Paper 2016/212
Low Linear Complexity Estimates for Coordinate Sequences of Linear Recurrences of Maximal Period over Galois Ring
Vadim N. Tsypyschev
Abstract
In this work we provide low rank estimations for coordinate sequences of linear recurrent sequences (LRS) of maximal period (MP) over Galois ring $R=GR(p^n,r)$, $p\ge 5$, $r\ge2$, with numbers $s$ such that $s=kr+2$, $k\in \mathbb{N}_0$.
Note: This work follows up previous one available at IACR e-print Archive, 2015/1040
Metadata
- Available format(s)
- Category
- Secret-key cryptography
- Publication info
- Preprint. MINOR revision.
- Keywords
- linear recurrent sequencelinear complexityrank estimationspseudo-random sequences.
- Contact author(s)
- tsypyschev @ yandex ru
- History
- 2016-02-29: received
- Short URL
- https://ia.cr/2016/212
- License
-
CC BY
BibTeX
@misc{cryptoeprint:2016/212, author = {Vadim N. Tsypyschev}, title = {Low Linear Complexity Estimates for Coordinate Sequences of Linear Recurrences of Maximal Period over Galois Ring}, howpublished = {Cryptology {ePrint} Archive, Paper 2016/212}, year = {2016}, url = {https://eprint.iacr.org/2016/212} }