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Abstract. Cryptographic security is usually defined as some form of guarantee that holds except
when a bad event with negligible probability occurs, and nothing is guaranteed in that case. However,
in settings where such failure can happen with substantial probability, one needs to provide guarantees
even for the bad case. A typical example is where a (possibly weak) password is used instead of a secure
cryptographic key to protect a session, the bad event being that the adversary correctly guesses the
password. In a situation with multiple such sessions, a per-session guarantee is desired: any session for
which the password has not been guessed remains secure, independently of whether other sessions have
been compromised. In particular, a user with a very strong password enjoys the full security guarantees
of an analysis in which passwords are replaced by uniform cryptographic keys.

Our contributions are two-fold. First, we provide a new, general technique for stating security guaran-
tees that degrade gracefully and which could not be expressed with existing formalisms. Our method
is simple, does not require new security definitions, and can be carried out in any simulation-based
security framework (thus providing composability). Second, we apply our approach to revisit the anal-
ysis of password-based message authentication and of password-based (symmetric) encryption (PBE),
investigating whether they provide strong per-session guarantees.

In the case of PBE, one would intuitively expect a weak form of confidentiality, where a transmitted
message only leaks to the adversary once the underlying password is guessed. Indeed, we show that
PBE does achieve this weak confidentiality if an upper-bound on the number of adversarial password-
guessing queries is known in advance for each session. However, such local restrictions appear to be
questionable since we show that standard domain separation techniques employed in password-based
cryptography, such as salting, can only provide global restrictions on the number of adversarial password-
guessing queries. Quite surprisingly, we show that in this more realistic scenario the desired per-session
confidentiality is unachievable.
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1 Introduction

1.1 Motivation of this Work

Human-memorable passwords represent one of the most widely deployed security mechanisms in practice.
They are used to authenticate human users in order to grant them access to various resources such as their
computer accounts, encrypted files, web services, and many more. Despite well-known problems associated
with this mechanism, its practicality and simplicity from the users’ perspective is the main cause of its
persisting prevalence. As an example, more than 90% of Google users employ passwords as the only au-
thentication mechanism for accessing their accounts [PTAI15]. Acknowledging this situation, it is extremely
important that security engineers, including designers of cryptographic protocols, have a precise understand-
ing of the security guarantees that passwords provide for multiple sessions (where one session corresponds
to one password; this is often referred to as the multi-user setting).

There has been significant effort in formalizing the use of passwords, but the standard provable-security
approach in cryptography, focusing on a single session, falls short of modeling the expected guarantees. The
main reason for this is that passwords, in contrast to cryptographic keys, can be guessed by the attacker with
a probability that can hardly be considered insignificant in the analysis (independently of whether a concrete
or asymptotic security approach is being used). This is because they are chosen by the users, and therefore
typically do not contain sufficient entropy. When inferring the security guarantees for multiple sessions via the
standard hybrid argument, these substantial terms from the analyses of the individual sessions accumulate,
and may render the overall statement trivial.

To obtain practically relevant statements about systems that allow for many sessions with passwords, we
cannot resign on all security guarantees as soon as any password is guessed. Ideally, one would instead hope
that as long as not all passwords were broken, the sessions with passwords that are still safe from the attacker
enjoy a non-reduced degree of security. This simple yet important observation has been emphasized before,
most notably in the work of Bellare et al. [BRT12] on multi-instance security. At a very high level, their
definition aims at ensuring that, in a setting where the security of each single session cannot be guaranteed,
the amount of work needed for breaking many sessions cannot be amortized, i.e., it grows (linearly) with the
number of sessions considered.

We believe that this approach, while bringing to light a problem of great practical relevance, suffers from
certain shortcomings that we illustrate on the example of password-based cryptography. By focusing only on
the number of sessions that can be broken, multi-instance security cannot capture the intuition that sessions
protected by strong passwords should be less vulnerable than sessions protected by weak passwords. Indeed,
as the resulting guarantees are in the form of a global upper bound on the number of sessions that can be
broken, they do not give any specific guarantee for a session whose password was not guessed, independently
of whether other sessions were compromised.

From a broader perspective, a setting with multiple sessions relying on passwords can be seen as an
instance of a scenario where the considered resource (e.g., a webmail server) can be gradually weakened by
the adversary (e.g., by guessing the passwords in some of the sessions), while it is still expected to provide
some security guarantees (e.g., for the other sessions) after such weakening.

1.2 Our Contributions

We develop a technique for modeling resources that are available to parties and used in protocols or ap-
plications and can be gradually weakened (we call this “downgrading”). Later, we apply the technique to
password-based cryptography in the random oracle model and analyze the security of schemes that use
password-derived keys.

Downgradable resources. As our first contribution, we provide a natural and intuitive formalization of
settings where a considered resource can be potentially downgraded by the actions of an attacker, but still
maintains some security guarantees afterwards. While there are many possible ways to analyze such settings,
our formalization allows for the natural decoupling of the descriptions of (1) the resource’s behavior at various
“levels” of the downgrade; and (2) the mechanism that controls how the system is currently downgraded (as a
response to the actions of the attacker). We believe that this modularity allows for simpler analyses of a wide
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range of resources that can be seen in this way, we discuss the concrete case of password-based cryptography
below. The technique is, however, more general, and may also find applications in other scenarios where
guarantees may degrade gradually, such as the failure of (some) computational assumptions.

The modeling as proposed is carried out in the constructive cryptography framework [Mau12] and does
not require any modifications of its security definitions. We believe that a similar approach would be pos-
sible in any simulation-based framework, although in particular an analogy in the universal composability
framework [Can00] would have to overcome certain technical hurdles that stem from the difference between
these two frameworks, as we detail in Appendix A.

Applications to password-based cryptography. As our second contribution, we apply this modeling
approach to several settings that involve multiple sessions using cryptographic keys derived from hashing
passwords in the random oracle model. The potential downgrading that we consider here corresponds to
guessing the passwords in some of the sessions.

Idealizing the hash function as a random oracle, a natural expectation for any such setting is that one
obtains a per-session guarantee, i.e. that as long as the attacker does not guess a password in a particular
session, the security guarantees provided in this session remain identical to the case where a perfect key is
used (i.e., chosen uniformly at random from a large key space). In particular, the security guarantees of one
session are not influenced by other sessions, such as by other users’ poor choice of a password.

We show that this intuitive view is not generally correct. Below we explain the reason of this breakdown
(which is a variant of the commitment problem that occurs in adaptive attacks on public-key encryption),
and by giving a series of results we draw a map of settings that do/do not succumb to this problem:

1. Password-based MACs. We show that if the password-derived keys are used by a MAC to authenticate
insecure channels, a per-session message authentication is achieved.

2. Single-session PBE. For password-based (symmetric) encryption (PBE), obtaining a composable
statement (i.e., in a simulation-based framework) is much more delicate even in a single-session case.
The reason for this is that, roughly speaking, the simulator in the ideal world is expected to produce a
simulated ciphertext upon every encryption and without any knowledge of the actual plaintext. How-
ever, if the distinguisher later guesses the underlying password (and hence can derive the encryption
key), it can easily decrypt the simulated ciphertext and compare the result to the (known) plaintext.
But the simulated ciphertext essentially committed the simulator to a message (or a small subset of the
message space), so the check will fail with overwhelming probability. Nonetheless, we show that in the
single-session setting designing a simulator, while non-trivial, is possible.

3. Multi-session PBE. In line with our motivation, the desired result would be to obtain per-session
confidentiality, an analogue of the above single-session statement for the setting with multiple sessions.
Surprisingly, as our next contribution, we show that lifting this positive result to the multi-session setting
is unachievable. Roughly speaking, any construction of r secure channels from r authenticated channels
and the corresponding r password-derived keys will suffer from a simulation problem analogous to the
single-session case described above. However, this time we formally prove that it cannot be overcome.

4. Multi-session PBE with local assumptions. To side-step the above impossibility statement, our
next result considers the setting of password-based encryption under an additional assumption that the
number of adversarial password guesses in each of the sessions is a priori known.
This assumption seems implausible in general, in fact we show that it cannot be achieved by the salting
technique often used in the context of password hashing; instead, as we also show, salting (only) guar-
antees a global upper bound. (Yet, there may be specific settings in which the validity of the per-session
bounds can be argued.) We show, however, that the assumption of local bounds is sufficient to overcome
the commitment problem and prove that the intuitively expected guarantees described above are in-
deed achieved. We stress, however, that the simulator constructed in the proof depends on the password
distribution.

5. PBE scheme from PKCS #5. Finally, we observe that the arguments underlying the above im-
possibility result in item 3 can also be applied to the password-based encryption as standardized in
PKCS #5 [Kal00].

Composability. Overall, our results yield a characterization of when password-derived keys can be used
in a composable simulation-based security framework for the task of secure communication. Our aim for
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strong, composable security guarantees is motivated by the particular relevance of password-based cryptog-
raphy in the Internet, where various cryptographic schemes are used concurrently and as building blocks
of larger protocols. To the best of our knowledge, this work represents the first composable treatment of
(non-interactive) password-based encryption and message authentication.

1.3 Related Work

Beyond the work on multi-instance security by Bellare et al. [BRT12] that was discussed in the introduction
above, there are large amounts of literature on passwords. On the empirical side, the weaknesses of passwords
in practice were studied e.g. in [O’G03]. We attempt to focus on the literature most relevant to our work.

For password-derived keys, most provable-security works focused on the single-session setting, analyzing
ways to augment the key-derivation process to slow down offline brute-force password-guessing attacks.
Techniques to achieve this include salting (which was introduced in a scenario with multiple users but
without a provable-security analysis) [Kal00], iteration [MT79, DGMT15], and hashing with moderately
hard-to-compute functions [Per09, AS15, CGBS16]. However, the security analyses of those works have a
different aim from ours as none of them considers the multi-session scenario. A notable, already mentioned
exception is [BRT12] which studied key derivation functions proposed in PKCS #5 [Kal00] and did focus on
security in a setting with multiple users.

A key-recovery security definition for password-based encryption was given in [AW05], but here also only
single-session security was considered.

Finally, a separate line of work aims at realizing password-authenticated key exchange (PAKE) proto-
cols [BPR00, KOY01, GL03, CHK+05] that prevent the possibility of offline password-guessing attacks and
result in keys that can then safely be used for encryption or authentication. While some of these results are
obtained in a composable, simulation-based framework and hence extend naturally to the multi-session case,
the protocols are intrinsically interactive and cannot be used in non-interactive password-based settings such
as ours.

2 Preliminaries

2.1 Basic Notation

We denote sets by calligraphic letters or capital Greek letters (e.g., X , Σ). Throughout this paper, we
consider only discrete random variables. A discrete random variable will be denoted by an upper-case letter
X, its range by the corresponding calligraphic letter X , and a realization of the random variable X will
be denoted by the corresponding lower-case letter x. Unless stated otherwise, X $← X denotes a random
variable X selected independently and uniformly at random from X . A tuple of r integers (q1, . . . , qr) will
be denoted by a bold letter q. The set of bit strings of finite length is denoted {0, 1}∗ and x ‖ y denotes
the concatenation of two bit strings x and y. The empty bit string is denoted �, while is used as an error
symbol.

2.2 Systems

Many cryptographic primitives (e.g. block ciphers, MAC schemes, random functions) can be described as
(X ,Y)-random systems [Mau02] taking inputs X1, X2, . . . ∈ X and generating for each input Xk an output
Yk ∈ Y. In full generality, such an output Yk depends probabilistically on all the previous inputsX1, . . . , Xk as
well as all the previous outputs Y1, . . . , Yk−1. We consider three distinct types of random systems: resources,
converters and distinguishers.

Resources and converters. Resources that can be accessed by multiple parties can be viewed as random
systems4 with multiple interfaces and formalized by making an interface identifier an explicit part of the
input (or output). The resources in this work have three interfaces, which we naturally label by elements of
the set {A,B,E}, for Alice’s, Bob’s and Eve’s interface, respectively. As a notational convention, we generally
use upper-case bold-face letters, such as R or S for generic resources, and upper-case sans-serif letters for
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more specific resources, such as KEY for a shared secret key resource or AUT for an authenticated channel
resource.

A strategy (or protocol machine) employed locally by a party is modeled by a converter, which can also
be viewed as a random system with two interfaces: an inside interface and an outside interface, denoted
by in and out, respectively. In this view, the inside interface is attached to the i-interface of a resource
and models how the scheme makes use of this resource, where i ∈ {A,B,E}, while the outside interface
of the converter becomes the i-interface of the composite system and models how the scheme can be used
in applications and higher-level protocols. A protocol then corresponds to a pair of converters, one for
each honest party. Converters are denoted by lower-case Greek letters (e.g., α, σ) or by sans-serif fonts
(e.g., enc, dec). The set of all converters is denoted by Σ. Attaching the inside interface of a converter α to
the i-interface of a resource R is denoted by αi R and the resulting system is again a resource. We assume
the existence of an identity converter id, which forwards all its inputs at one interface to the other one, such
that idi R = R. Any two converters α and β can be composed sequentially, denoted β ◦ α, by connecting
the inside interface of β to the outside interface of α. It can then be shown that the operations described
are such that (β ◦ α)i R = βi

(
αi R

)
, and that the application of converters at different interfaces h and i

commute in the sense that αh βiR = βi αh R.
For two resources R and S, we denote by [R,S] their parallel composition. For each interface i ∈

{A,B,E}, the i-interface of R and S are merged and become the sub-interfaces of the i-interface of [R,S],
which we denote by i1 and i2, respectively. A converter α that connects to the i-interface of [R,S] has two
inside sub-interfaces, denoted by in1 and in2, where the first one connects to i1 and the second one to i2.
Any two converters α and β can also be taken in parallel, denoted 〈α, β〉, which can be defined such that
〈α, β〉i [R,S] =

[
αi R, βi S

]
. These parallel composition operations and associated notations extend to the

case of more than two systems in a straightforward manner.

Distinguishers and reductions. A natural notion of similarity for resources can be based on the concept
of distinguishing. Intuitively, a distinguisher D can be viewed as a random system that connects to all the
interfaces of a resource R, interacts with this resource, and at the end of this random experiment outputs a
single bit denoted B. The complete interaction of D and R defines a random experiment and the probability
that the bit B is 1 in this experiment is written as PDR (B = 1). For two resources R and S, the distinguishing
advantage of a distinguisher D in telling apart R from S is then defined as

∆D (R,S) :=
∣∣PDR (B = 1)− PDS (B = 1)

∣∣ .
The resources R and S are said to be equivalent, denoted R ≡ S, if ∆D (R,S) = 0 for all distinguishers D.
A distinguisher D emulating a converter α at interface i ∈ {A,B,E} induces a new distinguisher, denoted
Dαi, defined by ∆Dαi (R,S) := ∆D (αi R, αi S

)
.

We will often reduce a distinguishing problem to another one. That is, a distinguisher D trying to tell
apart two resources U and V is transformed into a new distinguisher whose task is instead to distinguish the
resource R from S. Such a reduction is done by exhibiting a reduction system C which translates one setting
into the other. More formally, such a reduction system C is a converter (with one inside and one outside
interface), where the inside interface of C connects to the merged interfaces of the resource R, denoted CR,
and the outside interface of C can be accessed by a distinguisher. To reduce the task of distinguishing U
from V to that of R and S, one exhibits a reduction system C such that U ≡ CR and V ≡ CS. For all
distinguishers D it then follows that ∆D (U,V) = ∆D (CR,CS) = ∆DC (R,S), where the last equality
comes from the fact that C can also be thought of as being part of the distinguisher.

2.3 The Construction Notion in the (Alice, Bob, Eve)-setting

We formalize the security of protocols by the following notion of construction, which was introduced in
the work of Maurer [Mau12] and is a special case of the abstract cryptography framework developed by
Maurer and Renner [MR11]. To be considered secure a protocol must satisfy two requirements. First, the
protocol must construct the desired resource in a setting where no attacker is present. This condition is
4 Some resources described in this work would need to be amended by appropriate dummy messages in order to
formally be random systems. Such a technicality is omitted for the sake of clarity.
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referred to as the availability or correctness condition and excludes trivial protocols. Second, the protocol
must also construct the desired resource when the adversary is present, which we refer to as the security
condition. This condition requires that everything the adversary can achieve in the real-world system (i.e.,
the assumed resource together with the protocol) he can also accomplish in the ideal-world system (i.e., the
desired resource with the simulator). To state these two conditions, we consider pairs of resources (R,R⊥),
where R⊥ stands for the resource R when no adversary is present.5

Definition 1. Let ε1 and ε2 be two functions mapping each distinguisher D to a real number in [0, 1]. A
two-party protocol π := (α, β) ∈ Σ2 constructs a pair of resources (S,S⊥) from an assumed pair of resources

(R,R⊥) relative to simulator σ ∈ Σ and within ε := (ε1, ε2), denoted (R,R⊥)
(π, σ, ε)

(S,S⊥), if{
∆D (αAβBR⊥, S⊥

)
≤ ε1 (D) (availability)

∆D (αAβBR , σES
)
≤ ε2 (D) (security),

for all distinguishers D.

An important property of Definition 1 is its composability. Intuitively, if a resource S is used in the
construction of a larger system, then the composability implies that S can be replaced by αAβBR without
affecting the security of the composed system. Availability and security are preserved under sequential or
parallel composition. More details can be found in [Mau12, Tac14].

All the constructions stated in this paper are such that the availability condition is trivially satisfied and

we therefore omit it from now onwards. That is, we write R
(π, σ, ε)

S for (R,R⊥)
(π, σ, (0, ε))

(S,S⊥) and
where R⊥ (respectively, S⊥) is implicitly understood from R (respectively, S).

2.4 Symmetric Cryptographic Schemes

Message authentication. A message authentication code (MAC) scheme with message spaceM⊆ {0, 1}∗,
key space K := {0, 1}n, and tag space U ⊆ {0, 1}∗ is defined as a pair (tag, vrf ), where tag is a (possibly
probabilistic) function taking as input a key k ∈ K and a message m ∈M to produce a tag u← tag (k,m),
and vrf is a deterministic function taking as input a key k ∈ K, a message m ∈ M and a tag u ∈ U
to output a bit b := vrf (k,m, u) asserting the validity of the input tag u. A MAC scheme is correct if
vrf (k,m, tag (k,m)) = 1, for all keys k ∈ K and all messages m ∈M.

A MAC scheme MAC := (tag, vrf ) is considered weakly unforgeable under chosen-message attack (WUF-
CMA) if it is computationally infeasible, even when given access to an oracle producing valid tags for chosen
messages, to generate a valid tag for a fresh message that was not queried before to the oracle. The associated
security game, denoted GCMA (MAC) is detailed in Alg. 1.

Alg. 1: WUF-CMA game GCMA (MAC)
win := 0, k $← K, B := ∅
on input (tag,m)
B := B ∪ {m}
output tag (k,m)

on input (vrf,m, u)
b := vrf (k,m, u)
win := win ∨ (b ∧ (m 6∈ B))
output b

Alg. 2: IND-CPA system GCPA
b (SE)

k $← K
on input m0 ∈M
m1

$←M|m0|
c← enc (k,mb)
output c

5 Formally, R⊥ := γE R for some converter γ modeling the actions of a non-malicious adversary.
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Symmetric encryption. A symmetric encryption scheme with message spaceM⊆ {0, 1}∗, key space K :=
{0, 1}n, and ciphertext space C ⊆ {0, 1}∗ is defined as a pair (enc, dec), where enc is a (possibly probabilistic)
function taking as input a key k ∈ K and a message m ∈ M to produce a ciphertext c ← enc (k,m), and
dec is a deterministic function taking as input a key k ∈ K and a ciphertext c ∈ C to output a plaintext
m′ := dec (k, c). The output of dec can also be the error symbol to indicate an invalid ciphertext. An
encryption scheme is correct if dec (k, enc (k,m)) = m, for all keys k ∈ K and all messages m ∈M.

To define the security of an encryption scheme we use the “real or random” definition of indistinguishability
under chosen-plaintext attack (IND-CPA) as it matches more closely constructive security definitions which
involve the comparison of a “real” system with an “ideal” one. Relations to other notions of IND-CPA follow
from the work of Bellare et al. [BDJR97]. Thus, an encryption scheme SE := (enc, dec) is said to be IND-
CPA-secure if no efficient distinguisher can tell apart the system GCPA

0 (SE), which encrypts input messages,
from the system GCPA

1 (SE), which encrypts random messages of the same length as the input messages. The
system GCPA

b (SE) is described in Alg. 2, whereM` stands for messages of length ` inM.

3 Transformable Systems

In this section, we present our approach to modeling systems that can be gradually transformed, in a way
that clearly separates the effects of the transformation from how it can be provoked. In Section 3.1, we
describe this separation into core systems that describe the behavior and triggers that model the condition
provoking a transformation. In Section 3.2, we apply this methodology to describe concrete resources, keys
and secure channels, that can be downgraded to an “insecure” mode.

3.1 Core Systems and Triggers

As a warm-up example, consider a key obtained by hashing a secret password shared between two users
Alice and Bob. Idealizing the hash function as a random oracle, the resulting key is completely random from
the perspective of any third party Eve unless she also queried the random oracle on the same input; in other
words, unless she correctly guessed the password.

Hence, if we model the key obtained by this process as a resource, we consider two separate parts of it.
The first one specifies the behavior of the resource before and after the transformation (a “strong” version
gives the key only to Alice and Bob, a “weak” version also gives it to Eve); the second part triggers one of
these two versions based on Eve’s actions (providing a password-guessing game for her, triggering the weaker
version as soon as she wins).

In general, a transformable system is therefore the combination of two random systems: a core and a
trigger system. The core system specifies how it behaves as an internal switch value changes, while the
trigger system specifies how this switch value can be changed. More formally, a core system S is simply an
(X ∪ S,Y)-random system, where the set of inputs is partitioned into two sets X and S with X ∩ S = ∅.
The set X is the set of “normal” inputs, while S is the set of possible switch values, such as {0, 1} in our
example above. A trigger system T is a (T ,S)-random system which outputs a switch value. Elements of T
are called trigger values and correspond to password guesses in our example above.

Definition 2. Let X ,Y,S and T be four discrete sets such that X ∩ S = ∅ and X ∩ T = ∅. An (X ∪ S,Y)-
random system S and a (T ,S)-random system T form an (X ∪ T ,Y)-random system, denoted ST, defined
as follows. On input x ∈ X , the system ST outputs y ∈ Y, where y is the output of the system S when queried
on the input x. On input t ∈ T , the system ST outputs y′ ∈ Y, where y′ is the output of S when queried on
the output s ∈ S of the system T which was queried on the original input t (see Fig. 1).
The random system ST will be referred to as a transformable system, the random system S as a core system,
and the random system T as a trigger system.

Note that a transformable system is just a particular type of a random system, hence any security defini-
tion applying to random systems (e.g. the construction notion of Definition 1) also applies to transformable
systems.
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S

T

t ∈ T

s ∈ S

y′ ∈ Y

x ∈ X

y ∈ Y

Fig. 1. A transformable system ST formed by combining a core system S with a trigger system T. “Normal” inputs
x ∈ X are processed directly by S, while trigger values t ∈ T go instead first through the system T whose output
s ∈ S is then used as an input to the system S.

Fixed Switches. Given an (X ∪ S,Y)-core system S, it will be sometimes convenient to argue about the
behavior of S for a particular fixed switch value s ∈ S. To do so, we denote by Ss the (X ,Y)-random system
obtained by initializing S as follows: the switch value s is initially input to S and its resulting output is
discarded. In other words, Ss corresponds to the system S where the value of its switch is fixed from the
beginning to s and cannot be changed. In particular, the input space of Ss is only X and not X ∪ S. Given
a random variable S over S, we denote by SS the system selected at random in {Ss | s ∈ S} according to S.

3.2 Downgradable Keys and Downgradable Secure Channels

The core systems that we will consider will actually be resources, i.e., random systems with 3 interfaces
A,B and E for Alice, Bob, and Eve, respectively, where the switch values are controlled via the interface E.
Formally, we model this interface as being split into two sub-interfaces: EN (for “normal” inputs/outputs)
and ES (for switch values). Resources obtained by fixing the switch of such core resources to a particular
value will no longer have this interface ES. Typically, Eve will not have a direct access to the interface ES
of the core resource, instead she will only be allowed to access a trigger system T, which itself produces the
switch values. Neither Alice nor Bob have access to T. Such a core resource combined with a trigger system
will be called a downgradable resource.

We now introduce downgradable key resources and downgradable secure channels, examples of such re-
sources that will be used throughout the paper. These resources are parameterized (among other) by a fixed
number r of sessions. Intuitively, these resources provide a graceful deterioration of security by associating
each session with a password and guaranteeing that a session remains secure as long as its password is not
guessed, irrespectively of the state of other sessions. We first describe the corresponding core resources and
then the trigger systems.

Alg. 3: Core resource KEYr

sj := 0 and kj $← {0, 1}n, for all j ∈ {1, . . . , r}
on input (j, getkey) at i ∈ {A,B}
output (j, kj) at i

on input s ∈ {0, 1}r at ES
(s1, . . . , sr) := s

on input (j, getkey) at EN
if sj = 0 then output (j, ) at EN
else output (j, kj) at EN

Alg. 4: Core resource SECr

sj := 0 and mj := �, for all j ∈ {1, . . . , r}
on first input (j,m) at A
mj := m
output (j,mj) at B
output (j, |mj |) at EN

on input s ∈ {0, 1}r at ES
(s1, . . . , sr) := s

on input (j, getmsg) at EN
if sj = 0 then output (j, ) at EN
else output (j,mj) at EN
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Example 1 (Key). The core resource KEYr for r sessions takes as switch at interface ES an r-bit string
(s1, . . . , sr) which specifies for each session whether it is “broken” (sj = 1) or not (sj = 0). Alice and Bob
can retrieve a uniform and independent key for a given session, while Eve can only retrieve it if the session
is marked as “broken”. The resource KEYr is formalized6 in Alg. 3.

Example 2 (Secure Channel). The core resource SECr for r sessions also takes as switch value at interface ES
an r-bit string which specifies for each session whether or not confidentiality is “broken”. The resource SECr
allows Alice to send one message per session to Bob. Eve learns nothing about the transmitted message but
its length, unless this session was marked as “broken”, in which case the message is leaked to her. The channel
SECr does not allow Eve to inject any message, regardless of the value of the switch, and is formalized in
Alg. 4.

Example 3 (Local and Global Password-Guessing Triggers). Eve will not be allowed to influence the switch
values of KEYr or SECr directly, instead she will have to interact with a trigger system which captures
the guessing of per-session passwords. We consider two different such trigger systems, in both of them the
number of guesses allowed to Eve is restricted. These two systems differ in whether the restriction on the
number of guesses is local to each session or global over all r sessions. We refer to them as local and global
(password-guessing) triggers and denote them by LT and GT, respectively.

Formally, both triggers are parameterized by a password distribution P over Wr (where W ⊆ {0, 1}∗ is
a set of passwords) and the number of password guesses allowed, either locally for each of the sessions (a
tuple q := (q1, . . . , qr)) or globally (a parameter q). Both LT (P, q) and GT (P, q) initially sample r passwords
(w1, . . . , wr) according to P. When a password guess (j, w) for the jth session is received, both triggers change
the state of this session to “broken” if the password guess is correct and their respective constraint on the
number of password-guessing queries is satisfied. Both triggers LT (P, q) and GT (P, q) are only accessible
by Eve and are detailed in Alg. 5 and 6.

Combining the core systems and triggers given above via Definition 2 leads to four downgradable resources:

Alg. 5: Local trigger LT (P, q)
(w1, . . . , wr)← P
sj := 0 and `j := 0, for all
j ∈ {1, . . . , r}
on input (j, w) at ES
`j := `j + 1
sj := sj ∨ ((w = wj) ∧ (`j ≤ qj))
output (s1, . . . , sr) at ES

Alg. 6: Global trigger GT (P, q)
(w1, . . . , wr)← P
sj := 0 for all j ∈ {1, . . . , r}
` := 0
on input (j, w) at ES
` := `+ 1
sj := sj ∨ ((w = wj) ∧ (` ≤ q))
output (s1, . . . , sr) at ES

two with local restrictions, KEYrLT(P,q) and SECrLT(P,q), where the number of password-guessing queries is
restricted per session; and two with a global restriction, KEYrGT(P,q) and SECrGT(P,q), where only the total
number of password-guessing queries is limited. To simplify the notation, we will often drop the parameters
P, q, q when clear from the context. The results presented in the next sections hold for any distribution P
of r passwords, including correlated distributions.

4 Password-Based Key Derivation

The simple protocol for deriving a key from a password via hashing as considered in Section 3 can be proven
to construct, from a pre-distributed password and a random-oracle resources in each session, a downgradable
key resource. Multiple independent random oracles can be constructed from a single one via salting (i.e.,
domain separation), a point that we will discuss in Section 6.4.
6 To match the formal definition of a random system, which provides an output for each received input, the core
resources KEYr and SECr should output a dummy message at the EN-interface every time a switch value is input
at the ES-interface. This technicality is omitted here and below for the sake of clarity.
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More formally, we model the shared passwords as an explicit resource denoted PW. It is parameterized by
a joint distribution P of r passwords. The resource PW (P) first samples from the distribution P to obtain
r passwords (w1, . . . , wr) and then outputs (j, wj) at interface i ∈ {A,B} whenever it receives as input
(j, getpwd) at the same interface i. Note that Eve does not learn anything about the sampled passwords
except for the a priori known distribution P.

Each hash function is modeled as a random oracle available to all parties, denoted by RO. Notably, we
model the restriction on Eve’s computational power by a restriction on the number of invocations of the
random oracles that she is allowed to do. (For a rationale behind this choice and how it allows to model
complexity amplification via iteration, see [DGMT15].) We consider either a tuple of random oracles with
local restrictions denoted [ROq1 , . . . ,ROqr

], where each random oracle has its own upper bound qj on the
number of adversarial queries it allows; or a tuple of random oracles with one global restriction denoted
[RO, . . . ,RO]q, where at most q adversarial queries are allowed in total.

The key-derivation protocol KD := (kd, kd) consists of both parties applying a converter kd. Upon a key
request (j, getkey) for the jth session, kd queries PW (P) to retrieve the shared password wj for this session,
then queries the jth random oracle on wj and returns its output.

The following simple lemma shows that the protocol KD := (kd, kd), where each party simply applies the
converter kd, allows users to obtain downgradable keys in the sense of Section 3.2.

Lemma 1. For the key derivation protocol KD := (kd, kd) described above, there exists a simulator σkd such
that for all distributions P of r passwords, for all integers q := (q1, . . . , qr) and q, we have

[[ROq1 , . . . ,ROqr
] ,PW (P)]

(KD, σkd, 0)
KEYrLT(P,q) and[

[RO, . . . ,RO]q ,PW (P)
] (KD, σkd, 0)

KEYrGT(P,q) .

Proof. The simulator σkd emulates r random oracles mostly by lazy
sampling. More precisely, upon an adversarial query x made to the
jth random oracle, the simulator σkd forwards x as a password guess
for the jth session to the trigger LT (P, q) or GT (P, q) at its inS in-
terface and then tries to retrieve the key associated with that session
by querying its inN-interface. If the password guess was correct, then
the simulator σkd can output the retrieved key as a simulated output
of the random oracle, and otherwise it just samples a uniform n-bit
string. The simulator σkd is described in Alg. 7.
Note that the simulator σkd does not have to keep track of the number
of queries since this is handled directly by the triggering system which
receives every query received by σkd. The simulation is therefore per-
fect in both settings, independently of whether the random oracles are
locally or globally restricted. ut

Alg. 7: Simulator σkd

gj (x) := �, for all x ∈ {0, 1}∗ and
j ∈ {1, . . . , r}
on input (j, x) at out1
output (j, x) at inS
if gj (x) = � then

(j, k) := result of querying
(j, getkey) at inN
if k 6= then gj (x) := k
else gj (x) $← {0, 1}n

output (j, gj (x)) at out1

This lemma is very similar to [BRT12, Theorem 3.3], although the results are technically slightly different.
While [BRT12, Theorem 3.3] is stricter in terms of the information given to the distinguisher (which obtains
the passwords in clear), our statement comes with an explicit composition guarantee.

5 Password-Based Message Authentication

We investigate the use of password-derived keys for message authentication using MACs. We prove that
such a construction meets the intuitive expectation that in a multi-user setting, as long as a password for a
particular session is not guessed, the security (in this case: authenticity) in that session is maintained at the
same level as if a perfectly random key was used. We refer to Fig. 2 for the depictions of the real and the
ideal experiment involved in the construction statement.

We present these results partly to put them in contrast with those on password-based encryption, where
the situation is more intricate. As a consequence, in this section we deliberately remain slightly informal and
postpone the full formal treatment to Appendix B.
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Fig. 2. Left: The assumed resource, a downgradable key KEYrT and an insecure channel INSECr, with protocol con-
verters tag and vrf attached to interfaces A and B, denoted tagAvrfB [KEYrT, INSECr]. Right: The desired downgradable
unordered authenticated channel UAUTrT with simulator σMAC attached to interface E, denoted σE

MACUAUTrT. The sim-
ulator σMAC must emulate Eve’s interface in the left picture, i.e., key retrieval queries at E1,N, trigger queries at E1,S
and the insecure channel at E2.

Assumed resources. The construction statement shown below assumes the availability of a password-
derived key and an insecure communication channel for each of the r considered sessions. For password-
derived keys, we simply use the downgradable resource KEYrT which can be constructed e.g. via one of the
statements in Lemma 1 (here T stands for either LT or GT). The insecure channels are formalized as the
resource INSECr which forwards any message sent by Alice to Eve, while any message injected by Eve is
forwarded to Bob.

MAC schemes as protocols. Recall the definition of a MAC scheme stated in Section 2.4. Given a MAC
scheme (tag, vrf ), the protocol for Alice and Bob works in the natural way (we denote their converters tag
and vrf, respectively). When tag receives as input a message m for the jth session consisting of a pair (j,m),
it retrieves the key kj associated to this session from the downgradable key resource KEYrT, computes the
tag u := tag (kj ,m) and outputs to the insecure channel INSECr the pair (j,m ‖u). On the other end of the
channel, whenever vrf receives a message and a tag for some session, consisting of a pair (j′,m′ ‖u′), it first
retrieves the key kj′ associated to this session from KEYrT, computes vrf (kj′ ,m′, u′) and outputs (j′,m′)
only if the verification succeeds.

Constructed resource. The channel that Alice and Bob obtain by using the protocol (tag, vrf) guarantees
that any message that Bob receives for a particular session must have been sent before by Alice, unless
this session was “broken.” This (core) unordered authenticated channel, denoted UAUTr takes an r-bit string
(s1, . . . , sr) as a switch value, specifying for each session j whether it is broken (sj = 1), in which case Eve
can send any message to Bob for this particular session, or not (sj = 0), in which case the messages that
Eve can send to Bob for session j are limited to those that Alice already sent. The channel UAUTr does not
offer any secrecy, every message input by Alice is directly forwarded to Eve independently of the current
switch value, while the switch value sj of a particular session can also be retrieved by Eve. Note that the
unordered authenticated channel UAUTr, similarly to a MAC scheme, only aims to prevent Eve from being
able to inject a fresh message, it does not a priori prevent the injection of a legitimate message multiple
times, the reordering of legitimate messages, or the loss of some messages.

If the MAC scheme used by the protocol (tag, vrf) is weakly unforgeable, then it constructs the downgrad-
able unordered authenticated channel UAUTrT by using the downgradable key KEYrT and the insecure channel
INSECr. The formal statement together with its proof are postponed to Theorem 4 in Appendix B.
Theorem (Informal). There exists a simulator σMAC such that for every distribution P of r passwords,
every number of queries q := (q1, . . . , qr) and q, and any trigger T ∈ {LT (P, q) ,GT (P, q)},

[KEYrT, INSECr]
((tag, vrf) , σMAC, ε)

UAUTrT,

where the distinguishing advantage ε can be reduced to the weak unforgeability of the underlying MAC scheme.

Proof (sketch). According to Definition 1, we need to find a simulator σMAC and show that the systems
tagA vrfB [KEYrT, INSECr] and σE

MAC UAUTrT are indistinguishable. The role of the simulator σMAC is to emulate
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what happens at Eve’s interface E in the real system tagA vrfB [KEYrT, INSECr] by having only access to the
idealized channel UAUTrT. The simulator σMAC has therefore two tasks: 1) to emulate key retrieval queries
and password-guessing queries intended for the key resource KEYrT; and 2) to emulate messages injected by
Eve to the insecure channel INSECr, as well as messages output by INSECr to Eve.

In the real system, a message (j,m) input by Alice for session j is seen by Eve as (j,m ‖u), where
u := tag (kj ,m) and kj is a key which was initially selected uniformly at random. In the ideal system, such a
message (j,m) is directly output by the channel UAUTrT to the simulator which therefore needs to mimic the
tagging process. The simulator σMAC can easily do so by initially selecting a key kj uniformly at random and
outputting (j,m ‖ tag (kj ,m)). The simulator σMAC forwards any password-guessing query to the trigger T of
the channel UAUTrT, whereas σMAC deals with key retrieval queries for session j by first asking the channel
UAUTrT whether session j is broken, and then outputting accordingly the key kj used to simulate the tagging
process or the error symbol .

Note that so far the simulation is perfect. The only difference between the real and ideal system lies in
the way injection queries are handled. An injection message (j′,m′ ‖u′) made by Eve into the real system is
output to Bob as (j′,m′) only if the tag is valid, i.e., vrf (kj′ ,m′, u′) = 1. Thus, when the simulator receives
such a query it only outputs (j′,m′) to the channel UAUTrT if the tag u′ is valid. As a result, the channel
UAUTrT outputs the desired message (j′,m′) to Bob, unless the session j′ is not broken and this message
was never input by Alice. However, such an injection query (j′,m′ ‖u′) constitutes a forgery and cannot be
found efficiently if the underlying MAC scheme (tag, vrf ) is weakly unforgeable, so overall the real and ideal
systems are (computationally) indistinguishable. ut

6 Password-Based Encryption

We investigate the use of password-derived keys for symmetric encryption. In a multi-session setting, one
may expect that as long as a password for a particular session is not guessed, the confidentiality in that
session is maintained. This would, roughly speaking, correspond to a construction of (downgradable) secure
channels from authenticated channels and password-derived keys. We now describe this desired construction
in greater detail, referring to Fig. 3 for the depictions of the real and the ideal experiment.

enc dec

KEYr

T

AUTr

A B

E2E1,N E1,S

SECr

T

σ

A B

E1,N E1,S E2

Fig. 3. Left: The assumed resource, a downgradable key KEYrT and an authenticated channel AUTr, with protocol
converters enc and dec attached to interfaces A and B, denoted encAdecB [KEYrT,AUTr]. Right: The desired downgrad-
able secure channel SECrT with simulator σ attached to interface E, denoted σESECrT. The simulator σ must emulate
Eve’s interface in the left picture, i.e., key retrieval queries at E1,N, trigger queries at E1,S and the authenticated
channel at E2.

Assumed resources. These construction statements assume the availability of a password-derived key and
an authenticated communication channel for each of the r sessions. For password-derived keys, we use the
downgradable resource KEYrT, where T typically stands for either LT (P, q) or GT (P, q). Note that if the
assumed authenticated channel were UAUTrT, which can for example be obtained by using MAC schemes
as described in Section 5, then the overall channel resulting from doing encryption (the exact protocol is
described in greater detail in the paragraph below) on top of it would necessarily have to encompass a
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mechanism to decide when a message is delivered to Bob based on Eve’s actions (since Eve can drop or try
to inject messages in the channel UAUTrT).

To avoid such a technicality, we will instead assume in the construction statements below an authenticated
communication channel without any weakness, denoted AUTr. The channel AUTr takes as input a pair (j, c) at
Alice’s interface A, corresponding to a ciphertext c to be transmitted
for the jth session, and outputs (j, c) at both Eve’s interface E and
Bob’s interface B. Eve can neither replay messages nor drop those
coming from Alice. For convenience, we will also assume that at most
one message is transmitted per session, but our results could easily
be extended to the case of multiple messages per session. The channel
AUTr is described in Alg. 8.

Alg. 8: Channel AUTr

on first input (j, c) at A
output (j, c) at B
output (j, c) at E

Encryption schemes as protocols. Recall the definition of an encryption scheme stated in Section 2.4.
Given an encryption scheme (enc, dec), the protocol for Alice and Bob again works in the natural way
(their converters are denoted enc and dec, respectively). Both enc and dec expect two resources at their
respective inside interface in: a downgradable key resource KEYrT at their interface in1 and an authenticated
communication channel AUTr at their interface in2. The converter enc takes as input a pair (j,m) at its
outside interface out, corresponding to a message m to be transmitted for the jth session. It retrieves the
shared secret key kj for this session by inputting (j, getkey) at its in1-interface, computes the ciphertext
c ← enc (kj ,m) and finally outputs (j, c) to the channel at its in2-interface. Similarly, when a pair (j, c)
is input to the in2-interface of the converter dec, corresponding to an encrypted message sent for the jth

session, the converter dec retrieves the shared secret key kj for this session (by inputting (j, getkey) at its
in1-interface) and outputs (j, dec (kj , c)) at its out-interface. Throughout this section, we will assume the
underlying encryption scheme (enc, dec) to be correct.

Constructed resource. The channel that Alice and Bob wish to obtain by using the protocol SE :=
(enc, dec) is the downgradable resource SECrT described in Section 3.2, which guarantees that any message
sent by Alice for a particular session is transmitted confidentially to Bob, unless this session was “broken”.

The goal of password-based encryption can then be loosely phrased as achieving the following construction

[KEYrT,AUTr]
(SE, σ, ε)

SECrT,

for some simulator σ and “reasonable” distinguishing advantage ε.

6.1 PBE for a Single Session

We start by focusing on PBE with a single session. This will serve as an introduction to the study of the
multi-session setting, given in Sections 6.2 and 6.3.

In the particular case of a single session, the local password-guessing trigger LT (P, q) and the global one
GT (P, q) are actually identical for any distribution P of a single password and any number q of password-
guessing queries. To be consistent with what lies ahead in Section 6.3, we will hence always mention LT (P, q)
in this section. The considered special case also allows us to drop the exponent r indicating the number of
sessions and the index j of the session associated with any input or output, thus simplifying the notation.

We are interested in the possibility of constructing the downgradable secure channel SECLT(P,q) from
a downgradable key KEYLT(P,q) and an authenticated channel AUT using the protocol SE = (enc, dec).
According to Definition 1 we must thus find a simulator σ such that the systems encA decB

[
KEYLT(P,q),AUT

]
and σE SECLT(P,q) represented in Fig. 3 with T = LT (P, q), are indistinguishable.

The commitment problem. In the real world, whenever a message m is input at Alice’s interface A, the
corresponding ciphertext is output at Eve’s interface E2. On the other hand, in the ideal world only the length
|m| of the transmitted message m is output by the channel SECLT(P,q) to the simulator σ. The simulator
must therefore emulate that a ciphertext was sent by only knowing the length |m| of the transmitted message
and not the message m itself.
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A naïve simulation strategy could start as follows. The simulator σ initially selects a key k uniformly
at random and emulates the transmission of a ciphertext by encrypting a fresh random message v of the
correct length under key k, while password-guessing queries are simply forwarded to the trigger LT (P, q) of
the downgradable channel SECLT(P,q).

However, this approach does not work. To see this, consider what happens when the password is guessed
and the session is broken (which, depending on P, may happen with a large probability). In the real world,
the distinguisher can retrieve the key k used for encryption and check that the previously seen ciphertext c
is indeed an encryption of the transmitted message m. In contrast, in the ideal world the simulator σ can
retrieve the transmitted message m, but note that it cannot output the key k that it chose at the beginning
to simulate encryption since dec (k, c) = v is a random message which (with overwhelming probability) is
different from the actual transmitted message m. The simulator σ must therefore “decommit” by finding
a key k′ such that the decryption of the simulated ciphertext c under that key k′ yields the transmitted
plaintext m, i.e., dec (k′, c) = m. However, it is not hard to see that unless the key space of the encryption
scheme contains as many keys as there are messages (which is only true for impractical schemes such as the
one-time pad), it is highly unlikely that such a key even exists and the simulation therefore fails.

Brute-force to the rescue. The previous paragraph only shows that one particular simulation strategy
fails. The source of the commitment problem is that the simulator σ only breaks the session after having
output the simulated ciphertext. The key insight is that this does not have to be the case.

To prevent the simulation breakdown, we instead consider a different simulator σLT which, in contrast
to σ, tries to break the session before having to output any ciphertext. So, instead of faithfully forwarding
the q password-guessing queries, the simulator σLT initially exhausts all of the allowed q queries to optimally
brute-force the session by querying the q most likely passwords. If this initial brute-force step fails, σLT simply
encrypts a random message of the correct length and declares any password guess as incorrect so that the
actual key used to simulate the encryption is never output. However, if the initial brute-force step succeeds,
σLT has access to the transmitted message and can therefore perfectly simulate the corresponding ciphertext,
while password-guessing queries can be appropriately “scaled up” to match the guessing probability of the
real world. In this case, the key used to simulate encryption can obviously be output since the ciphertext
produced is an actual encryption of the transmitted message. Intuitively, this simulation strategy is successful
because password-guessing queries made by σLT are never output to a distinguisher.

In this setting with a single session, password-based encryption is therefore possible with respect to the
simulation strategy σLT sketched above.

Corollary (Informal). For every distribution P of a single password and every integer q, there exists a
simulator σLT such that [

KEYLT(P,q),AUT
] (SE, σLT, ε)

SECLT(P,q),

where the distinguishing advantage ε can be reduced to the IND-CPA security of the underlying encryption
scheme.

The generalization of the above statement for multiple r sessions is discussed in Section 6.3. This corollary
then follows by taking r = 1 in Theorem 2.

6.2 General Impossibility of PBE

The positive result for a single session can in general not be lifted to multiple sessions. Our impossibility
result consists of providing a lower bound on the distinguishing advantage of a particular distinguisher
D` in distinguishing the systems encA decB [KEYrT,AUTr] and σE SECrT depicted in Fig. 3, for any trigger
system T with output space {0, 1}r and any simulator σ. The lower bound depends on the properties of the
trigger system T and while giving a clear impossibility result for some triggers, for others it becomes moot.
In particular, while it gives a strong bound for the case of the global password-guessing trigger GT (P, q),
the bound is inconclusive for the local trigger LT (P, q) and independently distributed passwords, where in
Section 6.3 we show that password-based encryption is actually possible.

The core of our impossibility result lies in exploiting the commitment problem explained in Section 6.1.
The simulator σ = σLT there avoids this commitment problem by trying to break the session associated with
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the plaintext before having to output the corresponding ciphertext. This works out if σ follows the optimal
strategy for breaking this particular session, since an arbitrary distinguisher would no be able to do better.
However, since σ does not a priori know which session will have to be “decommitted”, the simulator σ must
be able to follow the optimal strategy for each session. This might be possible depending on the trigger
system T (such as in the case of LT (P, q) with independent passwords), but in general following the optimal
strategy for a particular session may prevent σ from following the optimal strategy for another session. This
is the case for the trigger GT (P, q) where following the optimal strategy for a particular session consists of
exhausting all the q allowed password-guessing queries on this session.

The high level idea of the distinguisher D` is therefore to first force the simulator to be committed to a
ciphertext in every session; and second, to pick a session j∗ uniformly at random and to follow the optimal
strategy to break it. To avoid the commitment problem, the simulator must in contrast try to break the
maximum number of sessions before simulating the ciphertexts since it does not know which session j∗ will
be chosen by the distinguisher.

We need to add some notation in order to quantify more precisely the distinguishing advantage achieved
by D`. Let T denote an arbitrary trigger system with output space {0, 1}r, and consider a distinguisher D
interacting with the trigger T alone. Note in particular that such a distinguisher sees the output (s1, . . . , sr) ∈
{0, 1}r of T. The interaction of the distinguisher D with the trigger T defines a random experiment, and we
denote by Gj the event that the jth session is “broken”, i.e., T output at least once an r-bit string (s1, . . . , sr)
with sj = 1, for all j ∈ {1, . . . , r}. The probability that this event Gj happens in this random experiment
is denoted PDT (Gj = 1) and it will be convenient to see it as a function of both j and D. To do so, let
D denote the set of distinguishers for T and consider the function ΓT : {1, . . . , r} × D → [0, 1], where
ΓT (j,D) := PDT (Gj = 1) , for all j ∈ {1, . . . , r} and D ∈ D.

In the following, we denote by ΓT
opt the average of the maximum probability in breaking a particular

session, while ΓT
avg denotes the maximum average probability of breaking all sessions,

ΓT
opt := 1

r

∑
j∈{1,...,r}

max
D∈D

ΓT (j,D) ,

ΓT
avg := 1

r
max
D∈D

∑
j∈{1,...,r}

ΓT (j,D) .

(1)

Note that maxD∈D ΓT (j,D) ≥ ΓT (j,D), for every j ∈ {1, . . . , r}, and thus ΓT
opt ≥ ΓT

avg. In other
words, ΓT

opt measures the success of an optimal strategy for breaking a known randomly chosen session j,
while ΓT

avg measures the success of an optimal strategy for breaking an unknown randomly chosen session.
Knowing in advance which session will be “attacked” is a clear advantage that we measure by the difference
ΓT

opt − ΓT
avg ≥ 0.

Theorem 1. Let SE := (enc, dec) be a correct encryption scheme with key space K := {0, 1}n and message
space M ⊆ {0, 1}∗, and consider the associated protocol SE := (enc, dec). Let T be a trigger system with
output space {0, 1}r and letM` denote a non-empty set of messages of fixed length ` inM, for some integer
`. Then, there exists a distinguisher D` described in Alg. 9 such that for all simulators σ we have

∆D`

(
encA decB [KEYrT,AUTr] , σE SECrT

)
≥ δT − |K|

|M`|
. (2)

where δT := ΓT
opt − ΓT

avg ≥ 0, with ΓT
opt and ΓT

avg defined in (1).

Remark 1. Let us comment on the lower bound obtained in (2). If there are almost as many keys as messages,
such as in the one-time pad, then the bound in (2) becomes trivial. (Note that if the encryption scheme
is the one-time pad, then password-based encryption is obviously possible since there is no “commitment”
problem: doing the xor of a given ciphertext and of a given message leads to the appropriate key.) However,
most encryption schemes used in practice have significantly less keys than messages and in this case the
dominant term in (2) is δT, which quantifies for a trigger system T the advantage that can be obtained on
average by knowing which session will be “attacked”.

For example, if P is a distribution of r independent passwords, then δGT(P,q) will typically be large, since
following the optimal strategy for session j, i.e., querying the q most likely passwords (for session j), prevents
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following the optimal guessing strategy for another session as the remaining number of password-guessing
queries will be less than q. Obviously, if the passwords are cryptographic keys, i.e., they are uniformly
distributed over some large space, then the “passwords” are unguessable and δGT(P,q) is negligible. On
the other hand, for the local password-guessing trigger LT (P, q) we have δLT(P,q) = 0 for any number of
password-guessing queries q1, . . . , qr, since for this trigger each session is truly independent and the optimal
strategy can be executed for each session.

Depending on the trigger system T, the distinguisher D` given in Alg. 9 may not necessarily be efficient,
since it must be able to implement the optimal strategy for an arbitrary session of its choice. Nonetheless, it
is worth mentioning that in the particular case where the trigger system is GT (P, q), computing the optimal
guessing strategy for a particular session is “easy” if the passwords are independently distributed. One simply
queries the q most likely passwords for this session. Clearly, this assumes that the distinguisher D` knows
the password distribution P, and is able to sort the passwords according to their respective probability to
determine the q most likely for a particular session.

Proof (of Theorem 1). The main idea of the distinguisher D` is to exploit the advantage quantified by δT in
knowing in advance which session j∗ ∈ {1, . . . , r} is going to be “attacked”. In order to have shorter notations
within the proof, let RT denote the system encA decB [KEYrT,AUTr], while ST denotes σE SECrT, for some
simulator σ.

In a first step, the distinguisher D` selects r messages of length ` uniformly at random, one for each
session, and sends them at the A-interface to observe the corresponding ciphertexts c1, . . . , cr at the E2-
interface, which are real encryptions when interacting with RT or simulated encryptions when interacting
with ST instead. The distinguisher D` then selects uniformly at random a particular session j∗ ∈ {1, . . . , r}
and tries to break it by “running” the optimal strategy Dopt (j∗) for that particular session, where

Dopt (j) := arg max
D∈D

ΓT (j,D) ,

for all j ∈ {1, . . . , r}. “Running” Dopt (j∗) implies the following three steps. First, the trigger value t output
by Dopt (j∗) is forwarded to the interface E1,S, which when interacting with RT corresponds to querying the
trigger T on t. Second, the distinguisher D` outputs 1 if this query t resulted in breaking the session j∗ and
the key retrieved allows to decrypt the ciphertext cj∗ to the original message mj∗ . Otherwise, if the session
j∗ is still not broken, the distinguisher D` queries the interface E1,N to retrieve a switch value (s1, . . . , sr),
which when interacting with RT corresponds to the last switch value output by T, and feed it to Dopt (j∗)
to obtain the next trigger value. The distinguisher D` is given in more details in Alg. 9.

Alg. 9: Distinguisher D`

mj
$←M` and cj := �, for all j {1, . . . , r}

j∗ := �
for 1 ≤ j ≤ r do

(j, cj) := result at E2 of querying (j,mj) at A
j∗ $← {1, . . . , r}
return BreakSession(j∗)

Procedure GetSwitch
(s1, . . . , sr) := 0r
for 1 ≤ j ≤ r do

(j, k′) := result of querying (j, getkey) at E1,N
if k′ 6= then sj := 1

return (s1, . . . , sr)

Procedure BreakSession(j)
t := 1st output of Dopt (j)
while t 6= do
output t at E1,S
(s1, . . . , sr) := GetSwitch
if sj = 1 then

(j, k′) := result of querying (j, getkey) at E1,N
if dec (k′, cj) = mj then return 1
else return 0

t := emulate result of querying Dopt (j) on
(s1, . . . , sr)

return 0

We now lower bound the distinguishing advantage ∆D` (RT,ST). Note that when D` interacts with
RT, the distinguisher breaks a given session j∗ with probability exactly maxD∈D ΓT (j∗,D). If session j∗ is
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broken, then D` always outputs 1 by correctness of the encryption scheme. Thus,

PDRT (1) = 1
r

∑
j∗∈{1,...,r}

max
D∈D

ΓT (j∗,D) = ΓT
opt .

In contrast, when the distinguisher D` interacts with ST, the event that matters is whether the simulator
σ managed to break the session j∗ before sending the ciphertext cj∗ , even though the session j∗ to be broken
will only be chosen afterwards by D`. In the random experiment D`ST, let G′j be the event that the session j
was broken at least once (the trigger T output at least once a switch value with sj = 1) before the simulator
σ outputs the simulated ciphertext cj , for all j ∈ {1, . . . , r}.

Note that if the simulator σ in S manages to break the chosen session j∗ before having sent the ciphertext
cj∗ , i.e., G′j∗ = 1, then σ has the possibility of retrieving the corresponding message mj∗ and thus could
potentially perfectly simulates this ciphertext, so that PD`ST

(
1 | G′j∗ = 1

)
= 1 is possible. In contrast, when

G′j∗ = 0, the simulator σ is committed to the ciphertext cj∗ without knowing anything about the message
mj∗ but its length `. For the distinguisher D` to output 1 in this case, the simulator must be able to provide
a key k′ such that dec (k′, cj∗) = mj∗ . Since the decryption algorithm dec is deterministic, it implies that for
a fixed ciphertext cj∗ the output of dec ( · , cj∗) can take at most |K| values. The message mj∗ is uniformly
distributed overM` and thus

PD`ST
(
1 | G′j∗ = 0

)
≤ |K|

|M`|
.

Note that if the simulator σ can provoke the event G′j = 1 in the D`ST random experiment, then σ can
be used to win the event Gj = 1 against the trigger T alone. Since σ does not know in advance which session
is going to be selected by D`, its success is therefore at most the maximum of the average, i.e.,

1
r

∑
j∗∈{1,...,r}

PD`ST
(
G′j∗ = 1

)
≤ ΓT

avg.

Thus,

PD`ST (1) = 1
r

∑
j∗∈{1,...,r}

∑
b∈{0,1}

PD`ST
(
G′j∗ = b

)
· PD`ST

(
1 | G′j∗ = b

)
≤ 1

r

∑
j∗∈{1,...,r}

PD`ST
(
G′j∗ = 1

)
+ |K|
|M`|

≤ ΓT
avg + |K|

|M`|
.

Combining the previous equations gives the desired lower bound. ut

6.3 PBE with Local Assumptions

As mentioned in Remark 1, our impossibility result does not apply to the particular case of the local
password-guessing trigger LT (P, q) if the passwords are independently distributed, allowing for the existence
of password-based encryption under these assumptions. Intuitively, since each session has its own restriction
on the number of password-guessing queries, the simulation strategy can optimally brute-force each session
independently to avoid the commitment problem in the same way as in the case of a single session in
Section 6.1.

We therefore assume in this section that the passwords are independently, but not necessarily identically,
distributed. That is, there exist r password distributions P1, . . . ,Pr such that the distribution P of the
r passwords can be written as P (w1, . . . , wr) = P1 (w1) × · · · × Pr (wr), for all w1, . . . , wr ∈ W. Such a
distribution P will be called a product distribution.

Note that passwords inW can be sorted according to their likelihood of being chosen in the jth session as
given by Pj . We denote by γj,q ∈ [0, 1] the probability that the password selected in the jth session belongs
to the q most likely passwords (according to Pj), for all j ∈ {1, . . . , r} and any integer q.
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The following technical lemma shows that when constructing the downgradable secure channel SECrLT(P,q)
from the downgradable key KEYrLT(P,q) where the switch value can be changed through the trigger system
LT (P, q), it is sufficient to instead look at systems KEYrS∗ and SECrS∗ where the switch value is randomly
chosen and fixed at the beginning according to some random variable S∗.

Lemma 2. Let P be a product distribution of r passwords as described above and consider a tuple of r
integers q := (q1, . . . , qr). For each session j ∈ {1, . . . , r}, let S∗j be a binary random variable which is 1
with probability γj,qj

, and let S∗ := (S∗1 , . . . , S∗r ). Then, there exist two converters σKEY and σSEC described in
Alg. 10 and 11, respectively, such that

KEYrLT(P,q) ≡ σE
KEY KEYrS∗ and SECrS∗ ≡ σE

SEC SECrLT(P,q) .

Proof. The core systems KEYr and SECr introduced in Section 3.2 are such that a change in their switch
value modifies the behavior of the system only at the adversarial EN interface and not at the others (interface
A or B).

In the case of the key system, the converter σKEY has to be indistinguishable from KEYrLT(P,q), where
the value of the switch can be changed progressively, by having only access to KEYrS∗ , where the value of
the switch is (randomly) fixed at the beginning. To do so, the converter σKEY uses the fact it can easily
infer the value of S∗ by simply querying (j, getkey) at the EN-interface of KEYrS∗ . If the answer contains
the error symbol , then S∗j = 0, and otherwise S∗j = 1, for all j ∈ {1, . . . , r}. If S∗j = 0, then σKEY cannot
retrieve the key associated to this session and therefore declares any password guess for that session as
invalid. In contrast, if S∗j = 1, which happens with probability γj,qj , the converter σKEY must then “scale
up” the password-guessing probabilities in order to match that of KEYrLT(P,q). A password guess w for a
session where S∗j = 1 is considered valid if a coin tossed with probability Pj(w)

γj,qj
is 1. (If the same w is guessed

repeatedly by the distinguisher, then σSEC does not toss the coin again, but instead responds consistently.)
Note that this is truly a probability distribution since γj,qj

represents the winning probability of the optimal
guessing strategy for the jth session with qj queries and therefore Pj (w) ≤ γj,qj

, for all password guesses
w ∈ W. Overall, the probability of retrieving the key used in the jth session is therefore Pj (w) and thus
KEYrLT(P,q) ≡ σE

KEY KEYrS∗ . A more formal description of σKEY is in Alg. 10.

Alg. 10: Converter σKEY

sj := 0 and kj := , for all j ∈ {1, . . . , r}
on input (j, w) at outS

(j, k) := result of querying (j, getkey) at inN
if k 6= then
flip a bit b with probability Pj (w)

γj,qj

sj := sj ∨ b and kj := k

on input (j, getkey) at outN
if sj = 1 then output (j, kj) at outN
else output (j, ) at outN

Alg. 11: Converter σSEC

bforcedj := 0 for all j ∈ {1, . . . , r}
on input (j, |m|) at inN
if bforcedj = 0 then BruteForce(j, qj)
output (j, |m|) at inN

on input (j, getmsg) at outN
if bforcedj = 0 then BruteForce(j, qj)
(j,m′) := result of querying (j, getmsg) at inN
output (j,m′) at outN

Procedure BruteForce(j, q)
for 1 ≤ k ≤ q do
wk := kth most likely password according to
Pj
output (j, wk) at inS

bforcedj := 1

In contrast to σKEY, the task of σSEC is to emulate SECrS∗ , where the value of the switch is (randomly) fixed
at the beginning, from SECrLT(P,q), where its value can be changed progressively. To do so, σSEC simply does
the optimal password-guessing strategy, i.e., σSEC queries the qj most likely passwords for the jth session, for
all j ∈ {1, . . . , r}, and hence SECrS∗ ≡ σE

SEC SECrLT(P,q). A more detailed description of σSEC is in Alg. 11. ut
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Remark 2. We point out that the strategies described by the converters σKEY or σSEC in Lemma 2 have
demanding preconditions: They need to know the password distribution and, for each session, to also know
an upper bound on the number of password-guessing queries as well as to be able to sort through the set of
passwords in order to determine the most likely ones.

The next lemma shows that the protocol (enc, dec) constructs a secure channel SECrS from a key resource
KEYrS and an authenticated channel AUTr if the encryption scheme used is IND-CPA secure, for every
random switch value S.

Lemma 3. Let SE := (enc, dec) be a correct encryption scheme and consider the associated protocol SE :=
(enc, dec). Let S be a random variable arbitrarily distributed over {0, 1}r. Then, there exist a simulator σCPA

described in Alg. 12 and an (efficient) reduction system CCPA described in the proof such that

[KEYrS , AUTr]
(SE, σCPA, ε)

SECrS ,

where ε (D) := r ·∆DCCPA (GCPA
0 (SE) ,GCPA

1 (SE)), for all distinguishers D.

Proof. Let S be a random switch value arbitrarily distributed over {0, 1}r. Although the simulator σCPA does
a priori not know the value of the random switch S, it can easily retrieve it by querying the channel SECrS on
(j, getmsg). If the answer contains the error symbol , then Sj = 0, otherwise Sj = 1, for all j ∈ {1, . . . , r}. If
Sj = 0, then the simulator σCPA will never be able to retrieve the transmitted message of the jth session and
simulates therefore the transmission of a ciphertext by encrypting a random message of the correct length
under a random key. For such a session, any key retrieval query (j, getkey) will be responded with the error
symbol . In the other case, if Sj = 1, the simulator σCPA can simply retrieve the transmitted message and
encrypt it under a uniform random key to simulate perfectly the sent ciphertext. For such a session, the
actual key used for simulating the encryption will be leaked if the simulator σCPA receives a key retrieval
query. The simulator σCPA is described more precisely in Alg. 12.

Alg. 12: Simulator σCPA

k1, . . . , kr
$← {0, 1}n

on input (j, |m|) at inN(
j,m′j

)
:= result of querying (j, getmsg) at inN

if m′j = then
m′j

$← {0, 1}|m|

c← enc
(
kj ,m

′
j

)
output (j, c) at out2

on input (j, getkey) at out1,N(
j,m′j

)
:= result of querying (j, getmsg) at inN

if m′j = then output (j, ) at out1,N
else output (j, kj) at out1,N

Alg. 13: Reduction CCPA
j∗

k1, . . . , kr
$← {0, 1}n

(s1, . . . , sr)← PS
on input (j,m) at A
c := �
if sj = 0 then
if j < j∗ then
c← enc (kj ,m1), where m1

$←M|m|
else if j = j∗ then
c :=result of querying m at in

else
c← enc (kj ,m)

else c← enc (kj ,m)
output (j,m) at B
output (j, c) at E

on input (j, getkey) at EN
if sj = 0 then output (j, ) at EN
else output (j, kj) at EN

In order to have shorter notations within the proof, let us denote by RS and SS the real system
encAdecB [KEYrS ,AUTr] and the ideal system σESECrS , respectively. Note that for sessions which are “broken”
(Sj = 1) the simulation is perfect, while for the other sessions the only difference between the two systems
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RS and SS lies in the way ciphertexts are produced: RS produces encryptions of messages which were in-
put at interface A, whereas SS produces encryptions of random messages of the same length as messages
input at A. Distinguishing RS from SS can therefore be reduced to the IND-CPA security of the underlying
encryption scheme via a hybrid argument as follows.

We define a sequence of reduction systems CCPA
1 , . . . ,CCPA

r , where each reduction CCPA
j∗ has 4 outside sub-

interfaces (labeled A,B,E1,N, and E2) and connects at its inside interface in to one of the two IND-CPA
systems GCPA

0 (SE) or GCPA
1 (SE) described in Alg. 2, for all j∗ ∈ {1, . . . , r}. Initially, the reduction system

CCPA
j∗ selects r keys k1, . . . , kr uniformly at random, as well as a switch value (s1, . . . , sr) according to PS , the

distribution of the random switch S. Upon input (j,m) at its outside sub-interface A, the reduction system
CCPA
j∗ outputs (j,m) at its outside sub-interface B and (j, c) at E2, where the ciphertext c is computed as

follows. If session j is “broken” (sj = 1), then c is a local encryption of the input message m under key kj .
Otherwise, if session j is not “broken” (sj = 0), then c is a local encryption of a fresh random message of
length |m| under key kj for session j < j∗, while for session j > j∗ the ciphertext c is an actual encryption
of the input message under key kj . Finally, only for an unbroken session j = j∗ is the ciphertext c the result
of querying the system connected at its inside interface on the message m. Key retrieval queries (j, getkey)
made to the outside sub-interface E1,N of CCPA

j∗ are replied by (j, ) or (j, kj) according to the value of sj . The
reduction system CCPA

j∗ is described more formally in Alg. 13.
Note that ciphertexts produce by CCPA

1 GCPA
0 (SE) are always encryptions of messages which were input at

interface A and thus RS ≡ CCPA
1 GCPA

0 (SE). Similarly, ciphertexts produce by CCPA
r GCPA

1 (SE) are encryptions of
random messages of the same length as messages input at A, unless they are for a “broken” session in which
case the actual input message is encrypted, and thus SS ≡ CCPA

r GCPA
1 (SE). Furthermore, note that unless a

session is broken, both CCPA
j+1GCPA

0 (SE) and CCPA
j GCPA

1 (SE) produce encryptions of random messages of the
appropriate length until the jth session, while ciphertexts for sessions j + 1, . . . , r are actual encryptions
of input messages. Thus, the sequence of reduction systems CCPA

1 , . . . ,CCPA
r is such that CCPA

j+1GCPA
0 (SE) ≡

CCPA
j GCPA

1 (SE) , for all j ∈ {1, . . . , r − 1}. For a reduction system CCPA which selects a session j∗ ∈ {1, . . . , r}
uniformly at random and then implements the reduction CCPA

j∗ we have

∆DCCPA
(GCPA

0 (SE) ,GCPA
1 (SE)) = 1

r
·∆D (RS ,SS) ,

for every distinguisher D. ut

The previous lemmas allow us to easily prove that password-based encryption with these additional
local assumptions is possible if the encryption scheme used is IND-CPA secure and the r passwords are
independently distributed.

Theorem 2. Let SE := (enc, dec) be a correct encryption scheme and consider the associated protocol SE :=
(enc, dec). For every product distribution P of r passwords and every tuple of r integers q := (q1, . . . , qr),
there exist a simulator σLT and an (efficient) reduction system CLT described in the proof such that[

KEYrLT(P,q), AUTr
] (SE, σLT, ε)

SECrLT(P,q),

where ε (D) := r ·∆DCLT (GCPA
0 (SE) ,GCPA

1 (SE)), for every distinguisher D.

Proof. Consider a product distribution P of r passwords and a tuple of r integers q := (q1, . . . , qr). In order to
have shorter notations within the proof, let RLT(P,q) denote the downgradable resource

[
KEYrLT(P,q),AUTr

]
and let SLT(P,q) denote SECrLT(P,q). Given the encryption protocol SE := (enc, dec) and some resource U, it
will convenient to write SE U := encA decB U.

Then, Lemma 2 implies that there exist two converters σKEY and σSEC, as well as a random variable S∗
over {0, 1}r, such that

RLT(P,q) ≡ σ′EKEY RS∗ and SS∗ ≡ σE
SEC SLT(P,q),

where σ′KEY := 〈σKEY, id〉 and accounts for the presence in parallel of the channel AUTr in R. Lemma 3 implies
then that for such a random switch value S∗, there exist a simulator σCPA and a reduction CCPA, such that for
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all distinguishers D

∆D (SE RS∗ , σ
E
CPA SS∗

)
≤ r ·∆DCCPA

(GCPA
0 (SE) ,GCPA

1 (SE)) .

The proof then follows by composition. To see that, note that the previous system equation implies that

SE RLT(P,q) ≡ SEσ′EKEY RS∗ ≡ σ′EKEY SE RS∗ ,

where we used the fact that converters connected at different interfaces commute. Let the simulator σLT be
defined as the sequential composition of the aforementioned simulators, i.e., σLT := σ′KEY ◦ σCPA ◦ σSEC. Then,
we have σLT

E SLT(P,q) ≡ σ′EKEY σ
E
CPA SS∗ , and thus

∆D (SE RLT(P,q), σLT
E SLT(P,q)

)
≤ ∆D′ (SE RS∗ , σ

E
CPA SS∗

)
,

where D′ := Dσ′EKEY. The proof is then finished by combining both distinguishing advantages and defining
the overall reduction CLT as CLT := σ′EKEYCCPA. ut

Remark 3. The simulation strategy employed by σLT in the construction of Theorem 2 is rather peculiar.
Informally, whenever σLT has to simulate a ciphertext for a particular session, it first tries to brute force
the password of this session by probing the most likely passwords (as described by σSEC in Alg. 11). If this
step succeeds, σLT can perfectly simulate the transmitted ciphertext, otherwise it simply encrypts a random
message of the appropriate length (as described by σCPA in Alg. 12). Finally, even though σLT exhausts its
password-guessing queries at the beginning, it can emulate the correct answer to an outside password-guessing
query by appropriately scaling the probabilities (as described by σKEY in Alg. 10). Note that the assumptions
discussed in Remark 2 are also required for σLT.

6.4 Salting and Per-Session Security

In this section we examine the well-known salting technique, a standard tool to achieve domain separation in
password hashing. This technique consists of prefixing all queries made to a single random oracle by a distinct
bit string in each of the r sessions, making the queries from different sessions land in different subdomains of
the random oracle. In practice, a randomly chosen bit string is used for every session, maintaining the same
properties with high probability.

Assumed resources. The construction statement below assumes the availability of a single random oracle
and the strings used for salting. The random oracle ROq is restricted by allowing Eve to ask at most q queries.
The source of salts is formalized as a resource SALT and parameterized by a distribution R of r distinct t-bit
strings, for some appropriate integer t. The resource SALT (R) first samples (v1, . . . , vr) from R and then
outputs (j, vj) at interface i ∈ {A,B,E} whenever it receives a query (j, getsalt) at the same interface, for
any j ∈ {1, . . . , r}. Note that the prefixes used in each session are public and can be retrieved by Eve.

The prefixing protocol. Both Alice and Bob use the bit strings provided by the salting resource to prefix
their queries as described by the following converter pre: Upon input (j, x) at its interface out, corresponding
to hashing a message x ∈ {0, 1}∗ for the jth session, the converter pre retrieves the prefix vj associated with
that session by querying SALT (R) on (j, getsalt) and then outputs the value returned by the single random
oracle when queried on vj ‖x.

Desired resource. The goal of the prefixing protocol PRE := (pre, pre) is to construct r independent random
oracles. Since the assumed random oracle ROq can be queried by Eve at most q times, the constructed resource
will naturally have a similar restriction. Namely, the following lemma shows that the prefixing protocol PRE
constructs r globally restricted random oracles [RO, . . . ,RO]q.

Lemma 4. Consider the prefixing protocol PRE := (pre, pre) described above. Then, for every distribution
R of r distinct bit strings of equal length and every integer q, there exists a simulator σpre such that

[ROq,SALT (R)]
(PRE, σpre, 0)

[RO, . . . ,RO]q .
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Proof. The simulator σpre first selects r bit strings (v1, . . . , vr) of equal length according to the distribution
R. Then, whenever a salt retrieval query (j, getsalt) for the jth session is input at its interface out2, the
simulator σpre returns (j, vj) at the same interface. When a message x ∈ {0, 1}∗ to be hashed is input at
its interface out1, the simulator σpre first checks whether one of the strings vj is a prefix of x, i.e., whether
x = vj ‖x′ for some j ∈ {1, . . . , r} and x′ ∈ {0, 1}∗. If this is the case, then σpre returns the answer of the
jth random oracle when queried on x′. Otherwise, the simulator σpre simply returns a uniform n-bit string.
The simulator σpre replies consistently to any repeating query and in addition keeps track of the number of
queries to avoid too many “dummy” queries, i.e., queries which are not prefixed by one of the strings vj . It
can be readily verified that the simulation is perfect. ut

Unfortunately, it is easy to show that the same salting protocol PRE cannot construct r locally restricted
random oracles [ROq1 , . . . ,ROqr

], at least not unless qj ≥ q for all j ∈ {1, . . . , r} (the latter would render this
construction uninteresting due to the blow-up in the number of adversarial queries). To see this, consider
the systems R := preA preB [ROq,SALT (R)] and S := σE [ROq1 , . . . ,ROqr ] for some arbitrary simulator σ.
In the real experiment, a distinguisher making a query (j, x) to the interface A and a query (j, vj‖x) to the
interface E1 of R, where vj is the prefix for the jth session output by the salting resource, observes the same
output. Hence, in the ideal experiment, for any query of the type (j, vj‖x) the simulator σ has to query the
jth random oracle ROqj

on x in order to be able to mimic this behavior. Thus, a distinguisher can choose
any session j and make all its q queries to the associated random oracle ROqj

by appropriately prefixing
each query, hence requiring qj ≥ q for any successful simulator to exist.

Consequences for local restrictions. The above observation implies that relying on local query restric-
tions for multi-session security of password-based encryption (as in Theorem 2) appears to be in general
rather unrealistic. The salting technique employed in PKCS #5 [Kal00] (and more generally, any domain
separation technique which is public) fails to construct locally restricted random oracles [ROq1 , . . . ,ROqr ]
from a single random oracle ROq for any meaningful values of q1, . . . , qr.

6.5 On the Per-Session Security of PBE from PKCS #5

In this section we show how the arguments used to prove Theorem 1 also apply to the password-based
encryption standard described in PKCS #5 [Kal00], which thus in general does not achieve per-session
confidentiality.

Recall that the protocol described in [Kal00] consists of hashing a salt concatenated with a password
and of using the result as a key for encryption.7 Formalized as a pair of converters (pbe, pbd), this protocol
corresponds to first doing the salting step via the protocol (pre, pre) described in Section 6.4, then the key
derivation protocol (kd, kd) described in Section 4 and finally symmetric encryption (enc, dec) described in
Section 6. As detailed in previous sections, such a protocol assumes the following resources to be available:
a random oracle ROq, a source of salts SALT (R), a source of shared passwords PW (P), and finally an
authenticated communication channel AUTr for each of the r sessions. We denote by RKDF (q,R,P) the
resources used for key derivation, i.e.,

RKDF (q,R,P) := [ROq,SALT (R) ,PW (P)] .

Theorem 3. Let SE := (enc, dec) be a correct encryption scheme with key space K := {0, 1}n and message
spaceM⊆ {0, 1}∗, and consider the combined protocol (pbe, pbd) described above. Let T be a trigger system
with input space {1, . . . , r} ×W and output space {0, 1}r, and let M` denote a non-empty set of messages
of fixed length ` in M, for some integer `. Then, for every integer q, every distribution R of r distinct bit
strings of the same length and every distribution P of r passwords, there exists a distinguisher D′` described
in Alg. 14 such that for all simulators σ we have

∆D′`
(

pbeA pbdB [RKDF (q,R,P) ,AUTr] , σE SECrT
)
≥ δ

GT(P,q)
T − µ,

7 Additionally, it also increases the cost of a brute-force attack by iterative hashing. This is however an orthogonal
issue, see [DGMT15] for a detailed discussion.
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where δT2
T1

:= ΓT2
opt − ΓT1

avg, with ΓT2
opt and ΓT1

avg defined in (1), and

µ ≤ r ·∆DCPA
`,q (GCPA

0 (SE) ,GCPA
1 (SE)) + (r + 1) · |K|

|M`|
,

for a distinguisher DCPA
`,q described in Alg. 15.

The proof is analogous to that of Theorem 1 and consequently the same limitations mentioned in Remark 1
also apply to Theorem 3. Indeed, if the encryption scheme used is IND-CPA secure and uses significantly less
keys than messages, then the dominant term in the lower bound above is δGT(P,q)

T which may become moot
depending on the trigger T considered in the constructed resource. However, in the case where the passwords
are independently distributed and T := GT (P, p), the quantity δ

GT(P,q)
T will be large for most password

distributions until p < rq, since following the optimal guessing strategy for a particular session usually
requires to exhaust all q guesses. Likewise, if instead T := LT (P, q), for some integers q := (q1, . . . , qr), then
δ

GT(P,q)
T will be large if qj < q for some j ∈ {1, . . . , r}.

Proof (of Theorem 3). The main idea is to use the same strategy as the distinguisher D` in Alg. 9 which, very
roughly, consists of the following three steps: 1) input r messages m1, . . . ,mr of length ` chosen uniformly
at random; 2) observe the corresponding ciphertexts c1, . . . , cr; and 3) “run” the optimal strategy to break
a session j∗ chosen uniformly at random. We need to adapt this last step since the resources considered,
contrary to those in Theorem 1, do not have a switch value sj indicating whether session j is broken.

In order to have shorter notations within the proof, the real system pbeA pbdB [RKDF (q,R,P) ,AUTr]
will be denoted by R and the ideal system σE SECrT will be denoted by ST, for some simulator σ and some
({1, . . . , r} ×W, {0, 1}r)-trigger system T. Eve’s interface in R is split as follows: sub-interfaces E1,1,E1,2 and
E1,3 denote the respective E-interface of the resources ROq, SALT (R) and PW (P) in the combined resource
RKDF (q,R,P); while the sub-interface E2 of R denotes the E-interface of the authenticated channel AUTr.

Similarly to D`, the new distinguisher D′` “runs” the optimal strategy Dopt (j∗) for guessing the password
used in a randomly chosen session j∗, where

Dopt (j) := arg max
D∈D

ΓGT(P,q) (j,D) ,

for all j ∈ {1, . . . , r}. Note that Dopt (j∗) expects as input an r-bit string indicating the “broken” state of
each session. To do so, the distinguisher D′` keeps a state (s1, . . . , sr) which is updated as follows. Given
a password guess (j, w) for session j (which could a priori be different from j∗), the new distinguisher D′`
declares session j “broken” if the output k of the random oracle when queried on vj ‖w, where vj is the prefix
used for session j, is such that dec (k, cj) = mj . The distinguisher D′` is given in more details in Alg. 14.

Alg. 14: Distinguisher D′`
mj

$←M`, cj := � and sj := 0, for all j {1, . . . , r}
j∗ := �
for 1 ≤ j ≤ r do

(j, cj) := result at E2 of querying (j,mj) at A
j∗ $← {1, . . . , r}
return BreakSession(j∗)

Procedure BreakSession(j)
(j′, w) := 1st output of Dopt (j)
while (j′, w) 6= do
vj′ :=result of querying (j′, getsalt) at E1,2
kj′ :=result of querying vj′ ‖w at E1,1
if dec (kj′ , cj′) = mj′ then sj′ := 1
if sj = 1 then return 1
t := emulate result of querying Dopt (j) on
(s1, . . . , sr)

return 0

We now lower bound the distinguishing advantage ∆D′` (R,ST). Let Gj be the event that the password
used in session j was correctly guessed in the D′`R random experiment, i.e., a query prefixed by vj made to
the random oracle at interface E matches a previous query made to the random oracle at interface A or B,
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where vj is is the prefix used for session j output by the salting resource SALT (R). If the distinguisher D′`
manages to guess the password of a given session j∗, it will necessarily output 1 due to the correctness of
the encryption scheme, i.e.,

PD′`R (1) ≥ 1
r

∑
j∗∈{1,...,r}

PD′`R (Gj∗=1) .

However, note that the switch values (s1, . . . , sr) emulated by the distinguisher D′` and which are input to
Dopt (j∗) have a different distribution than when Dopt (j∗) interacts with the trigger GT (P, q) alone. Indeed,
in the D′`R random experiment, if a session j is declared to be “broken” (sj = 1), it does not necessarily
mean that Dopt (j∗) correctly guessed the password used in session j, it could also be due to either collisions
in the random oracle or to the existence of a second key k such that dec (k, cj) = mj . This implies that
PD′`R (Gj∗=1) may be smaller than maxD∈D ΓGT(P,q) (j∗,D) and we must thus bound this difference.

To do so, let Bj be the event in the D′`R random experiment that a query made to the random oracle at
its E interface resulted in session j being declared “broken” (sj = 1) even though the password used in session
j was not yet guessed (Gj = 0) and let B be the union of these events Bj , for all j ∈ {1, . . . , r}. Conditioned
on the event B not happening, a session is declared “broken” if and only if its password is guessed and thus

PD′`R (Gj∗=1) ≥ max
D∈D

ΓGT(P,q) (j∗,D)− PD′`R (B = 1) ,

for every session j∗ ∈ {1, . . . , r}.
From the union bounds, it follows PD′`R (B = 1) ≤

∑
j∈{1,...,r} PD′`R (Bj = 1) and we now upper bound

the probability of the event Bj happening in the D′`R random experiment, for some session j. Consider
a query vj ‖w made to the random oracle at its interface E, for some password guess w ∈ W and where
vj is the prefixed associated with session j, such that this query provoked the event sj = 1 even though
Gj = 0. Note that such a query vj ‖w was never asked before to the random oracle at interface E (since
it provoked the event sj = 1), and was also never queried by the honest parties at interface A or B of the
random oracle since the password for that session is not guessed (Gj = 0) and other sessions use different
prefixes. Thus, the answer of the random oracle on such a fresh query vj ‖w is uniformly and independently
distributed and conditioned on a given message mj and ciphertext cj the probability that Bj = 1 is thus
at most q · 2−n |{k′ ∈ K | dec (k′, cj) = mj}| since there are at most q queries made to the random oracle at
interface E. As cj is an encryption of mj under a random key, it then follows that

PD′`R (Bj = 1) ≤ q · κ`2n ,

where κ` denotes the average number of keys decrypting a ciphertext to the original random message of
length `, i.e., κ` := Em,c [|{k′ ∈ K | dec (k′, c) = m}|] where the expectation is taken over a message m
chosen uniformly at random inM` and c← enc (k,m) for a uniformly chosen key k.

Note that if the encryption scheme used is IND-CPA se-
cure, then the ratio q κ`

2n will be small. To see that, consider
a distinguisher DCPA

`,q which interacts with the CPA systems
GCPA
b (SE) described in Alg. 2. The distinguisher DCPA

`,q first
selects a message m uniformly at random inM`, then out-
puts it to GCPA

b (SE) to retrieve the ciphertext c and finally
tries to decrypt it by selecting q keys uniformly at random.

Alg. 15: Distinguisher DCPA
`,q

m $←M`

c :=result of querying m to GCPA
b (SE)

for 1 ≤ u ≤ q do
k′ $← K
if dec (k′, c) = m then return 0

return 1
The distinguisher DCPA

`,q outputs 0 when connected to GCPA
0 (SE) with probability exactly q κ`

2n . In contrast,
when interacting with GCPA

1 (SE), the ciphertext c produced is independent of the message and thus DCPA
`,q

outputs 0 with probability at most |K|
|M`| . Thus,

q · κ`2n ≤ ∆DCPA
`,q (GCPA

0 (SE) ,GCPA
1 (SE)) + |K|

|M`|
.
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The previous equations imply that

PD′`R (1) ≥ ΓGT(P,q)
opt − r ·

(
∆DCPA

`,q (GCPA
0 (SE) ,GCPA

1 (SE)) + |K|
|M`|

)
.

Similarly to the proof of Theorem 1, the disitnguisher D′` outputs 1 when interacting with the ideal
system ST with probability at most ΓT

avg + |K|
|M`| . The desired bound is then obtained by combining the last

two equations. ut

7 Conclusion

The work of Bellare et al. [BRT12] initiated the provable-security analysis of the techniques used in the
password-based cryptography standard [Kal00] and its application in password-based encryption. As dis-
cussed in Section 1, however, they do not prove the desired per-session security guarantee for PBE.

Even though Theorem 2 shows that the results of [BRT12] carry over to a composable model with
per-session guarantees, this requires corresponding per-session assumptions on the distribution of adversary
computation, and the simulation strategy we use is already quite peculiar: the simulator needs to know
the password distribution and it must also make all password-guessing attempts before simulating the first
ciphertext. This means that the constructed resource allows the attacker to aggregate its entire “computa-
tional power” and spend it in advance rather than distributed over the complete duration of the resource
use, which results in a weaker guarantee than one might expect.

Our general impossibility result in Theorem 1 shows that bounding the adversary’s queries per session,
although an unrealistic assumption (as discussed in Section 6.4), is necessary for a simulation-based proof of
security of PBE. Otherwise, a commitment problem akin to the one in adaptively secure public-key encryption
(PKE) surfaces. Does that mean that we should stop using PBE in practice? In line with Damgård’s [Dam07]
perspective on adaptively secure PKE, where a similar commitment-problem occurred [Nie02], we view this
question as being a fundamental research question still to be answered.8 On the one hand, we lack an
attack that would convincingly break PBE, but on the other hand we also lack provable-security support,
to the extent that we can even show the impossibility in our model. Applications using these schemes
should therefore be aware of the potential risk associated with their use. We believe that pointing out this
commitment problem for PBE, analogously to adaptively secure PKE, is an important contribution of this
paper.
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A On Translating our Results into the UC Framework

While the statements proven in this work can in principle also be obtained in the UC framework, their for-
malization becomes more complex. The main relations and differences affecting the modeling and statements
are as follows.

1. Resources in constructive cryptography (CC) correspond (roughly, see below) to functionalities in UC,
and both the sender’s and the receiver’s converters of a protocol are encoded in a single protocol machine
(the role is specified, for instance, in the first input). The insecure channel is not modeled explicitly,
because the communication is relayed by the adversary in UC.

2. Since the definition of UC security, unlike our Definition 1, does not contain a statement about the
correctness of a protocol, trivial protocols such as those never sending messages have to be excluded
explicitly. (They are trivial to simulate by a simulator that never delivers the message.)

3. The separation of the transformable system into a core and a trigger system as described in Section 3
requires formal care, because the communication with these different systems has to be done using
different Turing machine IDs, and the core system must accept the switch values only from the trigger
system. This can be enforced using the machine IDs.

4. The technically most challenging difference is that resources in CC correspond to Turing machine in-
stances; a UC statement about Turing machines allows for an a priori unbounded number of instances,
whereas the number of instances is explicit in constructive statements. These restrictions can however
be made explicit in the code of the Turing machines and enforced by referring to the machine ID. This
means that our negative statements in Theorems 1 and 3 carry over to UC almost immediately, whereas
the positive statements in Theorems 2 and 4 and Lemma 4 can also be proven but require functionalities
that each allow for only a single instance.
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B Password-Based Message Authentication

The goal of this section is to deepen and formalize the claims about password-based MACs sketched in
Section 5. Since the security of a MAC scheme is stated as winning a game, and not as a distinguishing
problem, we first recall known concepts about game winning.

B.1 Games

In the following, we denote a tuple of n random variables (X1, . . . , Xn) by Xn. Similarly, xn denotes a tuple
of n values (x1, . . . , xn).

The behavior of an (X ,Y)-random system S can be captured as in [Mau02, Mau13] by a (possibly infinite)
sequence of functions pS

Y k|Xk : X k × Yk → [0, 1], where pS
Y k|Xk

(
yk, xk

)
is the probability of observing the

outputs yk given the inputs xk.
A central tool in deriving an indistinguishability proof between two systems is to characterize both

systems as being equivalent until a certain condition arises [Mau02, BR06]. Thus, being able to distinguish
both systems requires to provoke this condition, and one is then interested in upper-bounding the probability
of this event. Interacting with a random system in order to provoke a certain condition is naturally modeled
by defining an additional monotone binary output (MBO) on the original system, where the binary output
is monotone in the sense that it is initially set to 0 and that, once it has turned to 1, it can not turn back to
0. An (X ,Y × {0, 1})-system where the second output component is monotone is often indicated by using a
system symbol with a hat, such as R̂.

For an (X ,Y × {0, 1})-system R̂ with an MBO, the (X ,Y)-system obtained from R̂ by ignoring the MBO
will usually be referred to as R (i.e., we simply omit the hat). Two (X ,Y × {0, 1})-systems R̂ and Ŝ with
an MBO A1, A2, . . . are said to be game equivalent, denoted R̂

g
≡ Ŝ, if they behave identically as long as

they are not won, i.e,
pR̂
Y k,Ak=0|Xk = pŜ

Y k,Ak=0|Xk ,

for all k.
Given a distinguisher D and an (X ,Y × {0, 1})-system R̂ with an MBO, we denote by ΓD

(
R̂
)

the

probability that D provokes the MBO in the random experiment formed by D interacting with R̂. In this
context, D will often be referred to as a game winner.

Lemma 5 ([Mau13, Lem. 1,2]). Let R̂ and Ŝ be two games such that R̂
g
≡ Ŝ. Then, for any distinguisher

D
∆D (R,S) ≤ ΓD

(
R̂
)

= ΓD
(

Ŝ
)
.

B.2 Password-Based MACs

Given a MAC scheme MAC := (tag, vrf ), recall the associated
protocol MAC := (tag, vrf) described in Section 5. The next the-
orem proves that if the MAC scheme employed is WUF-CMA
secure, then the protocol MAC constructs an unordered authen-
ticated channel UAUTrT, where UAUTr is described in Alg. 16,
from a downgradable key resource KEYrT and an insecure chan-
nel INSECr, for any trigger system T ∈ {LT (P, q) ,GT (P, q)}.
The real and the ideal experiment involved in the constructions
statement are represented in Fig. 2 in Section 5. The arguments
used in the proof of Theorem 4 could easily be extended to the
case of any trigger T with output space {0, 1}r and bit-wise non
decreasing output.

Alg. 16: Channel UAUTr

sj := 0 and Qj := ∅, for all
j ∈ {1, . . . , r}
on input (j,m) at A
Qj := Qj ∪ {m}
output (j,m) at EN

on input s ∈ {0, 1}r at ES
(s1, . . . , sr) := s

on input (j, getsw) at EN
output (j, sj) at EN

on input (j′,m′) at EN
if (sj′ = 1) ∨ (m′ ∈ Qj′) then
output (j′,m′) at B
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Theorem 4. Let MAC := (tag, vrf ) be a correct MAC scheme and consider the associated protocol MAC :=
(tag, vrf). Then, there exists a simulator σMAC described in Alg. 17 such that for every distribution P of r pass-
words, every tuple of r integers q := (q1, . . . , qr) and any integer q, and any trigger T ∈ {LT (P, q) ,GT (P, q)},

[KEYrT, INSECr]
(MAC, σMAC, εT)

UAUTrT,

where εT (D) := r ·ΓCCMA
T (GCMA (MAC)), for every distinguisher D, where the reduction system CCMA

T depends
on the trigger T and is described below in the proof.

Proof. The simulator σMAC initially selects for each session j a key kj uniformly at random and uses it to
either compute tags, whenever a message is received at its in-interface, or to verify the tag of a message,
whenever an injection query (j,m′ ‖u′) is input at its out2-interface. The simulator forwards any password
guessing query to the trigger of the resource and outputs the selected key kj only if the password associated
with this session was broken. The simulator σMAC is described in more details in Alg. 17.

Alg. 17: Simulator σMAC

kj
$← {0, 1}n, for all j ∈ {1, . . . , r}

on input (j,m) at inN
u := tag (kj ,m)
output (j,m ‖u) at out2

on input (j′,m′ ‖u′) at out2
if vrf (kj′ ,m′, u′) = 1 then
output (j′,m′) at inN

on input (j, w) at out1,S
output (j, w) at inS

on input (j, getkey) at out1,N
s := result of querying (j, getsw) at inN
if s = 1 then output (j, kj) at out1,N
else output (j, ) at out1,N

Alg. 18: Reduction CCMA
T,j∗

(s1, . . . , sr) := 0r and k1, . . . , kr
$← {0, 1}n

on input (j,m) at A
u← tag (kj ,m)
if j = j∗ then u :=result of querying (tag,m) at in
output (j,m ‖u) at E2

on input (j′,m′ ‖u′) at E2
b := vrf (kj′ ,m′, u′)
if j′ = j∗ then b := result of querying (vrf,m′, u′) at in
if b = 1 then output (j′,m′) at B

on input (j, w) at E1,S
(s1, . . . , sr) := emulate result of querying T on (j, w)

on input (j, getkey) at E1,N
if (sj = 0) ∨ (j = j∗) then output (j, ) at E1,N
else output (j, kj) at E1,N

In order to have shorter notations within the proof, the real system tagA vrfB [KEYrT, INSECr] will be
denoted by RT and the ideal system σE

MAC UAUTrT will be denoted by ST, where T ∈ {LT (P, q) ,GT (P, q)}.
Observe that the only difference between the systems RT and ST is that if a fresh message m′ is injected by
Eve together with a successfully forged tag, such a message m′ is always output at Bob’s interface B in the
system RT, whereas in ST such a message m′ is only output if the password associated with that session
was previously guessed. Let us add a monotone binary output to the systems RT and ST, to obtain the
corresponding games R̂T and ŜT, defined as follows: the MBO A1, A2, . . . becomes 1 as soon as (j,m′ ‖u′)
is input to the E2-interface such that the message (j,m′) was never input to the A-interface before, the tag
is valid vrf (kj ,m′, u′) = 1, and the jth password was not guessed (sj = 0). Then, the previous observation
implies that R̂T

g
≡ ŜT and together with Lemma 5 we have

∆D (RT,ST) ≤ ΓD
(

R̂T

)
,

for all distinguishers D.
We now reduce the task of winning the game R̂T to the task of winning the WUF-CMA security game

GCMA (MAC) described in Alg. 1. To do so, we consider a sequence of reduction systems CCMA
T,1 , . . . ,CCMA

T,r , where
each reduction CCMA

T,j∗ has 5 outside sub-interfaces (labeled A,B,E1,N,E1,S and E2) and connects at its inside
interface to the WUF-CMA game GCMA (MAC), for all j∗ ∈ {1, . . . , r}. The basic idea of the reduction CCMA

T,j∗

is to forward any tag or verification query for session j∗ to the system connected at its inside interface,
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while other sessions are handled locally. The reduction CCMA
T,j∗ also emulates internally the trigger T, which

in the case of LT (P, q) or GT (P, q) corresponds to first sample r passwords according to P and then to
appropriately count the number of password-guessing queries, in order to keep track of which session should
be considered “broken”. Key retrieval queries are handled as usual, excepted for session j∗ for which the error
symbol is always returned. A more formal description of the reduction system CCMA

T,j∗ is given in Alg. 18.
Consider a distinguisher D interacting with the game R̂T in order to provoke its MBO. Let Fj be the

event that in this random experiment the distinguisher D won the game R̂T by finding a forgery for a fixed
session j, i.e., (j,m′ ‖u′) was input at the E2-interface such that (j,m′) was never input to the A-interface
before, the tag is valid vrf (kj ,m′, u′) = 1, and the jth password was not guessed (sj = 0), for some message
m′ ∈ M and tag u′ ∈ U . The probability that this event Fj happens in this random experiment is denoted
PDR̂T (Fj = 1). Note that winning the game R̂T involves provoking one of the events Fj , for some session
j ∈ {1, . . . , r}, and thus

ΓD
(

R̂T

)
≤

∑
j∈{1,...,r}

PDR̂T (Fj = 1) .

Let us fix the randomness used in the random experiment DR̂T (consisting of the randomness of the
distinguisher D, the r keys used for tagging, the r passwords and the randomness of the algorithm tag).
Conditioned on this randomness, any transcript of queries which provokes the event Fj in DR̂T also wins
the game CCMA

T,j GCMA (MAC). Moreover, in a such a transcript the password associated with the jth session is
not guessed (sj = 0) and thus such a transcript happens with the same probability in the random experiment
DCCMA

T,j GCMA (MAC). Hence,
PDR̂T (Fj = 1) ≤ ΓCCMA

T,j (GCMA (MAC)) ,

for all sessions j ∈ {1, . . . , r}. The previous equations implies that the reduction CCMA
T , which consists in

selecting a session j∗ uniformly at random in {1, . . . , r} and then implementing the reduction CCMA
T,j∗ is such

that
ΓD
(

R̂T

)
≤ r · ΓCCMA

T (GCMA (MAC)) ,

for all distinguishers D. ut
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