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ABSTRACT
Smart contracts are programs that execute autonomously
on blockchains. Their key envisioned uses (e.g. financial in-
struments) require them to consume data from outside the
blockchain (e.g. stock quotes). Trustworthy data feeds that
support a broad range of data requests will thus be critical
to smart contract ecosystems.

We present an authenticated data feed system called Town
Crier (TC). TC acts as a bridge between smart contracts and
existing web sites, which are already commonly trusted for
non-blockchain applications. It combines a blockchain front
end with a trusted hardware back end to scrape HTTPS-
enabled websites and serve source-authenticated data to re-
lying smart contracts.

TC also supports confidentiality. It enables private data
requests with encrypted parameters. Additionally, in a gen-
eralization that executes smart-contract logic within TC,
the system permits secure use of user credentials to scrape
access-controlled online data sources.

We describe TC’s design principles and architecture and
report on an implementation that uses Intel’s recently intro-
duced Software Guard Extensions (SGX) to furnish data to
the Ethereum smart contract system. We formally model TC
and define and prove its basic security properties in the Uni-
versal Composability (UC) framework. Our results include
definitions and techniques of general interest relating to re-
source consumption (Ethereum’s “gas” fee system) and TCB
minimization. We also report on experiments with three ex-
ample applications.

We plan to launch TC soon as an online public service.

1. INTRODUCTION
Smart contracts are computer programs that autonomously

execute the terms of a contract. For decades they have been
envisioned as a way to render legal agreements more precise,
pervasive, and efficiently executable. Szabo, who popular-
ized the term “smart contract” in a seminal 1994 essay [36],
gave as an example a smart contract that enforces car loan
payments. If the owner of the car fails to make a timely
payment, a smart contract could programmatically revoke
physical access and return control of the car to the bank.

Cryptocurrencies such as Bitcoin [30] provide key tech-
nical underpinnings for smart contracts: direct control of
money by programs and fair, automated code execution through
the decentralized consensus mechanisms underlying blockchains.
The recently launched Ethereum [14, 38] supports Turing-

complete code and thus fully expressive self-enforcing de-
centralized smart contracts—a big step toward the vision of
researchers and proponents. As Szabo’s example shows, how-
ever, the most compelling applications of smart contracts—
such as financial instruments—additionally require access to
data about real-world state and events.

Data feeds (also known as“oracles”) aim to meet this need.
Very simply, data feeds are contracts on the blockchain that
serve data requests by other contracts [14, 38]. A few data
feeds exist for Ethereum today that source data from trust-
worthy websites, but provide no assurance of correctly re-
laying such data beyond the reputation of their operators
(typically individuals or small entities). HTTPS connection
to a trustworthy website would seem to offer a solution, but
smart contracts lack network access, and HTTPS does not
digitally sign data for out-of-band verification. The lack of a
substantive ecosystem of trustworthy data feeds is frequently
cited as critical obstacle to the evolution of Ethereum and
decentralized smart contracts in general [21].

Town Crier. We introduce a system called Town Crier
(TC) that addresses this challenge by providing an authenti-
cated data feed (ADF) for smart contracts. TC acts as a high-
trust bridge between existing HTTPS-enabled data websites
and the Ethereum blockchain. It retrieves website data and
serves it to relying contracts on the blockchain as concise
pieces of data (e.g. stock quotes) called datagrams. TC uses
a novel combination of Software Guard Extensions (SGX),
Intel’s recently released trusted hardware capability, and a
smart-contract front end. It executes its core functionality
as a trusted piece of code in an SGX enclave, which pro-
tects against malicious processes and the OS and can attest
(prove) to a remote client that the client is interacting with
a legitimate, SGX-backed instance of the TC code.

The smart-contract front end of Town Crier responds to
requests by contracts on the blockchain with attestations of
the following form:

“Datagram X specified by parameters params is served
by an HTTPS-enabled website Y during a specified time
frame T .”

A relying contract can verify the correctness of X in such a
datagram assuming trust only in the security of SGX, the
(published) TC code, and the validity of source data in the
specified interval of time.

Another critical barrier to smart contract adoption is the
lack of confidentiality in today’s ecosystems; all blockchain
state is publicly visible, and existing data feeds publicly



expose requests. TC provides confidentiality by supporting
private datagram requests, in which the parameters are en-
crypted under a TC public key for ingestion in TC’s SGX
enclave and are therefore concealed on the blockchain. TC
also supports custom datagram requests, which securely ac-
cess the online resources of requesters (e.g. online accounts)
by ingesting encrypted user credentials, permitting TC to
securely retrieve access-controlled data.

We designed and implemented TC as a complete, highly
scalable, end-to-end system that offers formal security guar-
antees at the cryptographic protocol level. TC runs on real,
SGX-enabled host, as opposed to an emulator (e.g. [10,33]).
We plan to launch a version of TC as an open-source, pro-
duction service atop Ethereum, pending the near-future avail-
ability of the Intel Attestation Service (IAS), which is needed
to verify SGX attestations.

Technical challenges. Smart contracts execute in an ad-
versarial environment where parties can reap financial gains
by subverting the contracts or services on which they rely.
Formal security is thus vitally important. We adopt a rig-
orous approach to the design of Town Crier by modeling
it in the Universal Composability (UC) framework, build-
ing on [28, 35] to achieve an interesting formal model that
spans a blockchain and trusted hardware. We formally de-
fine and prove that TC achieves the basic property of data-
gram authenticity—informally that TC faithfully relays cur-
rent data from a target website. We additionally prove fair
expenditure for an honest requester, informally that the fee
paid by a user contract calling TC is at most a small amount
to cover the operating costs of the TC service, even if the
TC host is malicious.

Another contribution of our work is introducing and show-
ing how to achieve two key security properties: gas sustain-
ability and trusted computing base (TCB) code minimization
within a new TCB model created by TC’s combination of a
blockchain with SGX.

Because of the high resource costs of decentralized code
execution and risk of application-layer denial-of-service (DoS)
attacks, Ethereum includes an accounting resource called
gas to pay for execution costs. Informally, gas sustainability
means that an Ethereum service never runs out of gas, a gen-
eral and fundamental availability property. We give a formal
definition of gas sustainability applicable to any Ethereum
service, and prove that TC satisfies it.

We believe that the combination of blockchains with SGX
introduced in our work will prove to be a powerful and gen-
eral way to achieve confidentiality in smart contract sys-
tems and network them with off-chain systems. This new
security paradigm, however, introduces a hybridized TCB
that spans components with different trust models. We in-
troduce techniques for using such a hybridized TCB se-
curely while minimizing the TCB code size. In TC, we show
how to avoid constructing an authenticated channel from
the blockchain to the enclave—bloating the enclave with
an Ethereum client—by instead authenticating enclave out-
puts on the blockchain. We also show how to minimize on-
chain signature-verification code. These techniques are gen-
eral; they apply to any use of a similar hybridized TCB.

Other interesting smaller challenges arise in the design of
TC. One is deployment of TLS in an enclave. Enclaves lack
networking capabilities, so TLS code must be carefully parti-
tioned between the enclave and untrusted host environment.
Another is hedging in TC against the risk of compromise of

a website or single SGX instance, which we accomplish with
various modes of majority voting: among multiple websites
offering the same piece of data (e.g. stock price) or among
multiple SGX platforms.

Applications and performance. We believe that TC can
spur deployment of a rich spectrum of smart contracts that
are hard to realize in the existing Ethereum ecosystem. We
explore three examples that demonstrate TC’s capabilities:
(1) A financial derivative (cash-settled put option) that con-
sumes stock ticker data; (2) A flight insurance contract that
relies on private data requests about flight cancellations; and
(3) A contract for sale of virtual goods and online games (via
Steam Marketplace) for Ether, the Ethereum currency, using
custom data requests to access user accounts.

Our experiments with these three applications show that
TC is highly scalable. Running on just a single SGX host,
TC achieves throughputs of 15-65 tx/sec. TC is easily paral-
lelized across many hosts, as separate TC hosts can serve re-
quests with no interdependency. (For comparison, Ethereum
handles less than 1 tx/sec today and recent work [19] sug-
gests that Bitcoin can scale safely to no more 26 tx/sec
with reparametrization.) For these same applications, ex-
perimental response times for datagram requests range from
192-1309 ms—much less than an Ethereum block interval
(12 seconds on average). These results suggest that a few
SGX-enabled hosts can support TC data feed rates well be-
yond the global transaction rate of a modern decentralized
blockchain.

Contributions. We offer the following contributions:

• We introduce and report on an end-to-end implementa-
tion of Town Crier, an authenticated data feed system
that addresses critical barriers to the adoption of decen-
tralized smart contracts. TC combines a smart-contract
front end in Ethereum and an SGX-based trusted hard-
ware back end to: (1) Serve authenticated data to smart
contracts without a trusted service operator and (2) Sup-
port private and custom data requests, enabling encrypted
requests and secure use of access-controlled, off-chain
data sources. We plan to launch a version of TC soon
as an open-source service.

• We formally analyze the security of TC within the Uni-
versal Composability (UC) framework, defining function-
alities to represent both on-chain and off-chain compo-
nents. We formally define and prove the basic properties
of datagram authenticity and fair expenditure as well as
gas sustainability, a fundamental availability property for
any Ethereum service.

• We introduce a hybridized TCB spanning the blockchain
and an SGX enclave, a powerful new paradigm of trust-
worthy system composition. We present generic tech-
niques that help shrink the TCB code size within this
model as well as techniques to hedge against individual
SGX platform compromises.

• We explore three TC applications that show TC’s abil-
ity to support a rich range of services well beyond those
in Ethereum today. Experiments with these applications
also show that TC can easily meet the latency and through-
put requirements of modern decentralized blockchains.

Due to space constraints, a number of details on formal-
ism, proofs, implementation, and applications are relegated
to the paper appendices with pointers in the paper body.



Appendices may be found in the supplementary materials.

2. BACKGROUND
In this section, we provide basic background on the main

technologies TC incorporates, namely SGX, TLS / HTTPS,
and smart contracts.

SGX. Intel’s Software Guard Extensions (SGX) [8, 22, 29,
31] is a set of new instructions that confer hardware protec-
tions on user-level code. SGX enables process execution in
a protected address space known as an enclave. The enclave
protects the confidentiality and integrity of the process from
certain forms of hardware attack and other software on the
same host, including the operating system.

An enclave process cannot make system calls, but can read
and write memory outside the enclave region. Thus isolated
execution in SGX may be viewed in terms of an ideal model
in which a process is guaranteed to execute correctly and
with perfect confidentiality, but relies on a (potentially mali-
cious) operating system for network and file-system access.1

SGX allows a remote system to verify the software in an
enclave and communicate securely with it. When an enclave
is created, the CPU produces a hash of its initial state known
as a measurement. The software in the enclave may, at a
later time, request a report which includes a measurement
and supplementary data provided by the process, such as a
public key. The report is digitally signed using a hardware-
protected key to produce a proof that the measured software
is running in an SGX-protected enclave. This proof, known
as a quote, can be verified by a remote system, while the
process-provided public key can be used by the remote sys-
tem to establish a secure channel with the enclave or verify
signed data it emits. We use the generic term attestation to
refer to a quote, and denote it by att. We assume that a
trustworthy measurement of the code for the enclave com-
ponent of TC is available to any client that wishes to verify
an attestation. SGX signs quotes using a group signature
scheme called EPID [12]. This choice of primitive is signifi-
cant in our design of Town Crier, as EPID is a proprietary
signature scheme not supported natively in Ethereum. SGX
additionally provides a trusted time source via the function
sgx_get_trusted_time. On invoking this function, an en-
clave obtains a measure of time relative to a reference point
indexed by a nonce. A reference point remains stable, but
SGX does not provide a source of absolute or wall-clock time,
another limitation we must work around in TC.

TLS / HTTPS. We assume basic familiarity by readers
with TLS and HTTPS (HTTP over TLS). As we explain
later, TC exploits an important feature of HTTPS, namely
that it can be partitioned into interoperable layers: an HTTP
layer interacting with web servers, a TLS layer handling
handshakes and secure communication, and a TCP layer
providing reliable data stream.

Smart contracts. While TC can in principle support any
smart-contract system, we focus in this paper on its use in
Ethereum, whose model we now explain. For further details,
see [14,38].

1This model is a simplification: SGX is known to expose
some internal enclave state to the OS [18]. Our basic security
model for TC assumes ideal isolated execution, but again,
TC can also be distributed across multiple SGX instances
as a hedge against compromise.

A smart contract in Ethereum is represented as what is
called a contract account, endowed with code, a currency
balance, and persistent memory in the form of a key/value
store. A contract accepts messages as inputs to any of a num-
ber of designated functions. These entry points, determined
by the contract creator, represent the API of the contract.
Once created, a contract executes autonomously; it persists
indefinitely with even its creator unable to modify its code.2

Contract code executes in response to receipt of a message
from another contract or a transaction from a non-contract
(externally owned) account, informally what we call a wal-
let. Thus, contract execution is always initiated by a trans-
action. Informally, a contract only executes when “poked,”
and poking progresses through a sequence of entry points
until no further message passing occurs (or a shortfall in gas
occurs, as explained below). The “poking” model aside, as a
simple abstraction, a smart contract may be viewed as an
autonomous agent on the blockchain.

Ethereum has its own associated cryptocurrency called
Ether. (At the time of writing, 1 Ether has a market value
of just under $15 U.S. [1].) To prevent DoS attacks, pre-
vent inadvertent infinite looping within contracts, and gener-
ally control network resource expenditure, Ethereum allows
Ether-based purchase of a resource called gas to power con-
tracts. Every operation, including sending data, executing
computation, and storing data, has a fixed gas cost. Trans-
actions include a parameter (GASLIMIT) specifying a bound
on the amount of gas expended by the computations they
initiate. When a function calls another function, it may op-
tionally specify a lower GASLIMIT for the child call which
expends gas from the same pool as the parent. Should a
function fail to complete due to a gas shortfall, it is aborted
and any state changes induced by the partial computation
are rolled back to their pre-call state; previous computations
on the call path, though, are retained and gas is still spent.

Along with a GASLIMIT, a transaction specifies a GASPRICE,
the maximum amount in Ether that the transaction is will-
ing to pay per unit of gas. The transaction thus succeeds
only if the initiating account has a balance of GASLIMIT ×
GASPRICE Ether and GASPRICE is high enough to be accepted
by the system (miner).

As we discuss in Section 5.1, the management of gas is
critical to the availability of TC (and other Ethereum-based
services) in the face of malicious users.

Finally, we note that transactions in Ethereum are digi-
tally signed for a wallet using ECDSA on the curve Secp256k1
and the hash function SHA3-256.

3. ARCHITECTURE AND SECURITY MODEL
Town Crier includes three main components: The TC Con-

tract (CTC ), the Enclave (whose code is denoted by progencl),
and the Relay (R). The Enclave and Relay reside on the TC
server, while the TC Contract resides on the blockchain. We
refer to a smart contract making use of the Town Crier ser-
vice as a requester or relying contract, which we denote CU ,
and its (off-chain) owner as a client or user. A data source, or
source for short, is an online server (running HTTPS) that
provides data which TC draws on to compose datagrams.

An architectural schematic of TC showing its interaction
with external entities is given in Figure 1.

2There is one exception: a special opcode suicide wipes
code from a contract account.
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Figure 1: Basic Town Crier architecture. Trusted
components are depicted in green.

The TC Contract CTC . The TC Contract is a smart con-
tract that acts as the blockchain front end for TC. It is
designed to present a simple API to a relying contract CU
for its requests to TC. CTC accepts datagram requests from
CU and returns corresponding datagrams from TC. Addi-
tionally, CTC manages TC’s monetary resources.

The Enclave. We refer to an instance of the TC code run-
ning in an SGX enclave simply as the Enclave and denote
the code itself by progencl. In TC, the Enclave ingests and
fulfills datagram requests from the blockchain. To obtain
the data for inclusion in datagrams, it queries external data
sources, specifically HTTPS-enabled internet services. It re-
turns a datagram to a requesting contract CU as a digitally
signed blockchain message. Under our basic security model
for SGX, network functions aside, the Enclave runs in com-
plete isolation from an adversarial OS as well as other pro-
cess on the host.

The Relay R. As an SGX enclave process, the Enclave
lacks direct network access. Thus the Relay handles bidirec-
tional network traffic on behalf of the Enclave. Specifically,
the Relay provides network connectivity from the Enclave
to three different types of entities:

1. The Blockchain (the Ethereum system): The Relay scrapes
the blockchain in order to monitor the state of CTC . In
this way, it performs implicit message passing from CTC

to the Enclave, as neither component itself has network
connectivity. Additionally, the Relay places messages emit-
ted from the Enclave (datagrams) on the blockchain.

2. Clients: The Relay runs a web server to handle off-chain
service requests from clients—specifically requests for En-
clave attestations. As we soon explain, an attestation pro-
vides a unique public key for the Enclave instance to the
client and proves that the Enclave is executing correct
code in an SGX enclave and that its clock is correct in
terms of absolute (wall-clock) time. A client that suc-
cessfully verifies an attestation can then safely create a
relying contract CU that uses the TC.

3. Data sources: The Relay relays traffic between data sources
(HTTPS-enabled websites) and the Enclave.

The Relay is an ordinary user-space application. It does
not benefit from integrity protection by SGX and thus, un-
like the Enclave, can be subverted by an adversarial OS on
the TC server to cause delays or failures. A key design aim of
TC, however, is that Relay should be unable to cause incor-
rect datagrams to be produced or users to lose fees paid to
TC for datagrams (although they may lose gas used to fuel

their requests). As we will show, in general the Relay can
only mount denial-of-service attacks against TC.

Security model. Here we give a brief overview of our secu-
rity model for TC, providing more details in later sections.
We assume the following:

• The TC Contract. CTC is globally visible on the blockchain
and its source code is published for clients. Thus we as-
sume that CTC behaves honestly.

• Data sources. We assume that clients trust the data sources
from which they obtain TC datagrams. We also assume
that these sources are stable, i.e., yield consistent data-
grams, during a requester’s specified time interval T . (Re-
quests are generally time-invariant, e.g., for a stock price
at a particular time.)

• Enclave security. We make three assumptions: (1) The
Enclave behaves honestly, i.e., progencl, whose source code
is published for clients, correctly executes the protocol;
(2) For an Enclave-generated keypair (skTC , pkTC ), the
private key skTC is known only to the Enclave; and (3)
The Enclave has an accurate (internal) real-time clock. We
explain below how we use SGX to achieve these properties.

• Blockchain communication. Transaction and message sources
are authenticable, i.e., a transaction m sent from wallet
WX (or message m from contract CX) is identified by
the receiving account as originating from X. Transactions
and messages are integrity protected (as they are digitally
signed by the sender), but not confidential.

• Network communication. The Relay (and other untrusted
components of the TC server) can tamper with or delay
communications to and from the Enclave. (As we explain
in our SGX security model, the Relay cannot otherwise
observe or alter the Enclave’s behavior.) Thus the Relay
is subsumed by an adversary that controls the network.

4. TC PROTOCOL OVERVIEW
We now outline the protocol of TC at a high level. The

basic structure is conceptually simple: a user contract CU
requests a datagram from the TC Contract CTC , CTC for-
wards the request to the Enclave and then returns the re-
sponse to CU . There are many details, however, relating to
message contents and protection and the need to connect
the off-chain parts of TC with the blockchain.

First we give a brief overview of the protocol structure.
Then we enumerate the data flows in TC. Finally, we present
the framework for modeling SGX as ideal functionalities in-
spired by the universal-composability (UC) framework.

4.1 Datagram Lifecycle
The lifecycle of a datagram may be briefly summarized in

the following steps:

• Initiate request. CU sends a datagram request to CTC

on the blockchain.

• Monitor and relay. The Relay monitors CTC and relays
any incoming datagram request with parameters params
to the Enclave.

• Securely fetch feed. To process the request specified
in params, the Enclave contacts a data source via HTTPS
and obtains the requested datagram. It forwards the data-
gram via the Relay to CTC .

• Return datagram. CTC returns the datagram to CU .



We now make this data flow more precise.

4.2 Data Flows
A datagram request by CU takes the form of a message

m1 = (params, callback) to CTC on the blockchain. params
specifies the requested datagram, e.g., params := (url, spec, T ),
where url is the target data source, spec specifies content of
a the datagram to be retrieved (e.g., a stock ticker at a
particular time), and T specifies the delivery time for the
datagram (initiated by scraping of the data source). The
parameter callback in m1 indicates the entry point to which
the datagram is to be returned. While callback need not be
in CU , we assume it is for simplicity.
CTC generates a fresh unique id and forwardsm2 = (id, params)

to the Enclave. In response it receivesm3 = (id, params, data)
from the TC service, where data is the datagram (e.g., the
desired stock ticker price). CTC checks the consistency of
params on the request and response and, if they match, for-
wards data to the callback entry point in message m4.

For simplicity here, we assume that CU makes a one-time
datagram request. Thus it can trivially match m4 with m1.
Our full protocol contains an optimization by which CTC re-
turns id to CU after m1 as a consistent, trustworthy identifier
for all data flows. This enables straightforward handling of
multiple datagram requests from the same instance of CU .

Fig. 2 shows the data flows involved in processing a data-
gram request. For simplicity, the figure omits the Relay,
which is only responsible for data passing.

Blockchain TC Server

TC Contract
CTC

Enclave
(progencl)

User Contract
CU

(obtains data

from data source)

m1 =
(params,
callback)

m2 =
(id, params)

m3 =
(id, params,

data)
m4 =
(data)

Figure 2: Data flows in datagram processing.

Digital signatures are needed to authenticate messages,
such as m3, entering the blockchain from an external source.
We let (skTC , pkTC ) denote the private / public keypair as-
sociated with the Enclave for such message authentication.
For simplicity, Fig. 2 assumes that the Enclave can send
signed messages directly to CTC . We explain later how TC
uses a layer of indirection to sends m3 as a transaction via
an Ethereum wallet WTC .

4.3 Use of SGX
Let progencl represent the code for Enclave, which we pre-

sume is trusted by all system participants. Our protocols in
TC rely on the ability of SGX to attest to execution of an
instance of progencl. To achieve this goal, we first present a
model that abstracts away the details of SGX, helping to
simplify our protocol presentation and security proofs. We
also explain how we use the clock in SGX. Our discussion
draws on formalism for SGX from Shi et al. [35].

Formal model and notation. We adopt a formal abstrac-
tion of Intel SGX proposed by Shi et al. [35]. Following the
UC and GUC paradigms [15–17], Shi et al. propose to ab-
stract away the details of SGX implementation, and instead
view SGX as a third party trusted for both confidentiality
and integrity. Specifically, we use a global UC functionality
Fsgx(Σsgx)[progencl,R] to denote (an instance of) an SGX
functionality parameterized by a (group) signature scheme
Σsgx. Here progencl denotes the SGX enclave program and
R the physical SGX host (which we assume for simplicity is
the same as that of the TC Relay). As described in Fig. 3,
upon initialization, Fsgx runs outp := progencl.Initialize()
and attests to the code of progencl as well as outp. Upon a
resume call with (id, params), Fsgx runs and outputs the re-
sult of progencl.Resume(id, params). Further formalism for
Fsgx is given in the appendix of the online version [40].

Fsgx[progencl,R]: abstraction for SGX

Hardcoded: sksgx

Assume: progencl has entry points Initialize and Resume

Initialize:
On receive (init) from R:

Let outp := progencl.Initalize()
// models EPID signature.
σatt := Σsgx.Sign(sksgx, (progencl, outp))
Output (outp, σatt)

Resume:
On receive (resume, id, params) from R:

Let outp := progencl.Resume(id, params)
Output outp

Figure 3: Formal abstraction for SGX execution cap-
turing a subset of SGX features sufficient for imple-
mentation of TC.

SGX Clock. As noted above, the trusted clock for SGX pro-
vides only relative time with respect to a reference point. To
work around this, the Enclave is initialized with the current
wall-clock time provided by a trusted source (e.g., the Relay
under a trust-on-first-use model). In the current implemen-
tation of TC, clients may, in real time, request and verify a
fresh timestamp—signed by the Enclave under pkTC—via a
web interface in the Relay. Thus, a client can determine the
absolute clock time of the Enclave to within the round-trip
time of its attestation request plus the attestation verifica-
tion time—hundreds of milliseconds in a wide-area network.
This high degree of accuracy is potentially useful for some
applications but only loose accuracy is required for most.
Ethereum targets a block interval of 12s and the clock serves
in TC primarily to: (1) Schedule connections to data sources
and (2) To check TLS certificates for expiration when estab-



lishing HTTPS connections. For simplicity, we assume in
our protocol specifications that the Enclave clock provides
accurate wall-clock time in the canonical format of seconds
since the Unix epoch January 1, 1970 00:00 UTC. Note that
the trusted clock for SGX, backed by Intel Manageability
Engine [23], is resilient to power outages and reboots [32].

We let clock() denote measurement of the SGX clock from
within the enclave, expressed as the current absolute (wall-
clock) time.

5. TWO KEY SECURITY PROPERTIES
Before presenting the TC protocol details, we discuss two

key security properties informing its design: gas sustainabil-
ity and TCB minimization in TC’s hybridized TCB model.
While we introduce them in this work, as we shall explain,
they are of broad and general applicability.

5.1 Gas Sustainability
As explained above, Ethereum’s fee model requires that

gas costs be paid by the user who initiates a transaction, in-
cluding all costs resulting from dependent calls. This means
that a service that initiates calls to Ethereum contracts must
spend money to execute those calls. Without careful design,
such services run the risk of malicious users (or protocol
bugs) draining financial resources by triggering blockchain
calls for which the service’s fees will not be reimbursed. This
could cause financial depletion and result in an application-
layer denial-of-service attack. It is thus critical for the avail-
ability of Ethereum-based services that they always be re-
imbursed for blockchain computation they initiate.

To ensure that a service is not vulnerable to such attacks,
we define gas sustainability, a new condition necessary for
the liveness of blockchain contract-based services. Gas sus-
tainability is a basic requirement for any self-perpetuating
Ethereum service. It can also generalize beyond Ethereum;
any decentralized blockchain-based smart contract system
must require fees of some kind to reimburse miners for per-
forming and verifying computation.

Let bal(W) denote the balance of an Ethereum wallet W.

Definition 1 (K-Gas Sustainability). A service with wallet
W and blockchain functions f1, . . . , fn is K-gas sustainable
if the following holds. If bal(W) ≥ K prior to execution
of any fi and the service behaves honestly, then after each
execution of an fi initiated by W, bal(W) ≥ K.

Recall that a call made in Ethereum with insufficient gas
will abort, but spend all provided gas. While Ethereum triv-
ially guarantees 0-gas sustainability, if a transaction is sub-
mitted by a wallet with insufficient funds, the wallet’s bal-
ance will drop to 0. Therefore, to be K-gas sustainable for
K > 0, each blockchain call made by the service must re-
imburse gas expenditures. Moreover, the service must have
sufficient gas for each call or such reimbursement will be
reverted with the rest of the transaction.

The need for gas sustainability (with K > 0, as required
by TC) informs our protocol design in Section 6. We prove
that TC achieves this property in Section 7.

5.2 Hybrid TCB Minimization
In a system involving a smart contract interacting with

an off-chain trusted computing environment (e.g. SGX), the
TCB is a hybrid of two components with distinct prop-
erties. Computation in the smart contract is slow, costly,

TOff: abstraction for off-chain TCB

Initialize(void):
(pk, sk) := Σ.KeyGen(1λ)
Output pk

Resume(req):
Assert OAuth(req)
resp := f(req)
σ := Σ.Sign(sk, (req, resp))
Output ((req, resp), σ)

TOn: abstraction for on-chain TCB

Request(req):
Send (req) to TOff

Deliver(req, resp, σ):
Σ.Verify((req, resp), σ)
// can now use resp as trusted

Figure 4: Systems like TC have a hybrid TCB. Au-
thentication between two components can greatly
increase TCB complexity of implemented naively.
We propose techniques to eliminate the most ex-
pensive operations (highlighted in red).

and completely transparent, meaning it cannot rely on se-
crets. An SGX enclave is computationally powerful and exe-
cutes privately, but all external interaction—notably includ-
ing communication with the contract—must go through an
untrusted intermediary. While this hybrid TCB is powerful
and useful well beyond TC, it presents a challenge: estab-
lishing secure communication between the components while
minimizing the code in the TCB.

We define abstractions for both TCB components in Fig. 4.
To distinguish these abstractions from formal ideal function-
alities, we use T (for trusted component), rather than F . We
model the authentication of on-chain messages by an oracle
OAuth, which returns true if an input is a valid blockchain
transaction. Since Ethereum blocks are self-authenticated
using Merkle trees [14, 38], in principle we can realize OAuth

by including an Ethereum client in the TCB. Doing so dras-
tically increases the code footprint, however, as the core
Ethereum implementation is about 50k lines of C++. Simi-
larly, a smart contract could authenticate messages from an
SGX by checking attestations, but implementing this veri-
fication in a smart contract would be error-prone and com-
putationally (and thus financially) expensive.

Instead we propose two general techniques to avoid these
calls and thereby minimize code size in the TCB. The first
applies to any hybrid system where one TCB component
is a blockchain contract. The second applies to any hybrid
system where the TCB components communicate only to
make and respond to requests.

Binding TOff to WTC . Due to the speed and cost of compu-
tation in the on-chain TCB, we wish to avoid implementing
signature verification (e.g. Intel’s EPID). There does exist
a precompiled Ethereum contract to verify ECDSA signa-
tures [38], but the operation requires a high gas cost. In-
stead, we describe here how to bind the identity of TOff to an
Ethereum wallet, which allows TOn to simply check the mes-
sage sender, which is already verified as part of Ethereum’s
transaction protocol.



The key observation is that information can only be in-
serted into the Ethereum blockchain as a transaction from
a wallet. Thus, the only way the Relay can relay messages
from TOff to TOn is through a wallet WTC . Since Ethereum
itself already verifies signatures on transactions (i.e., users
interact with Ethereum through an authenticated channel),
we can piggyback verification of TOff signatures on top of the
existing transaction signature verification mechanism. Sim-
ply put, the TOff creates WTC with a fresh public key pkOff

whose secret is known only to TOff.
To make this idea work fully, the public key pkOff must be

hardcoded into TOn. A client creating or relying on a contract
that uses TOn is responsible for ensuring that this hardcoded
pkOff has an appropriate SGX attestation before interacting
with TOn. Letting Verify denote a verification algorithm for
EPID signatures, Fig. 5 gives the protocol for a client to
check that TOn is backed by a valid TOff instance. (We omit
the modeling here of IAS online revocation checks.)

In summary, by assuming that relying clients have verified
an attestation of TOff, we can assume that datagrams sent
fromWTC are trusted to originate from TOff. This eliminates
the need to do costly EPID signature verification in TOn.

Additionally, SGX can seal pkOff in non-volatile storage
while protecting integrity and confidentiality [8,22], allowing
us to maintain the same binding through server restarts.

User: offline verification of SGX attestation

Inputs: pksgx, pkOff, TOff, σatt

Verify:
Assert TOff is the expected enclave code
Assert Σsgx.Verify(pksgx, σatt, (TOff, pkOff))
Assert TOn is correct and parametrized with pkOff

// now okay to rely on TOn

Figure 5: A client checks an SGX attestation of the
enclave’s code TOff and public key pkOff. The client
also checks that pkOff is hardcoded into blockchain
contract TOn before using TOn.

Eliminating OAuth. To eliminate the need to call OAuth from
TOff, we leverage the fact that all messages from TOff to TOn

are responses to existing requests. Instead of verifying re-
quest parameters in TOff, we can verify in TOn that TOff re-
sponded to the correct request. For each request, TOn stores
the parameters of that request. In each response, TOff in-
cludes the parameters it used to fulfill the request. TOn can
then check that the parameters in a response match the
stored parameters and, if not, and simply reject. Storing pa-
rameters and checking equality are simple operations, so this
vastly simpler than calling OAuth inside TOff.

This approach may appear to open new attacks (e.g., the
Relay can send bogus requests to which the TOff respond).
As we prove in Section 7, however, all such attacks reduce
to DoS attacks from the network or the Relay—attacks to
which hybrid TCB systems are inherently susceptible and
which we do not aim to protect against in TC.

6. TOWN CRIER PROTOCOL
We now present some preliminaries followed by the TC

protocol. For simplicity, we assume a single instance of progencl,
although our architecture could scale up to multiple enclaves

and even multiple hosts.
To ensure gas sustainability, we require that requesters

make gas payments up front as Ether. CTC then reimburses
the gas costs of TC. By having a trusted component perform
the reimbursement, we are also able to guarantee that a
malicious TC cannot steal an honest user’s money without
delivering valid data.

Notation. We use msg.mi to label messages corresponding
to those in Fig. 2. For payment, let $g denote gas and $f
to denote non-gas currency. In both cases $ is a type an-
notation and the letter denotes the numerical amount. For
simplicity, we assume that gas and currency adopt the same
units (allowing us to avoid explicit conversions). We use the
following identifiers to denote currency and gas amounts.

$f
Currency a requester deposits to refund Town
Crier’s gas expenditure to deliver a datagram

$greq
$gdvr
$gcncl

GASLIMIT when invoking Request, Deliver, or
Cancel, respectively

$gclbk
GASLIMIT for callback while executing Deliver, set
to the max value that can be reimbursed

$Gmin Gas required for Deliver excluding callback
$Gmax Maximum gas TC can provide to invoke Deliver
$Gcncl Gas needed to invoke Cancel
$G∅ Gas needed for Deliver on a canceled request

$Gmin, $Gmax, $Gcncl, and $G∅ are system constants, $f is
chosen by the requester (and may be malicious if the re-
quester is dishonest), and $gdvr is chosen by the TC Enclave
when calling Deliver. Though $greq and $gcncl are set by
the requester, a user-initiated transaction will abort if they
are too small, so we need not worry about the values.

Initialization. TC deposits at least $Gmax into the WTC .

The TC Contract CTC . The TC Contract accepts a data-
gram request with fee $f from CU , assigns it a unique id,
and records it. The Town Crier Relay R monitors requests
and forwards them to the Enclave. As we discussed in Sec-
tion 5.2, upon receipt of a response from WTC , CTC verifies
that params′ = params to ensure validity. If the request is
valid, CTC forwards the resulting datagram data by calling
the callback specified in the initial request. To ensure that all
gas spent can be reimbursed, CTC sets $gclbk := $f− $Gmin

for this sub-call. CTC is specified fully in Fig. 6. Here, Call
denotes a call to a contact entry point.

The Relay R. As noted in Section 3, R bridges the gap
between the Enclave and the blockchain in three ways.

1. It scrapes the blockchain and monitors CTC for new re-
quests (id, params).

2. It boots the Enclave with progencl.Initialize() and calls
progencl.Resume(id, params) on incoming requests.

3. It forwards datagrams from the Enclave to the blockchain.

Recall that it forwards already-signed transacations to the
blockchain as WTC . The program for R is shown in Fig. 7.
The function AuthSend inserts a transaction to blockchain
(“as WTC” means the transaction is already signed with
skTC ). An honest Relay will invoke progencl.Resume ex-
actly once with the parameters of each valid request and
never otherwise.

The Enclave progencl. When initialized through Initial-
ize(), progencl ingests the current wall-clock time; by storing



Town Crier blockchain contract CTC with fees

Initialize: Counter := 0

Request: On recv (params, callback, $f, $greq) from some
CU :
Assert $Gmin ≤ $f ≤ $Gmax

id := Counter; Counter := Counter + 1
Store (id, params, callback, $f, CU ) // msg.m1

// $f held by contract

Deliver: On recv (id, params, data, $gdvr) from WTC :
(1) If isCanceled[id] and not isDelivered[id]

Set isDelivered[id]
(2) Send $G∅ to WTC

Return
Retrieve stored (id, params′, callback, $f, )

// abort if not found
Assert params = params′ and $f ≤ $gdvr

and isDelivered[id] not set
Set isDelievered[id]

(3) Send $f to WTC

Set $gclbk := $f− $Gmin

(4) Call callback(data) with gas $gclbk // msg.m4

Cancel: On recv (id, $gcncl) from CU :
Retrieve stored (id, , , $f, C′U )

// abort if not found
Assert CU = C′U and $f ≥ $G∅

and isDelivered[id] not set
and isCanceled[id] not set

Set isCanceled[id]
(5) Send ($f− $G∅) to CU // hold $G∅

Figure 6: TC contract CTC reflecting fees. The last
argument of each function is the GASLIMIT provided.

Program for Town Crier Relay R
Initialize:

Send init to Fsgx[progencl,R]
On recv (pkTC , σatt) from Fsgx[progencl,R]:

Publish (pkTC , σatt)

Handle(id, params):
Parse params as ( , , T )
Wait until clock() ≥ T.min
Send (resume, id, params) to Fsgx[progencl,R]
On recv ((id, params, data, $gdvr), σ) from
Fsgx[progencl,R]:

AuthSend (id, params, data, $gdvr) to CTC as WTC

// msg.m3

Main:
Loop Forever:

Wait for CTC to records request (id, params, , , ):
Fork a process of Handle(id, params)

End

Figure 7: The Town Crier Relay R.

this time and setting a clock reference point, it calibrates its
absolute clock. It generates an ECDSA keypair (pkTC , skTC )
(parameterized as in Ethereum), where pkTC is bound to the
progencl instance through insertion into attestations.

Upon a call to Resume(id, params), progencl contacts the
data source specified by params via HTTPS and checks that

the corresponding certificate cert is valid. (We discuss cer-
tificate checking in the appendix of the online version [40].)
Then progencl fetches the requested datagram and returns it
to R along with params, id, and a GASLIMIT $gdvr := $Gmax,
all digitally signed with skTC . Fig. 8 shows the protocol for
progencl.

Program for Town Crier Enclave (progencl)

Initialize (void)
// Subroutine call from Fsgx, which attests to
// progencl and pkTC . See Figure 3.
(pkTC , skTC ) := Σ.KeyGen(1λ)
Output pkTC

Resume (id, params)
Parse params as (url, spec, T ):
Assert clock() ≥ T.min
Contact url via HTTPS, obtaining cert
Verify cert is valid for time clock()
Obtain webpage w from url
Assert clock() ≤ T.max
Parse w to extract data with specification spec
$gdvr := $Gmax

σ := Σ.Sign(skTC , (id, params, data, $gdvr))
Output ((id, params, data, $gdvr), σ)

Figure 8: The Town Crier Enclave progencl.

The Requester Contract CU . An honest requester first
follows the protocol in Fig. 5 to verify the SGX attestation.
Then she prepares params and callback, sets $greq to the cost
of Request with params, sets $f to $Gmin plus the cost of ex-
ecuting callback, and invokes Request(params, callback, $f)
with GASLIMIT $greq.

If callback is not executed, she can invoke Cancel(id) with
GASLIMIT $Gcncl to receive a partial refund. An honest re-
quester will invoke Cancel at most once for each of her
requests and never for any other user’s request.

6.1 Private and Custom Datagrams
In addition to ordinary datagrams, TC supports private

datagrams, which are requests where params includes ci-
phertexts under pkTC . Private datagrams can thus enable
confidentiality-preserving applications despite the public read-
ability of the blockchain. Custom datagrams, also supported
by TC, allow a contract to specify a particular web-scraping
target, potentially involving multiple interactions, and thus
greatly expand the range of possible relying contracts for
TC. We do not treat them in our security proofs, but give
examples of both datagram types in Section 8.1.

6.2 Enhanced Robustness via Replication
Our basic security model for TC assumes the ideal isola-

tion model for SGX described above as well as client trust
in data sources. Given various concerns about SGX secu-
rity [18,39] and the possible fallibility of data sources, we ex-
amine two important ways TC can support hedging. To pro-
tect against the compromise of a single SGX instance, con-
tracts may request datagrams from multiple SGX instances
and implement majority voting among the responses. This
hedge requires increased gas expenditure for additional re-
quests and storage of returned data. Similarly, TC can hedge
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Figure 9: Money Flow for a Delivered Request. Red
arrows denote flow of money and brown arrows de-
note gas limits. The thickness of lines indicate the
quantity of resources. The $gclbk arrow is thin be-
cause $gclbk is limited to $f− $Gmin.

against the compromise of a data source by scraping mul-
tiple sources for the same data and selecting the majority
response. We demonstrate both of these mechanisms in our
example financial derivative application in Section 8.2. (A
potential optimization is mentioned in Section 10.)

6.3 Implementation Details
We implemented a full version of the TC protocol in a

complete, end-to-end system using Intel SGX and Ethereum.
We defer discussion of implementation details and other
practical considerations to the appendix of the online ver-
sion [40].

7. SECURITY ANALYSIS
Proofs of theorems in this section appear in the appendix

of the online version [40].

Authenticity. Intuitively, authenticity means that an ad-
versary (including a corrupt user, Relay, or collusion thereof)
cannot convince CTC to accept a datagram that differs from
the expected content obtained by crawling the specified url
at the specified time. In our formal definition, we assume
that the user and CTC behave honestly. Recall that the user
must verify upfront the attestation σatt that vouches for the
enclave’s public key pkTC.

Definition 2 (Authenticity of Data Feed). We say that
the TC protocol satisfies Authenticity of Data Feed if, for
any polynomial-time adversary A that can interact arbitrar-
ily with Fsgx, A cannot cause an honest verifier to accept
(pkTC, σatt, params := (url, pkurl, T ), data, σ) where data is
not the contents of url with the public key pkurl at time T
(progencl.Resume(id, params) in our model). More formally,
for any probabilistic polynomial-time adversary A,

Pr


(pkTC, σatt, id, params, data, σ)← AFsgx(1λ) :(

Σsgx.Verify(pksgx, σatt, (progencl, pkTC)) = 1
)
∧

(Σ.Verify(pkTC, σ, (id, params, data)) = 1)∧
data 6= progencl.Resume(id, params)


≤ negl(λ),

for security parameter λ.

Theorem 1 (Authenticity). Assume that Σsgx and Σ are
secure signature schemes. Then, the TC protocol achieves
authenticity of data feed under Definition 2.3

Fee Safety. Our protocol in Section 6 ensures that an hon-
est Town Crier will not run out of money and that an honest
requester will not pay excessive fees.

Theorem 2 (Gas Sustainability). Town Crier is $Gmax-gas
sustainable.

An honest user should only have to pay for computation
that is executed honestly on her behalf. If a valid datagram
is delivered, this is a constant value plus the cost of executing
callback. Otherwise the requester should be able to recover
the cost of executing Deliver. For Theorem 2 to hold, CTC

must retain a small fee on cancellation, but we allow the
user to recover all but this small constant amount. We now
formalize this intuition.

Theorem 3 (Fair Expenditure for Honest Requester). For
any params and callback, let $Greq and $F be the honestly-
chosen values of $greq and $f, respectively, when submitting
the request (params, callback, $f, $greq). For any such request
submitted by an honest user, one of the following holds:

• callback is invoked with a valid datagram matching the re-
quest parameters params, and the requester spends at most
$Greq + $Gcncl + $F;

• The requester spends at most $Greq + $Gcncl + $G∅.

Other security concerns. In Section 6.2, we addressed
concerns about attacks outside the SGX isolation model em-
braced in the basic TC protocol. A threat we do not address
in TC is the risk of traffic analysis by a network adversary
or compromised Relay against confidential applications (e.g.,
with private datagrams), although we briefly discuss the is-
sue in Section 8.1. We also note that while TC assumes the
correctness of data sources, if a scraping failure occurs, TC
delivers an empty datagram, enabling relying contracts to
fail gracefully.

8. EXPERIMENTS
We implemented three showcase applications which we

plan to launch together with TC. We provide a brief descrip-
tion of our applications followed by cost and performance
measurements. We refer the reader to the appendix of the
online version [40] for more details on the applications and
code samples.

8.1 Requesting Contracts
Financial Derivative (CashSettledPut). Financial deriva-
tives are among the most commonly cited smart contract
applications, and exemplify the need for a data feed on fi-
nancial instruments. We implemented an example contract
CashSettledPut for a cash-settled put option. This is an agree-
ment for one party to buy an asset from the other at an
agreed upon price on or before a particular date. It is “cash-
settled” in that the sale is implicit, i.e., no asset changes
hands, only cash reflecting the asset’s value.

3Recall that we model SGX’s group signature as a regular
signature scheme under a manufacturer public key pksgx us-
ing the model in [35].



Flight Insurance (FlightIns). Flight insurance indemnifies
a purchaser should her flight be delayed or canceled. We have
implemented a simple flight insurance contract called Flight-
Ins. Our implementation showcases TC’s private-datagram
feature to address an obvious concern: customers may not
wish to reveal their travel plans publicly on the blockchain.
Roughly speaking, a customer submits to CTC a request
EncpkTC

(req) encrypted under Town Crier enclave’s public
key pkTC . The enclave decrypts req and checks that it is well-
formed (e.g., submitted sufficiently long before the flight
time). The enclave will then fetch the flight information
from a target website at a specified later time, and send
to CTC a datagram indicating whether the flight is delayed
or canceled. Finally, to avoid leaking information through
timing (e.g., when the flight information website is accessed
or datagram sent), random delays are introduced.

Steam Marketplace (SteamTrade). Authenticated data
feeds and smart contracts can enable fair exchange of dig-
ital goods between Internet users who do not have pre-
established trust. We have developed an example application
supporting fair trade of virtual items for Steam [4], an on-
line gaming platform that supports thousands of games and
maintains its own marketplace, where users can trade, buy,
and sell games and other virtual items. We implemented a
contract for the sale of games and items for Ether that show-
cases TC’s support for custom datagrams through the use of
Steam’s access-controlled API. In our implementation, the
seller sends EncpkTC

(account credentials, req) to CTC , such
that the Enclave can log in as the seller and determine from
the web-page whether the virtual item has been shipped.

8.2 Measurements
We evaluated the performance of TC on a Dell Inspiron

13-7359 laptop with an Intel i7-6500U CPU and 8.00GB
memory, one of the few SGX-enabled systems commercially
available at the time of writing. We show that on this single
host—not even a server, but a consumer device—our imple-
mentation of TC can easily process transactions at the peak
global rate of Bitcoin, currently the most heavily loaded de-
centralized blockchain.

We report mean run times (with the standard deviation
in parenthesis) over 100 trials.

TCB Size. The trusted computing base (TCB) of Town
Crier includes the Enclave and TC Contract. The Enclave
consists of approximately 46.4k lines of C/C++ code, the
vast majority of which (42.7k lines) is the modified mbedTLS
library [9]. The source code of mbedTLS has been widely de-
ployed and tested, while the remainder of the Enclave code-
base is small enough to admit formal verification. The TC
Contract is also compact; it consists of approximately 120
lines of Solidity code.

Enclave Response Time. We measured the enclave re-
sponse time for handling a TC request, defined as the inter-
val between (1) the Relay sending a request to the enclave
and (2) the Relay receiving a response from the enclave.

Table 1 summarizes the total enclave response time as well
as its breakdown over 500 runs. For the three applications we
implemented, the enclave response time ranges from 180 ms
to 599 ms. The response time is clearly dominated by the
web scraper time, i.e., the time it takes to fetch the requested
information from a website. Among the three applications
evaluated, SteamTrade has the longest web scraper time, as

it interacts with the target website over multiple roundtrips
to fetch the desired datagram.

Transaction Throughput. We performed a sequence of
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Figure 10: Throughput on a single SGX machine.
The x-axis is the number of concurrent enclaves and
the y-axis is the number of tx/sec. Dashed lines indi-
cate the ideal scaling for each application, and error
bars, the standard deviation. We ran 20 rounds of
experiments (each round processing 1000 transac-
tions in parallel).

experiments measuring the transaction throughput while scal-
ing up the number of concurrently running enclaves on our
single SGX-enabled host from 1 to 20. 20 TC enclaves is the
maximum possible given the enclave memory constraints on
the specific machine model we used. Fig. 10 shows that, for
the three applications evaluated, a single SGX machine
can handle 15 to 65 tx/sec.

Several significant data points show how effectively TC
can serve the needs of today’s blockchains for authenticated
data: Ethereum currently handles under 1 tx/sec on av-
erage. Bitcoin today handles slightly more than 3 tx/sec,
and its maximum throughput (with full block utilization) is
roughly 7 tx/sec. We know of no measurement study of the
throughput bound of the Ethereum peer-to-peer network.
Recent work [19] indicates that Bitcoin cannot scale beyond
26 tx/sec without a protocol redesign. Thus, with few hosts
TC can easily meet the data feed demands of even future
decentralized blockchains.

Gas Costs. Currently 1 gas costs 5× 10−8 Ether, so at the
exchange rate of $15 per Ether, $1 buys 1.3 million gas. Here
we provide costs for our implementation components.

The callback-independent portion of Deliver costs about
35,000 gas (2.6¢), so this is the value of $Gmin. We set $Gmax =
3,100,000 gas ($2.33), as this is approximately Ethereum’s
maximum GASLIMIT. The cost for executing Request is ap-
proximately 120,000 gas (9¢) of fixed cost, plus 2500 gas
(0.19¢) for every 32 bytes of request parameters. The cost
to execute Cancel is 62500 gas (4.7¢) including the gas cost
$Gcncl and the refund $G∅ paid to TC should Deliver be
called after Cancel.

The total callback-independent cost of acquiring a data-



CashSettledPut FlightIns SteamTrade
mean % tmax tmin σt mean % tmax tmin σt mean % tmax tmin σt

Ctx. switch 1.00 0.6 3.12 0.25 0.31 1.23 0.24 2.94 0.17 0.32 1.17 0.20 3.25 0.36 0.35
Web scraper 157 87.2 258 135 18 482 95.4 600 418 31 576 96.2 765 489 52
Sign 20.2 11.2 26.6 18.7 1.52 20.5 4.0 25.3 18.9 1.4 20.3 3.4 24.8 18.8 1.28
Serialization 0.40 0.2 0.84 0.24 0.08 0.38 0.08 0.67 0.20 0.08 0.39 0.07 0.65 0.24 0.09

Total 180 100 284 158 18 505 100 623 439 31 599 100 787 510 52

Table 1: Enclave response time t, with profiling breakdown. All times are in milliseconds. We executed 500
experimental runs, and report the statistics including the average (mean), proportion (%), maximum (tmax),
minimum (tmin), and standard deviation (σt). Note that Total is the end-to-end response time as defined in
Enclave Response Time. Times may not sum to this total due to minor unprofiled overhead.

gram from TC (i.e., the cost of the datagram, not the appli-
cation) ranges from 11.9¢ (CashSettledPut) to 12.9¢ (Steam-
Trade)4. The variation results from differing parameter lengths.

Component-Compromise Resilience. For the CashSet-
tledPut application, we implemented and evaluated two modes
of majority voting (as in Section 6.2):

• 2-out-of-3 majority voting within the enclave, providing
robustness against data-source compromise. In our exper-
iments the enclave performed simple sequential scraping
of current stock prices from three different data sources:
Bloomberg, Google Finance and Yahoo Finance. The en-
clave response time is roughly 1743 (109) ms in this case
(c.f. 1058 (88), 423 (34) and 262 (12) ms for each respec-
tive data source). There is no change in gas cost, as voting
is done inside the SGX enclave. In the future, we will in-
vestigate parallelization of SGX’s thread mechanism, with
careful consideration of the security implications.

• 2-out-of-3 majority voting within the requester contract,
which provides robustness against SGX compromise. We
ran three instances of SGX enclaves, all scraping the same
data source. In this scenario the gas cost would increase by
a factor of 3 plus an additional 5.85¢. So CashSettledPut
would cost 35.6¢ for Deliver without Cancel. The extra
5.85¢ is the cost to store votes until a winner is known.

Offline Measurements. Recall that an enclave requires a
one-time setup operation that involves attestation genera-
tion. Setting up the TC Enclave takes 49.5 (7.2) ms and
attestation generation takes 61.9 (10.7) ms, including 7.65
(0.97) ms for the report, and 54.9 (10.3) ms for the quote.

Recall also that since clock() yields only relative time in
SGX, TC’s absolute clock is calibrated through an exter-
nally furnished wall-clock timestamp. A user can verify the
correctness of the Enclave absolute clock by requesting a dig-
itally signed timestamp. This procedure is, of course, accu-
rate only to within its end-to-end latency. Our experiments
show that the time between Relay transmission of a clock
calibration request to the enclave and receipt of a response is
11.4 (1.9) ms of which 10.5 (1.9) ms is to sign the timestamp.
To this must be added the wide-area network roundtrip la-
tency, rarely more than a few hundred milliseconds.

9. RELATED WORK
Virtual Notary [6, 27] is an early online data attestation

service that verifies and digitally signs any of a range of user-
requested “factoids” (web page contents, stock prices, etc.)

4This cost is for 1 item. Each additional item costs 0.19¢.

potentially suitable for smart contracts. It predates and does
not at present interface with Ethereum.

Several data feeds are deployed today for smart contract
systems such as Ethereum. Examples include PriceFeed [3]
and Oraclize.it [7]. The latter achieves distributed trust by
using a second service called TLSnotary [5], which digitally
signs TLS session data. As a result, unlike TC which can flex-
ibly tailor datagrams, Oraclize.it must serve data verbatim
from a web session or API call; verbose sources thus mean
superfluous data and inflated gas costs. Additionally, these
services ultimately rely on the reputations of their (small)
providers to ensure data authenticity and cannot support
private or custom datagrams. Alternative systems such as
SchellingCoin [13] and Augur [2] rely on prediction markets
to decentralize trust, creating a heavy reliance on human
input and severely constraining their scope and data types.

Despite an active developer community, research results
on smart contracts are limited. Work includes off-chain con-
tract execution for confidentiality [28], and, more tangen-
tially, exploration of e.g., randomness sources in [11]. The
only research involving data feeds to date explores criminal
applications [26].

SGX is similarly in its infancy. While a Windows SDK [24]
and programming manual [22] have just been released, a
number of pre-release papers have already explored SGX,
e.g., [8, 29, 31, 33, 39]. Researchers have demonstrated ap-
plications including enclave execution of legacy (non-SGX)
code [10] and use of SGX in a distributed setting for map-
reduce computations [33]. Several works have exposed short-
comings of the security model for SGX [18,34,35], including
side-channel attacks against enclave state.

10. FUTURE WORK
We plan to develop TC after its initial deployment to in-

corporate a number of additional features. We discuss a few
of those features here.

Freeloading Protection. There are concerns in the Ethereum
community about “parasite contracts” that forward or re-
sell datagrams from fee-based data feeds [37]. As a coun-
termeasure, we plan to deploy the following mechanism in
TC inspired by designated verifier proofs [25]. The set of n
users U = {U1, . . . , Un} of a requesting contract generate an
(n, n)-secret-shared key pair (skU , pkU ). They submit their
n individual shares to the TC Enclave (e.g., as ciphertexts
under pkTC sent to CTC ).

TC now can sign datagrams using skU . Each user Ui can be
sure individually that a datagram produced by TC is valid,
since she did not collude in its creation. Potential parasitic



users, however, cannot determine whether the datagram was
produced by CTC or by U , and thus whether or not it is valid.
Such a source-equivocal datagram renders parasite contracts
less trustworthy and thus less attractive.

Revocation Support. There are two forms of revocation
relevant to TC. First, the certificates of data sources may
be revoked. Since TC already uses HTTPS, it could easily
use the Online Certificate Status Protocol (OCSP) to check
TLS certificates. Second, an SGX host could become com-
promised, prompting revocation of its EPID signatures by
Intel. The Intel Attestation Service (IAS) will reportedly dis-
seminate such revocations. Conveniently, clients already use
the IAS when checking the attestation σatt, so revocation
checking will require no modification to TC.

Hedging Against SGX Compromise. We discussed in
Section 6.2 how TC can support majority voting across SGX
hosts and data sources. Design enhancements to TC could
reduce associated latency and gas costs. For SGX voting,
we plan to investigate a scheme in which SGX-enabled TC
hosts agree on a datagram value X via Byzantine consensus.
The hosts may then use a threshold digital signature scheme
to sign the datagram response from WTC , and each partici-
pating host can monitor the blockchain to ensure delivery.

Updating TC’s Code. As with any software, we may dis-
cover flaws in TC or wish to add new functionality after
initial deployment. With TC as described above, however,
updating progencl would cause the Enclave to lose access to
skTC and thus be unable to respond to requests in CTC . The
TC operators could set up a new contract C′TC referenc-
ing new keys, but this would be expensive and burdensome
for TC’s operators and users. While arbitrary code changes
would be insecure, we could create a template for user con-
tracts that includes a means to approve upgrades. We plan
to investigate this and other mechanisms.

Generalized Custom Datagrams and Within-Enclave
Smart-Contract Execution. In our SteamTrade example
contract we demonstrated a custom datagram that scrapes a
user’s online account using her credentials. A more generic
approach would allow users to supply their own general-
purpose code to TC and data-source-enriched emulation of
private contracts as in Hawk [28], but with considerably
less computational overhead. Placing such large requests on
the blockchain would be prohibitively expensive, but code
could easily be loaded into the TC enclave off-chain. Of
course, deploying arbitrary user code raises many security
and confidentiality concerns which TC would need to ad-
dress. TC offers a basic framework, however, within which
to provide confidential, integrity-protected smart-contract
code execution off-chain with trustworthy integration into
on-chain smart-contract code.

11. CONCLUSION
We have introduced Town Crier (TC), an authenticated

data feed for smart contracts specifically designed to support
Ethereum. Use of Intel’s new SGX trusted hardware allows
TC to serve datagrams with a high degree of trustworthiness.
We defined gas sustainability, a critical availability property
of Ethereum services, and provided techniques for shrink-
ing the size of a hybrid TCB spanning the blockchain and
an SGX. We proved in a formal model that TC serves only
data from authentic sources, and showed that TC is gas sus-

tainable and minimizes cost to honest users should the code
behave maliciously. In experiments involving end-to-end use
of the system with the Ethereum blockchain, we demon-
strated TC’s practicality, cost effectiveness, and flexibility
for three example applications. We believe that TC offers a
powerful, practical means to address the lack of trustworthy
data feeds hampering Ethereum evolution today and that
it will support a rich range of applications. Pending deploy-
ment of the Intel Attestation Service (IAS), we will make a
version of TC freely available as a public service.
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APPENDIX
A. TC IMPLEMENTATION DETAILS

We now present further, system-level details on the TC
contract CTC and the two parts of the TC server, the Enclave
and Relay.

A.1 TC Contract
We implement CTC as described in Section 6 in Solidity, a

high-level language with JavaScript-like syntax which com-
piles to Ethereum Virtual Machine bytecode—the language
Ethereum contracts use.

In order to handle the most general type of requests—
including encrypted parameters—the CTC implementation
requires two parameter fields: an integer specifying the type
of request (e.g. flight status) and a byte array of user-specified
size. This byte array is parsed and interpreted inside the En-
clave, but is treated as an opaque byte array by CTC . For
convenience, we include the timestamp of the current block
as an implicit parameter.

To guard against the Relay tampering with request pa-
rameters, the CTC protocol includes params as an argument
to Deliver which validates against stored values. To reduce
this cost for large arrays, we store and verify
SHA3-256(requestType||timestamp||paramArray). The Relay
scrapes the raw values for the Enclave which computes the
hash and includes it as an argument to Deliver.

As we mentioned in Section 4.2, to allow for improved effi-
ciency in client contracts, Request returns id and Deliver
includes id along with data as arguments to callback. This
allows client contracts to make multiple requests in parallel
and differentiate the responses, so it is no longer necessary
to create a unique client contract for every request to CTC .

A.2 TC Server
Using the recently released Intel SGX SDK [24], we im-

plemented the TC Server as an SGX-enabled application
in C++. In the programming model supported by the SGX
SDK, the body of an SGX-enabled application runs as an or-
dinary user-space application, while a relatively small piece
of security-sensitive code runs in the isolated environment
of the SGX enclave.
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The enclave portion of an SGX-enabled application may
be viewed as a shared library exposing an API in the form
of ecalls [24] to be invoked by the untrusted application.
Invocation of an ecall transfers control to the enclave; the
enclave code runs until it either terminates and explicitly
releases control, or some special event (e.g. exception) hap-
pens [22]. Again, as we assume SGX provides ideal isolation,
the untrusted application cannot observe or alter the execu-
tion of ecalls.

Enclave programs can make ocalls [24] to invoke functions
defined outside of the enclave. An ocall triggers an exit from
the enclave; control is returned once the ocall completes. As
ocalls execute outside the enclave, they must be treated by
enclave code as untrusted.
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Figure 11: Components of TC Server

For TC, we recall that Fig. 8 shows the Enclave code
progencl. Fig. 7 specifies the operation of the Relay, the un-
trusted code in TC, which we emphasize again provides es-
sentially only network functionality. We now give details on
the services in the Enclave and the Relay and describe their
interaction, as summarized in Fig. 11.

The Enclave. There are three components to the enclave
code progencl: an HTTPS service, Web Scrapers, which inter-
act with data sources, and a Request Handler, which services
datagram requests.

HTTPS Service. We recall that the enclave does not have
direct access to host network functionality. TC thus parti-
tions HTTPS into a trusted layer, consisting of HTTP and
TLS code, and an untrusted layer that provides low-layer
network service, specifically TCP. This arrangement allows
the enclave to establish a secure channel with a web server;
the enclave itself performs the TLS handshake with a target
server and performs all cryptographic operations internally,
while the untrusted process acts as a network interface only.
We ported a TLS library (mbedTLS [9]) and HTTP code into
the SGX environment. We minimized the HTTP code to

meet the web-scraping requirements of TC while keeping
the TCB small. To verify certificates presented by remote
servers, we hardcoded a collection of root CA certificates
into the enclave code; in the first version of TC, the root
CAs are identical to those in Chrome. By using its inter-
nal, trusted wall-clock time, it is possible to verify that a
certificate has not expired. (We briefly discuss revocation in
Section 10.)

Web Scrapers. We implemented scrapers for our examples
in Section 8.1 in an ad hoc manner for our initial implemen-
tation of TC. We defer more principled, robust approaches
to future work.

Request Handler. The Request Handler has two jobs.

1. It ingests a datagram request in Ethereum’s serializa-
tion format, parses it, and decrypts it (if it is a private-
datagram request).

2. It generates an Ethereum transaction containing the re-
quested datagram (and parameter hash), serializes it as a
blockchain transaction, signs it using skTC , and furnishes
it to the Relay.

We implemented the Ethereum ABI and RLP which, re-
spectively, specify the serialization of arguments and trans-
actions in Ethereum.

Attestation Generation. Recall in Section 2 we mentioned
that an attestation is an report digitally signed by the Intel-
provided Quoting Enclave (QE). Therefore two phases are
involved in generating att. First, the Enclave calls
sgx_create_report to generate a report with QE as the
target enclave. Then the Relay forwards the report to QE
and calls sgx_get_quote to get a signed version of the re-
port, namely an attestation.

The Relay. The Relay encompasses three components: A
Client Interface, which serves attestations and timestamps,
OS services, including networking and time services, and a
Blockchain Interface.

Client Interface. As described in Section 3, a client starts
using TC by requesting and verifying an attestation att and
checking the correctness of the clock in the TC enclave using
a fresh timestamp. The Client Interface caches att upon ini-
tialization of progencl. When it receives a web request from
a client for an attestation, it issues an ecall to the enclave to
obtain a Unix timestamp signed using skTC , which it returns
to the client along with att. The client verify att using the
Intel Attestation Service (IAS) and then verify the times-
tamp using pkTC and check it using any trustworthy time
service.

OS services. The Enclave relies on the Relay to access net-
working and wall-clock time (used for initialization) pro-
vided by the OS and implemented as ocalls.

Blockchain Interface. The Relay’s Blockchain Interface mon-
itors the blockchain for incoming requests and places trans-
actions on the blockchain in order to deliver datagrams.
The Blockchain Interface incorporates an official Ethereum
client, Geth [20]. This Geth client can be configured with
a JSON RPC server. The Relay communicates with the
blockchain indirectly via RPC calls to this server. For ex-
ample, to insert a signed transaction, the Relay simply calls
eth_sendRawTransaction with the byte array of the serial-
ized transaction. We emphasize that, as the enclave holds



skTC , transactions are signed within the enclave.

B. FORMAL MODELING

B.1 SGX Formal Modeling
As mentioned earlier, we adopt the UC model of SGX

proposed by Shi et al. [35] In particular, their abstraction
captures a subset of the features of Intel SGX. The main idea
behind the UC modeling by Shi et al. [35] is to think of SGX
as a trusted third party defined by a global functionality Fsgx

(see Figure 3 of Section 4.3).

Modeling choices. For simplicity, the Fsgx model currently
does not capture the issue of revocation. In this case, as Shi
et al. point out, we can model SGX’s group signature simply
as a regular signature scheme Σsgx, whose public and secret
keys are called “manufacturer keys” and denoted pksgx and
sksgx (i.e., think of always signing with the 0-th key of the
group signature scheme). We adopt this notational choice
from [35] for simplicity. Later when we need to take revoca-
tion into account, it is always possible to replace this signa-
ture scheme with a group signature scheme in the modeling.

The Fsgx(Σsgx) functionality described by Shi et al. [35] is
a global functionality shared by all protocols, parametrized
by a signature scheme Σsgx. This global Fsgx is meant to
capture all SGX machines available in the world, and keeps
track of multiple execution contexts for multiple enclave pro-
grams, happening on different SGX machines in the world.
For convenience, this paper adopts a new notation
Fsgx(Σsgx)[progencl,R] to denote one specific execution con-
text of the global Fsgx functionality where the enclave pro-
gram in question is progencl, and the specific SGX instance
is attached to a physical machine R. (As the Relay in TC
describes all functionality outside the enclave, we use R for
convenience also to denote the physical host.) This specific
context Fsgx(Σsgx)[progencl,R] ignores all parties’ inputs ex-
cept those coming from R. We often omit writing (Σsgx)
without risk of ambiguity.

Operations. Fsgx captures the following features:

• Initialize. Initialization is run only once. Upon receiving
init, Fsgx runs the initialization part of the enclave pro-
gram denoted outp := progencl.Initialize(). Then, Fsgx

attests to the code of the enclave program progencl as
well as outp. The resulting attestation is denoted σatt.

• Resume. When resume is received, Fsgx calls progencl.Resume
on the input parameters denoted params. Fsgx outputs
whatever progencl.Resume outputs. Fsgx is stateful, i.e.,
allowed to carry state between init and multiple resume

invocations.

Finally, we remark that this formal model by Shi et al.
is speculative, since we know of no formal proof that Intel’s
SGX does securely realize this abstraction (or realize any
useful formal abstraction at all for that matter)—in fact,
available public documentation of SGX does not provide suf-
ficient information for making such formal proofs. As such,
the formal model in [35] appears to be the best available
tool for us to formally reason about security for SGX-based
protocols. Shi et al. leave it as an open question to design
secure processors with clear formal specifications, such that
they can be used in the design of larger protocols/systems
supporting formal reasoning of security. We refer the readers

to [35] for a more detailed description of the UC modeling
of Intel SGX.

B.2 Blockchain Formal Modeling
Our protocol notation adopts the formal blockchain frame-

work recently proposed by Kosba et al. [28]. In addition to
UC modeling of blockchain-based protocols, Kosba et al. [28]
also design a modular notational system that is intuitive and
factors out tedious but common features inside functionality
and protocol wrappers (e.g., modeling of time, pseudonyms,
adversarial reordering of messages, a global ledger). The ad-
vantages of adopting Kosba et al.’s notational system are
these: the blockchain contracts and user-side protocols are
intuitive on their own and they are endowed with precise,
formal meaning when we apply the blockchain wrappers.

Technical subtleties. While Kosba et al.’s formal blockchain
model is applicable for the most part, we point out a subtle
mismatch between their formal blockchain model in [28] and
the real-world instantiation of blockchains such as Ethereum
(and Bitcoin for that matter). The design of Town Crier is
secure in a slightly modified version of the blockchain model
that more accurately reflects the real-world Ethereum in-
stantiation of a blockchain.

As we will see in the proof of Theorem 2, we must carefully
handle the case of Deliver arriving after Cancel. In the
formal blockchain model proposed by Kosba et al. [28], we
can easily get away with this issue by introducing a timeout
parameter Ttimeout that the requester attaches to each data-
gram request. If the datagram fails to arrive before Ttimeout,
the requester can call Cancel any time after Ttimeout + ∆T .
On the surface, this seems to ensure that no Deliver will
be invoked after Cancel assuming Town Crier is honest.

However, we do not adopt this approach due to a technical
subtlety that arises in this context—again, the fact that the
Ethereum blockchain does not perfectly match the formal
blockchain model specified by Kosba et al [28]. Specifically,
the blockchain model by Kosba et al. assumes that every
message (i.e. transaction) will be delivered to the blockchain
by the end of each epoch and that the adversary cannot drop
any message. In practice, however, Ethereum adopts a dic-
tatorship strategy in the mining protocol, and the winning
miner for an epoch can censor transactions for this specific
epoch, and thus effectively this transaction will be deferred
to later epochs. Further, in case there are more incoming
transactions than the block size capacity of Ethereum, a
backlog of transactions will build up, and similarly in this
case there is also guaranteed ordering of backlogged trans-
actions. Due to these considerations, we defensively design
our Town Crier contract such that $Gmax-gas sustainability
is attained for Town Crier even if the Deliver transaction
arrives after Cancel.

C. PROOFS OF SECURITY
This section contains the proofs of the theorems we stated

in Section 7.

Theorem 1 (Authenticity). Assume that Σsgx and Σ are se-
cure signature schemes. Then, the full TC protocol achieves
authenticity of data feed under Definition 2.

Proof. We show that if the adversary A succeeds in a forgery
with non-negligible probability, we can construct an adver-
sary B that can either break Σsgx or Σ with non-negligible



probability. We consider two cases. The reduction B will flip
a random coin to guess which case it is, and if the guess is
wrong, simply abort.

• Case 1: A outputs a signature σ that uses the same pkTC

as the SGX functionality Fsgx. In this case, B will try
to break Σ. B interacts with a signature challenger Ch
who generates some (pk∗, sk∗) pair, and gives to B the
public key pk∗. B simulates Fsgx by implicitly letting
pkTC := pk∗. Whenever Fsgx needs to sign a query, B
passes the signing query onto the signature challenger
Ch.

Since data 6= progencl(params), B cannot have queried
Ch on a tuple of the form ( , params, data). Therefore,
B simply outputs what A outputs (suppressing unneces-
sary terms) as the signature forgery.

• Case 2: A outputs a signature σ that uses a different
pkTC as the SGX functionality Fsgx. In this case, B will
seek to break Σsgx. B interacts with a signature chal-
lenger Ch, who generates some (pk∗, sk∗) pair, and gives
to B the public key pk∗. B simulates Fsgx by implic-
itly setting pksgx := pk∗. Whenever Fsgx needs to make
a signature with sksgx, B simply passes the signature
query onto Ch. In this case, in order for A to succeed, it
must produce a valid signature σatt for a different public
key pk′. Therefore, B simply outputs this as a signature
forgery.

Lemma 1. CTC will never attempt to send money in De-
liver or Cancel that was not deposited with the given id.

Proof. First we note that there are only three lines on which
CTC sends money: (2), (3), and (5). Second, for a request
id, $f is deposited. Third, because isCanceled[id] is only set
immediately prior to line (5) and line (2) is only reachable if
isCanceled[id] is set, it is impossible to reach line (2) without
reaching line (5).

We now consider cases based on which of lines (3) and (5)
are reached first (since at least one must be reached to send
any money).

• Line (5) is reached first. In this case, line (5) sends $f−$G∅
and allows $G∅ to remain. Future calls to Cancel with
this id will fail the isCanceled[id] not check assertion, so
line (5) can never be reached again with this id. If WTC

invokes Deliver after this point, the first such invocation
will satisfy the predicate on line (1) and proceed to set
isDelivered[id] and reach line (2). Any future entries to
Deliver with id will fail to satisfy the predicate on line (1)
and then fail an assertion and abort prior to line (3). Since
line (2) sends $G∅, the total money sent in connection with
id is ($f− $G∅) + $G∅ = $f.

• Line (3) is reached first. In this case, line (3) send the full
$f immediately after setting isDelivered[id]. With isDelivered[id]
set, any call to Cancel with id will fail an assertion prior
to line (5) and any future call to Deliver with id will fail
to satisfy the predicate on line (1) and also fail an asser-
tion prior to reaching line (3). Thus no further money will
be distributed in connection with id.

Theorem 2 (Gas Sustainability). Town Crier is $Gmax-gas
sustainable.

Proof. By assumption, WTC is seeded with at least $Gmax

money. Thus it suffices to prove that, given an honest Re-
lay, WTC will have at least as much money after invoking
Deliver as it did before.

An honest Relay will never ask for a response for the same
id more than once. Deliver only responds to messages from
WTC , and isDelivered[id] is only set inside Deliver, so there-
fore we know that isDelivered[id] is not set for this id. We now
consider the case where isCanceled[id] is set upon invocation
of Deliver and the case where it is not.

• isCanceled[id] not set: In this case the predicate on line (1)
of the protocol returns false. Because the Relay is hon-
est, id exists and params = params′. The enclave always
provides $gdvr = $Gmax (which it has by assumption) and
Request ensures that $f ≤ $Gmax. Thus, coupled with
the knowledge that isDeliver[id] is not set, all assertions
pass and we progress through lines (3) and (4). Now we
must show that at line (3) CTC had $f to send and that
the total gas spend to execute Deliver does not exceed
$f.

To see that CTC had sufficient funds, we note that upon
entry to Deliver, both isDelivered[id] and isCanceled[id]
must have been unset. The first we showed above. The
second is because, given the first, if isCanceled[id] were
set, the predicate on line (1) would have returned true,
sending execution on a path that would not encounter
(4). This means that line (5) was never reached because
the preceding line sets isCanceled[id]. Because (2), (3), and
(5) are the only lines that remove money from CTC and
$f was deposited as part of Request, it must be the case
that $f is still in the contract.

To see how much gas is spent, we first note that $Gmin is
defined to be the amount of gas needed to execute De-
liver along this execution path not including line (4).
Since $gclbk is set to $f − $Gmin and line (4) is limited
to using $gclbk gas, the total gas spent on this execution
of Deliver is at most $Gmin + ($f− $Gmin) = $f.

• isCanceled[id] is set: Here the predicate on line (1) returns
true. Along this execution path CTC sends WTC $G∅ and
quickly returns. $G∅ is defined as the amount of gas neces-
sary to execute this execution path, so we need only show
that CTC has $G∅ available to send.

Because isCanceled[id] is set, it must be the case that Can-
cel was invoked with id and reached line (5). Gas exhaus-
tion in Cancel is not a concern because it would abort and
revert the entire invocation. This is only possible if the
data retrieval and all assertions in Cancel succeed. In par-
ticular, this means that id corresponds to a valid request
which deposited $f. Line (5) returns $f− $G∅ to CU , but
it leaves $Gmin from the original $f. Moreover, if Cancel
is invoked multiple times with the same id, all but the
first will fail due to the assert that isCanceled[id] is not set
and the fact that any invocation that reaches (5) will set
isCanceled for that id. Since only lines (2), (3), and (5) can
remove money from CTC and line (3) will never be called
in this case, there will still be exactly $Gmin available when
this invocation of Deliver reaches line (2).

Theorem 3 (Fair Expenditure for Honest Requester). For
any params and callback, let $Greq and $F be the respective
values chosen by an honest requester for $greq and $f when



submitting the request (params, callback, $f, $greq). For any
such request submitted by an honest user CU , one of the fol-
lowing holds:

• callback is invoked with a valid datagram matching the re-
quest parameters params and the requester spends at most
$Greq + $Gcncl + $F.

• The requester spends at most $Greq + $Gcncl + $G∅.

Proof. CU is honest, so she will first spend $Greq to invoke
Request(params, callback, $F). Ethereum does not allow money
to change hands without the payer explicitly sending money.
Therefore we must only examine the explicit function invo-
cations and monetary transfers initiated by CU in connection
with the request. It is impossible for CU to lose more money
than she gives up in these transactions even if TC is mali-
cious.

• Request Delivered: If protocol line (4) is reached, then we
are guaranteed that params = params′ and $gdvr ≥ $F. By
Theorem 1, the datagram must therefore be authentic for
params. Because $F is chosen honestly for callback, $F −
$Gmin is enough gas to execute callback, so callback will be
invoked with a datagram that is a valid and matches the
request parameters.

In this case, the honest requester will have spent $Greq to
invoke Request and $F in paying TC’s cost for Deliver.
The requester may have also invoked Cancel at most once
at the cost of $Gcncl. While CU may not receive any refund
due to Cancel aborting, CU will still have spent at most
$Greq + $Gcncl + $F.

• Request not Delivered: The request not being delivered
means that line (4) is never reached. This can only hap-
pen if Deliver is never called with a valid response or
if isCanceled[id] is set before deliver is called. The only
way to set isCanceled[id] is for CU to invoke Cancel with
isDelivered[id] not set. If deliver is not executed, we assume
that an honest requester will eventually invoke Cancel,
so this case will always reach line (5). When line (5) is
reached, then CU will have spent $Greq + $F while execut-
ing Request, and spent $Gcncl in Cancel and will attempt
to retrieve $F− $G∅.

The retrieval will succeed because CTC will always have
the funds to send CU $F−$G∅. To see this, Lemma 1 allows
us to consider only Deliver and Cancel calls associated
with id.

Since line (5) is reached, it must be the case the isDelivered[id]
is not set. This means that neither lines (2) nor (3) were
reached since the line before each sets isDelivered[id]. The
lines preceding those two and (5) are the only lines that
remove money from the contract. Line (5) cannot have
been reached before because CU is assumed to be honest,
so she will not invoke Cancel twice for the same request
and if any other user invokes Cancel for this request, the
CU = C′U assertion will fail and the invocation will abort
before line (5). Because none of (2), (3), or (5) has been
reached before and CU deposited $F > $Gmin > $G∅ on
Request, it must be the case that CTC has $F− $G∅ left.

This means the total expenditure in this case will be

$Greq + $Gcncl + $F− ($F− $G∅)

= $Greq + $Gcncl + $G∅.

D. APPLICATIONS AND CODE SAMPLES
We now elaborate on the applications described in Sec-

tion 8.1 and we show a short Solidity code sample for one
of these applications, to demonstrate first-hand what a re-
quester contract would look like to call Town Crier’s authen-
ticated data feed service.

Financial derivative (CashSettledPut). Financial deriva-
tives are among the most commonly cited smart contract
applications, and exemplify the need for a data feed on fi-
nancial instruments. We implemented an example contract
CashSettledPut for a cash-settled put option. This is an agree-
ment for one party to buy an asset from the other at an
agreed upon price on or before a particular date. It is “cash-
settled” in that the sale is implicit, i.e., no asset changes
hands, only cash reflecting the asset’s value. In our imple-
mentation, the issuer of the option specifies a strike price
PS , expiration date, unit price PU , and maximum number of
units M she is willing to sell. A customer may send a request
to the contract specifying the number X of option units to
be purchased and containing the associated fee (X · PU ). A
customer may then exercise the option by sending another
request prior to the expiration date. CashSettledPut calls TC
to retrieve the closing price PC of the underlying instrument
on the day the option was exercised, and pays the customer
X · (PS − PC). To ensure sufficient funding to pay out, the
contract must be endowed with ether value at least M · PS .

In Figure 12 we describe the protocol for CashSettledPut.
We omit the full source code due to length and complexity.

Flight insurance (FlightIns). Flight insurance indemnifies
a purchaser should her flight be delayed or canceled. We have
implemented a simple flight insurance contract called Flight-
Ins. Our implementation showcases TC’s private-datagram
feature to address an obvious concern: customers may not
wish to reveal their travel plans publicly on the blockchain.

An insurer stands up FlightIns with a specified policy fee,
payout, and lead time ∆T . (∆T is set large enough to ensure
that a customer can’t anticipate flight cancellation or delay
due to weather, etc.) To purchase a policy, a customer sends
the FlightIns a ciphertext C under the TC’s pubic key pkTC

of the ICAO flight number FN and scheduled time of de-
parture TD for her flight, along with the policy fee. FlightIns
sends TC a private-datagram request containing the current
time T and the ciphertext C. TC decrypts C and checks
that the lead time meets the policy requirement, i.e., that
TD − T ≥ ∆T . TC then scrapes a flight information data
source several hours after TD to check the flight status, and
returns to FlightIns predicates on whether the lead time was
valid and whether the flight has been delayed or canceled. If
both predicates are true, then FlightIns returns the payout
to the customer. Note that FN is never exposed in the clear.

Despite the use of private datagrams, FlightIns as described
here still poses a privacy risk, as the timing of the predicate
delivery by TC leaks information about TD, which may be
sensitive information; this, and the fact that the payout is
publicly visible, could also indirectly reveal FN . FlightIns
addresses this issue by including in the private datagram
request another parameter t > TD specifying the time at
which predicates should be returned. By randomizing t and
making t − TD sufficiently large, FlightIns can substantially
reduce the leakage of timing information.

In Figure 13 we include a full implementation of FlightIns
in Solidity.



CashSettledPut blockchain contract

Constants
Tstock := Town Crier stock info request type
$FTC := fee payed to TC for datagram delivery

Functions
Init: On recv (CTC , ticker, PS , PU ,M, expr, $f) from

Wissuer

Assert $f = (PS − PU ) ·M + $FTC

Save all inputs and Wissuer to storage.

Buy: On recv (X, $f) from WU :
Assert isRecovered not set

and timestamp < expr
and Wbuyer not set
and X ≤M
and $f = (X · PU )

Set Wbuyer =WU

Save X to storage
Send (PS − PU )(M −X) to Wissuer

// Hold PS ·X + $FTC

Put: On recv () from Wbuyer:
and timestamp < expr
and isPut not set

Set isPut
params := [Tstock, ticker]
callback := this.Settle
CTC .Request(params, callback, $FTC)

Settle: On recv (id, P ) from CTC :
If P ≥ PS

Send PS ·X to Wissuer

Return
Send (PS − P )X to Wbuyer

Send all money in contract to Wissuer

Send P ·X to Wissuer

Recover: On recv () from Wissuer:
and isPut not set
and isRecovered not set
and (Wbuyer not set

or timestamp ≥ expr)
Set isRecovered
Send all money in contract to Wissuer

Figure 12: The CashSettledPut application contract

Steam Marketplace (SteamTrade). Steam [4] is an on-
line gaming platform that supports thousands of games and
maintains its own marketplace, where users can trade, buy,
and sell games and other virtual items. We implement a con-
tract for the sale of games and items for ether that show-
cases TC’s support for custom datagrams through the use
of Steam’s access-controlled API.

A user intending to sell items creates a contract Steam-
Trade with her Steam account number IDS , a list L of items
for sale, a price P , and a ciphertext C under the TC’s pub-
lic key pkTC of her Steam API key. In order to purchase
the list of items, a buyer first uses a Steam client to cre-
ate a trade offer requesting each item in L. The buyer then
submits to SteamTrade her Steam account number IDU , a
length of time TU indicating how long the seller has to re-
spond to the offer, and an amount of ether equivalent to the
price P . SteamTrade sends TC a custom datagram contain-

ing the current time T , IDU , TU , L, and the encrypted API
key C. TC decrypts C to obtain the API key, delays for time
TU , then retrieves all trades between the two accounts using
the provided API key within that time period. TC verifies
whether or not a trade exactly matching the items in L suc-
cessfully occurred between the two accounts and returns the
result to SteamTrade. If such a trade occurred, SteamTrade
sends the buyer’s ether to the seller’s account. Otherwise the
buyer’s ether is refunded.

In Figure 14 we describe the protocol for SteamTrade. We
again omit the full source code due to length and complexity.



// A simple flight insurance contract using Town Crier’s private datagram.
contract FlightIns {

uint constant TC_REQ_TYPE = 0;
uint constant TC_FEE = (35000 + 20000) * 5 * 10**10;
uint constant FEE = 10**18; // $5 in wei
uint constant PAYOUT = 2 * 10**19; // $200 in wei
uint32 constant MIN_DELAY = 30;

// The function identifier in Solidity is the first 4 bytes
// of the sha3 hash of the functions ’ canonical signature.
// This contract ’s callback is bytes4(sha3("pay(uint64 ,bytes32 )"))
bytes4 constant CALLBACK_FID = 0x3d622256;

TownCrier tc;
address [2**64] requesters;

// Constructor which sets the address of the Town Crier contract.
function FlightIns(TownCrier _tc) public {

tc = _tc;
}

// A user can purchase insurance through this entry point.
// encFN is an encryption of the flight number and date
// as well as the time when Town Crier should respond to the request.
function insure(bytes32 [] encFN) public {

if (msg.value != FEE) return;

// Adding money to a function call involves calling ".value ()"
// on the function itself before calling it with arguments.
uint64 requestId =

tc.request.value(TC_FEE )( TC_REQ_TYPE , this , CALLBACK_FID , encFN);
requesters[requestId] = msg.sender;

}

// This is the entry point for Town Crier to respond to a request.
function pay(uint64 requestId , bytes32 delay) public {

// Check that this is a response from Town Crier
// and that the ID is valid and unfulfilled.
address requester = requesters[requestId ];
if (msg.sender != address(tc) || requester == 0) return;

if (uint(delay) >= MIN_DELAY) {
address(requester ).send(PAYOUT );

}
requesters[requestId] = 0;

}
}

Figure 13: Solidity code for the FlightIns application contract.



SteamTrade blockchain contract

Constants
Tsteam := Town Crier Steam trade request type
$FTC := fee payed to TC for datagram delivery

Functions
Init: On recv (CTC , IDS , encAPI S ,ListI , P ) from WS :

Save all inputs and WS to storage.

Buy: On recv (IDU , TU , $f) from WU :
Assert $f = P
params := [encAPI S , IDU , TU ,ListI ]
callback := this.Pay
id := CTC .Request(params, callback, $FTC)
Store (id,WU )

Pay: On recv (id, status) from CTC :
Retrieve and remove stored (id,WU )

// Abort if not found
If status > 0

Send $Fprice to Wseller

Else
send $Fprice to WU

Figure 14: The FlightIns application contract
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