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Abstract. Structure-preserving signatures are an important cryptographic primitive that is useful
for the design of modular cryptographic protocols. It has been proven that structure-preserving
signatures (in the most efficient Type-III bilinear group setting) have a lower bound of 3 group
elements in the signature (which must include elements from both source groups) and require at
least 2 pairing-product equations for verification. In this paper, we show that such lower bounds can
be circumvented. In particular, we define the notion of Unilateral Structure-Preserving Signatures
on Diffie-Hellman pairs (USPSDH) which are structure-preserving signatures in the efficient Type-
III bilinear group setting with the message space being the set of Diffie-Hellman pairs, in the
terminology of Abe et al. (Crypto 2010). The signatures in these schemes are elements of one of the
source groups, i.e. unilateral, whereas the verification key elements’ are from the other source group.
We construct a number of new structure-preserving signature schemes which bypass the Type-III
lower bounds and hence they are much more efficient than all existing structure-preserving signature
schemes. We also prove optimality of our constructions by proving lower bounds and giving some
impossibility results. Our contribution can be summarized as follows:

• We construct two optimal randomizable CMA-secure schemes with signatures consisting of only
2 group elements from the first short source group and therefore our signatures are at least half
the size of the best existing structure-preserving scheme for unilateral messages in the (most
efficient) Type-III setting. Verifying signatures in our schemes requires, besides checking the
well-formedness of the message, the evaluation of a single Pairing-Product Equation (PPE) and
requires a fewer pairing evaluations than all existing structure-preserving signature schemes in
the Type-III setting. Our first scheme has a feature that permits controlled randomizability
(combined unforgeability) where the signer can restrict some messages such that signatures on
those cannot be re-randomized which might be useful for some applications.

• We construct optimal strongly unforgeable CMA-secure one-time schemes with signatures con-
sisting of 1 group element, and which can also sign a vector of messages while maintaining the
same signature size.

• We give a one-time strongly unforgeable CMA-secure structure-preserving scheme that signs
unilateral messages, i.e. messages in one of the source groups, whose efficiency matches the
best existing optimal one-time scheme in every respect.

• We investigate some lower bounds and prove some impossibility results regarding this variant
of structure-preserving signatures.

• We give an optimal (with signatures consisting of 2 group elements and verification requir-
ing 1 pairing-product equation) fully randomizable CMA-secure partially structure-preserving
scheme that simultaneously signs a Diffie-Hellman pair and a vector in Zk

p.
• As an example application of one of our schemes, we obtain efficient instantiations of random-

izable weakly blind signatures which do not rely on random oracles. The latter is a building
block that is used, for instance, in constructing Direct Anonymous Attestation (DAA) proto-
cols, which are protocols deployed in practice.

Our results offer value along two fronts: On the practical side, our constructions are more efficient
than existing ones and thus could lead to more efficient instantiations of many cryptographic
protocols. On the theoretical side, our results serve as a proof that many of the lower bounds for
the Type-III setting can be circumvented.
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1 Introduction

Structure-Preserving Signatures (SPS) [3] are pairing-based digital signature schemes whose messages,
verification key and signatures are all group elements and signature verification involves evaluating
Pairing-Product Equations (PPE). Such schemes compose nicely with existing popular tools such as
Groth-Sahai proofs [34] and ElGamal encryption scheme [23] and hence they are a useful tool for the
design of cryptographic protocols which do not rely on heuristic assumptions such as random oracles [24].
They have numerous applications which include group signatures, e.g. [3, 37, 38], blind signatures, e.g. [3,
26], tightly secure encryption schemes, e.g. [35, 2], malleable signatures, e.g. [9], anonymous credentials,
e.g. [26], network coding, e.g. [9], and oblivious transfer, e.g. [31].

Related Work. The term “structure-preserving signature” was put forward by Abe et al. [3] but earlier
schemes conforming to the definition were given by Groth [32] and Green and Hohenberger [31]. The
notion has received a significant amount of attention from the cryptographic community and many results
regarding proving lower bounds for the design of such schemes as well as new schemes meeting those lower
bounds have been published in the literature. Abe et al. [3] constructed structure-preserving signature
schemes based on non-interactive intractability assumptions which work in the different bilinear group
settings. Abe et al. [4] showed that a signature of a structure-preserving scheme in the Type-III bilinear
group setting (cf. Section 2.1) must have at least 3 group elements and require at least 2 pairing-product
equations to be verified. They also proved that the signature must contain elements from both source
groups which rules out the existence of unilateral signatures (i.e. signatures whose all components are
elements of one of the source groups). They gave optimal constructions and proved their security in the
generic group model [42, 40]. Abe et al. [5] proved that it is impossible to base the security of a scheme
with signatures consisting of 3 group elements in the Type-III setting on non-interactive intractability
assumptions. In essence, their result proves that in the Type-III setting, the only way to meet the 3
group element lower bound is to either employ interactive intractability assumptions or resort to direct
proofs in the generic group model. Ghadafi [28] gave a structure-preserving variant of the Camenisch-
Lysyanskaya signature scheme [17] in the Type-III setting that is based on an interactive assumption.
Abe et al. [7] gave a scheme in the Type-II setting (where there is an efficiently computable isomorphism
from the second source group to the first) with signatures consisting of only 2 group elements. Chatterjee
and Menezes [20] revisited the work of [7] and showed that Type-III constructions outperform their
Type-II counterparts. They also gave constructions in Type-III setting meeting the 3 group element
lower bound. Barthe et al. [10] gave optimal constructions of structure-preserving signatures in Type-II
setting. Constructions relying on standard assumptions (such as DLIN and DDH) were given by [18, 1,
16, 2, 36, 38]. It is well known that schemes based on standard assumptions are much less efficient than
their counterparts relying on non-standard assumptions or those proven directly in the generic group
model. Recently, Ghadafi [29] gave a randomizable scheme with signatures consisting of 3 elements from
the first source group which can also be regarded as a unilateral structure-preserving signature scheme
on Diffie-Hellman pairs. Verification in his scheme requires, besides checking the well-formedness of the
message, the evaluation of 2 pairing-product equations. Abe et al. [8] and Groth [33] recently gave fully
structure-preserving schemes where even the secret key consists of only group elements.

Our Contribution. After defining unilateral structure-preserving signatures on Diffie-Hellman pairs,
our contribution can be summarized as follows:-

• We construct two new randomizable structure-preserving signature schemes that are existentially
unforgeable against a chosen message attack. Our schemes yield signatures consisting of only two
group elements from the first short source group and hence our signatures are at least half the size of
the shortest existing Type-III structure-preserving signature scheme. Our schemes also outperform
the very recent scheme in [29]. Verifying signatures in our schemes requires, besides checking the well-
formedness of the message, the evaluation of a single pairing-product equation. The total number of
pairings required for verification in our schemes are 4 (1 of which is offline, i.e. can be precomputed)
and 3, respectively. In both schemes, depending on the application, the number of pairing evaluations
can be reduced by 1 since in both schemes two pairings in the equation share the same left-hand side
argument. Our first construction has a feature that permits controlled randomizability (combined
unforgeability) which might be of independent interest.
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• We give a strongly unforgeable CMA-secure one-time USPSDH scheme with 1 element signatures.
We also give different variants which sign vectors of messages while maintaining the same signature
size.

• We give a strongly unforgeable one-time CMA-secure scheme for unilateral messages in the Type-III
setting that matches the best existing optimal scheme in every respect.

• We investigate some lower bounds and prove some impossibility results for USPSDH schemes. Our
(in)feasibility and lower bound results include the following:
i) The impossibility of strongly existentially unforgeable schemes that are secure against an adver-

sary that makes more than a single signing query. This implies that only one-time USPSDH schemes
can have strong existential unforgeability against a chosen message attack.

ii) A lower bound of 2 group element signatures for schemes that are secure against a random
message attack for more than a single signing query. In essence, this means that all of our
constructions are optimal.

iii) A lower bound of 2 group elements for the verification key of optimal schemes. This applies even
when the adversary is restricted to a single random message signing query. In essence, this means
that our constructions are optimal in every respect.

• We give an optimal fully randomizable CMA-secure partially structure-preserving scheme that si-
multaneously signs a Diffie-Hellman pair and a vector in Zkp.

• As a by-product, we give efficient instantiations of randomizable weakly blind signatures [12] which
do not rely on random oracles and which are more efficient than existing constructions. The latter
is a building block that is used, for instance, in the design of direct anonymous attestation protocols
[15, 12].

Why are USPSDH schemes interesting? From our results, it is clear that USPSDH signature
schemes outperform other variants of structure-preserving signatures since they yield shorter signatures
and require less verification overhead since as we show, they circumvent the lower bounds in the Type-III
setting. It is particularly interesting when the signatures are from the first short source group as the
bit size of the elements of that group is at least half the size of those of the second source group. Note
that all existing structure-preserving signatures for unilateral messages require a minimum of 3 group
elements in the signature one of which at least must be from the second source group. While traditional
structure-preserving signatures (on unilateral messages), those in Type-III in particular, have shorter
messages, since message components of those schemes lie in one of the source groups and not in both,
this is a small price to pay to get smaller signatures and more efficient verification. We stress that the
size of messages in USPSDH schemes is still much shorter than schemes in the Type-II setting and those
in Type-I based on finite fields of large characteristics. The latter is recommended as a replacement to
bilinear groups based on finite fields of small characteristics following the recent advancement, e.g. [13,
30], in solving discrete logarithm in the latter setting.

Note that even though one needs to check the well-formedness of the message when verifying a
USPSDH signature, such a check only needs to be performed once when verifying multiple signatures
on the same message. Consider, for example, attribute-based signatures [39] where the signer needs to
prove that she has multiple attributes from (possibly different) attribute authorities. The same applies
to applications requiring a user to prove that she has multiple tokens/credentials/certificates from an
authority or possibly different authorities.

In addition, such schemes work well in association with the popular (but less efficient) automorphic
structure-preserving signature scheme of Abe et al. [25, 3] (whose message and verification key spaces lie
in the message space of USPSDH schemes). The Abe et al. automorphic scheme [25, 3] has been used in
constructing many cryptographic protocols, which include group signatures [22], anonymous credentials
[25], and e-cash systems. Therefore, USPSDH schemes could lead to more practical instantiations of
many cryptographic protocols, including direct anonymous attestation [15], which is a protocol deployed
in practice.

Consider, for instance, an application where the user needs to prove (using the Groth-Sahai proof
system [34]) possession of n signatures on some message (e.g. her verification key/identity/pseudonym)
possibly from different signers. Since the best existing Type-III scheme requires at least 2 PPE equations
to verify each individual signature, this would incur a total cost of 2n Groth-Sahai proofs. On the other
hand, using, for example, any of our optimal USPSDH schemes, one would only need n+ 1 Groth-Sahai
proofs which is significantly better. Also, signatures of our schemes consist of only two group elements
from the first short source group.
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We compare in Table 1, the efficiency of our two new CMA secure schemes with existing schemes
in the Type-III setting. In the last column of the table, we give two different estimations (separated by
the word “OR”) for the total number of pairings required for verification. The first estimation (which
precedes the word “OR”) combines pairings which share an input, i.e. collecting like terms, (which serves
to reduce the number of pairings,) whereas the second estimation counts the pairings separately. Numbers
superscripted with † are the number of pairings that can be precomputed. Since the well-formedness of
the message only needs to be verified once when verifying multiple signatures on the same message, we

do not count such cost for schemes whose message space is ĜH, i.e. the set of Diffie-Hellman pairs, refer
to Section 2.1. For all schemes listed, public parameters do not include the default group generators G
and H̃.

We remark that our schemes even compete with standard non-structure-preserving signatures. For
instance, our schemes are more efficient than the Camenisch-Lysyanskaya signature scheme [17] and
Waters’ scheme [43] in the Type-III setting [19]. Also, the size of our signatures and the verification key
are the same as those of the recent (non-structure-preserving) scheme by Pointcheval and Sanders [41].

Scheme
σ vk Param

m Randomize? Assumptions #PPE #PairingsG H G H G H
[25] 3 2 1 1 3 1 ĜH No q-ADHSDH + AWFCDH 3 7 OR 8 + 1†

[3] I 5 2 10 4 - - G Partially q-SFP 2 8 + 4†

[3] II 2 5 10 4 - - H Partially q-SFP 2 8 + 4†

[4] I 2 1 1 3 - - G×H No GGM 2 5 + 2†

[4] II 2 1 1 1 - - H Yes GGM 2 4 + 1†

[28] 4 - - 2 - - ĜH Yes DH-LRSW 3 6 OR 7
[20] I 1 2 2 - - - H No GGM 2 4 + 1†

[20] II 1 2 2 - - - H Yes GGM 2 5 + 1†

[20] III 2 1 - 2 - - G Yes GGM 2 5 + 1†

[6] I 3 1 - 1 1 - G Yes GGM 2 4 + 2†

[6] II 2 1 - 1 1 - G No GGM 2 4 + 2†

[10] 1 2 2 - - - H Yes GGM 2 3 + 2†

[33] I 1 2 1 - - 1 H Yes GGM 2 3 + 3†

[33] II 1 2 1 - - 1 H No GGM 2 4 + 3†

[29] 3 - - 2 - - ĜH Yes GGM 2 5

Ours I 2 - - 2 - - ĜH Yes1 GGM 1 2 + 1† OR 3 + 1†

Ours II 2 - - 2 - - ĜH Yes GGM 1 2 OR 3
Table 1. Efficiency comparison between our optimal CMA secure schemes and existing schemes in the Type-III
setting

Paper Organization. In Section 2, we give some preliminary definitions. In Section 3, we define unilat-
eral structure-preserving signatures on Diffie-Hellman pairs. In Sections 4 & 5, we present constructions
of optimal signature schemes and prove their security. In Sections 6 & 7, we present constructions of
optimal one-time signature schemes and prove their security. In Section 8, we prove some lower bounds
and give some impossibility results. In Section 9, we give an optimal CMA-secure partially structure-
preserving scheme that simultaneously signs a Diffie-Hellman pair and a vector in Zkp. We give some
example applications of our schemes in Section 10.

Notation. We write y = A(x; r) when the algorithm A on input x and randomness r outputs y. We
write y ← A(x) for the process of setting y = A(x; r) where r is sampled at random. We also write y ← S
for sampling y uniformly at random from a set S. A function ν(.) : N → R+ is negligible (in n) if for
every polynomial p(.) and all sufficiently large values of n, it holds that ν(n) < 1

p(n) . By PPT we mean

running in probabilistic polynomial time in the relevant security parameter. By [k], we denote the set
{1, . . . , k}. We will use capital letters for group elements and small letters for field elements.

1Randomization requires possession of at least 2 distinct signatures on the message in question.
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2 Preliminaries

In this section we provide some preliminary definitions.

2.1 Bilinear Groups

A bilinear group is a tuple P := (G,H,T, p,G, H̃, ê) where G, H and T are groups of a prime order p, and
G and H̃ generate G and H, respectively. The function ê is a non-degenerate bilinear map ê : G×H −→ T.
For clarity, elements of H will be accented with .̃ We use multiplicative notation for all the groups. We
let G× := G \ {1G} and H× := H \ {1H}. In this paper, we work in the efficient Type-III setting [27],
where G 6= H and there is no efficiently computable isomorphism between the groups in either direction.
We assume there is an algorithm BGSetup that on input a security parameter λ, outputs a description
of bilinear groups.

The message space of the signature schemes we consider is the set of elements of the subgroup ĜH
of G×H defined as the image of the map

ψ :

{
Zp −→ G×H
x 7−→ (Gx, H̃x)

Given an element (M, Ñ) ∈ G×H, one can efficiently test whether (M, Ñ) ∈ ĜH by checking ê(M, H̃) =
ê(G, Ñ). 2

2.2 Complexity Assumptions

Definition 1 (Decisional Diffie-Hellman (DDH) Assumption). The DDH assumption holds rel-
ative to a group setup G if for all PPT adversaries A

Pr

[
(G, G, p)← G(1λ); a, b, c← Zp; t← {0, 1};
A := Ga; B := Gb; C := Gtab+(1−t)c : A(G,A,B,C) = t

]
≤ 1

2
+ ν(λ) ·

Definition 2 (Symmetric External Diffie-Hellman (SXDH) Assumption). Given a bilinear
group P := (G,H,T, p,G, H̃, ê), the SXDH assumption requires that the DDH assumption holds in both
groups G and H.

2.3 Digital Signatures

A digital signature scheme over a bilinear group P generated by BGSetup for a message space M is a
tuple DS := (KeyGen,Sign,Verify) whose definitions are:

• KeyGen(P) this randomized algorithm takes as input a bilinear group P and outputs a pair of
secret/verification keys (sk, vk).

• Sign(sk,m) takes as input a secret key sk and a message m ∈M, and outputs a signature σ.
• Verify(vk,m, σ) this deterministic algorithm outputs 1 if σ is a vlaid signature on m w.r.t. the veri-

fication key vk.

Definition 3 (Correctness). A signature scheme DS over a bilinear group generator BGSetup is (per-
fectly) correct if for all λ ∈ N

Pr

[
P ← BGSetup(1λ); (sk, vk)← KeyGen(P);

m←M;σ ← Sign(sk,m) : Verify(vk,m, σ) = 1

]
= 1.

Definition 4 (Existential Unforgeability). A signature scheme DS over a bilinear group generator
BGSetup is Existentially Unforgeable against adaptive Chosen Message Attack (EUF-CMA) if for all
λ ∈ N for all PPT adversaries A

Pr

[
P ← BGSetup(1λ); (sk, vk)← KeyGen(P); (σ∗,m∗)← ASign(sk,·)(P, vk)

: Verify(vk,m∗, σ∗) = 1 and m∗ /∈ QSign

]
≤ ν(λ),

2The elements of this group are called Diffie-Hellman pairs in [25, 3].
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where QSign is the set of messages queried to Sign.
We consider schemes which are re-randomizable (i.e. weakly unforgeable) in the sense that given a

signature on a message m, anyone without knowledge of the signing key, can compute a new signature
on the same message. A desirable property for such class of schemes is that randomized signatures are
indistinguishable from fresh signatures on the same message. Thus, we define an algorithm Randomize
which on input (vk,m, σ), with σ being a valid signature on m, outputs a new signature σ′ on m.

Definition 5 (Randomizability). A signature scheme DS over a bilinear group generator BGSetup is
randomizable if for all λ ∈ N for all stateful adversaries A

Pr


P ← BGSetup(1λ); (sk, vk)← KeyGen(P);
(σ∗,m∗)← A(P, sk, vk); b← {0, 1};
σ0 ← Sign(sk,m∗);σ1 ← Randomize(vk,m∗, σ∗);

: Verify(vk,m∗, σ∗) = 1 and A(σb) = b

 =
1

2
+ ν(λ).

We say the scheme has Perfect Randomizability when ν(λ) = 0. Note that the above definition of
randomizability is stronger than the variant where the signature σ∗ is generated by the challenger rather
than the adversary herself.

When it is even infeasible for the adversary to output a new signature on a message that was queried to
the sign oracle, we say the scheme is Strongly Existentially Unforgeable against adaptive Chosen Message
Attack (sEUF-CMA).

A weaker variant of existential unforgeability, i.e. Existential Unforgeability against a Random Mes-
sage Attack (EUF-RMA), is similar to the above definition but on each call to the sign oracle, the oracle
samples a message uniformly at random from the message space and returns the message and a signature
on it.

In one-time signatures, the adversary is restricted to a single signing query.

2.4 Structure-Preserving Signatures

Structure-preserving signatures [3] are signature schemes defined over bilinear groups where the messages,
the verification key and signatures are all group elements and verifying signatures only involves deciding
group membership of the signature components and evaluating pairing-product equations of the form of
equation 1. ∏

i

∏
j

ê(Ai, B̃j)
ci,j = 1T, (1)

where Ai ∈ G and B̃j ∈ H are group elements appearing in P,m, vk, σ, whereas ci,j ∈ Zp are constants.

Generic Signer. In a bilinear group based signature scheme, we refer to a signer that can only decide
group membership, evaluate the bilinear map ê, compute the group operations in groups G,H and T,
and compare group elements as a generic signer.

2.5 Randomizable Weakly Blind Signatures

A randomizable weakly blind signature scheme [12] is similar to a standard blind signature scheme [21]
but unlike the latter, in the former the signer never gets to see the signed message. A randomizable blind
signature scheme BS (with a two-move signature request phase) is a tuple of polynomial-time algorithms
BS := (SetupBS,KeyGenBS,RequestBS, IssueBS,VerifyBS,RandomizeBS). All algorithms (bar SetupBS) are
assumed to take as (implicit) input a parameter set paramBS output by SetupBS.

• SetupBS(1λ) outputs public parameters paramBS.
• KeyGenBS(paramBS) outputs a verification/secret key pair (vkBS, skBS) for the signer.
• (Request0BS, Issue

1
BS,Request

1
BS) is an interactive protocol between a user and a signer. The protocol is

initiated by the user by calling Request0BS(vkBS,m) to obtain a value ρ0 and some state information
st0R (which is assumed to contain the message m). Then the signer and user execute, respectively,

(β1, st
1
I)← Issue1BS(skBS, ρ0) and σ ← Request1BS(β1, st

0
R),
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where σ is a signature on the message m (or the reject symbol ⊥).

We write σ ← 〈RequestBS(vkBS,m), IssueBS(skBS)〉 for the output of correct running of this protocol
on the given inputs.

• VerifyBS(vkBS,m, σ) outputs 1 if σ is a valid signature on m and 0 otherwise.
• RandomizeBS(vkBS, σ) given a signature σ on an unknown messagem, produces another valid signature
σ′ on the same message.

The security of randomizable weakly blind signatures [12] requires the following:

Definition 6 (Correctness). A randomizable weakly blind signature scheme is (perfectly) correct if
for all λ ∈ N

Pr


paramBS ← SetupBS(1λ); (vkBS, skBS)← KeyGenBS(paramBS);
m←MBS;σ ← 〈RequestBS(vkBS,m), IssueBS(skBS)〉;
σ′ ← RandomizeBS(vkBS, σ)

: VerifyBS(vkBS,m, σ) = 1 and VerifyBS(vkBS,m, σ
′) = 1

 = 1.

Definition 7 (Unforgeability). A randomizable weakly blind signature scheme is unforgeable if for
all λ ∈ N, all PPT adversaries A have a negligible advantage in the game in Fig. 1.

Experiment: ExpUnforge
BS,A (λ):

− paramBS ← SetupBS(1λ).
− (vkBS, skBS)← KeyGenBS(paramBS).

−
(

(m1, σ1), . . . , (mn+1, σn+1)
)
← AIssueBS(·,·)(vkBS, paramBS).

− Return 0 if any of the following holds. Otherwise, Return 1:
◦ A called its oracle more than n times.
◦ ∃i, j ∈ {1, . . . , n+ 1} s.t. i 6= j, but mi = mj .
◦ ∃i ∈ {1, . . . , n+ 1} s.t. VerifyBS(vkBS,mi, σi) = 0.

Fig. 1. The Unforgeability game for randomizable weakly blind signatures

Definition 8 (Weak Blindness). A randomizable weakly blind signature scheme is weakly blind if for
all λ ∈ N, all PPT adversaries A have a negligible advantage in the game in Fig. 2.

Experiment: ExpwBlind
BS,A (λ):

− paramBS ← SetupBS(1λ).
− (vkBS, skBS)← KeyGenBS(paramBS).
− m0,m1 ←MBS.

− (ρ0, st
0
R)← Request0BS(vkBS,m0).

− (β1, stA)← A(paramBS, vkBS, skBS, ρ0).

− σ0 ← Request1BS(β1, st
0
R).

− If σ0 =⊥ or VerifyBS(vkBS,m0, σ0) = 0 Then Return 0.
− b← {0, 1}.
− If b = 0 Then σ1 ← RandomizeBS(vkBS, σ0).
− Else σ1 ← 〈RequestBS(vkBS,m1), IssueBS(skBS)〉.
− b∗ ← A(stA, σ0, σ1).
− Return 1 If b = b∗ Else Return 0.

Fig. 2. The Weak Blindness game for randomizable weakly blind signatures
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2.6 Groth-Sahai Proofs

Groth-Sahai (GS) proofs [34] are non-interactive proofs in the CRS model. We will use GS proofs that are
secure under the SXDH assumption and that prove knowledge of witnesses to pairing-product equations
of the form

n∏
j=1

ê(Aj , Ỹj)

m∏
i=1

ê(Xi, B̃i)

m∏
i=1

n∏
j=1

ê(Xi, Ỹj)
γi,j =

M∏
`=1

ê(G`, H̃`) (2)

All underlined variables are part of the witness whereas the rest of the values are public constants. The
language for these proofs is of the form L := {statement | ∃witness : E(statement,witness) holds } where
E(statement, ·) is a set of pairing-product equations. The system is defined by a tuple of algorithms
(GSSetup,GSProve,GSVerify,GSExtract,GSSimSetup,GSSimProve). GSSetup takes as input the descrip-
tion of a bilinear group P and outputs a binding reference string crs and an extraction key xk. GSProve
takes as input the string crs, a set of equations statement and a witness, and outputs a proof Ω for the
satisfiability of the equations. GSVerify takes as input a set of equations, a string crs and a proof Ω and
outputs 1 if the proof is valid, and 0 otherwise. GSExtract takes as input a binding crs, the extraction
key xk and a valid proof Ω, and outputs the witness used for the proof. GSSimSetup, on input a bilinear
group P, outputs a hiding string crsSim and a trapdoor key tr that allows to simulate proofs. GSSimProve
takes as input crsSim, a statement and the trapdoor tr and produces a simulated proof ΩSim without a
witness. The distributions of strings crs and crsSim are computationally indistinguishable and simulated
proofs are indistinguishable from proofs generated by an honest prover. The proof system has perfect
completeness, (perfect) soundness, composable witness-indistinguishability/composable zero-knowledge.
We refer to [34] for the formal definitions and the details of the instantiations.

3 Unilateral Structure-Preserving Signatures on Diffie-Hellman Pairs

We define Unilateral Structure-Preserving Signatures on Diffie-Hellman Pairs (USPSDH) as structure-
preserving signatures with the following extra conditions on top of those required by traditional structure-
preserving signatures (cf. Section 2.4):

i) Messages are of the form (M, Ñ) ∈ ĜH ⊂ G×H.

ii) Signatures are either of the form σ = (S1, . . . , Sk) ∈ Gk, whereas the verification key is of the form
vk = (Ỹ1, . . . , Ỹn) ∈ Hn or signatures are of the form σ = (S̃1, . . . , S̃k) ∈ Hk, whereas the verification
key is of the form vk = (Y1, . . . , Yn) ∈ Gn.

We remark that there exist schemes, e.g. [28, 29] which conform to the above requirements. Also, there
are schemes, e.g. [25, 3], which satisfy the first requirement but not the second.

The following lemma proves that our impossibility results and lower bound proofs in the next section
hold even if one allows the verification key and public parameters (other than the group generator) to
be from the same source group as the signature components.

Lemma 1. Having a verification key component or a public parameter (other than the group generator)
in the same group as the signature is redundant.

Proof. Let us consider the case where the signature is of the form σ = (S1, . . . , Sk) ∈ Gk whereas the
verification key vk = (X1, . . . , Xn, Ỹ1, . . . , Ỹn′) ∈ Gn × Hn′ . The proof for the opposite case where the
groups are transposed is similar.

Since Xi’s are in same group as Sj ’s (for all possible choices of i and j), the verification equations
cannot have any pairing of the form ê(Si, Xj). Thus, the only pairings that Xi can feature in in the

verification equations are: ê(Xi, Ñ), ê(Xi, H̃) or ê(Xi, Ỹj). In the first case, the pairing is equivalent to

ê(M, H̃xi) where xi is the discrete logarithm of Xi to the base G. Thus, we can replace Xi by X̃i := H̃xi .
In the latter two cases, we can WLOG move the result of the pairing to the right-hand side of the
verification equation and relax Equation (1) to allow the right-hand side to be ZT instead of 1T.

ut
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4 Optimal CMA-Secure Scheme I

We give here a (weakly) existentially unforgeable against adaptive chosen-message attack signature
scheme with signatures consisting of two elements from group G. Besides checking membership of the

message in ĜH, verifying a signature only requires the evaluation of 1 pairing-product equation with 4
pairings in total 1 of which can be precomputed. Depending on the application, the number of pairings
can be further reduced to 3 pairings one of which can be precomputed since two of the pairings share
the same left-hand side argument.

Given the description of Type-III bilinear groups P output by BGSetup(1λ), the scheme is as follows:

• KeyGen(P): Select x, y ← Z×p . Set sk := (x, y) and vk := (X̃, Ỹ ) := (H̃x, H̃y) ∈ H2.

• Sign(sk, (M, Ñ)): To sign a message (M, Ñ) ∈ ĜH, select r ← Zp, and set R := Gr, S :=
(
(Gx ·M)r ·

G
) 1
y . Return σ := (R,S) ∈ G2.

• Verify(vk, (M, Ñ), σ = (R,S)): Return 1 iff R,S ∈ G, (M, Ñ) ∈ ĜH, and the following holds:

ê(S, Ỹ ) = ê(R, X̃)ê(R, Ñ)ê(G, H̃)

Remark 1. Note that the signing algorithm can be performed even without knowledge of the exponent
x if one has the element X := Gx ∈ G (instead of x ∈ Zp) as part of the secret key sk.

Correctness of the scheme follows by inspection and is straightforward to verify.
The signature is weakly unforgeable. For instance, given two distinct signatures σ1 = (R1, S1) and

σ2 = (R2, S2) on a message (M, Ñ), one can without knowledge of the signing key compute a new
signature σ′ = (R′, S′) on the same message by computing e.g. (R′ := R2

1 ·R−12 , S′ := S2
1 · S−12 ).

Theorem 1. The structure-preserving signature scheme is existentially weakly unforgeable against a
chosen-message attack in the generic group model.

Proof. Since the adversary is generic, it can only produce linear combinations of the signatures’ elements,
verification key elements and public parameters in each of the source groups. The linear combinations
represent Laurent polynomials in the discrete logarithm of those elements. We will prove that no linear
combinations produce Laurent polynomials corresponding to a forgery on a message that was not queried
to the sign oracle.

Public elements in H are H̃, X̃, Ỹ which correspond to the discrete logarithms 1, x and y, respectively.
Thus, this means that at the it-h sign query on (Mi, Ñi), Ñi can only be a linear combination of H̃ are
X̃, Ỹ , thus, we have

ni = ani + bnix+ cniy

Similarly, Mi can only be a linear combination of G, {Rj}i−1j=1, {Sj}
i−1
j=1. Thus, we have

mi = ami +

i−1∑
j=1

bmi,jrj +

i−1∑
j=1

cmi,j (
rjx

y
+
rjmj

y
+

1

y
)

After q signing queries, (m∗, n∗), which is the discrete logarithm of the forged message (M∗, Ñ∗) must
be of the form

n∗ = an + bnx+ cny

m∗ = am +

q∑
i=1

bmiri +

q∑
i=1

cmi(
rix

y
+
rimi

y
+

1

y
)

Since we must have (M∗, Ñ∗) ∈ ĜH, i.e. m∗ = n∗, We must have bn = cn = 0 and bmi = cmi = 0 for all
i ∈ [q] and am = an. Thus, we have

m∗ = n∗ = am

9



Similarly, the forgery (R∗, S∗) can only be a linear combination of the group elements from G, i.e. a
linear combination of G, {Ri}qi=1 and {Si}qi=1 and therefore we have

r∗ = ar +

q∑
i=1

br,iri +

q∑
i=1

cr,i(
rix

y
+
rimi

y
+

1

y
)

s∗ = as +

q∑
i=1

bs,iri +

q∑
i=1

cs,i(
rix

y
+
rimi

y
+

1

y
)

For the forgery to be a valid signature, r∗ and s∗ must satisfy s∗y = r∗x+ r∗m∗+ 1. Therefore, we must
have (

as +

q∑
i=1

bs,iri +

q∑
i=1

cs,i(
rix

y
+
rimi

y
+

1

y
)
)
y

=
(
ar +

q∑
i=1

br,iri +

q∑
i=1

cr,i(
rix

y
+
rimi

y
+

1

y
)
)
x

+
(
ar +

q∑
i=1

br,iri +

q∑
i=1

cr,i(
rix

y
+
rimi

y
+

1

y
)
)
m∗ + 1

Thus, we must have

asy +

q∑
i=1

bs,iriy +

q∑
i=1

cs,i(rix+ rimi + 1)

= arx+

q∑
i=1

br,irix+

q∑
i=1

cr,i(
rix

2

y
+
rimix

y
+
x

y
)

+
(
ar +

q∑
i=1

br,iri +

q∑
i=1

cr,i(
rix

y
+
rimi

y
+

1

y
)
)
m∗ + 1

Note that there is no term in y, riy on the right-hand side so we must have as = 0, and bs,i = 0 for all
i, so

q∑
i=1

cs,i(rix+ rimi + 1)

= arx+

q∑
i=1

br,irix+

q∑
i=1

cr,i(
rix

2

y
+
rimix

y
+
x

y
)

+
(
ar +

q∑
i=1

br,iri +

q∑
i=1

cr,i(
rix

y
+
rimi

y
+

1

y
)
)
m∗ + 1

There is no term in x
y on the left-hand side so cr,i = 0 for all i. Also, since there is no term in x on the

left-hand side, we also have ar = 0. Thus, we have

q∑
i=1

cs,i(rix+ rimi + 1) =

q∑
i=1

br,irix+

q∑
i=1

br,irim
∗ + 1

The monomial rix implies cs,i = br,i for all i, whereas the monomial ri implies cs,imi = br,im
∗. Since we

have cs,i = br,i, this means we have m∗ = mi for some i. Hence, the signature (R∗, S∗) is on a message

pair (Mi, Ñi) that was queried to the sign oracle and thus is not a forgery on a new message. ut

4.1 Randomizability/Strong Unforgeability

We prove the following theorem regarding the randomizability/strong unforgeability of the above signa-
ture scheme.

10



Theorem 2. The scheme is strongly existentially unforgeable against an adversary that queries the sign-
ing oracle on each message once at most.

Proof. Following from the proof of Theorem 1, we have for the adversary forgery to be valid, we must
have:

q∑
i=1

cs,i(rix+ rimi + 1) =

q∑
i=1

br,irix+

q∑
i=1

br,irim
∗ + 1 (3)

Let J be the subset of {1, . . . , q} containing indices of the signatures on the message m∗ that was obtained
from the signing oracle, i.e. J is the set of indices of the queries on message m∗. Let Rm∗ = {Ri}i∈J
and Sm∗ = {Si}i∈J . From the left-hand side of (3), it is clear that S∗ can only be a linear combination
of elements of the set Sm∗ . Similarly, R∗ can only be a linear combination of elements of the set Rm∗ .
Since the adversary is restricted to at most a single signing query on each message, we have 0 ≤ |Sm∗ | =
|Rm∗ | ≤ 1. If Sm∗ = Rm∗ = ∅, a forgery on the message m∗, which was not queried to the signing oracle,
would contradict Theorem 1.

Now, for (3) to hold, we must have
∑
cs,i = 1 which implies br,i = 1 and thus r∗ = ri and the

signature is that that was obtained from the sign oracle.
ut

Let us now define the randomization algorithm Randomize for the above scheme as follows:

• Randomize
(
vk, (M, Ñ), {σi = (Ri, Si)}2i=1

)
: For any two distinct signatures σ1 and σ2 on the message

(M, Ñ), i.e. R1 6= R2, satisfying Verify(vk, (M, Ñ), σi) = 1 for all i ∈ [2].
To obtain a new signature σ′ on (M, Ñ), choose a ← Zp and compute b = 1 − a (which satisfies
a+ b = 1). Now compute R′ := Ra1 ·Rb2, S′ := Sa1 · Sb2.
Return σ′ := (R′, S′).

Theorem 3. Randomized signatures are perfectly indistinguishable from fresh signatures on the same
message.

Proof. In the Sign algorithm, r is chosen uniformly at random from Zp, whereas in the Randomize
algorithm, a (resp. b) is also chosen uniformly at random from Zp. Moreover, for any possible r ∈ Zp
such that R = Gr, there is a ∈ Zp such that r = ar1 + (1 − a)r2 for any r1, r2 ∈ Zp satisfying
r1 6= r2. Therefore, the distribution of signatures output by the Randomize algorithm is identical to that
of signatures output the Sign algorithm. ut

4.2 Combined Unforgeability for Messages

The notion of structure-preserving signature schemes with combined unforgeability [33] (similarly to
selectively randomizable schemes [6]), are signature schemes where the same scheme can allow (at the
discretion of the signer) either strongly unforgeable signature or ones that can be re-randomized.

We proved that in our scheme the only way to obtain a new signature on the same message is by
linear combination of distinct signatures on the same message. One can exploit this feature so that the
signer can decide which messages signatures upon which can be re-randomized and which cannot which
might be useful for some applications. For those messages to be restricted, the signer only allows a single
signing query on them, whereas for those signatures upon which can be re-randomized, the signing oracle
returns at least two distinct signatures σ = (R,S) and σ′ = (R′, S′) satisfying R 6= R′.

5 Optimal CMA-Secure Scheme II

We give here an efficient publicly re-randomizable structure-preserving scheme that is existentially un-
forgeable against adaptive chosen-message attack. The scheme yields signatures with two group elements
from group G.

Besides checking membership of the message in ĜH, verifying a signature, requires 1 PPE equation
with 3 pairings in total or 2 pairings and 1 point addition since 2 of the 3 pairings required share the same
left argument. When verifying a signature, we additionally need to check that R ∈ G× (i.e. R ∈ G\{1G}).

Given the description of Type-III bilinear groups P output by BGSetup(1λ), the scheme is as follows:

11



• KeyGen(P): Select x, y ← Z×p . Set sk := (x, y) and vk := (X̃, Ỹ ) := (H̃x, H̃y) ∈ H2.

• Sign(sk, (M, Ñ)): To sign a message (M, Ñ) ∈ ĜH, select r ← Z×p , and set R := Gr, S :=
(
Gx ·M

) r
y .

Return σ := (R,S) ∈ G2.
• Verify(vk, (M, Ñ), σ = (R,S)): Return 1 iff R ∈ G×, S ∈ G, (M, Ñ) ∈ ĜH, and the following holds:

ê(S, Ỹ ) = ê(R, X̃)ê(R, Ñ)

• Randomize(vk, (M, Ñ), σ = (R,S)): Select r′ ← Z×p , and set R′ := Rr
′
, S′ := Sr

′
. Return σ′ :=

(R′, S′).

Remark 2. Again, the signing algorithm can be performed even without knowledge of the exponent x if
one has the element X := Gx ∈ G (instead of x ∈ Zp) as part of the secret key sk. Also, note that the
component R of the signature is information-theoretically independent of the message and hence even
when proving knowledge of a signature on the message, one can reveal this component of the signature
after re-randomizing it.

Correctness of the scheme follows by inspection and is straightforward to verify. The scheme is perfectly
randomizable as the distribution of re-randomized signatures is identical to that of fresh signatures on
the same message.

Theorem 4. The structure-preserving signature scheme is existentially weakly unforgeable against a
chosen-message attack in the generic group model.

Proof. Public elements in H are H̃, X̃, Ỹ which correspond to the discrete logarithms 1, x and y,

respectively. We note that our proof of security only relies on the forgery being a valid element of ĜH.
In other words, the scheme is still secure even if the adversary queries the scheme on arbitrary messages
from G for which it does not know the corresponding message component in H.

During the it-h signing query on (Mi, Ñi), Ñi can only be a linear combination of H̃ are X̃, Ỹ , thus,
we have

ni = ani + bnix+ cniy

Similarly, Mi can only be a linear combination of G, {Rj}i−1j=1, {Sj}
i−1
j=1. Thus, we have

mi = ami +

i−1∑
j=1

bmi,jrj +

i−1∑
j=1

cmi,j (
rjx

y
+
rjmj

y
)

After q signing queries, (m∗, n∗), which is the discrete logarithm of the forged message (M∗, Ñ∗), must
be of the form

n∗ = an + bnx+ cny

m∗ = am +

q∑
i=1

bmiri +

q∑
i=1

cmi(
rix

y
+
rimi

y
)

Since we must have n∗ = m∗ for the forgery to be a valid element of ĜH, we have

m∗ = n∗ = am

Similarly, the signature (R∗, S∗) have the form

r∗ = ar +

q∑
i=1

br,iri +

q∑
i=1

cr,i(
rix

y
+
rimi

y
)

s∗ = as +

q∑
i=1

bs,iri +

q∑
i=1

cs,i(
rix

y
+
rimi

y
)
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For the forgery to be a valid signature, s∗ and r∗ must satisfy s∗y = r∗x+ r∗m∗. So we must have(
as +

q∑
i=1

bs,iri +

q∑
i=1

cs,i(
rix

y
+
rimi

y
)
)
y

=
(
ar +

q∑
i=1

br,iri +

q∑
i=1

cr,i(
rix

y
+
rimi

y
)
)
x

+
(
ar +

q∑
i=1

br,iri +

q∑
i=1

cr,i(
rix

y
+
rimi

y
)
)
m∗

Thus, we must have

asy +

q∑
i=1

bs,iriy +

q∑
i=1

cs,i(rix+ rimi)

= arx+

q∑
i=1

br,irix+

q∑
i=1

cr,i(
rix

2

y
+
rimix

y
)

+
(
ar +

q∑
i=1

br,iri +

q∑
i=1

cr,i(
rix

y
+
rimi

y
)
)
m∗

Note that there is no term in y or riy on the right-hand side, so we must have as = 0, bs,i = 0 for all i,
Thus, we have

q∑
i=1

cs,i(rix+ rimi)

= arx+

q∑
i=1

br,irix+

q∑
i=1

cr,i(
rix

2

y
+
rimix

y
)

+
(
ar +

q∑
i=1

br,iri +

q∑
i=1

cr,i(
rix

y
+
rimi

y
)
)
m∗

There is no term rix
2

y on the left-hand side so cr,i = 0 for all i. Also, since no term in x on the left-hand
side, we also have ar = 0. Thus, we have

q∑
i=1

cs,i(rix+ rimi) =

q∑
i=1

br,irix+

q∑
i=1

br,irim
∗

The monomial rix implies cs,i = br,i for all i. Since we require that R∗ ∈ G×, we must have r∗ 6= 0
and therefore we must have at least a single value of cs,i = br,i 6= 0. Now the monomial ri implies
cs,imi = br,im

∗ which means m∗ = mi for some i. Thus, the signature (R∗, S∗) is on a message pair

(Mi, Ñi) that was queried to the sign oracle and thus is not a forgery.

6 Optimal CMA-Secure One-Time Signature Schemes

We give here a (strongly) existentially unforgeable one-time signature scheme that is secure against
a chosen-message attack with one-element signatures. Besides checking membership of the message in

ĜH, verification requires the evaluation of a single PPE equation with 3 pairings in total one of which
can be pre-computed when verifying multiple signatures (under different keys) on the same message.
Alternatively, verification can be performed by evaluating only 2 pairings and one point addition since
two pairings share the same left-hand side argument.

We will show in Section 7 that the same scheme can also be used as a one-time structure-preserving
signature scheme for messages in G (resp. H) by replacing the pairing ê(G, Ñ) in the PPE verification
equation by ê(M, H̃). This essentially yields a new one-time signature scheme for unilateral messages in
the Type-III setting matching the optimal one-time scheme in [6] in every respect.

Given the description of Type-III bilinear groups P output by BGSetup(1λ), the scheme is as follows:
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• KeyGen(P): Select x, y ← Z×p . Set sk := (x, y) and vk := (X̃, Ỹ ) := (H̃x, H̃y) ∈ H2.

• Sign(sk, (M, Ñ)): To sign a message (M, Ñ) ∈ ĜH, compute σ :=
(
Gx ·M

) 1
y .

• Verify(vk, (M, Ñ), σ): Return 1 iff σ ∈ G, (M, Ñ) ∈ ĜH, and the following holds:

ê(σ, Ỹ ) = ê(G, X̃)ê(G, Ñ)

Remark 3. Again, note that the signing algorithm can be performed even without knowledge of the
exponent x if one has the element X := Gx ∈ G (instead of x ∈ Zp) as part of the secret key sk.

Correctness of the scheme follows by inspection and is straightforward to verify. The signning algorithm
is deterministic and therefore for any message there is only 1 potential signature. We prove the following
theorem.

Theorem 5. The one-time structure-preserving signature scheme is strongly existentially unforgeable
against a one-time chosen-message attack in the generic group model.

Proof. We show that the linear combinations the generic adversary can produce out of the combinations
of the elements of the signatures, verification key and public parameters in each of the source groups,
cannot correspond to Laurent polynomials representing a valid forgery. Public elements in H are H̃, X̃, Ỹ
which correspond to the discrete logairthms 1, x and y, respectively. Thus, this means that the message
(M, Ñ) queried to the sign oracle Ñ can only be a linear combination of H̃, X̃ and Ỹ . After 1 signing
queries, the message the adversary forges a signature on must be in the form

m∗ = n∗ = am

Similarly, the signature σ∗ = S∗ must have the form

s∗ = as + bs
x

y
+ bs

m

y

For the forgery to be a valid signature, s∗ must satisfy s∗y = x+m∗. Therefore, we must have(
as + bs

x

y
+ bs

m

y

)
y = x+m∗

Thus, we must have

asy + bsx+ bsm = x+m∗

There is no term in y on the right-hand side so we must have as = 0. Thus, we have

bsx+ bsm = x+m∗

By the monomial x, we have bs = 1. For the two sides to be equal, we must have bsm = m∗. Since we
have bs = 1, it means we must have m∗ = m. This means the forgery is on the same message queried to
the sign oracle.

ut

6.1 Signing a Vector of Diffie-Hellman Pairs

The above scheme can be extended to sign k Diffie-Hellman pairs as follows:

• KeyGen(P): Select x1, . . . , xk, y ← Z×p . Set sk := (x1, . . . , xk, y) and vk := (X̃1, . . . , X̃k, Ỹ ) :=

(H̃x1 , . . . H̃xk , H̃y) ∈ Hk+1.

• Sign(sk,
(
(M, Ñ)1, . . . , (M, Ñ)k

)
): To sign a vector of messages

(
(M, Ñ)1, . . . , (M, Ñ)k

)
∈ ĜH

k
, re-

turn σ :=
(
Gx1 ·M1 ·

∏k
i=2M

xi
i

) 1
y .

• Verify(vk,
(
(M, Ñ)1, . . . , (M, Ñ)k

)
, σ): Return 1 iff σ ∈ G, (M, Ñ)i ∈ ĜH, and the following holds:

ê(σ, Ỹ ) = ê(G, X̃1)ê(G, Ñ1)

k∏
i=2

ê(Mi, X̃i)
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Correctness of the scheme follows by inspection and is straightforward to verify. The scheme being
deterministic ensures that for any vector of messages there is only 1 potential signature. The following
theorem proves that a one-time chosen-message adversary has a negligible probability in producing a
signature on a vector of messages different from the one it queried its sign oracle on.

Theorem 6. The scheme is strongly existentially unforgeable against a one-time chosen-message attack.

Proof. Let A be an adversary that breaks the unforgeability of the scheme. We use A to construct an
adversary B that breaks the strong existential unforgeability of the single-message one-time scheme in
Section 6.

Adversary B gets vk = (X̃, Ỹ ) from its game and has a single-message one-time signing oracle. B
constructs its verification key by choosing x2, . . . , xk ← Z×p and computing X̃i := H̃xi , for i = 2, . . . , k.

It then forwards its verification key vk∗ := (X̃, X̃2, . . . , X̃k, Ỹ ) to A. When queried on the message(
(M, Ñ)1, . . . , (M, Ñ)k

)
∈ ĜH

k
, B computes M := M1 ·

∏k
i=2M

xi
i and Ñ := Ñ1 ·

∏k
i=2 Ñ

xi
i and forwards

(M, Ñ) to its own sign oracle and returns the resultant signature σ to A. Eventually, when A returns its

forgery σ∗ on a message vector
(
(M∗, Ñ∗)1, . . . , (M

∗, Ñ∗)k
)
∈ ĜH

k
, where

(
(M∗, Ñ∗)1, . . . , (M

∗, Ñ∗)k
)
6=(

(M, Ñ)1, . . . , (M, Ñ)k
)
, B computes M∗ := M∗1 ·

∏k
i=2M

∗
i
xi and Ñ∗ := Ñ∗1 ·

∏k
i=2 Ñ

∗
i

xi
and returns σ∗

and the message (M∗, Ñ∗) as its forgery in its game. Clearly, if A wins its game, B wins its game with
the same probability.

ut

6.2 Signing Messages in ĜH × Gk−1

The scheme in Section 6.1 can also be used to sign messages in ĜH × Gk−1. The scheme is as follows,
where the KeyGen algorithm is the same as that in Section 6.1:

• Sign
(
sk,
(
(M, Ñ), (M1, . . . ,Mk−1)

))
: To sign a vector of messages

(
(M, Ñ), , (M1, . . . ,Mk−1)

)
∈

ĜH×Gk−1, return σ :=
(
Gx1 ·M ·

∏k
i=2M

xi
i−1
) 1
y .

• Verify(vk,
(
(M, Ñ), (M1, , . . .Mk−1)

)
, σ): Return 1 iff σ ∈ G, (M, Ñ) ∈ ĜH, Mi ∈ G for i = 1, . . . , k−

1, and the following holds:

ê(σ, Ỹ ) = ê(G, X̃1)ê(G, Ñ)

k∏
i=2

ê(Mi−1, X̃i)

Correctness of the scheme follows by inspection and is straightforward to verify. The scheme being
deterministic ensures that for any vector of messages there is only 1 potential signature.

Since the messages (M1, . . . ,Mk−1) do not have corresponding components in H, we cannot use a
reduction to the scheme in Section 6 as we did in Theorem 6. Alternatively, the following theorem proves
that the scheme is secure in the generic group model.

Theorem 7. The scheme is strongly existentially unforgeable against a one-time chosen-message attack.

Proof. We show that the linear combinations the generic adversary can produce out of the combina-
tions of the signatures’ elements, verification key elements and public parameters in each of the source
groups, cannot correspond to Laurent polynomials representing a valid forgery. Public elements in H
are H̃, X̃1, . . . , X̃k, Ỹ which correspond to the discrete logairthms 1, x1, . . ., xk and y, respectively. The
message

(
(M∗, Ñ∗), {M∗i }

k−1
i=1

)
on which the adversary forges a signature σ∗ = S∗ can only be of the

form

n∗ = an +

k∑
i=1

bn,ixi + cny

m∗ = am + bm
(x1
y

+
m

y
+

k∑
i=2

mi−1xi
y

)
m∗i = ami + bmi

(x1
y

+
m

y
+

k∑
j=2

mj−1xj
y

)
, for i = 1, . . . , k − 1.
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Since we require that (M∗, Ñ∗) ∈ ĜH, we must have m∗ = n∗ = am. Similarly, the signature σ∗ = S∗

must have the form

s∗ = as + bs
(x1
y

+
m

y
+

k∑
i=2

mi−1xi
y

)
For the forgery to be a valid signature, s∗ must satisfy s∗y = x1 +m∗ +

k∑
i=2

m∗i−1xi. Therefore, we must

have (
as + bs

(x1
y

+
m

y
+

k∑
i=2

mi−1xi
y

))
y = x1 +m∗ +

k∑
i=2

m∗i−1xi

So we must have

asy + bs
(
x1 +m+

k∑
i=2

mi−1xi
)

= x1 +m∗ +

k∑
i=2

m∗i−1xi.

There is no term in y on the right-hand side so we must have as = 0, Thus, we have

bs
(
x1 +m+

k∑
i=2

mi−1xi
)

= x1 +m∗ +

k∑
i=2

m∗i−1xi.

By the monomial x1, we have bs = 1. For the two sides to be equal, we must have bsm = m∗ and
bsmi−1xi = m∗i−1xi for all i = 2, . . . , k. Since we have bs = 1, it means we must have m∗ = m and
mi−1 = m∗i−1 for all i = 2, . . . , k. This means the forgery is on the same vector queried to the sign oracle.

ut

7 Optimal One-Time Scheme for Unilateral Messages

As mentioned earlier, the previous one-time signature scheme can be used to sign unilateral messages,
i.e. messages in Gk. Thus, we obtain a one-time structure-preserving scheme for a vector of unilateral
messages matching the optimal scheme in the Type-III setting [6] in every respect. By transposing the
groups, one can similarly sign messages in Hk. The scheme is as follows:

• KeyGen(P): Select x1, . . . , xk, y ← Z×p . Set sk := (x1, . . . , xk, y) and vk := (X̃1, . . . , X̃k, Ỹ ) :=

(H̃x1 , . . . H̃xk , H̃y) ∈ Hk+1.
• Sign

(
sk, (M1, . . . ,Mk)

)
: To sign a vector of messages

(
M1, . . . ,Mk

)
∈ Gk, return σ :=

(
Gx1 ·M1 ·∏k

i=2M
xi
i

) 1
y .

• Verify(vk, (M1, . . . ,Mk), σ): Return 1 iff σ ∈ G, Mi ∈ G for i = 1, . . . , k, and the following holds:

ê(σ, Ỹ ) = ê(G, X̃1)ê(M1, H̃)

k∏
i=2

ê(Mi, X̃i)

Efficiency. To sign a vector Gk, the verification key consists of k + 1 group elements from group H.
Signing requires k + 1 exponentiations in G, whereas verification requires 1 pairing-product equation
involving k+2 pairings. The signature consists of a single group element from G (regardless of the length
of the vector to be signed). Those costs are identical to those in the optimal one-time scheme in the
Type-III setting in [6].

Correctness of the scheme follows by inspection and is straightforward to verify. The scheme being
deterministic ensures that for any vector of messages there is only 1 potential signature. The proof for
the following theorem, which proves the existential unforgeability of the scheme against a chosen-message
attack in the generic group model, is very similar to the proof of Theorem 7. For completeness, we give
the proof in Appendix A.

Theorem 8. The scheme is strongly existentially unforgeable against a one-time chosen-message attack.
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8 Lower Bounds & Impossibility Results for USPSDH Schemes

In this section we investigate some lower bounds and prove some impossibility results for USPSDH Schemes.
Our proofs are general and do not require the right-hand side of the verification equations to be ZT = 1T.

8.1 Impossibility of Strongly Unforgeable CMA Secure Schemes

We prove here that there exists no generic-signer USPSDH scheme that is strongly existentially unforge-
able against an adversary that makes q > 1 chosen message signing queries. We note, however, that there
exist such schemes that are RMA secure or where, for instance, we do not allow the adversary to query
the sign oracle on the same message more than once.

Theorem 9. There is no generic-signer USPSDH scheme that is strongly unforgeable against a chosen
message attack for q > 1 queries.

Proof. Let us consider the case where the signature σ = (S1, . . . , Sk) ∈ Gk whereas the verification key
vk = (X̃1, . . . , X̃n) ∈ Hn. The proof for the opposite case where the groups are transposed is similar.
Such a scheme would have a number of verification equations of the form of Equation (4).

k∏
i=1

n∏
j=1

ê(Si, X̃j)
ai,j,e

k∏
i=1

ê(Si, Ñ)bi,e
n∏
i=1

ê(M, X̃i)
ci,e ê(M,N)de = ZeT (4)

In [6] (Lemma 1), Abe et al. proved that for a structure-preserving signature scheme to be secure against
a random message attack for q > 1 signing queries, there must be, for each message, superpolynomially
many potential signatures.

Now querying the sign oracle twice on the same message (M, Ñ), we obtain two signatures σ1 =
(S1,1, . . . , S1,k) and σ2 = (S2,1, . . . , S2,k). With overwhelming probability, we have that σ1 6= σ2 (i.e. the
signatures are distinct). Now the signature σ∗ = (S∗1 , . . . , S

∗
k) where for all i ∈ [k], S∗i := S2

1,i · S
−1
2,i is

with overwhelming probability a new valid signature on the message (M, Ñ). ut

8.2 Impossibility of a Single Group Element Signature

The following theorem proves that there is no generic-signer USPSDH scheme with signatures consisting
of 1 group element that is unforgeable against a random message attack for more than 1 signing query.
The only exception are one-time signatures (in which the adversary is only allowed to make a single
signing query).

Theorem 10. There is no generic-signer USPSDH scheme with 1 group element signatures that is
unforgeable against a random message attack for q > 1 signing queries.

Proof. Let us consider the case where the signature σ = S ∈ G, whereas the verification key vk =
(X̃1, . . . , X̃n) ∈ Hn. The proof for the opposite case where the groups are transposed is similar.

We start by proving the following lemma which proves that it is redundant for a USPSDH scheme
(for a single Diffie-Hellman pair) with 1 group element signatures to require more than one verification
equation (not counting the equation needed to verify the well-formedness of the message).

Lemma 2. One verification equation is sufficient for verifying a one-element signature.

Proof. Such a signature scheme would have verification equations of the form of Equation (5).∏
ê(S, X̃i)

ai,e
∏

ê(M, X̃i)
bi,e ê(S, Ñ)ce ê(M, Ñ)de = ZeT (5)

Each of those equations is a (non-trivial) equation that is linear in S. Thus, we can compute a single
non-trivial equation linear in S (which uniquely determines S) by a linear combination of all those
verification equations and use such an equation for verification. If there is no such linear combination of
the verification equations, they must be linearly dependent which means some of them are redundant.
Thus, by excluding those, we can again reduce them to a single equation that is linear in S. ut
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Now note that for the signature scheme to be (perfectly) correct (and publicly verifiable), the signature
on the message must verify using the (fixed) verification key and (fixed) public parameters (if any). By
taking the discrete logarithms of the group elements in the (single) verification equation, we can write
the verification equation as

s(

n∑
i=1

aixi + cm) +m(

n∑
i=1

bixi + dm) = z (6)

The verification equation is a linear equation in s (the discrete logarithm of the signature S). Note that
such a signature is not defined if

∑n
i=1 aixi + cm = 0. This means there exists at most one potential

signature for the message. For the sake of contradiction, assume that for a message (M, Ñ) there exists
two different signatures σ = S and σ′ = S′. Since the scheme is perfectly correct, we have

s(

n∑
i=1

aixi + cm) +m(

n∑
i=1

bixi + dm) = z (7)

s′(

n∑
i=1

aixi + cm) +m(

n∑
i=1

bixi + dm) = z (8)

By subtracting Equation (8) from Equation (7), we get

(s− s′)(
n∑
i=1

aixi + cm) = 0, (9)

which implies that s = s′ which is a contradiction.
Since the signing algorithm is generic, a signature σi on a message (Mi, Ñi) is of the form σi =

Mα
i · Gβ for some (fixed) α, β ∈ Zp. Now given signatures σ1 and σ2 on a pair of distinct random

messages (M1, Ñ1), (M2, Ñ2), respectively. We have σ1 = Mα
1 ·Gβ and σ2 = Mα

2 ·Gβ . Now by computing

σ∗ := σγ1 · σ
(1−γ)
2 we obtain a valid forgery on the message (M∗, Ñ∗) :=

(
Mγ

1 ·M
(1−γ)
2 , Ñγ

1 · Ñ
(1−γ)
2

)
for

any γ ∈ Zp.
To see that the forgery is a valid signature, we have

σ∗ = σγ1 · σ
(1−γ)
2

= (M1
α ·Gβ)γ · (Mα

2 ·Gβ)(1−γ)

= (Mγ
1 ·M

(1−γ)
2 )α ·Gβγ ·Gβ(1−γ)

= (Mγ
1 ·M

(1−γ)
2 )α ·Gβ

This implies that at least two group elements are required in the signature for the scheme to be existen-
tially unforgeable against a random message attack that uses q > 1 signing queries.

Remark 4. Note that since we are considering a random message attack (which is weaker than a chosen
message attack) and hence here the signer rather than the adversary chooses the messages when answering
signing queries. Also, note that unlike in the Type-II bilinear group setting, in the Type-III setting
there is no efficiently computable isomorphism between the groups. One way that the signer picks a
random message (M, Ñ) is, for instance, by randomly choosing m ← Zp and computing (M, Ñ) :=
ψ(m), the signer then performs signing generically, i.e. without exploiting knowledge of the exponent m.
Alternatively, one can envisage a separate message sampling algorithm that does the above and returns
(M, Ñ) to the signer who in turn performs the generic signing algorithm.

ut

Alternative Proof for Theorem 10. Our proof below relies on eliminating some terms from the
verification equation which are redundant for a generic-signer scheme as it is hard for a generic signer,
who does not know the discrete logarithm of the message, to produce a non-trivial signature whose
verification equation uses any of the eliminated terms. Refer to the discussion in Section 8.5 for details.
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Proof. Again, let us consider the case where the signature σ = S ∈ G, whereas the verification key
vk = (X̃1, . . . , X̃n) ∈ Hn. The proof for the opposite case where the groups are transposed is similar.
We first argue that since we are only considering generic signers, it is sufficient to consider a single
verification equation of the form of Equation (10) instead of Equation (5).∏

ê(S, X̃i)
ai
∏

ê(M, X̃i)
bi = ZT (10)

Since the signing algorithm is generic, s (the discrete logarithm of the signature S) cannot have a degree
> 1 of m (the discrete logarithm of the message). This means that the verification equation cannot have
the monomial ê(M, Ñ)d where d 6= 0 as that would require that s have a degree > 1 of m which would
require knowledge of the discrete logarithm m. So we can WLOG assume that d = 0. Similarly, since m
cannot appear in a term in the denominator in s when viewing s as a rational function as that would
also require knowledge of the discrete logarithm m, the verification equation cannot have a monomial
ê(S, Ñ)c for c 6= 0 either. Therefore, we can WLOG assume that c = 0. We remark here that all existing
structure-preserving signature schemes in all bilinear group settings conform to the assumptions we are
using. Again, refer to Section 8.5 for further justification.

Thus, we end up with two cases:

• Degree of m = 0: This means that S is independent of the message and hence the same signature σ

is valid on any other message (M ′, Ñ ′) ∈ ĜH where (M ′, Ñ ′) 6= (M, Ñ).
• Degree of m = 1: By taking the discrete logarithms of the group elements in Equation (10), we can

write the verification equation as

s

n∑
i=1

aixi +m

n∑
i=1

bixi = z (11)

Given signatures σ1 = S1 on a random message (M1, Ñ1) and σ2 = S2 on a random message
(M2, Ñ2), by choosing γ ← Zp, we can compute a valid signature σ∗ = S∗ (i.e. that satisfies the

verification equation in (10)) on the message (M∗ := Mγ
1 ·M

(1−γ)
2 , Ñ∗ := Ñγ

1 · Ñ
(1−γ)
2 ) by computing

S∗ := Sγ1 ·S
(1−γ)
2 . Since the messages (M1, Ñ1) and (M2, Ñ2) are chosen uniformly at random, we have

an overwhelming probability that (M∗, Ñ∗) /∈ {(M1, Ñ1), (M2, Ñ2)} and thus σ∗ is a valid forgery
on a new message.

ut

8.3 Lower Bound on the Size of the Verification Key for Optimal One-Time Signatures

In Section 6 we have seen that a one-time USPSDH scheme can have signatures consisting of a single
group element. Here we investigate lower bounds for the size of the verification for optimal generic-signer
one-time USPSDH schemes.

We prove that a generic-signer EUF-RMA secure one-time USPSDH scheme with one element sig-
natures must have a verification key with at least two group elements (excluding the default group
generators G and H̃). The result proves that our (strongly existentially CMA unforgeable) construction
in Section 6 is optimal in every respect. WLOG, when proving the following theorem, we assume that
any public group elements (other than the group generators G and H̃) part of the public parameters (if
any) are counted as part of the verification key.

Theorem 11. A generic-signer one-time USPSDH scheme (with one element signatures) that is un-
forgeable against a random message attack must have a verification key with at least 2 elements.

Proof. Let us consider the case where the signature σ = S ∈ G whereas the verification key vk = X̃ ∈ H.
The proof for the opposite case where the groups are transposed is similar. A USPSDH scheme with
a one-element verification key and a one-element signature have a (single) verification equation (not
counting the equation needed to check well-formedness of the message) of the form of Equation (12).

ê(S, X̃)aê(S, H̃)bê(M, X̃)cê(M, H̃)dê(S, Ñ)uê(M, Ñ)v = ZT (12)
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Note that a generic signer computes the signature S as S := Mα · Gβ for some α, β ∈ Zp. Our proof
strategy is to first eliminate some terms which can not be computed by a generic signer from the
verification equation in (12) which serves to simplify the proof. Note that without knowledge of the
discrete logarithm of the message, it is hard for a generic signer to construct a non-trivial signature
S where its discrete logarithm s contains the message m in a term in the denominator. Similarly, it
is hard for a generic signer without knowledge of the discrete logarithm of the message to construct a
signature that contains a term with degree > 1 in m. Therefore, we can WLOG assume that u = v = 0
in Equation (12). We remark here that all existing structure-preserving signature schemes (in all bilinear
group settings) conform to the assumption we are making. Refer to Section 8.5 for more discussion on
why such assumptions (which serve to simplify the proof) do not affect the generality of our proof.

We now show that any USPSDH scheme with a verification equation of the form of Equation (13)
cannot be secure.

ê(S, X̃)aê(S, H̃)bê(M, X̃)cê(M, H̃)d = ZT (13)

Since the verification key (and the public parameters) contain only X̃, G, and H̃, we have ZT =
ê(G, H̃)eê(G, X̃)f . Note that the exponents a, b, c, d, e, f ∈ Zp are all public and hence known to the
adversary. By taking the discrete logarithms of the group elements in the verification equation, we can
write the verification equation as

s(ax+ b) +m(cx+ d) = e+ fx (14)

Note here if a = b = 0, the equation is independent of the signature S. Similarly, if c = d = 0, the
verification equation is independent of the message (M, Ñ). Therefore, neither of those cases should
occur as otherwise it is obvious that such a scheme is not secure. We now have four cases as follows:

• Case bc 6= ad: In this case, given a signature σ = S on a random message (M, Ñ), pick any
α← Zp \ {1} and let

am :=
ea(α− 1)− bf(α− 1)

bc− ad
and as := −ec(α− 1)− df(α− 1)

bc− ad

By computing σ∗ = S∗ := Gas · Sα, one obtains a valid signature on the message
(
M∗, Ñ∗

)
:=(

Gam ·Mα, H̃amÑα
)
.

• Case bc = ad 6= 0: Given a signature σ = S on a random message (M, Ñ), pick any α ← Z×p and

compute σ∗ = S∗ := Gα ·S, which is a valid signature on the message
(
M∗, Ñ∗

)
:=
(
G
−bα
d ·M, H̃

−bα
d ·

Ñ
)
.

In fact, one can forge a signature on any message
(
M∗, Ñ∗

)
:=
(
Gα, H̃α

)
for any α ∈ Zp where(

Gα, H̃α
)
6= (M, Ñ) by computing σ∗ = S∗ := G

−dα
b ·M d

b · S.
• Case bc = ad = 0, a 6= 0 and c 6= 0: Here we have that b = d = 0. Given a signature σ = S on

a random message (M, Ñ), σ∗ = S∗ := G
−cα
a · S is a valid signature on the message

(
M∗, Ñ∗

)
:=(

Gα ·M, H̃α · Ñ
)

for any α ∈ Z×p .
• Case bc = ad = 0, b 6= 0 and d 6= 0: Here we have that a = c = 0. Given a signature σ = S on

a random message (M, Ñ), σ∗ = S∗ := G
−dα
b · S is a valid signature on the message

(
M∗, Ñ∗

)
:=(

Gα ·M, H̃α · Ñ
)

for any α ∈ Z×p .

This concludes the proof.
ut

8.4 Lower Bound on the Size of the Verification Key for Optimal USPSDH Schemes

We have seen that an optimal USPSDH scheme must have two elements in the signature. We prove that
our schemes in Sections 4 & 5 are also optimal w.r.t. to the size of the verification key. More precisely,
we prove in the following theorem that there exists no USPSDH scheme with two element signatures
and one verification equation (not counting the cost of checking the well-formedness of the message) that
is unforgeable against a one-time random message attack. Again, WLOG, when proving the following
theorem, we assume that any public group elements (other than the default group generators G and H̃)
part of the public parameters (if any) are counted as part of the verification key.
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Theorem 12. There is no USPSDH scheme with two group element signatures and one PPE verification
equation with one group element verification key that is unforgeable against a one-time random message
attack.

Proof. Lets consider the case where the signature σ = (R,S) ∈ G2 whereas the verification key vk :=
X̃ ∈ H. The proof for the opposite case where the groups are transposed is similar. We first argue WLOG
that a generic-signer scheme have a verification equation of the form of Equation (15).

ê(R, X̃)aê(R, Ñ)bê(R, H̃)cê(S, X̃)dê(S, H̃)uê(M, X̃)v ê(M, H̃)w = ZT (15)

Since the signing algorithm is generic, and by using a similar argument to that used in the proof of
Theorem 11, note that neither R nor S can have a degree > 1 of m (the discrete logarithm of the
message). It is obvious that a scheme with signatures whose both components are independent of the
message is insecure. Thus, at least one component of the signature must depend on the message. WLOG,
lets assume that S depends on the message while R is independent of the message. If it is the other
way around, we just need to replace the term ê(R, Ñ)b with ê(S, Ñ)b in Equation (15) and the proof is
similar. If both components of the signature depend on the message, Equation (15) can be simplified by
setting b = 0 which is a special case of the cases we prove.

Since we only have X̃,G, H̃ in the verification key (and the public parameters), we have ZT =
ê(G, H̃)eê(G, X̃)f . Note that the exponents a, b, c, d, e, f, u, v, w ∈ Zp are all public and hence known to
the adversary. By taking the discrete logarithms of the group elements, we can write the verification
equation as

r(ax+ bm+ c) + s(dx+ u) +m(vx+ w) = e+ fx (16)

We start by listing 4 trivial forgery cases as follows:

1. Case a = b = c = 0: This means the verification equation is independent of the signature component
R and thus we are back into the one-element signature case which is already proven by Theorem 11.

2. Case d = u = 0: This means the verification equation is independent of the signature component S
and thus we are back into the one-element signature case which is already proven by Theorem 11.

3. Case a = d = f = v = 0: This means the verification equation is independent of the verification key
(and hence the signature is independent of the signing key).

4. Case b = v = w = 0: This means the verification equation is independent of the message m and
hence the signature is valid on any other message m′ 6= m.

Excluding the above obvious trivial forgery cases, we can find a forgery by solving the following
system of equations in the 9 unknowns αm, βm, αr, βr, γr, αs, βs, γs, δs

uαs + eγs − e+ bαrαm + cαr + wαm = 0

dαs + fγs − f + aαr + vαm = 0

uβs − wγs + bβrαm + bαrβm + cβr + wβm = 0

uδs − cγs + bγrαm + cγr = 0

dδs − aγs + aγr = 0

dβs − vγs + aβr + vβm = 0

γs − γrβm = 0

βrβm = 0

This is a system of 8 equations in 9 unknowns. In particular, we get two different family of solutions
depending on whether βm = 0 (in which case we obtain forgeries knowing the verification key only,
i.e. without making any signing queries) or βm 6= 0 in which case the forgery requires making a single
random-message signing query. In the first case (which we refer to hereafter as type I forgery), we obtain a

solution
(
αm, βm, αr, βr, γr, αs, βs, γs, δs

)
:=
(
µ, 0, de−fu+uvµ−dwµbdµ+cd−au , 0, 0, bfµ+cf−bvµ

2−cvµ+awµ−ae
bdµ+cd−au , 0, 0, 0

)
for any µ ∈ Zp. Thus, we obtain a forgery of the form σ∗ = (R∗, S∗) :=

(
Gαr , Gαs

)
on the message
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(M∗, Ñ∗) :=
(
Gµ, H̃µ

)
. This is a valid forgery as long as we can find µ such that bdµ+ cd− au 6= 0. We

will deal with the latter case below.
In the second case (which we refer to hereafter as type II forgery), given a signature σ = (R,S) on a

random message (M, Ñ), we obtain a solution of the form(
αm,βm, αr, βr, γr, αs, βs, γs, δs

)
:=(

µ,
bdµ+ cd− au

cd− au
,
uvµ− dwµ
bdµ+ cd− au

, 0,
cd− au

bdµ+ cd− au
,
awµ− cvµ− bvµ2

bdµ+ cd− au
,
−bvµ
cd− au

, 1,
abµ

bdµ+ cd− au

)
,

which allows us to compute a forgery σ∗ = (R∗, S∗) :=
(
Gαr · Mβr · Rγr , Gαs · Mβs · Sγs · Rδs

)
on

(M∗, Ñ∗) :=
(
Gαm · Mβm , H̃αm · Ñβm

)
for any µ ∈ Zp as long as (αm, βm) 6= (0, 1) to ensure that

(M∗, Ñ∗) 6= (M, Ñ). This case gives us a valid forgery providing we can find such µ satisfying bdµ+ cd−
au 6= 0 and cd 6= au. Again, we will deal with the latter two cases below.

From the above, it is clear that we can find a forgery on a new message unless cd = au and either
b = 0 or d = 0, which we now address.

• Case d = 0 and cd = au: Note here that since d = 0, we must have u 6= 0 as otherwise we are in
the second trivial forgery case. Since cd = au and d = 0 it follows that a = 0. Note here that since
a = d = 0 we must have that either f 6= 0 or v 6= 0 as otherwise we are in the third trivial forgery case
(i.e. the verification equation is independent of the verification key). We have two cases as follows:
◦ Case v 6= 0: We can, for example, obtain a type I forgery by computing

(
αm, βm, αr, βr, γr, αs, βs, γs, δs

)
:=
(f
v
, 0, µ, 0, 0,

ev − fw − cvµ− bfµ
uv

, 0, 0, 0
)
,

for any µ ∈ Zp.
◦ Case f 6= 0: We can, for example, obtain a type II forgery by computing(

αm,βm, αr, βr, γr, αs, βs, γs, δs
)

:=(
µ,
f − vµ
f

, ν, 0, 1,
evµ− fwµ− cfν − bfµν

fu
,
bvµν − bfν

fu
,
f − vµ
f

,
−bfµ− cvµ

fu

)
,

for any µ ∈ Z×p and ν ∈ Zp.
• Case b = 0 and cd = au: We deal with two subcases as follows:

◦ Case cd = au 6= 0: Since here we have b = 0, it must be the case that either v 6= 0 or w 6= 0 as
otherwise we are in case 4 of trivial forgery cases. Note here that we have d 6= 0 and u 6= 0, We
deal with 2 subcases as follows
∗ Case uv 6= dw: We can obtain a type I forgery by computing

(
αm, βm, αr, βr, γr, αs, βs, γs, δs

)
:=
( de− fu
dw − uv

, 0, µ, 0, 0,
euv − cuvµ+ cdwµ− fuw

u(uv − dw)
, 0, 0, 0

)
,

for any µ ∈ Zp.
Also, we can obtain a type II forgery by computing(

αm,βm, αr, βr, γr, αs, βs, γs, δs
)

:=(de− deµ− fu+ fuµ

dw − uv
, µ, ν, 0, 1,

fuwµ− fuw + cdwν − euvµ+ euv − cuvν
u(uv − dw)

, 0, µ,
cµ− c
u

)
,

for any µ ∈ Zp \ {1} and ν ∈ Zp.
∗ Case uv = dw: Note here that v 6= 0, w 6= 0, and d 6= 0. We can obtain a type II forgery by

computing

(
αm, βm, αr, βr, γr, αs, βs, γs, δs

)
:=
(
µ, ν, ξ, 0,

1

ν
,
−vwµ− cvξ

dw
,
v − vν
d

, 1,
cvν − cv
dwν

)
,

for any (µ, ν) ∈ Zp × Z×p \ {(0, 1)} and ξ ∈ Zp.
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◦ Case cd = au = 0: If d = u = 0 we are in case 2 of the trivial forgeries. If c = a = 0, we are
in case 1 of trivial forgeries (i.e. the one-element signature case). We are left with two cases as
follows:
∗ Case c = u = 0: We deal with 2 subcases as follows:
· Case w 6= 0: We can obtain a type I forgery by computing(

αm, βm, αr, βr, γr, αs, βs, γs, δs
)

:=
( e
w
, 0, µ, 0, 0,

fw − ev − awµ
dw

, 0, 0, 0
)
,

for any µ ∈ Zp.
Also, we can obtain a type II forgery by computing(

αm, βm, αr, βr, γr, αs, βs, γs, δs
)

:=
(e− eµ

w
, µ, ν, 0, 1,

fw − fwµ− awν − ev + evµ

dw
, 0, µ,

aµ− a
d

)
,

for any µ ∈ Zp \ {1}, ν ∈ Zp.
· Case w = 0: Note here that d 6= 0 as otherwise we are in case 2 of trivial forgeries. We

can obtain a type II forgery by computing(
αm, βm, αr, βr, γr, αs, βs, γs, δs

)
:=
(
µ, ν, ξ, 0,

1

ν
,
−aξ − vµ

d
,
v − vν
d

, 1,
aν − a
νd

)
,

for any (µ, ν) ∈ Zp × Z×p \ {(0, 1)}, ξ ∈ Zp.
∗ Case d = a = 0: Note here that u 6= 0 as otherwise we are in case 2 of trivial forgeries. We

have two subcases as follows:
· Case v 6= 0: We can obtain a type I forgery by computing(

αm, βm, αr, βr, γr, αs, βs, γs, δs
)

:=
(f
v
, 0, µ, 0, 0,

ev − fw − cvµ
uv

, 0, 0, 0
)
,

for any µ ∈ Zp. Also, we can obtain a type II forgery by computing

(
αm, βm, αr, βr, γr, αs, βs, γs, δs

)
:=
(f − fµ

v
, µ, ν, 0, 1,

ev − cvν − evµ− fw + fwµ

uv
, 0, µ,

cµ− c
u

)
,

for any µ ∈ Zp \ {1} and ν ∈ Zp.
· Case v = 0: We can obtain a type II forgery by computing(

αm, βm, αr, βr, γr, αs, βs, γs, δs
)

:=
(
µ, ν, ξ, 0,

1

ν
,
−cξ − wµ

u
,
w − wν

u
, 1,

cν − c
uν

)
,

for any (µ, ν) ∈ Zp × Z×p \ {(0, 1)} and ξ ∈ Zp.

This concludes the proof. ut

8.5 Further Discussion

In some of our lower bound proofs, we relied on eliminating some terms (i.e. pairings) from the verification
equation. As mentioned earlier, all existing structure-preservation signature schemes in all 3 bilinear
group settings conform to those assumptions. In this section, we provide further justification that such
assumptions are inevitable.

As an example, consider a one-time USPSDH scheme with a one-element signature σ = S ∈ G, a
one-element verification key X̃ ∈ H and a single verification equation of the form of Equation (17)

ê(S, X̃)ê(S, M̃) = ê(G, H̃) (17)

Note that when verifying a signature in the above example, one also needs to verify that the mes-

sage (M, Ñ) is well-formed, i.e. (M, Ñ) ∈ ĜH. The above example can in some sense be viewed as a
USPSDH scheme analogous to the weak Boneh-Boyen Signature [14]. The example above is a secure
one-time USPSDH scheme against a random message attack in the generic group model (as long as the
verification key is not given in G). As can be seen, the verification key of such a scheme is a single group
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element, however, such a scheme does not contradict our lower bound proofs as there is no way a generic
signer can produce the signature σ without knowing the discrete logarithm of the message. We note here
that one can also use, for example, a similar argument against the lower bound proofs for the Type-II
bilinear group setting in [7]. For instance, Theorem 4 in [7] proved that a Type-II structure-preserving
signature scheme for messages in H with one-element signatures cannot have a verification key with a
single group element. For the sake of illustration, consider a scheme in the Type-II setting for messages
M̃ ∈ H with a signature σ̃ = S̃ ∈ H, a verification key X ∈ G and a single verification equation of the
form of Equation (18)

ê(X, S̃)ê(Ψ(M̃), S̃) = ê(G, H̃), (18)

where Ψ : H→ G is an isomorphism. Such a scheme is a secure one-time structure-preserving signature
scheme against a random message attack in the Type-II setting in the generic group model. However,
again, this should not be considered as a contradiction to Theorem 4 in [7] as it is infeasible for a generic
signer to produce such signatures without knowing the discrete logarithm of the message.

As a second example, consider a USPSDH scheme with a single group element signature σ = S ∈ G,
a verification key X̃, Ỹ , Z̃ ∈ H and a single verification equation of the form of Equation (19)

ê(S, Z̃) = ê(G, X̃)ê(M, Ỹ )ê(M, Ñ) (19)

Such a scheme is a secure USPSDH scheme against a random message attack in the generic group model.
Nevertheless, this does not contradict our results as such a signature cannot be produced by a generic
signer who does not know the discrete logarithm of the message (M, Ñ).

Again, one can give a similar counterexample for the Type-II setting proved in [7]. Consider a
structure-preserving signature scheme in the Type-II setting for messages M̃ ∈ H with a single group
element signature σ̃ = S̃, a verification key X,Y, Z ∈ G and a single verification equation of the form of
Equation (20)

ê(Z, S̃) = ê(X, H̃)ê(Y, M̃)ê(Ψ(M), M̃) (20)

Such a scheme is a secure scheme against a random message attack in the generic group model in the
Type-II setting. However, since signatures of this scheme cannot be produced by a generic signer, such
a scheme should not be regarded as a contradiction to Theorem 5 in [7].

9 Optimal CMA-Secure Partially Structure-Preserving Signature Scheme
for a Vector of Messages

We do not know how to construct a USPSDH scheme with optimal signatures (i.e. two group elements)
and a single verification equation that can sign a vector of Diffie-Hellman pairs. However, we give here
an optimal signature scheme (with two group element signatures and a single verification equation)
that simultaneously signs a Diffie-Hellman pair and a vector from Zkp, i.e. the message space of the

scheme is ĜH×Zkp. We call such a variant partially structure-preserving since other than allowing some
components of the messages to be signed to not be group elements, the scheme satisfies the rest of the
conditions required by the definition of structure-preserving signatures. In particular, the signatures,
the verification key and part of the message are all group elements, and verification only requires the
evaluation of pairing-product equations.

Given the description of Type-III bilinear groups P output by BGSetup(1λ), the scheme is as follows:

• KeyGen(P): Select x, y1, . . . , yk, z ← Z×p . Set X̃ := H̃x, Ỹi := H̃yi for all i ∈ [k], Z̃ := H̃z. Set

sk := (x, y1, . . . , yk, z) and vk := (X̃, Ỹ1, . . . , Ỹk, Z̃).

• Sign
(
sk,
(
(M, Ñ),u = (u1, . . . , uk)

))
: To sign a Diffie-Hellman pair (M, Ñ) ∈ ĜH and a vector

u = (u1, . . . , uk) ∈ Zkp, select r ← Z×p , and set R := Gr, S :=
(
M · Gx+

∑k
i=1 uiyi

) r
z . Return

σ := (R,S) ∈ G2.

• Verify
(
vk,
(
(M, Ñ),u

)
, σ = (R,S)

)
: Return 1 iff R ∈ G×, (M, Ñ) ∈ ĜH, and the following holds:

ê(S, Z̃) = ê(R, Ñ)ê(R, X̃)

k∏
i=1

ê(R, Ỹ uii )
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• Randomize
(
vk,
(
(M, Ñ),u

)
, σ = (R,S)

)
: Select r′ ← Z×p , and set R′ := Rr

′
, S′ := Sr

′
. Return

σ′ := (R′, S′).

Correctness of the scheme follows by inspection and is straightforward to verify. The scheme is per-
fectly randomizable as the distribution of re-randomized signatures is identical to that of fresh signatures
on the same message vector.

Theorem 13. The partially structure-preserving signature scheme is existentially weakly unforgeable
against a chosen-message attack in the generic group model.

Proof. Public elements in H are H̃, X̃, {Ỹ }ki=1, and Z̃ which correspond to the discrete logarithms 1,
x, {yi}ki=1, and z, respectively. After q signing queries, (m∗, n∗), which is the discrete logarithm of the
forged Diffie-Hellman pair (M∗, Ñ∗), must be of the form

n∗ = an + bnx+

k∑
i=1

cn,iyi + dnz

m∗ = am +

q∑
i=1

bmiri +

q∑
i=1

cmi(
rimi

z
+
rix

z
+
ri
∑k
j=1 ui,jyj

z
)

Since we must have m∗ = n∗ for the forgery to be a valid element of ĜH, we have

m∗ = n∗ = an = am

Similarly, the signature (R∗, S∗) have the form

r∗ = ar +

q∑
i=1

briri +

q∑
i=1

cri(
rimi

z
+
rix

z
+
ri
∑k
j=1 ui,jyj

z
)

s∗ = as +

q∑
i=1

bsiri +

q∑
i=1

csi(
rimi

z
+
rix

z
+
ri
∑k
j=1 ui,jyj

z
)

For the forgery to be a valid signature, s∗ and r∗ must satisfy s∗z = r∗m∗ + r∗x+ r∗
∑k
j=1 u

∗
jyj . So we

must have (
as +

q∑
i=1

bsiri +

q∑
i=1

csi(
rimi

z
+
rix

z
+
ri
∑k
j=1 ui,jyj

z
)
)
z

=
(
ar +

q∑
i=1

briri +

q∑
i=1

cri(
rimi

z
+
rix

z
+
ri
∑k
j=1 ui,jyj

z
)
)
m∗

+
(
ar +

q∑
i=1

briri +

q∑
i=1

cri(
rimi

z
+
rix

z
+
ri
∑k
j=1 ui,jyj

z
)
)
x

+
(
ar +

q∑
i=1

briri +

q∑
i=1

cri(
rimi

z
+
rix

z
+
ri
∑k
j=1 ui,jyj

z
)
) k∑
j=1

u∗jyj

Thus, we must have

asz +

q∑
i=1

bsiriz+

q∑
i=1

csi(rimi + rix+ ri

k∑
j=1

ui,jyj)

=
(
ar +

q∑
i=1

briri +

q∑
i=1

cri(
rimi

z
+
rix

z
+
ri
∑k
j=1 ui,jyj

z
)
)
m∗

+
(
ar +

q∑
i=1

briri +

q∑
i=1

cri(
rimi

z
+
rix

z
+
ri
∑k
j=1 ui,jyj

z
)
)
x

+
(
ar +

q∑
i=1

briri +

q∑
i=1

cri(
rimi

z
+
rix

z
+
ri
∑k
j=1 ui,jyj

z
)
) k∑
j=1

u∗jyj
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Note that there is no term in rix
2

z on the left-hand side so we must have cri = 0 for all i. Also, there is
no term in z or riz on the right-hand side so we must have as = 0 and bsi = 0 for all i. Thus, we have

q∑
i=1

csi(rimi + rix+ri

k∑
j=1

ui,jyj)

=
(
ar +

q∑
i=1

briri

)
m∗ +

(
ar +

q∑
i=1

briri

)
x+

(
ar +

q∑
i=1

briri

) k∑
j=1

u∗jyj

There is no term in x on the left-hand side so we must have ar = 0 and thus we have

q∑
i=1

csi(rimi + rix+ ri

k∑
j=1

ui,jyj) =

q∑
i=1

bririm
∗ +

q∑
i=1

bririx+

q∑
i=1

briri

k∑
j=1

u∗jyj

The monomial rix implies csi = bri for all i. Since we require that R∗ ∈ G×, we must have r∗ 6= 0
and therefore we must have at least a single value of csi = bri 6= 0. Now the monomial ri implies
csimi = brim

∗ which means m∗ = mi for some i ∈ [q]. Also, the monomial riyj implies csiui,j = briu
∗
j

and hence we have u∗j = ui,j for all j ∈ [k]. This means the forgery is on a vector
(
(M∗, Ñ∗),u∗

)
which

was queried to the sign oracle and thus is not a forgery.
ut

10 Efficient Randomizable weakly Blind Signatures without Random
Oracles

Bernhard et al. [12] defined randomizable weakly blind signature schemes as one of the building blocks
for their generic construction of Direct Anonymous Attestation (DAA) protocols [15].

SetupBS(1λ)
P ← BGSetup(1λ).
(crsi, xki)← GSSetup(P) for i = 1, 2.
Return paramBS := (P, crs1, crs2).

KeyGenBS(paramBS)

x, y ← Zp. X̃ := H̃x; Ỹ := H̃y.

Return
(
skBS := (x, y), vkBS := (X̃, Ỹ )

)
.

Request0BS(vkBS, (M, Ñ))

π ← GSProve
(
crs1, {Ñ} : M ∈ LU

)
.

Return (ρ0 := (M,π), st0R := (M, Ñ)).

Issue1BS(skBS, ρ0)
Parse ρ0 as (M,π).
If GSVerify(crs1,M ∈ LU, π) = 0, Return ⊥ .
r ← Z×p ; R := Gr; S := (Gx ·M)

r
y .

Ω ←GSProve(crs2, {R̃} : (R,S,M) ∈ LS).
Return β1 :=

(
(R,S), Ω

)
.

Request1BS(vkBS, β1, st
0
R)

Parse β1 as ((R,S), Ω).

Parse st0R as (M, Ñ).
Return ⊥ if any of the following hold:
◦ R = 1G.
◦ GSVerify(crs2, (R,S,M) ∈ LS, Ω) = 0.

Return σ ← RandomizeBS
(
vkBS, (R,S)

)
.

VerifyBS(vkBS, (M, Ñ), (R,S))

If R = 1G or ê(S, Ỹ ) 6= ê(R, X̃)ê(R, Ñ)
Then Return 0.

Else
Return 1.

RandomizeBS(vkBS, σ)
Parse σ as (R,S).

r′ ← Z×p ;R′ := Rr
′
;S′ := Sr

′
.

Return (R′, S′).

Fig. 3. Our Weakly Blind Signature Scheme

DAA protocols are outside of the scope of this paper but for the record we show that combining our
publicly re-randomizable scheme from Section 5 with the SXDH-based instantiation of the Groth-Sahai
proof system yields more efficient instantiations of randomizable weakly blind signature schemes than
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those used in [11, 29], which were used for constructing the first instantiations of DAA which do not rely
on random oracles. The obtained weakly blind signature (See Fig. 3) yields signatures of size 2|G| and
require only 1 PPE equations (2 pairings in total) to verify. That our instantiation is more efficient than
those in [11, 29] is obvious as the underlying signature scheme we use is more efficient than those used
[11, 29].

In the construction, we use the following languages for the zero-knowledge proofs in the signing
protocol for the user and signer, respectively:

LU :
{(
M, Ñ

)
: ê(G, Ñ) = ê(M, H̃)

}
LS :

{(
(R,S,M), R̃

)
: ê(G, R̃) = ê(R, H̃) ∧ ê(S, Ỹ ) = ê(R, X̃)ê(M, R̃)

}
Note that all equations in the above are of the form that one gets zero-knowledge Groth-Sahai proofs
for. For simplicity, the languages above do not spell out the details of the auxiliary simulation-enabling
equations.

The proof of the following theorem is provided in Appendix B.

Theorem 14. Assuming the SXDH assumption holds and the structure-preserving signature scheme
from Section 5 is existentially unforgeable, the weakly blind signature scheme in Fig. 3 is secure.
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A Proof of Theorem 8

Proof. We show that the linear combinations the generic adversary can produce out of the combina-
tions of the signatures’ elements, verification key elements and public parameters in each of the source
groups, cannot correspond to Laurent polynomials representing a valid forgery. Public elements in H
are H̃, X̃1, . . . , X̃k, Ỹ which correspond to the discrete logairthms 1, x1, . . ., xk and y, respectively. The
message

(
M∗1 , . . . ,M

∗
k

)
on which the adversary forges a signature σ∗ = S∗ can only be of the form

m∗i = ami + bmi
(x1
y

+
m1

y
+

k∑
j=2

mjxj
y

)
, for i = 1, . . . , k.
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Similarly, the signature σ∗ = S∗ must have the form

s∗ = as + bs
(x1
y

+
m1

y
+

k∑
i=2

mixi
y

)
For the forgery to be a valid signature, s∗ must satisfy s∗y = x1 + m∗1 +

k∑
i=2

m∗i xi. Therefore, we must

have (
as + bs

(x1
y

+
m1

y
+

k∑
i=2

mixi
y

))
y = x1 +m∗1 +

k∑
i=2

m∗i xi

So we must have

asy + bs
(
x1 +m1 +

k∑
i=2

mixi
)

= x1 +m∗1 +

k∑
i=2

m∗i xi.

There is no term in y on the right-hand side so we must have as = 0, Thus, we have

bs
(
x1 +m1 +

k∑
i=2

mixi
)

= x1 +m∗1 +

k∑
i=2

m∗i−1xi.

By the monomial x1, we have bs = 1. For the two sides to be equal, we must have bsm1 = m∗1 and
bsmixi = m∗i xi for all i = 2, . . . , k. Since we have bs = 1, it means we must have m∗1 = m1 and mi = m∗i
for all i = 2, . . . , k. This means the forgery is on the same vector queried to the sign oracle.

ut

B Proof of Theorem 14

Correctness of the construction follows from that of the signature scheme and the perfect completeness
of Groth-Sahai proofs. Unforgeability and weak blindness are proven by the following two lemmata,
respectively.

Lemma 3. The weakly blind signature scheme in Fig. 3 is unforgeable if the structure-preserving signa-
ture scheme in Section 5 is existentially unforgeable, NIZK1 (used by the user to produce π) is sound
and NIZK2 (used by the signer to produce Ω) is zero-knolwedge.

Proof. We instantiate crs1 used for NIZK1 as a binding crs and hence NIZK1 is perfectly sound,
whereas crs2 is instantiated as a hiding string and hence we can simulate proof Ω. By the security of
NIZK2, an adversary has a negligible advantage in distinguishing between the two settings. Using an
adversary A that breaks the unforgeability of the blind signature scheme, we construct an adversary B
against the unforgeability of the structure-preserving signature scheme.
B gets the verification key vk = (X̃, Ỹ ) from its game which it forwards to A. B has access to a sign

oracle in its game. To answer a signature query on a message, B uses the extraction key of NIZK1 to
extract the witness Ñ and forwards (M, Ñ) (which, by the soundness of NIZK1, is a valid Diffie-Hellman
pair) to its sign oracle to get a signature σ = (R,S). B then simulates the proof Ω (since it does know the
exponent r used in the signature and hence cannot produce the element R̃). B returns

(
σ = (R,S), Ω

)
to A.

Eventually, when A outputs its n + 1 message-signature pairs, B returns the extra pair that it did
not query its oracle on as its forgery.

By the existential unforgeability of the signature scheme, we have that this only happens with a
negligible probability.

This concludes the proof.
ut

Lemma 4. The weakly blind signature scheme in Fig.3 is weakly blind if NIZK1 is zero-knowledge,
NIZK2 is sound and the DDH assumption holds in group G.
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Proof. We instantiate crs1 (used for NIZK1) as a hiding crs and hence we can simulate proof π. By the
security of NIZK1, an adversary has a negligible advantage in distinguishing between the two settings.
We instantiate the reference string crs2 (used for NIZK2) as a binding string and hence the proof system
NIZK2 is perfectly sound.

Using an adversary A against the weak blindness of the blind signature, we construct an adversary
B that breaks the DDH assumption in group G. B gets A = Ga, B = Gb and C = Gc, where a, b, c ∈ Zp
are random exponents unknown to B. B chooses x, y ← Zp and computes X̃ := H̃x and Ỹ := H̃y. It

forwards skBS := (x, y) and vkBS := (X̃, Ỹ ) to A.
B requests from A a blind signature on the message A. Note that since B does not know a, it simulates

the proof π. A responds with a signature (σ0 = (R,S), Ω). Since NIZK2 is perfectly sound, (R,S) is a
valid signature on the message (Ga, H̃a), i.e. for some r ∈ Zp, we have σ0 = (Gr, G

rx
y ·G

ra
y ). To produce

the challenge signature σ1, B computes σ1 = (R∗, S∗) := (B,B
x
y · C

1
y ). B returns

(
σ0 =

(
R,S

)
, σ1 =(

R∗, S∗
))

to A. The advantage of B in breaking the DDH assumption in G is the same as that of A
winning the weak blindness game.

We argue now that the challenge signatures given to A are distributed identically to those A would
get in the blindness game. We have two cases:

• Case c = ab (i.e. (A,B,C) is a valid DDH tuple): In this case, we have

σ1 = (R∗, S∗) = (Gb, G
bx
y ·G

ab
y ),

which is a valid randomized signature on the message (Ga, H̃a). In particular, σ1 = (R∗, S∗) is a
valid signature on the message (Ga, H̃a) for randomness α = b

r . Since b is random so is α. This case
corresponds to the case b = 0 in the blindness game.

• Case c is a random element in Zp: In this case, we have

σ1 = (R∗, S∗) = (Gb, G
bx
y ·G

c
y ),

which is a valid signature on the message (G
c
b , H̃

c
b ). Since c is random so is c

b . This case corresponds
to the case b = 1 in the blindness game.

This concludes the proof.
ut
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