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Abstract. In this paper, we study the side-channel resistance of the implementation of the ECDSA
signature scheme in Android’s standard cryptographic library. We show that, for elliptic curves over prime
fields, one can recover the secret key very efficiently on smartphones using electromagnetic side-channel
and well-known lattice reduction techniques. We experimentally show that elliptic curve operations
(doublings and additions) can be distinguished in a multi-core CPU clocking over the giga-hertz. We
then extend the standard lattice attack on ECDSA over prime fields to binary Koblitz curves. This is
the first time that such an attack is described on Koblitz curves. These curves, which are also available
in Bouncy Castle, allow very efficient implementations using the Frobenius operation. This leads to
signal processing challenges since the number of available points are reduced. We investigate practical
side-channel, showing the concrete vulnerability of such implementations. In comparison to previous
works targeting smartphones, the attacks presented in the paper benefits from discernible architectural
features, like specific instructions computations or memory accesses.

1 Introduction

Side-Channel Analysis is an important set of techniques allowing to recover secret information.
Isolation breaches are exploited during the execution of a sensitive algorithm [26,27]. Various
sources of leakage can be used, such as physical ones (e.g., power consumption [27], electromagnetic
emanations, or execution timing [26]), or microarchitectural ones (e.g., cache state or branch
prediction).

Physical side-channels have been used for more than 15 years to assess the security of smartcards,
ASIC and FPGA. Security vulnerabilities have been a real concern for embedded devices like
smartcards that hold sensitive data and can be accessed by an adversary. These integrated circuits
were thought to hold and protect only a few applications. But the upcoming of smartphones allowed
all kinds of applications to be run on a unique mobile device, which was thought to be a mobile
computer rather than a generalized smartcard. As a consequence, the hardware is not designed to
be protected against physical attacks. This problem has been studied for many years by mobile
operators to protect private data on these devices. Mobile operators standardized the SIM card
which is used in many countries and is built to prevent any leakage of information. This chip is still
used in today’s phones. But the quantity of data processed nowadays is increasing exponentially,
leading to a dead-end when considering the computing limitations of SIM cards and the latency of
communication with smartphone hardware.
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Sensitive applications are now developed on smartphones and software security vulnerability is
an important issue. However, if the cryptographic library is not protected against physical attacks,
the secret keys can be extracted and data protection becomes useless.

Our Contributions. With this evolution in mind we assess the security of Android smartphones
against electromagnetic analysis. We show that the standard implementation of elliptic curve
cryptography, which has been provided since the version 4.4 of the Android operating system, is
not protected against these attacks and that the manipulated secret key can be extracted using
a few hundreds of measurements. Many issues remained in the related literature [24,42,1,33] in
order to mount a real and practical attack on mainstream libraries running on smartphones. No
article address the security of widely used library such as Bouncy Castle and actual implementation.
For instance, in [33], authors show that we can distinguish square and multiplication in the usual
square-and-multiply algorithm. However, since in Bouncy Castle the implementation uses a sliding
windows algorithm, this information is not sufficient to recover the secret key. Here, we show that
on real implementation that calls this library we can recover the secret key.

On the hardware side, modern smartphone processors have interesting features which make
physical attack harder: many cores, fast clock (GigaHertz, while smartcards are clocked at around 20
MegaHertz), and the leaking parts of the circuit under focus are integrated into hundred millions of
transistors. This makes the leaking signal much harder to acquire and interpret. Moreover, Android is
a rich OS that use many threads running concurrently and the software is executed in an applicative
virtual machine (cf. appendix B). Thus the abstraction layers induce many system activities and it is
not really easy to get the full trace during cryptographic computation. Previous work mainly focused
on simpler processors and OSes, with the noticeable exceptions of Genkin et al.’s works [19,18] and
Zajic and Prvulovic’s experiments [41]. Nevertheless, in the two first papers, exponentiations were
not observed, and in the third paper, no cryptographic algorithm was evaluated. A more detailed
related work is given in Appendix A.

On a cryptanalytical viewpoint, implementations that were previously attacked on general-
purpose devices, processed each bit independently. In order to have efficient cryptographic codes,
sliding window algorithms are used in Bouncy Castle, and it is no more possible to mount the
attacks described in related work. This explains the use of the lattice-based technique which only
uses the last iterations of the trace. We can detect the last bits since we are able to identify a
specific pattern that ends the computation. These attacks can be used even though we do not have
the whole electromagnetic (EM) curve: with windowing algorithms, we cannot distinguish between
the additions of different precomputed values and multi-threading can interrupt the double-and-add
algorithm with different operations. Even in these difficult scenarios, we are able to identify the
number of zero bits at the beginning or at the end of ECDSA nonces, leading to a successful
lattice-based cryptanalysis.

Furthermore, the security of the windowing algorithm on Koblitz curves has not been investigated
yet. Arithmetic on such curves is very efficient on hardware, and it has recently been shown that the
new carryless vector instructions make these curves also appealing in software. It raises new signal
processing challenge since the Frobenius endomorphism, which plays a role in the Koblitz curve
setting analogous to doublings in standard scalar multiplications, is a very efficient operation, and
is implemented through precomputed tables in Bouncy Castle. These operations are successfully
monitored through EM side-channel. Lattice-based cryptanalysis has also been modified to address
the specificities of these curves. In Bouncy Castle, the implementation of elliptic curves uses affine
coordinates, but our attack can still be applied on other coordinates system such as Jacobian or
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lambda [31,38] coordinates if the most significant bits of the nonces leak. Indeed, we learn these bits
since we can distinguish the addition and double (frobenius in the case of binary curves) operations.
Being able to distinguish them depends on their actual implementations, but in any coordinates
systems, the internal operations are usually rather different and timing or power consumption are
different if no careful protection are added.

We implement two EM side-channel attacks on smartphones running Android standard ECDSA
implementations. We recover the private key using very few signatures either on prime field curves
or on Koblitz ones. In the first attack, defined over prime field, we show that, even on systems as
complex as smartphones, it is possible to distinguish exponentiation operations via EM side-channels.
It allows to recover the least significant bits of the nonces during the execution of the sliding window
exponentiation algorithm. Then, we conduct classical lattice-based cryptanalysis. The second attack
is new and is an adaptation of the lattice-based attack in the case of Koblitz curves. In addition to
this new technique, the efficient Frobenius operation is retrieved via EM side-channel. It allows to
break these specific kind of curves even on complex devices.

Concurrent work. Similar results to the ones presented in this paper have been obtained, concur-
rently and independently, by Genkin et al. [17]. A synthesis of our results is in preparation.

Organization of the paper. In section 2, we describe some background on Android security and
elliptic curve over prime field and binary field and their implementations in Bouncy Castle. In
section 3, we present how we acquire and process the signal. In section 4, we show how we can
recover the secret for prime field and binary curves, and discuss possible countermeasures.

2 Background on Elliptic Curve Cryptography

The security of elliptic curve cryptography is based on the computational complexity of the discrete
logarithm problem over the additive group of points of an elliptic curve. This problem is stated
as follows: given P and Q two points such that Q = k · P , finding k is difficult when the group
order is a large prime. Let P be a publicly known generator point and a scalar k in the finite field.
Efficient algorithms allow to compute a new point Q = k · P . Here, we work with prime and binary
curves. The arithmetic used to compute with Jacobian coordinates on prime field curves and affine
coordinates for binary curve, and the exact implementations used in Bouncy Castle with NAF and
TNAF representation is detailed in appendix C. Computations are done on large integers, using the
BigInteger class. In Android, the class functions ultimately bind to native ones through the JNI.
These native functions are implemented in an OpenSSL class.

Prime Field Elliptic Curve. An elliptic curve can be defined over some finite field K of charac-
teristic different from 2 and 3 by its short Weierstrass equation E(K) which is the set of points on:

E : y2 = x3 + ax+ b, (1)

where a, b ∈ K and the points (x, y) ∈ K×K are solution of equation (1). To serve as a neutral element,
a point at infinity (∞) is added to the other points to form a group. The addition of two points, needed
to efficiently compute k.P , is defined for two points P1 = (x1, y1) ∈ E(K) and P2 = (x2, y2) ∈ E(K)
by the new point P3 = (x3, y3) ∈ E(K) (see [21]): P3 = (λ2 − x1 − x2, λ(x1 − x3) − y1), where
λ = (y1 − y2)/(x1 − x2) if P1 6= P2 and λ = (3x21 + a)/(2y1) if P1 = P2.

The computation of these new coordinates requires to compute inversion which is time consuming.
Consequently, the elliptic curve points are represented in Jacobian coordinates in Bouncy Castle.
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To reduce the number of additions, the nonces are represented in NAF and scalar multiplication is
performed using a sliding window implementation.

Koblitz Curve. Koblitz curves are anomalous binary curves defined over F2 and considered over
the extension field F2m . The advantage of these curves is that scalar multiplication algorithms can
avoid using point doublings and are very efficient on hardware. Recently, carryless instructions have
been added to general processors which makes binary curves appealing as well for software [38].
In the case of Koblitz curve, it is shown in [3], that such curves are competitive. They have been
discovered by Koblitz [25], efficient algorithms have been proposed by Solinas [40] and treated
formally in [21]. Their equations have the following form Ea(F2m) :

y2 + xy = x3 + ax+ 1, and a = 0 or 1. (2)

The interest of these curves resides in some tricks in the arithmetic of point calculus. The
Frobenius map τ : Ea(F2m)→ Ea(F2m) is defined as

τ(∞) =∞, and τ(x, y) = (x2, y2).

It can be efficiently computed because squaring in F2m is inexpensive since it consists in adding a
bit to zero between each bit of the binary representation of an element and then reducing it modulo
the polynomial defining the finite field. It is known that

(τ2 + 2)P = µτ(P ) for all P ∈ Ea(F2m),

where µ = (−1)a. Hence, the Frobenius map can be seen as a complex number τ satisfying τ2+2 = µτ
so that τ = (µ+

√
−7)/2. Then, the ring of quadratic integers Z[τ ] generated by τ has a well-defined

scalar multiplication operation on points in Ea(F2m) via the Frobenius endomorphism. As a result,
we can efficiently carry out the scalar multiplication by an integer k if we can find a compact
representation of k in the form

∑l−1
i=0 kiτ

i as an element of Z[τ ], with ki ∈ {−1, 0, 1}. One such
representation is the τ -non adjacent form, or TNAF, representation of the integer k. There are
efficient algorithms to compute it (see [21]). Finally, since τ2 = µτ−2, every element α ∈ Z[τ ] can be
written in canonical form as α = a0 + a1τ where a0, a1 ∈ Z. The implementation of Bouncy Castle
in order to represent an integer in WTNAF representation (TNAF representation with window) is
recalled in appendix C.

ECDSA. The ECDSA signature scheme has been standardized by NIST in [36] and allows to sign
any message m using two scalars (r, s) such that r is the abscissae of k · P and s is computed as
s = (rx+ h)/k mod q, where q is a large prime, h = H(m) and x is the signer’s ECDSA secret key.

3 Signal Processing

In this section, we explain the experimental setup used to acquire the signal. The acquisition bench is
described in appendix F. We present how we synchronize the signal and we show how to distinguish
doubling and addition operations. We observe that the number of multiplications is different for
doubling and addition, the time intervals between these multiplications being a characteristic of
each operation. Then, we explain some particular issue according to the Bouncy Castle code. Finally,
we show that the multiplications, corresponding to a decrease in signal energy, are used in a different
CPU mode than the other executed instructions. It may possibly explain the observed leakage.
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3.1 Synchronizing the acquisitions

In [1], the oscilloscope is triggered at acquisition time through SD Card communication. The voltage
of one of the data pins is monitored while a message is sent to the card. There are a few issues
with that method. The SD Card is not used in all the smartphones. It is problematic to easily
evaluate all devices. The mechanical base is not the same on all the platforms and much of them are
difficult to access. The time is not very stable between the communication on the SD card and the
beginning of the processing of interest. It is not an issue for so-called horizontal attacks (where the
leakage patterns are a function of time) where only one trace is required, but for vertical attacks, it
is important to have a stable and generic synchronizing signal. Finally, the phone is dismounted
and a wire is melted on each evaluated phones.

To address these problems, we trigger on USB channel, which is the only standard I/O on
smartphones. We send 120 bytes equal to 0 on the channel just before cryptographic computation.
Low-pass filtering the USB physical signal gives a good approximation of a square signal, because
the high frequencies of the succession of fronts are filtered. The pattern is clearly visible on figure 1,
while sniffing the USB voltage signal. The oscilloscope triggers on a wide enough square pattern.
Similarly a message can be sent just after the cryptographic processing to surround the interesting
leakage in time. Other signals with the same values could transit on the channel triggering the
oscilloscope on a wrong pattern. The probability of such an occurrence is low, and experimentally
the problem did not occur during our experiments.

Fig. 1. USB voltage: synchronization message pattern sent on USB channel before the signature.

There is still significant jitter between oscilloscope triggering and the beginning of cryptographic
computation. To improve the acquisitions, a “sleep” operation was added just before the sensitive
computation. The CPU does not consume power during that period. It is easily detectable on EM
signals as can be seen on figure 3 (a). There are other time periods where the processor is idle. We
forced this state to be long enough in order to discriminate it with other idle states between USB
pattern and cryptographic computations.

The coupling of USB channel pattern with CPU idle state (Figure 2) leads to a precise synchro-
nization stage. The jitter is only a few instructions long, which is very interesting, especially for
investigations of Differential Power Analysis.
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tusb tsleep beg tsleep end tcrypto beg tcrypto end

∆T1

∆T2trigger condition 1

trigger condition 2
var(∆T1)� var(∆T2)

Fig. 2. triggering sequence: first USB pattern (less false positives); second sleep state (less variance between adc
triggering and algorithm start).

3.2 Energy variations - Leakage frequencies

Zooming on EM signal of figure 3 (a), there are time locations when the AC absolute magnitude
decreases, characteristic of signal energy variations. In signal processing, the energy of a signal is
given by the integration over time of its squared absolute values: Es =

∫∞
−∞ |x(t)|2dt.

To locally evaluate the signal energy around a point in time, the integral is computed on a
window centered on that point. It is equivalent to convoluting a square window centered on that
point, and summing the values of the convoluted signal. Applied to all signal points, the output
signal is a low-pass filtered signal of the original one. This filter has some drawbacks. The sharp edges
of the square window involve important ripples in the frequency domain. Alternatively, we used a
FIR (Finite Impulse Response) filter weighted with a Hamming window. The cutting frequency was
taken at 50kHz, a value giving a good SNR ratio. Then a high-pass filter was applied to the signal. As
a consequence, the signal was band-pass filtered around the frequency band of compromission [2,15].

High energy variations are visible on the filtered signal (figure 3 (b)). They happen during
signature computation as we show later. Energy variations during the computation of sensitive
values has long been of interest in the field of computer security. In the particular case of ECDSA,
being able to differentiate the leakage patterns of the doubling and addition operations is a big
security threat, because the flow of operations is directly linked to secret data.

Fig. 3. (a) Measured signal: Noisy curve, visible period when processor is idle (Qualcomm MSM 8225 ) – (b) After
signal filtering: higher energy variations during scalar multiplication (less time samples because of subsampling -
Qualcomm MSM 8225 )

Distinguishing EC operations patterns. The evaluation of a white box scalar multiplication,
with a known scalar, and Bouncy Castle’s doubling and addition implementations, allows the
discrimination of the two operations patterns (figure 4 (a)). Each operation is characterized by a
specific set of low power peaks, defined by the number of peaks and the timing intervals between
successive peaks.
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If the number of operations to extract is low enough, a manual observation is possible, as is the
case for the cryptanalysis presented in section 4 where a few hundreds of operations are needed.

Fig. 4. (a) doubling and addition leakage patterns (Qualcomm MSM 8225 ) – (b) pattern of a doubling operation
preceding an addition operation (Qualcomm MSM 8225 )

The regularity of the peaks is compared to the code of both the doubling and the addition operations.
Considering the doubling implementation (algo. 1), the number of multiplications is the same as
the number of peaks in the doubling leakage pattern. The number of additions and subtractions
between successive multiplications ({3, 0, 1, 3, 6, 1, (1)}), which is plotted on figure 5 (b), evolves
similarly to the timing intervals on figure 4 (b).

An interesting part of algorithm 1 is the block condition in line 14, which is executed if the
operation is followed by another doubling. If it is followed by an addition, the block is not executed,
and so, there is one less modular multiplication at the end of the function. This is clearly visible
on the doubling pattern preceding the addition on figure 6 (a). This explains the parentheses
surrounding the last value of the list.

Fig. 5. (a) Mean and standard deviation of doubling operation time intervals – (b) Number of basic operations
between multiplications in double BC source code (algo. 1)

The addition sums a precomputed point to an intermediate one during exponentiation. The
precomputed points have their coordinate Z set to one. It leads to computation simplifications since
the field operations involving this value, its square, or its cubic value, do not need to be computed. If
we consider the point P1 to be precomputed in addition algorithm 2, the conditional blocks executed
if the bit length of Z1 is different from one, are never computed. As a consequence, the number of ad-
ditions and subtractions between successive multiplications gives the list {0, 0, 0, 2, 0, 0, 0, 4, 0, 1, 0, 0},
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plotted on figure 6 (b). It has the same look as the curve on figure 5 (a). The same conclusions may
be drawn from the Android debugger DDMS as described in Appendix E.

Fig. 6. (a) Mean and standard deviation of addition operation time intervals – (b) number of basic operations between
multiplications in add BC source code (algo. 2)

Attacker’s strength considerations. The Qualcomm MSM 8225 processor, clocked at 1.2GHz,
leaks in a frequency range which is under 50kHz. This relatively low frequency can be explained
by leaking operations executing during multiple clock ticks. An analog-to-digital converter with a
sampling frequency of a few hundreds of kilo-hertz, allows to mount the attack with low investment
costs. In the paper, the measurements were obtained by decreasing our oscilloscope bandpass cutting
frequency to the minimum available one (20MHz) and choosing a sampling frequency of 50MHz. It
is small in comparison to the smartphone’s CPU clock frequency.

Contrary to the works of Genkin et al. [19,18], our attack is not subject to system interruptions
(fig. 3 (b)). In fact in their paper, the frequency contents of exponentiation vary with computed
values. If the OS cuts the processing in different chunks, the frequency spectrum of exponentiation
will be greatly affected. Consequently, the specificities of the inputs will not be discernible with
their method.

A possible explanation for the leakages. Field multiplications are computed with the Java
class BigInteger. These class functions ultimately bind to the native class NativeBN through the
JNI. The native methods call binary code in shared library. Disassembling the library of interest,
the machine code is executed in ARM mode during multiplication, contrarily to usual THUMB-2
mode for other instructions, e.g. addition instruction. Looking at the ARM reference manual for
Thumb-2 [6], multiplication instructions are one of the few which have distinct features in ARM
mode and in THUMB-2 mode. In particular, conditional flags can be modified in ARM mode, which
is important for vectorial operations. It may explain this change of the CPU mode, and consequently
the difference observed in the leakage. However, the impact on the leakage is difficult to establish.

One track that may be explored is the way integer pipelines are implemented. However, documen-
tation is not always accessible. For example, the ARM Cortex-A8 architecture (which is not targeted
in the paper) implements two ALUs, but only one implements a multiplier (see [5]). Consequently,
depending on how the processor is able to fill both of the ALUs (e.g. because of data dependences
or the number of successive multiplication in the program) may affect the amount of processing
done at a given time. Similar design choices for the targeted processors may explain some leakage
variations.
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4 Lattice Attack on ECDSA

Monitoring EM radiation during EC scalar multiplication, it may be possible to recover the succession
of doublings and additions. With Left-to-Right scalar multiplication (algorithm 3), this information
is sufficient to recover the private key from a single signature. However, this approach does not work
against Bouncy Castle, which implements the efficient “window NAF” algorithm. A side-channel
attacker cannot distinguish which of several precomputed points is added at each iteration. On the
other hand, the number of zeros between successive additions (i.e. the number of doublings minus
one) can be recovered using Simple Power Analysis. In particular, the number of doublings following
the last addition reveals the number of zeros in the least significant bit positions (because the LSB
of a window is always 1). Using that information, one can mount a full key-recovery attack using
well-known lattice-based techniques.

Indeed, in ECDSA and other Schnorr-like signature schemes, an attacker who obtains sufficiently
many signatures for which he knowns the least significant or most significant few bits of the random
nonces k can recover the private signing key. Recovering this key from the signatures and the
known bits of the nonces reduces to an instance of Boneh and Venkatesan’s hidden number problem
(HNP). The best-known variant of this attack is due to Howgrave-Graham and Smart (and was later
revisited and made more precise by Nguyen and Shparlinski), and uses lattice reduction to solve the
underlying HNP instance. It is recalled in section 4.1 below. In particular, it yields a key-recovery
attack against physical implementations of ECDSA signatures in which the side-channel leakage of
scalar multiplication can be used to reveal the least or most significant bits of the nonce.

However, the side-channel attack does not typically apply to ECDSA signatures on Koblitz
curves. The scalar multiplication on such curves is normally carried out using the τ -adic expansion
of the nonce k. Therefore side-channel leakage can at best reveal the top or bottom bits of that
τ -adic expansion, which do not determine the top or bottom bits of (the binary representation of) k
itself.

In section 4.2, we describe how a similar attack can be mounted in the setting of Koblitz curves
nonetheless. More precisely, we show that the top (or bottom) bits of the τ -adic expansion of the
nonce can also be used to recover the signing key. The problem it reduces to, can be seen as a
higher-dimensional generalization of HNP that can also be solved using lattice reduction.

4.1 ECDSA over prime fields

From previous section, we have shown that we are able to visualize the inner structure of NAF
representation of the secret nonce k involved in the computation of an ECDSA signature. Formally
if k =

∑
i αi2

i is such a NAF representation of the secret k, then one can determine the positions i
for which the NAF digit αi is valid, otherwise said, is not zero. Although the values of the digits αi
are unknown, this gives us a large amount of information. In particular, it is sufficient to exploit the
known position of the last digit: let ` be the position of the last digit in the NAF representation of
k, then we know that the last ` digits in the binary representation of k, are a one, followed by d− 1
zeros.

Knowing the bits of the nonces, we can reduce the problem of recovering the secret key x to
solving the HNP, which can be described as follows: given (ti, ui) pairs of integers such that

|xti − ui|q ≤ q/2`+1,
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where ` denotes the number of bits we recover, x denotes the hidden number we are looking for and
| · |q denotes the distance to qZ, i.e. |z|q = mina∈Z |z − aq|. Such problem can be cast as a Closest
Vector Problem (CVP) in a lattice and the LLL algorithm can be used to solve it in practice. We
refer to appendix D and [35] for details. The main advantage of this technique is that the number
of signatures required is usually very small, but it cannot be used when the number of known bits is
too small. Indeed, in the case of 2 known bits for a 160-bit modulus, Liu and Nguyen used BKZ
2.0 to solve such lattice as the dimension becomes quite high for lattice algorithms [28]. Following
the steps used in [23,34,8] we are able to perform the recovery of the signer’s ECDSA secret key.
In our case we chose the NIST P-256 elliptic curve. Using the method described in [8], we choose
to solve the HNP problem using the Shortest Vector Problem (SVP) on some lattice. Therefore
by building an adequate matrix and reducing it using the BKZ algorithm, we find a vector, one of
whose coordinates reveals the secret key.

Experimental results. To estimate how many signatures we need to process the attack with a
high probability of success, we first performed simulated signatures and solved the problem with
a Sage (version 6.2) BKZ algorithm implementation. We want to use as much information as we
can and we use the technique developed in [8] to this end. Usually, the lattice takes only signatures
that have at least ` bits and remove the other ones. Here, we want to extract as much information
as it is possible and so we put on the diagonal the number of bits we recover. As in [8], we made
experiments by varying the minimum value z of the parameter ` of the signatures selected to join
the computation of the attack. And then we discovered as a rule of thumb, that for a 256-bit secret
key, and a probability of success being nearly 100%, the number of selected signatures should be
above 200

z , and therefore statistically, the total number of signatures to be processed should be
above 200

z 2z. As the complexity of the attack increases with the dimension of the matrix, we found
that the best compromise was z = 2. Therefore, we processed approximately 500 signatures from
which we selected only those for which ` was 2 or above, and they were 115 of such. As expected,
the SVP attack gave us the secret key in less than five minutes on a common desktop.

4.2 New attack on Koblitz ECDSA

Consider a Koblitz curve E with a subgroup G of large prime order q, and let τ be the eigenvalue
of the Frobenius endomorphism of E acting on G, seen as a quadratic integer (depending on E,

we have τ = ±1+
√
−7

2 ). Suppose that we are given t ECDSA signatures (ri, si) in G, with random
nonces ki for which the top coefficients of some (signed) τ -adic expansion is known (the attack
would work similarly for the bottom coefficients). Without loss of generality (up to the obvious
affine transformation), we may assume that these known bits are all zero, so that the ki’s can be
written in the form:

ki = ki,0 + ki,1τ + · · ·+ ki,`−1τ
`−1 ∈ Z[τ ]

where the coefficients ki,j belong to {−1, 0, 1}, and ` is some fixed integer length (the difference
between the maximum length of the τ -adic expansions and the number of known zero nonce bits).
Moreover, we can decompose ki in the form ki = ui + viτ where ui, vi are the rational integers given
by vi = (ki − ki)/

√
−7 and ui = ki − viτ . Due to the fact that |τ | =

√
2 (which is crucial for our

attack), it is easy to see that both ui and vi satisfy a bound of the form O(
√

2
`
), and in particular,

there exists a constant c > 0 such that u2i + v2i ≤ c · 2` for all ki. A discussion of how to estimate
the constant c in cases of interest is provided in appendix G.
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Now for each signature (ri, si), if we denote by hi the hash value of the corresponding message,
the ECDSA verification equation ensures that kisi ≡ hi + xri mod q, which we can rewrite as

x ≡ Aiui + τAivi +Bi mod q (3)

in terms of the known constants Ai = si/hi and Bi = −ri/hi in Z/qZ. Note that, in view of the
bound on u2i + v2i , (ui, vi) is contained in a disc of radius

√
c · 2` centered at the origin, and the

right-hand side of (3) can thus take
(
1 + o(1)

)
πc · 2` distinct values at most. As a result, as soon as

` < log2(q/πc), each such equation should reveal some information about x, and we should be able
to recover x when t is large enough, much in the same way as in the HNP setting.

We show how this can be done with lattice reduction (at least heuristically, although in
principle the rigorous approach of Nguyen–Shparlinski can be extended to this setting as well).
Let the vector u = (u1, . . . , ut, v1, . . . , vt, w) ∈ Z2t+1, where w is chosen as b

√
c · 2`−1c. Since

‖u‖ ≤
√
t · c · 2` + w2 ≤

√
c(t+ 1/2) · 2`/2, its norm is bounded. Equation (3) can be rewritten in

vector form as:

x ≡ 〈Ai,u〉 mod q

where Ai = (0, . . . , 0, Ai, 0, . . . , 0, τAi, 0, . . . , 0, Bi/w) modq ∈ Z2t+1 has three nonzero components
in positions i, t + i and 2t + 1. In particular, u is orthogonal modulo q to each of the vectors
A1 −A2,A2 −A3, . . . ,At−1 −At and it is short. We can therefore hope to recover it using lattice
reduction.

More precisely, consider the lattice L ⊂ Z2t+1 of vectors that are orthogonal modulo q to each
Ai −Ai+1, i = 1, . . . , t − 1, and whose last component is a multiple of w. L is the kernel of the
obvious linear map Z2t+1 → Z/wZ × (Z/qZ)t−1, and that map is surjective with overwhelming
probability (since the vectors Ai themselves are linearly independent modulo q with overwhelming
probability on the choice of the randomness in signature generation). Therefore, L is full rank and
its volume is given by vol(L) = #(Z2t+1/L) = #Z/wZ× (Z/qZ)t−1 = wqt−1. If the vector u ∈ L is
significantly shorter than the shortest vector length predicted by the Gaussian heuristic (namely√

2t+1
2πe · vol(L)1/(2t+1)), we should be able to recover u as the shortest vector in L (up to sign) using

lattice reduction. This condition can be written as:

√
c(t+ 1/2) · 2`/2 �

√
2t+ 1

2πe
·
(
wqt−1

)1/(2t+1)

or equivalently:

` . log2(q/cπe)−
1

t
· log2

(
q
√

2πe
)

which means that recovery is possible for t large enough when ` . log2(q/cπe) (which is quite close
to the “information theoretic” bound mentioned above!), and in that case, the condition on t for
recovery becomes:

t &
log2

(
q
√

2πe
)

log2(q/cπe)− `
. (4)

We find that this condition is well-verified in practice, and once u is recovered, it is clearly
straightforward to find the signing key x.

Finally, we mention that, to obtain a short basis of L in practice, we use standard orthogonal
lattice techniques: we apply lattice reduction to the lattice generated by the rows of the matrix of
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dimension 3t written by blocks as:
κq 0 0

. . .
...

0 κq 0
κ(A1 −A2) · · · κ(At−1 −At) I

W

where the Ai’s are column vectors, I is the identity matrix of dimension 2t+ 1, κ is a suitably large
constant, and W is the diagonal matrix diag(1, . . . , 1, w) to account for the divisiblity condition on
the last coefficient of vectors in L.

Experimental results. We implemented our attack in Sage using BKZ-25 lattice reduction, and
tested it against the NIST K-163 Koblitz curve, which has a group order of 162 bits, with random
unsigned Koblitz expansions. Experimental results are collected in Table 1. As can be seen from
that table, the condition on the number t of required signatures is very consistent with (4) with
c ≈ 0.30 (as discussed in appendix G). It is easy to attack up to 6 bits of bias.

Bits of bias (log2 q − `) 9 8 7 6

Predicted t (Eq. (4)) 22 25 30 36

Experimental t 21 25 31 39
Lattice dimension 63 75 93 117
CPU time (s) 2.4 4.7 17 102

Table 1. Implementation of our new attack against Koblitz curve K-163, using Sage’s BKZ-25, run on single core of a
Core i5-3570 CPU at 3.4 GHz.

Practical SCA. We show on fig. 7 (a) and 7 (b) that the Frobenius operation is distinguishable
on Qualcomm MSM 7225. On fig. 7 (a), there are five Frobenius in the first succession of operations
and four in the two others. Comparatively, there is one addition of points between each succession of
Frobenius. The ratio of timing execution between addition and doubling is worse on prime field (see
fig. 4 (a)). The Frobenius on Koblitz curves is implemented with pre-computed tables in Bouncy
Castle 1.50. Thus, the leakage observed is different from the arithmetic implementations observed
on prime field. The twofold repetition of pattern leakages in each Frobenius method is linked to the
affine coordinate representation of elliptic curve points (algorithm 5).

5 Use Case: Bitcoin Wallet

We present a significant use case, namely the Bitcoin crypto-currency [32,10], where our cryptanalysis
is of practical interest. A Bitcoin address is associated with an ECDSA key pair over the prime field
elliptic curve Secp256k15 The knowledge of the private key allows to spend the money stored at that
address, and in the case of Bitcoin clients on Android smartphones, that key may be recoverable
using an attack of the form considered in this paper. Indeed, Android wallet apps are typically
lightweight clients using a so-called Simplified Payment Verification (SPV) mode, and usually based
on bitcoinj, a Java implementation of that lightweight mode. The core cryptography of the library

5 The proceedings version of this paper incorrectly describes that curve as a Koblitz curve, which it is not. Our prime
field attack applies directly nonetheless, or with a minor tweak in the case of implementations using the special
GLV endomorphism that that curve is endowed with. See also [4].
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Fig. 7. (a) Succession of Frobenius and one addition between them (STFT, window length = 16000pts, Hamming
window, Qualcomm MSM 7225 ) – (b) Zoom on a succession of four Frobenius operations (STFT, window length =
16000pts, Hamming window, Qualcomm MSM 7225 )

relies on Bouncy Castle. Thus, the practical leakages observed in this paper may raise concerns for
many Bitcoin users.

A concrete attack scenario could involve a malicious NFC reader at a shop where the Victim goes
a few dozen times and pays with Bitcoin stored in its smartphone. This reader could improve our
lab synchronization through legitimate contactless channel. In addition, the reader would contain a
hidden EM probe, thus monitoring a signature each time the Victim comes to the shop. Such an
attack scenario is still theoretical but the difficulty to catch the Attacker after theft evidence may
motivate malevolent actors. Therefore, in order for crypto-currencies to become a sound technology
for smartphone payment, we recommend that their implementations should integrate side-channel
countermeasures as proposed e.g. in appendix H.
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A Related work

Side-channel attacks on more powerful devices than smartcards have been investigated since 2005
and the introductory work published by Gebotys et al. on a PDA [15]. In 2011, a DPA attack was
lead against AES on Java EE mobile phone [1]. In 2012, Kenworthy and Rohatgi demonstrated
in [24] that side-channel attack on smartphone is a real threat: they show that using a single RSA,
ECC EM trace, it is possible to recover the secret key. They also show that the pattern of AES is
easily seen, but they do not propose an attack on AES. A similar bachelor work has been performed
by Zenger et al. in [42] in case of the RSA cryptosystem.

In 2014, three major papers have been published about side-channel vulnerabilities on PCs. The
first one [41] studies the propagation of information from PCs through electromagnetic emanations.
The work evaluates the propagation of periodic processing through covert channels. The article does
not investigate the possibilities to lead a cryptanalysis. Nevertheless, the study of exponentiation
pseudo-periodicity under their experimental framework would be interesting. The two other pa-
pers [19,18] attack double-and-add always RSAs. Their cryptanalyses are based on chosen ciphertexts
decyphering, an adaptive one [19,18] (as many numbers of ciphertexts needed as the number of
bits of the secret), and a non-adaptive one [18] (only one ciphertext needed). Both of the attacks
exploit a performance trick: a high number of zeros in the data being squared leads to a decrease of
the number of operations computed. This trend can be discernable through diverse side-channels:
acoustic [19], potential of PC chassis [18], IO ground [18], EM emanations [18], supply power [18].
The authors improved their attack to sliding-window and fixed-window exponentiations [16]: using
chosen ciphertexts, special intermediate values make frequency leakages vary over time, revealing
the index of pre-computed points accessed. The attack succeeds with as few as 8 decryptions, but
in comparison, our attack does not rely on chosen inputs. In [33], Nakano et al. describe a Simple
Electromagnetic Emanation Analysis on a smartphone in order to demonstrate their ability to
recover the secret keys from a single execution trace using an information signal processing technique
combining time and frequency analysis.

In 2015, the DPA feasibility against AES running on giga-hertz CPU was investigated. In [30],
Longo et al. target sequential large tables (OpenSSL AES in the ARM ISA) and SIMD (in the NEON
ISA) software implementations and a cryptographic co-processor, all of the three implementations
running on a 1GHz ARM Cortex-A9 processor. Their work highlights the need for good leakage
detection tools. Balasch et al. [7] investigate a bitsliced implementation of the AES and succeed their
attack using clear leakages. In both [30] and [7], the authors study EM radiations from capacitors
that partly handle the power supply of the SOC. [7] accurately calls the measuring method contact-
less power measurement. In fact, due to the macroscopic size of our probe (a diameter of a few
millimeters), and leakages usually sharpen at some edges of the SOC, we think that the radiations
we measure are in fact radiated from power circuitry inside the SOC.
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B Android Smartphone Architecture

All the experiments have been done on smartphones running the Android system upon ARM
processors.

ARM processors. They are predominant in the smartphone market. It is mainly due to their power
consumption efficiency. They are built upon a RISC architecture and their memory management is
a register-register one.

Two processors have been investigated, both designed by Qualcomm. The first one is a Qualcomm
MSM 8225, designed upon an ARM Cortex-A5 architecture with the ARMv7 ISA. It is a dual-core
processor, developed under a 45nm technology, and its frequency goes up to 1.2GHz. The second
one is a Qualcomm MSM 7225. It is based on an ARM11 architecture (ARMv6 instruction set),
built upon a 65nm process. Its maximal frequency is 511MHz. Both of the CPUs studied in the
article are 32-bit ones.

ARM processors implement multiple instruction sets. The main one is the ARM instruction
set, which instructions are 32-bit long. To improve density of code in embedded devices, Thumb,
a 16-bit instruction set, was introduced in 1994. It provides a subset of ARM ISA for common
use instructions. Thumb-2, an extension of Thumb with 32-bit instuctions, was developed to allow
almost all of code to be developed in Thumb mode. Actually, ARM and Thumb instruction sets
do not provide independent implementations for similar instructions. In decoding stage, Thumb
instructions are mapped to equivalent ARM instructions. The presence of these two instruction sets
is of interest in our paper, since as for as we know, the leakages observed happen when executing
either in ARM mode or in Thumb mode.

Android OS. Android is the most popular operating system in the smartphone field, with a market
share of about 80% in 2015.

Linux kernel

Native
libs

Android
Core
libs

Native
proc

App

dex
bytecode

DVM
native

bin

System
services

Fig. 8. Android Architecture

An overview of Android architecture is represented in fig 8. The OS is built upon a Linux kernel,
even if it cannot be considered as a Linux distribution, in part because of its application management.
Applications are run in an applicative virtual machine, the Dalvik VM. App creation is done by
forking a native process called Zygote. This allows efficient startup and memory optimizations, in
particular because of the Linux kernel copy-on-write (COW) mechanism. Memory is shared between
original and new processes until the latter one writes on it, leading to dynamic content copy.

Dalvik VM bytecode is obtained from the JAVA language. However, it is different from the one
compiled for the Java Virtual Machine (JVM), to meet embedded hardware constraints. In fact,
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for a given Java code, the memory footprint of the Dalvik bytecode is generally smaller than the
JVM one. Nevertheless, its computing efficiency is often worse, leading to improvements over time
from Google. Initially being an interpreter, Dalvik evolved to implement a Just-in-time compiler
(JIT). The parts of the code which are foreseen to be executed many times are compiled at run-time.
There is a loss of computing resources during this dynamic compilation, but execution from native
code then involves better performances. In the paper, we investigate implementations running on
Dalvik VM either with JIT or without it. For efficiency reasons, some parts of the application can
be developed in C language. They are natively compiled at development time and linked through
the Java Native Interface (JNI) API.

Cryptographic development is identical for Dalvik VM and JVM. The Java standard provides
an API, allowing cryptographic use independently of primitive implementations. It makes software
compliant to any library conforming with the API, and thus enables the use of different implemen-
tations. On the cryptographic developers side, a library compliant to the API is easily usable by
any Java developer. It can also be upgraded with backward compatibility restrictions.

On Android, the standard cryptographic provider is Bouncy Castle. The version evaluated in
the paper is 1.50.

C Bouncy Castle version 1.50

Prime field EC implementations Arithmetic operations over prime field GF (p) are the (modular)
addition, subtraction, multiplication and inversion of elements. Using these basic field operations,
different algorithms exist to add and double elliptic curve points. They depend on optimization
trade-off between memory, timing execution or processing power.

Modified Jacobian coordinates and Operations. The point P = (x, y) defined in affine
coordiantes, has Jacobian coordiantes (X,Y, Z), where x = X/Z and y = Y/Z and Z 6= 0. All the
Jacobian coordinates defined as (r2X, r3Y, rZ2) with r ∈ K∗ represent the same point (X : Y : Z),
named a representative point [21], and they define equivalent classes. Doubling and addition of
points defined with Jacobian coordinates can be computed without modular inversion.

In Bouncy Castle 1.50, modified Jacobian coordinates are used as proposed in [13]. The quadruple
(X,Y, Z, aZ4) represents the affine point (X/Z2, Y/Z3). Doubling is implemented with 4 multiplica-
tions and 5 squares (Algorithm 1), and addition with 13 multiplications and 6 squares (Algorithm 2).

Scalar multiplication implementations. The most vulnerable part of ECDSA is scalar multi-
plication. Several algorithms exist to compute the point Q = k.P . We detail two of them.

Left-to-right double and add is common. Each bit of the scalar k is processed successively as
shown in pseudo-code algorithm 3. Distinguishing double and add operations through side-channel
allows to find the secret scalar, consequently breaking ECDSA in one signature.

Window non-adjacent form (window NAF or wNAF ) is the standard implementation in Bouncy
Castle 1.50. It allows better performance than left-to-right double and add algorithm. Each addition
is performed over a multi-bits subset of the scalar rather than over a unique bit, reducing the
number of field operations. The binary representation of the scalar is transformed into a wNAF
representation, which is a succession of values in the set S = {0,±1,±3, . . . ,±(2w−1 − 1)}.
Definition 1. A non-adjacent form (NAF) of a positive integer k is an expression k =

∑n−1
i=0 ki2

i

where ki ∈ {−1, 0, 1}, kn−1 6= 0, and no two consecutive digits ki are nonzero. The length of the
NAF is n. The NAF of an integer k is denoted NAF(k) or (kn−1, . . . , k0)NAF.
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Algorithm 1 Doubling implementation in basic operations over Modified Jacobian coordinates in
Bouncy Castle library
Input: Point P1 = (X1, Y1, Z1,W1) and boolean W
Output: Point P3 = (X3, Y3, Z3,W3)
1: function ModifiedJacobianDoubling(W,P1)
2: X1sq ← X1 ∗X1

3: M ← ((X1sq +X1sq) +X1sq) +W1

4: Y1sq ← Y1 ∗ Y1

5: T ← Y1sq ∗ Y1sq
6: temp← X1 + Y1sq
7: temp1 ← ((temp ∗ temp)−X1sq)− T
8: S ← temp1 + temp1
9: X3 ← (M ∗M)− (S + S)

10: temp2 ← T + T
11: temp3 ← temp2 + temp2
12: 8T ← temp3 + temp3
13: Y3 ← (M ∗ (S −X3))− 8T
14: if W = true then
15: temp4 ← 8T ∗W1

16: W3 ← temp4 + temp4
17: end if
18: if Z1.bitLen = 1 then
19: temp5 ← Y1

20: else
21: temp5 ← Y1 ∗ Z1

22: end if
23: Z3 ← temp5 + temp5
24: return ECPoint.Fp(X3, Y3, Z3,W3)
25: end function

Koblitz Curve implementations τ-adic expansion and windowing methods. One trick that
speeds up scalar multiplication is the use of the Frobenius morphism denoted by φ2, which sends
each point (x1, y1) to (x21, y

2
1) and ∞ to itself. Not surprisingly, φ2 is a morphism over the curve. Its

characteristic polynomial is X2 − µX + 2, where µ = (−1)1−a. Let τ be one of the two conjugate
roots of this polynomial. Using the relation 2 = µτ − τ2, every integer η can be written as its τ -adic
expansion: η =

∑l−1
i=0 riτ

i where ri ∈ {0, 1}. In analogy with binary expansion, one can also define

τ -adic non adjacent form: η =
∑l−1

i=0 riτ
i with the extra conditions ri ∈ {0,±1} and riri+1 = 0 for

all i. It is also possible to generalize windowing methods to τ -adic expansion. For w a parameter
greater than 1, the width-w τ -adic expansion in non-adjacent form is η =

∑l−1
i=0 riτ

i where
– each ri is 0 or ±αu where αu ≡ u( mod τw) for some odd u ∈ [1, 2w−1 − 1]
– rl−1 6= 0
– among any w consecutive coefficients, at most one is nonzero.

In a straightforward manner we get from the τ -adic expansion of the scalar, the following
multiplication algorithm.

D Lattice-based attack on ECDSA

Using the ` least significant bits of k (the attack also works with the most significant bits), we
can write k = 2`(k � `) + lsb`(k) = 2`b + lsb`(k) for some integer b ≥ 0. We then get from
xr = sk − h mod q:

xr · 2−`s−1 = b− h · 2−`s−1 + lsb`(k) · 2−` mod q.
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Algorithm 2 Addition implementation in basic operations over Modfied Jacobian coordinates in
Bouncy Castle library (simplified to useful conditional blocks)

Input: Points P1 = (X1, Y1, Z1,W1) and P2 = (X2, Y2, Z2,W2)
Output: Point P3 = (X3, Y3, Z3,W3)
1: function ModifiedJacobianAdd(P1, P2)
2: if Z1.bitLen 6= 1 then
3: Z1sq ← Z1 ∗ Z1

4: U2 ← Z1sq ∗X2

5: Z1cubed← Z1sq ∗ Z1

6: S2 ← Z1cubed ∗ Y2

7: end if
8: if Z2.bitLen 6= 1 then
9: Z2sq ← Z2 ∗ Z2

10: U1 ← Z2sq ∗X1

11: Z2cu← Z2sq ∗ Z2

12: S1 ← Z2cu ∗ Y1

13: end if
14: H ← U1 − U2

15: R← S1 − S2

16: Hsq ← H ∗H
17: G← Hsq ∗H
18: V ← Hsq ∗ U1
19: X3 ← ((R ∗R) +G)− (V + V )
20: Y3 ← ((V −X3) ∗R)− (S1 ∗G)
21: Z3 ← H
22: if Z1.bitLen 6= 1 then
23: Z3 ← Z3 ∗ Z1

24: end if
25: if Z2.bitLen 6= 1 then
26: Z3 ← Z3 ∗ Z2

27: end if
28: W ← Z3sq ∗ Z3sq
29: a4 ← −(curve.A)
30: a4neg ← −a4
31: if a4neg.bitLen < a4.bitLen then
32: W ← −(W ∗ a4neg)
33: else
34: W ←W ∗ a4
35: end if

return ECPoint.Fp (X3, Y3, Z3,W3)
36: end function

Algorithm 3 Left-to-Right double and add wNAF algorithm
Input: scalar k in wNAF k0, . . . , kn and precomputed points {P,±[3]P,±[5]P, . . . ,±[2w − 1]P}
Output: Point Q = kP
1: function ScalarMultiplication(k, P )
2: Q =∞
3: for i from n downto 0 do
4: Q = 2 ·Q
5: if ki 6= 0 then Q = Q+ [ki]P
6: end if
7: end for
8: return Q
9: end function
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Algorithm 4 Left-to-Right double and add τ -wNAF
Input: scalar k in τ -wNAF k0, . . . , kn and precomputed points {P,±[α3]P,±[α5]P, . . . ,±[α2w−1]P}
Output: Point Q = kP
1: function ScalarMultiplication(k, P )
2: Q =∞
3: for i from n downto 0 do
4: Q = φ2(Q)
5: if ki 6= 0 then Q = Q+ [ki]P
6: end if
7: end for
8: return Q
9: end function

Algorithm 5 Point doubling implementation in basic operations over affine coordinates in Bouncy
Castle 1.50 library
Input: Points P1 = (X1, Y1)
Output: Point P3 = (X3, Y3)
1: function Tau(P1)
2: X3 = X2

1

3: Y3 = Y 2
1

4: return P3

5: end function

Algorithm 6 Point Addition implementation in basic operations over affine coordinates in Bouncy
Castle 1.50 library
Input: Points P1 = (X1, Y1)
1: P2 = (X2, Y2)
Output: Point P3 = (X3, Y3)
2: function Tau(P1, P2)
3: if X1 == X2 then
4: if Y1 == Y2 then
5: return P1.twice()
6: end if
7: return infinity
8: end if
9: sumX = X1 +X2

10: L =
(
Y1+Y2
sumX

)
11: X3 = L2 + L+ sumX + curveA
12: Y3 = L ∗ (X1 +X3) +X3 + Y1

13: return P3

14: end function

Now let t and u two values which can be computed from known or retrieved information, such as:

t = r2−`s−1 mod q

and

u = −h · 2−`s−1 + lsb`(k)2−` mod q.

The inequality b < q/2` can be expressed in terms of t and u as:

0 ≤ xt− u mod q < q/2`.
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Therefore, if we denote by | · |q the distance to Z/qZ, i.e. |z|q = mina∈Z |z − aq|, we have:

|xt− u− q/2`+1|q ≤ q/2`+1,

|xt− v/2`+1|q ≤ q/2`+1,

where v is the integer 2`+1u+ q. Given a number of faulty signatures (ri, si) of various messages,
say d of them, the same method yields pairs of integers (ti, vi) such that

|xti − vi/2`+1|q ≤ q/2`+1. (5)

The goal is to recover x from this data. The problem is very similar to the hidden number problem
considered by Boneh and Venkatesan in [9], and is approached by transforming it into a lattice
closest vector problem.

More precisely, consider the (d+ 1)-dimensional lattice L spanned by the rows of the following
matrix: 

2`+1q 0 · · · 0 0

0 2`+1q
. . .

...
...

...
. . .

. . . 0
...

0 · · · 0 2`+1q 0
2`+1t1 · · · · · · 2`+1td 1


Inequality (5) implies the existence of an integer ci such that:

|2`+1xti − vi − 2`+1ciq| ≤ q. (6)

Now note that the row vector, called hidden vector,

c = (2`+1xt1 + 2`+1c1q, · · · , 2`+1xtd + 2`+1cdq, x)

belongs to L and c is very close to the row vector v = (v1, · · · , vd, 0). Indeed, by (6), the distance
from c to v is bounded as:

‖v − c‖ ≤ q
√
d+ 1.

We thus have a CVP to solve. In practice, we use an embedding technique to reduce CVP to SVP.
This technique consists in computing the (d+ 2)-dimensional lattice L′ spanned by the rows of the
matrix (

L 0
v 1

)
The row vector (v − c, 1) is short, belongs to L′ and we hope this is the shortest vector of L′. This
assumption implies a condition on the required number of signatures depending on the parameter `
and the modulus. An estimate which makes it possible to recover the private key is:

d &
n

`− log2
√
πe/2

.

The above estimate is heuristic, but it is possible to give parameters for which attacks of this kind
can be proved rigorously [34].
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E Android debugger analysis

The links between the leakage patterns and the source code are further established with the analysis
of a part of the scalar multiplication in the Android debugger DDMS. Selecting the arithmetic
multiplication, the occurence of this function has the same regularity as the ones observed on the
measurements 9.

Fig. 9. Debugger trace during a subset of scalar multiplication: The processing of modular multiplication is underlined
on the timeline.

F Measurement setup

Acquisition bench. The experimental setup, depicted in figure 10, is built upon three main devices:
a computer to manage the acquisition process; an oscilloscope to convert analog signals into digital
ones; the smartphone running the cryptographic algorithm. The computer and the smartphone
communicate cryptographic data (messages, signatures) and a part of the triggering signal via USB.
An electrical probe, plugged on the oscilloscope, measures this triggering signal on wire D+. The
oscilloscope measures the magnetic field radiated by the smartphone processor via a magnetic probe,
which is a loop of wire. This signal, after being digitized, is sent to the computer through a local
network, where it can be observed and processed.

Communication with the smartphone. The communication is based over a client-server architecture,
the smartphone being the server: see figure 11. The communication protocol is TCP/IP. Android
Debug Bridge (ADB) links one of the PC ports to one of the smartphone ports. This action is called
ADB forwarding. The messages arriving on one of the two ports, are sent to the other one through
USB channel. Three main pieces of software are necessary to establish a communication between a
PC software (client) and an Android device or an emulator application (server): the ADB client,
the ADB server and the ADB Deamon (ADBD).

ADB daemon runs on the Android device. It catches and interprets the messages arriving on
the USB port, and makes the necessary operations in consequence. In our case, it receives messages
coming from the PC TCP port (linked via ADB), and redirects them to the TCP server port
(linked via ADB). On the computer side, ADB server manages the USB communication with the
smartphone (TCP ports if the device is emulated on the computer). To establish a link with the
ADB server, an ADB client instance must be created. It is linked to the ADB server through TCP
port 5037 on localhost. ADB server enables the binding of ADB server to a local TCP socket. Then
the client connects to that socket and commands are sent to the smartphone in a shell command
style.

At the physical level, the bits packets are transmitted through the Non-return to Zero Inverted
(NRZI) protocol. The state of the data signal changes when a bit at 0 is transmitted and remains at
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Fig. 10. Measurement bench architecture - Percipio is the name of the control software that we developed for our
experiments.

PC Smartphone

PC
software

ADB
client

ADB
server

TCP port
IP=localhost
port=pcPort

TCP port
IP=localhost
port=5037

USB USB

ADB
Deamon

TCP
socket
port

=phonePort

smartphone
software

Fig. 11. USB communication architecture between a smartphone and a computer

the same physical state when the value of the bit transmitted is 1. A bit stuffing at 0 it added to
the signal when six successive bits at 1 are sent in a packet. The physical signal is the differential
voltage of the wires D+ and D- to improve analog quality.

Cryptographic texts are transmitted via this communication architecture. A part of the resyn-
chronization process is also done through the transmission of a particular pattern, which is detected
by measuring the data voltage.

G Estimating the Koblitz constant

In this section, we consider signed τ -adic expansions k = k0+k1τ+ · · ·+k`−1τ `−1 = u+vτ ∈ Z[τ ] for
some fixed ` (ki ∈ {−1, 0, 1}), and describe how to evaluate the constant c such that u2 + v2 ≤ c · 2`
for all k.

Regard k as a complex number k = ρ · eiθ. Since τ = µ+
√
−7

2 , the real and imaginary part of k
can be written as:

ρ cos θ = u+
µ

2
v and ρ sin θ =

√
7

2
v,
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hence:

v = ρ · 2√
7

sin θ

u = ρ ·
(

cos θ − µ√
7

sin θ
)

and if we introduce the angle φ such that cosφ =
√

7/8, sinφ = µ/
√

8, we obtain:

u = ρ ·
√

8

7
cos(θ + φ).

Thus, we have:

u2 + v2

ρ2
=

4

7
sin2 θ +

8

7
cos2(θ + φ)

=
6

7
− 2

7
cos(2θ) +

4

7
cos(2θ + 2φ)

=
6

7
+

2

7
<
(
e2iθ · (2e2iφ − 1)

)
.

On the other hand:∣∣2e2iφ − 1
∣∣2 = (2e2iφ − 1)(2e−2iφ − 1) =

5− 4 cos(2φ) = 5− 8 cos2 φ+ 4 = 2.

As a result:
6− 2

√
2

7
ρ2 ≤ u2 + v2 ≤ 6 + 2

√
2

7
ρ2. (7)

Therefore, to obtain an upper bound for u2+v2, it suffices to obtain one for ρ (although the resulting
estimate might not be completely tight). Now we have:

ρ =
∣∣k0 + k1τ + · · ·+ k`−1τ

`−1∣∣
= |τ |`−1 ·

∣∣k`−1 + k`−2τ
−1 + · · ·+ k0τ

1−`∣∣
≤ 2(`−1)/2 · |zmax|

where zmax ∈ C is an element of maximum absolute value in the compact set Z = {
∑∞

i=0 ai/τ
i | (ai) ∈

[−1, 1]N}. A convexity argument shows that the coefficients ai for zmax are all ±1, and that zmax is
unique up to sign, which can be fixed by imposing a0 = 1. That unique value is then easily found
by the obvious greedy algorithm:

zmax =

{
1− τ−1 − τ−2 + τ−3 − · · · if µ = −1

1 + τ−1 − τ−2 − τ−3 − · · · if µ = 1

and satisfies |zmax| = 2.4695 . . . in both cases. As a result:

u2 + v2 ≤ 6 + 2
√

2

7
· 2`−1|zmax|2
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and we can thus take:

c =
3 +
√

2

7
|zmax|2 ≤ 3.85. (8)

Using that estimate, it follows the attack of Section 4.2 against ECDSA on Koblitz curves can be
applied when the bias exceeds log2(3.85πe) ≈ 5.04 bits, compared to log2

√
πe/2 ≈ 1.05 for the

usual prime field attack. It would thus seem to require about 4 bits of extra bias to get the same
lattice dimension.

In practice, however, that conclusion is overly pessimistic. Indeed, the bound (8) itself is already
pessimistic for any given `, due to the fact that the worst case value for u2 + v2 will usually not be
close to the upper bound of (7) (for example, the argument of τ `−1 · zmax will not be such that it
maximizes (u2 + v2)/ρ2). But more importantly, what really matters for the attack of Section 4.2
is the norm of vector u, which depends not on an upper bound on u2 + v2, but on the average
of u2i + v2i over a relatively large number t of ki’s. By the central limit theorem, that average is
roughly normally distributed, with mean the expected value of u2 + v2 over the possible choices of
k. The expected value will then depend on the precise way k is generated, so it is best evaluated
using simulations. We carried out such simulations for values of ` between 100 and 300, and for
k with either uniform coefficients in {−1, 0, 1}, uniform coefficients in {0, 1} or truncated TNAFs,
and found that the average of (u2 + v2)/2` almost always fell between 0.54 and 0.59 in the first case,
and between 0.28 and 0.32 in the latter two cases. Therefore, taking:

c ≈

{
0.57 for random signed expansions

0.30 for random bit expansions/TNAFs

should lead to better lattice dimension estimates for our attack, and this is well verified in practice.
In particular, the attack in fact requires a bias roughly exceeding log2(0.57πe) ≈ 2.3 bits in the
former case, and log2(0.30πe) ≈ 1.4 in the latter two.

H Countermeasures

Since our attack is a SEMA-based (Simple Electro-Magnetic Analysis) one, it is possible to avoid
the leakage of this information using many algorithms that have been proposed for the smart card
industry. For instance, it is possible to use the well-known double-and-add always algorithm. An
addition is performed whatever the value of the bit and therefore the scalar multiplication would
show a regular succession of patterns, preventing an attacker from finding the values of the bits.
Other solutions are possible. The countermeasure using atomicity patterns is one of them and was
proposed by Chevallier-Mames, Ciet and Joye in 2004 [11]. It consists in writing the different elliptic
curve operations with the same pattern of suboperations. Inspired from this paper [11], different
formulas that are more efficient, or more suitable for particular scalar multiplications, have been
proposed [29,20,39].

The previous countermeasures are applicable only for the prime curve. If they are used for the
Koblitz curve, then the benefits of using Frobenius maps are lost and it would be better to use
general binary curves combined with the Montgomery’s ladder. Some countermeasures for Koblitz
curves were given by Hasan [22]. The use of zero-free tau-adic expansions [37] would probably be
the best choice.

Another countermeasure that thwarts the side-channel vulnerability is the randomization of the
private exponent as described by Coron in [14]. A random scalar is chosen and added to the nonce
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in a way that the multiplication of the base point with the new scalar gives the same resulting point
as would have been obtained with the original nonce. As the succession of EC operations is different,
it prevents an attacker from finding a part of the nonce, and so to lead a lattice attack. A good
choice for the size of the scalar is 32 bits. The consequence is the extension of the nonce by this size.

Finally, Bouncy Castle 1.51 decides to implement fixed-base comb method as defined in section
9.3 of Cohen et al. [12]. This technique avoids to obtain consecutive bits at the most or least
significant bit positions and bypasses our attacks.
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