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Abstract. In this short note we report on invariant subspaces in Sim-
pira in the case of four registers. In particular, we show that the whole
input space (respectively output space) can be partitioned into invariant
cosets of dimension 56 over F64

28 . These invariant subspaces are found by
exploiting the non-invariant subspace properties of AES together with
the particular choice of Feistel configuration. Though we give the invari-
ant subspaces for b = 4 in this paper, we remark that there are invariant
subspaces in several of the Simpira instances; these can be determined
with only minor adjustments to the analysis in this paper.

1 Introduction

Invariant subspace cryptanalysis was introduced by Leander et. al. in [2] and

has been further developed in for instance [3]. A coset of a vector space is called

invariant relative to a function f(x), if it is mapped to itself through it. Typically

f(x) is a block cipher permutation. Subspace cryptanalysis is typically of interest

for block ciphers consisting of round functions with a high degree of symmetry.

Several examples have shown that it can be quite easy to find these spaces if

one cares to look for them. If it is di�cult to identify such spaces by hand, an

alternative approach is to go ”fish for subspaces”. For instance, for a byte-based

block cipher, one simply encrypt all values for a particular byte (or fixed set

of bit positions in bit-based designs) for several rounds and check whether the

resulting ciphertexts span a coset of a subspace; the structure of the resulting

subspace can then reveal the structure of more complicated invariant subspaces

which could be hard to detect by inspection. An algorithm for finding invariant

subspaces was also introduced in [3].

In Simpira we identify large invariant subspaces by exploiting the non-invariant

subspace properties of AES. Concretely, when b = 4 we identify a large sub-

space U such that any coset of this space is invariant of the composition of

two Simpira rounds. Thus, any coset of the plaintext is invariant over infinitely

many even rounds. This is as far as we know the first time the plaintext space

has been partitioned completely into cosets that are invariant of a block ci-

pher permutation. Concretely, the invariant cosets of Simpira is spanned by

(x1,MC � SR(z1 � y � c1), x3,MC � SR(z2 + y + c2) where c1 and c2 are fixed

4⇥4 constant (random) matrices, zi is a 4⇥4 matrix formed by setting the first

two columns to all possible values, y is formed by setting the last two columns
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to all possible values, and x1 and x3 are matrices set to all possible values. So

each pair of constants c1 and c2 (there are 2

64
unique combinations in total)

results in an invariant coset of dimension 56. Thus, each of the 2

64
cosets are

invariant through any number of even rounds of Simpira, forming a partition of

the plaintext space into invariant cosets.

For further details of Simpira, the reader is referred to [1].

2 Preliminaries

When b = 4 the state of Simpira consists of four 4 ⇥ 4 matrices over F28 , S =

(x1, x2, x3, x4). We identify 4⇥ 4 matrices over F28 with vectors in F4⇥4
28 as

2

664

x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15

x4 x8 x12 x16

3

775

���� 8x1, x2, . . . , x16 2 F28

�
.

We identify the whole state S with the vector space F4⇥4⇥4
28 = F64

28 simply by

gluing together the columns of the matrices x1, x2, x3 and x4 into a vector x =

x1 ⇥ x2 ⇥ x3 ⇥ x4 of length 64 over F28 .

For a vector space V and a function F on F4⇥4
28 we write F (V ) to mean the

set

F (V ) = {F (v) | v 2 V }.

For a subset I ⇢ {1, 2, . . . , n}, and a subset of vector spaces {G1, G2, . . . , Gn},
we use the notation GI to mean the direct sum of a subset of those spaces

determined by I,

GI =

M

i2I

Gi.

In [4], three types of subspaces where defined for AES; the diagonal spaces

UI , the column spaces VI and the mixed spaces WI . Let ei,j be the 4⇥ 4 matrix

with a single 1 in position i, j (or as a vector of length 16 with a single 1 in

position 4 · j + i).

Definition 1. (Diagonal spaces) The diagonal spaces Ui are defined as

Ui =< e0,i, e1,i+1, e2,i+2, e3,i+3 >

where i + j is computed modulo 4. For instance, the diagonal space U0 corre-

sponds to the symbolic matrix

U0 =

⇢
2

664

x1 0 0 0

0 x2 0 0

0 0 x3 0

0 0 0 x4

3

775

���� 8x1, x2, x3, x4 2 F28

�
.
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Definition 2. (Column spaces) The column spaces Vi are defined as

Vi =< e0,i, e1,i, e2,i, e3,i > .

For instance, the columns space V0 corresponds to the symbolic matrix

U0 =

⇢
2

664

x1 0 0 0

x2 0 0 0

x3 0 0 0

x4 0 0 0

3

775

���� 8x1, x2, x3, x4 2 F28

�
.

The last type of subspaces we define are called mixed subspaces.

Definition 3. (Mixed spaces) The ith mixed subspace Wi is defined as

Wi = MC � SR((Vi))).

For instance, W0 corresponds to symbolic matrix

W0 =

⇢
2

664

↵ · x1 x4 x3 (↵+ 1) · x2

x1 x4 (↵+ 1) · x3 ↵ · x2

x1 (↵+ 1) · x4 ↵ · x3 x2

(↵+ 1) · x1 ↵ · x4 x3 x2

3

775

���� 8x1, x2, x3, x4 2 F28

�

where ↵ is the generator of the AES field.

Let I ✓ {0, 1, 2, 3}. Then, we define:

VI =

M

i2I

Vi, UI =

M

i2I

Ui, WI =

M

i2I

Wi.

The dimension of any of the spaces UI ,VI and WI is 4 · |I|. In [4] the authors

proved the following lemmas related to these subspaces. Assume fk(x) is one

AES round with a fixed key k.

Lemma 1. [4] For I ✓ {0, 1, 2, 3} where 0 < |I|  3 and a 2 F4⇥4
28 . Then there

exist a unique b 2 F4⇥4
28 such that

fk(UI � a) = VI � b.

Lemma 2. [4] For I ✓ {0, 1, 2, 3} where 0 < |I|  3 and a 2 F4⇥4
28 . Then there

exist a unique b 2 F4⇥4
28 such that

fk(VI � a) = WI � b.

We will consider subspaces in F4⇥4⇥k
28 formed by concatenating the columns

of k AES states (4⇥4 matrices). When we write U ⇥V for two subspaces U and

V of F4⇥4
28 we mean the subspace

⇢
x⇥ y

���� 8x 2 U, 8y 2 V

�

of dimension dim(U) + dim(V ). When we write (U,U), we mean the subspace

⇢
x⇥ x

���� 8x 2 U

�

of dimension dim((U,U)) = dim(U) in F4⇥4⇥2
28 .
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3 Invariant subspaces in Simpira

Let f(x) = f0(x) denote one AES round without the key addition and let F (x) =
f(x) ⇥ f(x) denote the concatenation of two AES rounds forming a map from

F4⇥4
28 to F4⇥4

28 ⇥ F4⇥4
28 = F32

28 . The main reason for invariant subspaces in Simpira

is characterized in the following.

Lemma 3. For I ⇢ {0, 1, 2, 3} with 0 < |I|  4 and fixed a1 and a2 in U?
I ,

there exist b1 and b2 2 V?
I such that

⇢
f(x� a1)⇥ f(x� a2)

���� 8x 2 UI

�
= (VI � b1,VI � b2).

Proof. This follows directly from Lemma 1.

We have in particular that

⇢
f(x)⇥ f(x) | 8x 2 F4⇥4

28 } =

⇢
x⇥ x

���� 8x 2 F4⇥4
28

�
.

Lemma 4. For I ⇢ {0, 1, 2, 3} with 0 < |I|  4 and fixed a and b in VI we have

that ⇢
f(x� a)⇥ f(x� b)

���� 8x 2 F4⇥4
28

�
⇢ W?

I ⇥W?
I � (WI ,WI).

Proof. The constants a and b a↵ects the same |I| columns in x such that the

output becomes linearly independent of each other in these positions after the

s-box layer. The values are identical in the rest of the columns, such that the

set of values belongs to V?
I ⇥ V?

I � (VI ,VI), by definition SR � MC maps the

resulting values to the space W?
I ⇥W?

I � (WI ,WI).

Theorem 1. For a fixed random a⇥ b 2 V{0,1} ⇥ V{0,1}, we have that

⇢
F (F (x)� a)

���� 8x 2 F4⇥4
28

�
⇢ H

where

H = W{0,1} ⇥W{0,1} � (W{2,3},W{2,3}).

Proof. This follows by combining the two previous Lemmas.

Notice that H is equal to

⇢
(MC � SR(z1 � x)⇥MC � SR(z2 � x)

�

where zi 2 V0 � V1are 4 ⇥ 4 matrices formed by setting the first two columns

to all possible values, while x is formed by setting the last two columns to all

possible values.
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We proceed by investigating the structure of the Simpira Feistel over two

rounds. For b = 4, the input to Simpira in round t is (xt
1, x

t
2, x

t
3, x

t
4) where each

xt
i is drawn from F4⇥4

28 . In the following we simplify the notation a bit by writing

F t
i (x) = f(f(x) + kt,i) where kt,i is the constant to the ith function in the t’th

round. The output after one round of Simpira is then

(xt+1
1 , xt+1

2 , xt+1
3 , xt+1

4 ) = (F t
1(x

t
1)� xt

2, F
t
2(x

t
4) + xt

3, x
t
4, x

t
1).

where the constants ki,j belong to V0 � V1. If we continue the recursion for one

more round we get a new state

(xt+2
1 , xt+2

2 , xt+2
3 , xt+2

4 ) =(F t+1
1 (xt+1

1 )� xt+1
2 , F t+1

2 (xt+1
4 ) + xt+1

3 , xt+1
4 , xt+1

1 )

(1)

If we substitute the variables in (1) with the variables xt
i from two rounds before,

we get

(xt+2
1 ,Ft+1

2 (x

t
1)� x

t
4, x

t
1,F

t
1(x

t
1)� x

t
2)) (2)

where xt+2
1 = F t+1

1 (F t
1(x

t
1) � xt

2) � F t
2(x

t
4) + xt

3. We have marked the output

values relevant to subspace cryptanalysis in bold. In particular, from Theorem 1

it follows that the invariant subspaces in Simpira are spanned by

⇢
x1,MC � SR(z1 � x� c1), x3,MC � SR(z2 + x+ c2)

���� }

where c1 and c2 are fixed random constants, zi 2 V{0,1} are 4⇥4 matrices formed

by setting the first two columns to all possible values, x is formed by setting the

last two columns to all possible values, and x1 and x3 are matrices set to all

possible values. Thus each pair of constants c1 and c2 (there are 2

64
unique

combinations in total) results in an invariant coset of dimension 56 for any even

number of rounds.

Note that it is straight-forward to extend this to an odd number of rounds.

The adversary can either prepare plaintexts by first encrypting a coset one round

(for instance with zero-constants), or asking for a double-encryption of cipher-

texts.
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