduce ∆x9 where λ is defined as (6). Deduce ∆y9 from ∆C and further

acquire 1 x9‖y9 according to Property 1. The knowledge of y9 and C further enable us to

attain the whole k10. Deduce k0 from k10 and compute from (P, P ′) to the corresponding

∆w0. Discard the guess of ∆y8[λ] if ∆w0[0, 4, 8] 6= 0. This is a 24-bit filter so the guess can

go through this step with a probability 2−24.

(b) Guess ∆y6[0, 1] among the 28 possibilities in Appendix A to conform the characteristic

and compute forward to ∆x7. Deduce k8 from k10. Since ∆x7‖k8‖∆y8[λ] are known, we

can use Property 6 to acquire 1 x7[λ]‖y8[λ]. Since x9 is also known, we acquire u9[λ] as

well. Deduce k0 from k10 and acquire the value w0 from P . Change the value of w0[12]

to 0, . . . , 32, compute backward to acquire the corresponding plaintexts P 0, . . . , P 32 and

ciphertexts C0, . . . , C32.

(c) For 296−24 = 272 deduced subkeys k10 passed through (a), we further acquire k8 and its

equivalence u8. With the knowledge of u8[0, 4, 8]‖u9[λ]‖k10, we compute backward to w8[λ],

check the table T1 for the corresponding eout, and finally acquire the sequence (e1out ⊕
e0out, . . . , e

32
out ⊕ e0out). Check whether the combination (e1out ⊕ e0out, . . . , e32out ⊕ e0out)‖k10 lies

in the precomputed table T0. If a match has been found, we go to Step 3. Otherwise, we

discard the guess and go to Step (a) (or try a new (P, P ′) pair and restart Step (a) if the

∆y8[λ]‖∆y6[0, 1] of the current pair has been exhausted).
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3. Now that we have acquired a candidate u9[λ]‖k10, we exhaustively search the remaining u9[3, 7, 11, 15]

to recover the whole 256-bit masterkey.

Complexity Analysis. The time complexity for constructing T0 is still 2245.05. Since the each

one of the 2240 T0 entries is expanded from 36 to 48 bytes, the memory complexity increases

accordingly to 2240×48/16 ≈ 2241.59 128-bit blocks. In the online phase, the complexity of Step 1 is

232+81 = 2113. In Step 2, for each of the 2144 pairs, the complexity of (a) is 296; the complexities of

(b) and (c) are 272+8 = 280 and 272+8× 33 ≈ 285.04 respectively. So the complexity of Step 2 in the

online phase can be computed as 2144 × (296 + 280 + 285.04) ≈ 2240.01. The complexity of Step 3 of

the online phase is only 232. Therefore, the overall complexity of the online phase is dominated by

that of Step 2’s 2240.01. The data complexity is still 2113. The whole attack requires 232+81 = 2113

plaintexts so the data complexity is 2113 as well. As to the success probability, the right pair

combined with correct key guess can pass Step 2 with probability 1. An incorrect combination of

plaintext pair and key guess can pass Step 2.(a) with probability 2−24, Step (c) with probability

2240× 2−8×(32+16) = 2−264. So the success probability of the whole attack is no less than 1− 2−288.

To sum up, our attack on 10-round Crypton-256 can recover the whole 256-bit key with a time

complexity 2240.01, a memory compleixty 2241.59, a data complexity 2113 and a negligible error rate

2−288.

5.2 The Advanced Attack

In [18], Li et al. present that the whole attack can be divided into a series of weak-key attacks

according to the relations between the subkeys in the online phase and the precomputation phase.

This method has also been used in the 10-round attack on AES-256 in [23]. The linear expansion of

the Crypton-256 key schedule enables us to make such a tradeoff even easier. In the precomputation

phase, we only need to compute the table T1 described as Section 5.1. And the attack procedure of

the online phase is described as follows:

1. Same with Step 1 of the online phase in Section 5.1, we acquire 2144 plaintext pairs (P, P ′)

conforming the difference and their ciphertexts are also known.

2. For each of the 232 possible k4[i0, . . . , i3], do the following substeps:

Note: (i0, . . . , i3) = (4, 7, 10, 13) for Crypton according to Property 4 and (i0, . . . , i3) = (2, 4, 9, 15)

for Crypton v1.0 following Property 5.

(a) Guess the other 12 bytes of k4 and construct the subtable T ∗0 as described in the Section

5.1. T ∗0 contains of 2208 (e1out ⊕ e0out, . . . , e32out ⊕ e0out)‖k10.

(b) Deduce the value k0[0, . . . , 3] from k4[i0, . . . , i3]. Within each of the 281 plaintext struc-

tures, partially encrypt the plaintexts to acquire w0[0, 4, 8, 12] and identify the pairs s.t.

∆w0[0, 4, 8] = 0. This is a 24-bit filter and 263−24 = 239 pairs are left in each structure,

which makes 2120 remaining pairs in total.

(c) Guess the unknown 12 bytes of k4 and deduce the whole k10‖k0 from k4. Within each of the

281 structures (each structure contains 239 pairs), we acquire w8 with k10 (or its equivalence

u10) and identify the pairs s.t. ∆w8[3, 7, 11, 15] = 0. This is a 32-bit filter and 239−32 = 27

pairs are left within each structure making 288 pairs in total.
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(d) For each of the 288 remaining pairs (P, P ′), we do the following substeps:

i. Deduce k8 from k10. Partially decrypt the ciphertext to acquire x9 and w8, and further

compute∆y8[λ]. Guess the difference∆y6[0, 1] among the 28 possible values in Appendix

A and acquire the corresponding ∆x7. Since k8 is known, we can acquire 1 value of

x7[λ]‖y8[λ] on average each of the combination ∆x7‖k8‖∆y8[λ] (Property 6). We further

deduce u9[λ] with the knowledge of y8[λ] and x9.

ii. Deduce k0 from k10 and acquire w0 from plaintexts. Change the value of w0[12] to

0, . . . , 32, compute backward for plaintexts P 0, . . . , P 32 and find the corresponding ci-

phertexts C1, . . . , C32.

iii. For t = 0, . . . , 32, we acquire the wt8[λ] with the knowledge k10‖u9[λ] from Ct. Check T1
and get etout and further acquire the sequence (e1out ⊕ e0out, . . . , e32out ⊕ e0out). Lookup T ∗0
for the (e1out ⊕ e0out, . . . , e32out ⊕ e0out)‖k10. Discard the subkey if no match can be found.

(e) For each k4[i0, . . . , i3], after Step (d), there are about 1 + 296×288×28×2−276 ≈ 1 subkeys

remaining.

3. After the 232 sub-attacks, there are 232 × 1 = 232 subkeys k10‖u8[λ] remaining. So we exhaus-

tively search for the 264 remaining k10‖u8[λ]‖u8[3, 7, 11, 15] to recover the full 256-bit key.

Complexity Analysis. The memory complexity is dominated by T ∗0 ’s 2208×48/16 = 2209.59. Since

the construction of the whole T0 requires a time complexity 2245.05 as is mentioned in Section 4, the

construction of one T ∗0 is 2245.05−32 = 2213.05, so the time complexity of Step 2.(a) is 232×2213.05 =

2245.05. This is the dominant of the overall time complexity of our advanced MITM attack. The

probability for a wrong key to pass Step 2.(e).iii is 2208 × 2−8×(32+16) = 2−276. So the success

probability is 1− 2−276. The data complexity is still 2113.

6 Conclusion

In this paper, we launch improved MITM attacks on Crypton-256 reduced to 9 and 10 rounds. By

introducing the new techniques in [22,23], we successfully improve the existing MITM results on

Cryton in both complexities and the number of attacked rounds. Our attacks can be applied to

both the original Crypton in [1] and the revised version Crypton v1.0 in [2].
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Appendix

A The Conforming ∆y6[0]‖∆y6[1]

There are 256∆y[0]‖∆y1 satisfying π0((∆y6[0], ∆y6[1], 0, 0)T ) = (0, ∗, ∗, ∗)T . The conforming∆y[0]‖∆y1
are as follows:

0‖0, 0‖1, 0‖2, 0‖3, 4‖4, 4‖5, 4‖6, 4‖7, 8‖8, 8‖9, 8‖a, 8‖b, c‖c, c‖d, c‖e, c‖f, 10‖10, 10‖11, 10‖12,

10‖13, 14‖14, 14‖15, 14‖16, 14‖17, 18‖18, 18‖19, 18‖1a, 18‖1b, 1c‖1c, 1c‖1d, 1c‖1e, 1c‖1f, 20‖20,

20‖21, 20‖22, 20‖23, 24‖24, 24‖25, 24‖26, 24‖27, 28‖28, 28‖29, 28‖2a, 28‖2b, 2c‖2c, 2c‖2d, 2c‖2e,

2c‖2f, 30‖30, 30‖31, 30‖32, 30‖33, 34‖34, 34‖35, 34‖36, 34‖37, 38‖38, 38‖39, 38‖3a, 38‖3b, 3c‖3c,

15



3c‖3d, 3c‖3e, 3c‖3f, 40‖0, 40‖1, 40‖2, 40‖3, 44‖4, 44‖5, 44‖6, 44‖7, 48‖8, 48‖9, 48‖a, 48‖b, 4c‖c,

4c‖d, 4c‖e, 4c‖f, 50‖10, 50‖11, 50‖12, 50‖13, 54‖14, 54‖15, 54‖16, 54‖17, 58‖18, 58‖19, 58‖1a,

58‖1b, 5c‖1c, 5c‖1d, 5c‖1e, 5c‖1f, 60‖20, 60‖21, 60‖22, 60‖23, 64‖24, 64‖25, 64‖26, 64‖27, 68‖28,

68‖29, 68‖2a, 68‖2b, 6c‖2c, 6c‖2d, 6c‖2e, 6c‖2f, 70‖30, 70‖31, 70‖32, 70‖33, 74‖34, 74‖35, 74‖36,

74‖37, 78‖38, 78‖39, 78‖3a, 78‖3b, 7c‖3c, 7c‖3d, 7c‖3e, 7c‖3f, 80‖0, 80‖1, 80‖2, 80‖3, 84‖4, 84‖5,

84‖6, 84‖7, 88‖8, 88‖9, 88‖a, 88‖b, 8c‖c, 8c‖d, 8c‖e, 8c‖f, 90‖10, 90‖11, 90‖12, 90‖13, 94‖14, 94‖15,

94‖16, 94‖17, 98‖18, 98‖19, 98‖1a, 98‖1b, 9c‖1c, 9c‖1d, 9c‖1e, 9c‖1f, a0‖20, a0‖21, a0‖22, a0‖23,

a4‖24, a4‖25, a4‖26, a4‖27, a8‖28, a8‖29, a8‖2a, a8‖2b, ac‖2c, ac‖2d, ac‖2e, ac‖2f, b0‖30, b0‖31,

b0‖32, b0‖33, b4‖34, b4‖35, b4‖36, b4‖37, b8‖38, b8‖39, b8‖3a, b8‖3b, bc‖3c, bc‖3d, bc‖3e, bc‖3f,

c0‖0, c0‖1, c0‖2, c0‖3, c4‖4, c4‖5, c4‖6, c4‖7, c8‖8, c8‖9, c8‖a, c8‖b, cc‖c, cc‖d, cc‖e, cc‖f, d0‖10,

d0‖11, d0‖12, d0‖13, d4‖14, d4‖15, d4‖16, d4‖17, d8‖18, d8‖19, d8‖1a, d8‖1b, dc‖1c, dc‖1d, dc‖1e,

dc‖1f, e0‖20, e0‖21, e0‖22, e0‖23, e4‖24, e4‖25, e4‖26, e4‖27, e8‖28, e8‖29, e8‖2a, e8‖2b, ec‖2c,

ec‖2d, ec‖2e, ec‖2f, f0‖30, f0‖31, f0‖32, f0‖33, f4‖34, f4‖35, f4‖36, f4‖37, f8‖38, f8‖39, f8‖3a, f8‖3b,

fc‖3c, fc‖3d, fc‖3e, fc‖3f,
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