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Abstract
Computational notions of entropy have recently found many applications, including leakage-
resilient cryptography, deterministic encryption or memory delegation. The two main types of
results which make computational notions so useful are (1) Chain rules, which quantify by how
much the computational entropy of a variable decreases if conditioned on some other variable (2)
Transformations, which quantify to which extend one type of entropy implies another.

Such chain rules and transformations typically lose a significant amount in quality of the
entropy, and are the reason why applying these results one gets rather weak quantitative security
bounds. In this paper we for the first time prove lower bounds in this context, showing that
existing results for transformations are, unfortunately, basically optimal for non-adaptive black-
box reductions (and it’s hard to imagine how non black-box reductions or adaptivity could be
useful here.)

A variable X has k bits of HILL entropy of quality (ε, s) if there exists a variable Y with k bits
min-entropy which cannot be distinguished from X with advantage ε by distinguishing circuits
of size s. A weaker notion is Metric entropy, where we switch quantifiers, and only require that
for every distinguisher of size s, such a Y exists.

We first describe our result concerning transformations. By definition, HILL implies Met-
ric without any loss in quality. Metric entropy often comes up in applications, but must be
transformed to HILL for meaningful security guarantees. The best known result states that if a
variable X has k bits of Metric entropy of quality (ε, s), then it has k bits of HILL with quality
(2ε, s · ε2). We show that this loss of a factor Ω(ε−2) in circuit size is necessary. In fact, we show
the stronger result that this loss is already necessary when transforming so called deterministic
real valued Metric entropy to randomised boolean Metric (both these variants of Metric entropy
are implied by HILL without loss in quality).

The chain rule for HILL entropy states that if X has k bits of HILL entropy of quality (ε, s),
then for any variable Z of length m, X conditioned on Z has k −m bits of HILL entropy with
quality (ε, s · ε2/2m). We show that a loss of Ω(2m/ε) in circuit size necessary here. Note that
this still leaves a gap of ε between the known bound and our lower bound.

1 Introduction

There exist various information theoretic notions of entropy that quantify the “uncertainty"
of a random variable. A variable X has k bits of Shannon entropy if it cannot be compressed
below k bits. In cryptography we mostly consider min-entropy, where we say that X has k
bits of min-entropy, denoted H∞ (X) = k, if for any x, Pr[X = x] ≤ 2−k.

In a cryptographic context, we often have to deal with variables that only appear to have
high entropy to computationally bounded observers. The most important case is pseudor-
andomness, where we say that X ∈ {0, 1}n is pseudorandom, if it cannot be distinguished
from the uniform distribution over {0, 1}n.

More generally, we say that X ∈ {0, 1}n has k ≤ n bits of HILL pseudoentropy [12],
denoted HHILL

ε,s (X) = k if it cannot be distinguished from some Y with H∞ (Y ) = k by any
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circuit of size s with advantage > ε, note that we get pseudorandomness as a special case
for k = n. We refer to k as the quantity and to (ε, s) as the quality of the entropy.

A weak notion of pseudoentropy called Metric pseudoentropy [3] often comes up in
security proofs. This notion is defined like HILL, but with the quantifiers exchanged: We
only require that for every distininguisher there exists a distribution Y,H∞ (Y ) = k that
fools this particular distinguisher (not one such Y to fool them all).

HILL pseudoentropy is named after the authors of the [12] paper where it was introduced
as a tool for constructing a pseudorandom generator from any one-way function. Their
construction and analysis was subsequently improved in a series of works [11, 13, 25]. A
lower bound on the number of calls to the underlying one-way function was given by [14].1
More recently HILL pseudoentropy has been used in many other applications like leakage-
resilient cryptography [6, 17], deterministic encryption [7] and memory delegation [4].

The two most important types of tools we have to manipulate pseudoentropy are chain
rules and transformations from one notion into another. Unfortunately, the known trans-
formations and chain rules lose large factors in the quality of the entropy, which results in
poor quantitative security bounds that can be achieved using these tools. In this paper we
provide lower bounds, showing that unfortunately, the known results are tight (or almost
tight for chain rules), at least when considering non-adaptive black-box reductions. Al-
though black-box impossibility results have been overcome by non black-box constructions
in the past [2], we find it hard to imagine how non black-box constructions or adaptivity
could help in this setting. We believe that relative to the oracles we construct also adaptive
reductions are impossible as adaptivity “obviously” is no of use, but proving this seems hard.
Our results are summarized in Figures 1 and 2.

1.0.0.1 Complexity of the adversary.

In order to prove a black-box separation, we will construct an oracle and prove the separation
unconditionally relative to this oracle, i.e., assuming all parties have access to it. This then
shows that any construction/proof circumventing or separation in the plain model cannot
be relativizing, which in particular rules out all black-box constructions [1, 16].

In the discussion below we measure the complexity of adversaries only in terms of num-
bers of oracle queries. Of course, in the actual proof we also bound them in terms of circuit
size. For our upper bounds the circuits will be of basically the same size as the number
of oracle queries (so the number of oracle queries is a good indication of the actual size),
whereas for the lower bounds, we can even consider circuits of exponential size, thus making
the bounds stronger (basically, we just require that one cannot hard-code a large fraction of
the function table of the oracle into the circuit).

1.0.0.2 Transformations.

It is often easy to prove that a variable X ∈ {0, 1}n has so called Metric pseudoentropy
against deterministic distinguishers, denoted HMetric

ε,s
,det{0,1}(X) = k. Unfortunately, this

notion is usually too weak to be useful, as it only states that for every (deterministic,
boolean) distinguisher, there exists some Y with H∞ (Y ) = k that fools this particular

1 Their Ω(n/log(n)) lower bound matches existing constructions from regular one-way functions [10].
For general one-way functions this lower bound is still far of the best construction [25] making Θ̃(n3)
calls.
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X ∈ {0, 1}n

HMetric
ε,s

,det{0,1}(X) = k HMetric
ε′,s′

,det[0,1](X) = k HMetric
ε′′,s′′

,rand{0,1}(X) = k HHILL
ε′′′,s′′′(X) = k

ε′ = ε

s′ ≈ s (due to [21])

ε′′′ = 2ε′
s′′′ = Ω(s′ · ε′2/(n− k + 1)) (due to [3, 24])

Theorem 6:
s′′ = O(s′ · ε′2/ln(1/ε′)) necessary
if ε′′ = O(ε′)

ε′′ = ε′′′

s′′ = s′′′
(by definition)ε′ = ε′′

s′ = s′′
(due to [8])ε = ε′

s = s′
(by definition)

Figure 1 Transformations: our bound comparing to the state of art. Our Thm. 6, stating that a
loss of ε′2/ ln(1/ε′) in circuit size is necessary for black-box reductions that show how deterministic
implies randomized metric entropy (if the advantage ε′ remains in the same order) requires ε′ =
2−O(n−k+1) and thus ln(1/ε′) ∈ O(n−k+1), so there’s no contradiction between the transformations
from [3,24] and our lower bound (i.e., the blue term is smaller than the red one).

distinguisher, but one usually needs a single Y that fools all (randomised) distinguishers,
this is captured by HILL pseudoentropy.

Barak et al. [3] show that any variable X ∈ {0, 1}n that has Metric entropy, also has
the same amount of HILL entropy. Their proof uses the min-max theorem, and although
it perseveres the amount k of entropy, the quality drops from (ε, s) to (2ε,Ω(s · ε2/n)).
A slightly better bound

(
2ε,Ω(s · ε2/(n+ 1− k))

)
(where again k is the amount of Metric

entropy), was given recently in [24]. The argument uses the min-max theorem and some
results on convex approximation in Lp spaces.

In Theorem 6 we show that this is optimal – up to a small factor Θ((n− k+ 1)/ ln(1/ε))
– as a loss of Ω(ln(1/ε)/ε2) in circuit size is necessary for any black-box reduction. Note
that for sufficiently small ε ∈ 2−Ω(n−k+1) our bound even matches the positive result up to
a small constant factor.

The high-level idea of our separation is as follows; We construct an oracleO and a variable
X ∈ {0, 1}n, such that relative to this oracle X can be distinguished from any variable Y
with high min-entropy when we can make one randomized query, but for any deterministic
distinguisher A, we can find a Y with high min-entropy which A cannot distinguish from X.

To define O, we first choose a uniformly random subset S ∈ {0, 1}n of size |S| = 2m.
Moreover we chose a sufficiently large set of boolean functions D1(·), . . . , Dh(·) as follows:
for every x ∈ S we set Di(x) = 1 with probability 1/2 and for every x 6∈ S, Di(x) = 1 with
probability 1/2 + δ.

Given any x, we can distinguish x ∈ S from x 6∈ S with advantage ≈ 2δ by quering
Di(x) for a random i. This shows that X cannot have much more than log(|S|) = m

bits of HILL entropy (in fact, even probabilistic Metric entropy) as any variable Y with
H∞ (Y ) > m + 1 has at least half of its support outside S, and thus can be distinguished
with advantage ≈ 2δ/2 = δ with one query as just explained. Concretely (recall that in this
informal discussion we measure size simply by the number of oracle queries)

HMetric
δ,1

,rand{0,1}(X) 6 m+ 1

On the other hand, if the adversary is allowed q deterministic queries, then intuitively, the
best it can do is to query D1(x), . . . , Dq(x) and guess that x ∈ S if less than a 1/2 + δ/2
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fraction of the outputs is 1. But even if q = 1/δ2, this strategy will fail with constant
probability. Thus, we can choose a Y with large support outside S (and thus also high min-
entropy) which will fool this adversary. This shows that X does have large Metric entropy
against deterministic distinguishers, even if we allow the adversaries to run in time 1/δ2,
concretely, we show that

HMetric
Θ(δ),O(1/δ2)

,det{0,1}(X) > n−O(log(1/δ))

1.0.0.3 The adversary.

Let us stress that we show impossibility in the non-uniform setting, i.e., for any input
length, the distinguisher circuit can depend arbitrarily on the oracle. Like in many non-
uniform black-box separation results (including [19,21,23,27,28]), the type of adversaries for
which we can rigorously prove the lower bound is not completely general, but the necessary
restrictions seem “obviously” irrelevant. In particular, given some input x (where we must
decide if x ∈ S), we only allow the adversary queries on input x. This doesn’t seem like a
real restriction as the distribution of Di(x′) for any x′ 6= x is independent of x, and thus
seems useless (but such queries can be used to make the success probability of the adversary
on different inputs correlated, and this causes a problem in the proof). Moreover, we assume
the adversary makes his queries non-adaptively, i.e., it choses the indices i1, . . . , iq before
seeing the outputs of the queries Di1(x), . . . , Diq (x). As the distribution of all the Di’s is
identical, this doesn’t seem like a relevant restriction either.

HHILL
ε,s (X) = k

HMetric
ε′,s′ (X|Z) = k′ HHILL

ε′′,s′′(X|Z) = k′ HHILL−rlx
ε′′′,s′′′ (X|Z) = k′ HHILL

ε′′′′,s′′′′(X|Z) = k′

s′ ≈ s
ε′ = ε · 2|Z|
k′ = k − |Z|
(due to [8])

k′ = k − |Z|
ε′′′ = 2ε
s′′′ = O

(
s · ε′′′2/2|Z| − 1/ε′′′2

)
(due to [17,26])

This paper (Theorem 7)
s′′′ = Ω

(
s · ε′′′/2|Z|)

)
, k′ = k − |Z| necessary

if ε′′′ = O(ε)

ε′′ = 2ε′
s′′ = O

(
s′ · ε′′2/(n+m)

)
(by [3])

ε′′′ = ε′′

s′′′ = s′′

(by definition)

ε′′′′ = 2ε′′′
s′′′′ = s′′′ − 2|Z|
(due to [17])

Figure 2 Chain Rules: our lower bounds comparing to the state of art. In the literature there are
basically two approaches to prove a chain rule for HILL entropy. The first one reduces the problem
to an efficient version of the dense model theorem [21], whereas the second one uses the so called
auxiliary input simulator [17]. The second approach yields a chain rule with a loss of ≈ 2m/ε2 in
circuit size, where m is the length of leakage Z.

1.0.0.4 Chain Rules.

Most (if not all) information theoretic entropy notions H(.) satisfy some kind of chain rule,
which states that the entropy of a variable X, when conditioned on another variable Z, can
decrease by at most the bitlength |Z| of Z, i.e., H(X|Z) > H(X)− |Z|.
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Such a chain rule also holds for some computational notions of entropy. For HILL
entropy a chain rule was first proven in [6,21] by a variant of the dense model theorem, and
was improved by Fuller and Reyzin [8]. A different approach using a simulator was proposed
in [17] and later improved by Vadhan and Zheng [26], the latter gives the currently best
known bounds. The “dense model theorem approach” [8] proceeds as follows: one shows that
if X has k bits of HILL entropy, then X|Z has k −m (where Z ∈ {0, 1}m) bits of Metric
entropy. In a second step one applies a Metric to HILL transformation, first proven by
Barak et al. [3] (or rather, a version generalised to handle the case of conditional variables),
to argue that X|Z has also large HILL. The first step loses a factor 2m in advantage, the
second another ε2/22m in circuit size. Eventually, the loss in circuit size is 22m/ε2 and
the loss in advantage is 2m which measured in terms of the security ratio size/advantage
gives a loss of 23m/ε2. A much better chain rule is obtained by the more direct “simulator”
approach [26], it loses only a multiplicative factor 2m/ε2 in circuit size (there’s also an
additive 1/ε2 term, but for most interesting parameters it’s not the dominating term). In
this paper we show that a loss of 2m/ε is necessary. Note that this still is a factor 1/ε away
from the positive result. Our result as stated in Theorem 7 is a bit stronger as just outlined,
as we show that the loss is necessary even if we only want a bound on the “relaxed" HILL
entropy of X|Z (a notion weaker than standard HILL).

To prove our lower bound, we construct an oracle O(.), together with a joint distribution
(X,Z) ∈ {0, 1}n × {0, 1}m. We want X to have high HILL entropy relative to O(.), but
when conditioning on Z it should decrease as much as possible (in quantity and quality).

We first consider the case m = 1, i.e., the conditional part Z is just one bit. For
n� `� m = 1 the oracle O(.) and the distribution (X,Z) is defined as follows. We sample
(once and for all) two (disjoint) random subset X0,X1 ⊆ {0, 1}n of size |X0| = |X1| = 2`−1,
let X = X0 ∪ X1. The oracle O(.) on input x is defined as follows (below Bp denotes the
Bernoulli distribution with parameter p, i.e., Pr[b = 1 : b← Bp] = p).

If x ∈ X0 output a sample of B1/2+δ.
If x ∈ X1 output a sample of B1/2−δ.
Otherwise, if x 6∈ X , output a sample of B1/2.

Note that our oracle O(.) is probabilistic, but it can be “derandomized” as we’ll explain
at the beginning of Section 4. The joint distribution (X,Z) is sampled by first sampling a
random bit Z ← {0, 1} and then X ← XZ .

Given a tuple (V,Z), we can distinguish the case V = X from the case where V = Y

for any Y with large support outside of X (X has min-entropy `, so let’s say we take a
variable Y with H∞ (Y |Z) > ` + 1 which will have at least half of its support outside X )
with advantage Θ(δ) by quering α← O(V,Z), and outputting β = α⊕ Z.

If (V,Z) = (X,Z) then Pr[β = 1] = 1/2 + δ. To see this, consider the case Z = 0, then
Pr[β = 1] = Pr[α = 1] = Pr[O(X) = 1] = 1/2 + δ.
If (V,Z) = (Y,Z) then Pr[β = 1] = Pr[Y 6∈ X ](1/2) + Pr[Y ∈ X ](1/2 + δ) ≤ 1/2 + δ/2.

Therefore X|Z doesn’t have `+ 1 bits of HILL entropy

HHILL
δ/2,1(X|Z) < `+ 1

On the other hand, we claim that X (without Z but access to O(.)) cannot be distinguished
from the uniform distribution over {0, 1}n with advantage Θ(δ) unless we allow the distin-
guisher Ω(1/δ) oracle queries (the hidden constant in Θ(δ) can be made arbitrary large by
stetting the hidden constant in Ω(1/δ) small enough)

HHILL
Θ(δ),Ω(1/δ)(X) = n (1)
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To see why (1) holds, we first note that given some V , a single oracle query is useless to
distinguish whether V = X or V = Un is the uniform distribution over {0, 1}n: given X,
the corresponding Z (i.e., X ∈ XZ) in (unconditionally) pseudorandom (without O(.)).

We can use the oracle and query for O(X), which will have some bias δ, but as Z is
random, one can’t decide in which direction the bias goes, so, one query is useless. If we’re
allowed in the order 1/δ2 queries, we can distinguish X from Un with constant advantage,
as with 1/δ2 samples one can distinguish the distribution B1/2+δ (or B1/2−δ) from B1/2
with constant advantage. If we just want Θ(δ) advantage, Ω(1/δ) samples are necessary,
which proves (1). While it is easy to prove that for the coin with bias δ one needs O

(
1/δ2)

trials to achieve 99% of certainty, finding the number of trials for some confidence level in
o(1) as in our case, is more challenging. We solve this problem by a tricky application of
Renyi divergences2 The statement of our “coin problem” with precise bounds is given in
Theorem 10.

So far, we have only sketched the case m = 1. For m > 1, we define a random function
π : {0, 1}n → {0, 1}m−1. The oracle now takes an extra m − 1 bit string j, and for x ∈ X ,
the output of O(x, j) only has bias δ if π(x) = j (and outputs a uniform bit everywhere
else). We define the joint distribution (X,Z) by sampling X ← X , define Z ′ s.t. X ∈ XZ′ ,
and set Z = π(X)‖Z ′. Now, given Z, we can make one query α← O(V,Z[1 . . .m− 1]) and
output β = α ⊕ Z[m], where, as before, getting advantage δ in distinguishing X from any
Y with min-entropy ≥ `+ 1.

On the other hand, given some V (but no Z) it is now even harder to tell if V = X

or V = Y . Not only don’t we know in which direction the bias goes as before in the case
m = 1 (this information is encoded in the last bit Z[m] of Z), but we also don’t know on
which index π(V ) (in the case V = X) we have to query the oracle to observe any bias at
all. As there are 2m−1 possible choices for π(V ), this intuitively means we need 2m−1 times
as many samples as before to observe any bias, and thus are able to distinguish X from Y .

1.1 Some implications of our lower bounds
1.1.0.1 Leakage Resilient Cryptography.

The chain rule for HILL entropy is a main technical tool used in several security proofs like
the construction of leakage-resilient schemes [6, 20]. Here, the quantitative bound provided
by the chain rule directly translates into the amount of leakage these constructions can
tolerate. Our Theorem 7 implies a lower bound on the necessary security degradation for
this proof technique. This degradation is, unfortunately, rather severe: even if we just leak
m = 1 bit, we will lose a factor 2m/ε, which for a typical security parameter ε = 2−80 means
a security degradation of “80 bits”.

Let us also mention that Theorem 7 answers a question raised by Fuller and Reyzin [8],
showing that for any chain rule the simultaneous loss in quality and quantity is necessary,3

1.1.0.2 Faking Auxiliary Inputs.

[17, 26] consider the question how efficiently one can “fake” auxiliary inputs. Concretely,
given any joint distribution (X,Z) with Z ∈ {0, 1}m, construct an efficient simulator h

2 Lower bounds [27,28] also require nontrivial binomial estimates.
3 Their question was about chain rules bounding the worst-case entropy, that is bounding HHILL(X|Z = z)
for every z. Our result, stated simply for average entropy HHILL(X|Z), is much more general and applies
to qualitatively better chain rules obtained by simulator arguments.
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s.t. (X,h(X)) is (ε, s)-indistinguishable from (X,Z). [26] give a simulator h of complexity
O
(
2mε2 · s

)
(plus additive terms independent of s). This result has found many applications

in leakage-resilient crypto, complexity theory and zero-knowledge theory. The best known
lower bound (assuming exponentially hard OWFs) is Ω

(
max(2θ·m, 1/ε

)
for some θ < 1.

Since the chain rule for relaxed HILL entropy follows by a simulator argument [17] with the
same complexity loss, our Theorem 7 yields a better bound Ω (2m/ε) on the complexity of
simulating auxiliary inputs.

1.1.0.3 Dense Model Theorem.

The computational dense model theorem [21] says, roughly speaking, that dense subsets of
pseudorandom distributions are computationally indistinguishable from true dense distri-
butions. It has found applications including differential privacy, memory delegation, graph
decompositions and additive combinatorics. It is well known that the worst-case chain rule
for HILL-entropy is equivalent to the dense model theorem, as one can think of dense distri-
butions as uniform distributions X given short leakage Z. For settings with constant dens-
ity, which correspond to |Z| = O (1), HILL and relaxed HILL entropy are equivalent [17];
moreover, the complexity loss in the chain rule is then equal to the cost of transforming
Metric Entropy into HILL Entropy. Now our Theorem 6 implies a necessary loss in circuit
size Ω

(
1/ε2

)
if one wants ε-indistinguishability. This way we reprove the tight lower bound

due to Zhang [28] for constant densities.

2 Basic Definitions

Let X1 and X2 be two distributions over the same finite set. The statistical distance of X1
and X2 equals SD (X1;X2) = 1

2
∑
x |Pr[X1 = x]− Pr[X2 = x]|.

IDefinition 1 (Min-Entropy). A random variableX hasmin-entropy k, denoted by H∞ (X) =
k, if

max
x

Pr[X = x] ≤ 2−k .

I Definition 2 (Average conditional min-Entropy [5]). For a pair (X,Z) of random variables,
the average min-entropy of X conditioned on Z is

H̃∞(X|Z) = − log E
z←Z

[max
x

Pr[X = x|Z = z]] = − log E
z←Z

[2−H∞(X|Z=z)]

2.0.0.1 Distinguishers.

We consider several classes of distinguishers. With Drand,{0,1}
s we denote the class of ran-

domized circuits of size at most s with boolean output (this is the standard non-uniform
class of distinguishers considered in cryptographic definitions). The class Drand,[0,1]

s is defined
analogously, but with real valued output in [0, 1]. Ddet,{0,1}

s ,Ddet,[0,1]
s are defined as the cor-

responding classes for deterministic circuits. With δD(X,Y ) = |EX [D(X)]− EY [D(Y )] we
denote D’s advantage in distinguishing X and Y .

I Definition 3 (HILL pseudoentropy [12,15]). A variable X has HILL entropy at least k if

HHILL
ε,s (X) ≥ k ⇐⇒ ∃Y , H∞ (Y ) = k ∀D ∈ Drand,{0,1}

s : δD(X,Y ) ≤ ε
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For a joint distribution (X,Z), we say that X has k bits conditonal Hill entropy (condi-
tionned on Z) if

HHILL
ε,s (X|Z) ≥ k

⇐⇒ ∃(Y, Z), H̃∞(Y |Z) = k ∀D ∈ Drand,{0,1}
s : δD((X,Z), (Y,Z)) ≤ ε

I Definition 4 (Metric pseudoentropy [3]). A variable X has Metric entropy at least k if

HMetric
ε,s (X) ≥ k ⇐⇒ ∀D ∈ Drand,{0,1}

s ∃YD , H∞ (YD) = k : δD(X,YD) ≤ ε

Metric star entropy is defined analogousely but using deterministic real valued distinguishers

HMetric∗
ε,s (X) ≥ k ⇐⇒ ∀D ∈ Ddet,[0,1]

s ∃YD , H∞ (YD) = k : δD(X,YD) ≤ ε

2.0.0.2 Relaxed versions of HILL and Metric entropy.

A weaker notion of conditional HILL entropy allows the conditional part to be replaced by
some computationally indistinguishable variable

I Definition 5 (Relaxed HILL pseudoentropy [9, 22]). For a joint distribution (X,Z) we say
that X has relaxed HILL entropy k conditioned on Z if

HHILL−rlx
ε,s (X|Z) ≥ k

⇐⇒ ∃(Y, Z ′), H̃∞(Y |Z ′) = k, ∀D ∈ Drand,{0,1}
s , : δD((X,Z), (Y,Z ′)) ≤ ε

The above notion of relaxed HILL satisfies a chain rule whereas the chain rule for the stand-
ard definition of conditional HILL entropy is known to be false [18]. One can analogously
define relaxed variants of metric entropy, we won’t give these as they will not be required in
this paper.

2.0.0.3 Pseudoentropy against different distinguisher classes.

For randomized distinguishers, it’s irrelevant if the output is boolean or real values, as we
can replace any D ∈ Drand,[0,1]

s with a D′ ∈ Drand,{0,1} s.t. E[D′(X)] = E[D(X)] by setting
(for any x) Pr[D′(x) = 1] = E[D(x)]. For HILL entropy (as well as for its relaxed version), it
also doesn’t matter if we consider randomized or deterministic distinguishers in Theorem 3,
as we always can “fix” the randomness to an optimal value. This is no longer true for metric
entropy,4 and thus the distinction between metric and metric star entropy is crucial.

3 A Lower Bound on Metric-to-HILL transformations

I Theorem 6. For every n, k, m and ε such that n > k + log(1/ε) + 4, 1
8 > ε and

m > 6 log(1/ε) there exist an oracle O and a distribution X such that (as discussed in the
introduction, the bound below is only proven for non-adaptive adversaries)

HMetric
ε,T

,det{0,1}(X) > k (2)

4 It might be hard to find a high min-entropy distribution Y that fools a randomized distinguisher D,
but this task can become easy once D’s randomness is fixed.
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here the complexity T denotes any circuit of subexponential size (in n) that makes at most
ln(2/ε)
216ε2 queries and, simultaneously,

HMetric
2ε,T ′

,rand{0,1}(X) 6 m+ 1 (3)

where the distinguishers size T ′ is only O(n) and the query complexity is 1.

Let S be a random subset of {0, 1}n of size 2m, where m 6 n − 1, and let D1, . . . , Dh be
boolean functions drawn independently from the following distribution D: D(x) = 1 on S
with probability p if x ∈ S and D(x) = 1 with probability q if x ∈ Sc, where p > q and
p + q = 1. Denote X = US . We will argue that the metric entropy against a probabilistic
adversary who is allowed one query is roughly m with advantage Ω(p− q). But the metric
entropy against non-adaptive deterministic adversary who can make t queries of the form
Di(x) is much bigger, even if t = O

(
(p− q)−2). Let us sketch an informal argument before

we give the actual proof. We need to prove two facts:

(i) There is a probabilistic adversary A∗ such that with high probability overX,D1, . . . , Dh

we have ∆A∗(X,Y ) = Ω(p− q) for all Y with H∞ (Y ) > m+ 1.
(ii) For every deterministic adversary A making at most t = O

(
(p− q)−2) non-adaptive

queries, with high probability over X,D1, . . . , Dh we have ∆A(X,Y ) = 0 for some Y
with H∞ (Y ) = n−Θ(1).

To prove (i) we observe that the probabilistic adversary can distinugish between S and Sc
by comparing the bias of ones. We simply set

A∗(x) = Di(x), i← [1, . . . , h]

With extremely high probability we have Pr[A∗(x) = 1] ∈ [p − δ, p + δ] if x ∈ S and
Pr[A∗(x) = 1] ∈ [q − δ, q + δ] if x 6∈ S for some δ � p − q (by a Chernoff bound, δ drops
exponentially fast in h, so we just have to set h large enough). We have then Pr[A∗(X) =
1] > p+ δ and Pr[A∗(Y ) = 1] 6 1/2 · (p+ q + 2δ) for every Y of min-entropy at least m+ 1
(since then Pr[Y ∈ S] 6 1/2). This yields ∆A∗(X;Y ) = (p− q)/2. In order to prove (ii) one
might intuitively argue that the best a t-query deterministic adversary can do to contradict
to (ii), is to guess whether some value x has bias p or q = 1− p, by taking the majority of t
samples

A(x) = Maj(D1(x), . . . , Dt(x))

But even if t = Θ(1/(p−q)2), majority will fail to predict the bias with constant probability.
This means there exists a variable Y with min-entropy n−Θ(1) such that Pr[A(Y ) = 1] =
Pr[A(X) = 1]. The full proof gives quantitative forms of (i) and (ii), showing essentially
that “majority is best” and appears in Appendix A.

4 Lower Bounds on Chain Rules

For any n � ` � m, we construct a distribution (X,Z) ∈ {0, 1}n × {0, 1}m and an oracle
O(.) such that relative to this oracle, X has very large HILL entropy but the HILL entropy
of X|Z is much lower in quantity and quality: for arbitrary n � ` � m (where |Z| = m,
X ∈ {0, 1}n), the quantity drops from n to ` − m + 2 (it particular, by much more than
|Z| = m), even if we allow for a 2m/ε drop in quality.
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I Theorem 7 (A lower bound on the chain rule for HHILL−rlx). There exist a joint distribution
(X,Z) over {0, 1}n × {0, 1}m, and an oracle O such that, relative to O, for any (`, δ) such
that n

2 −
log(1/δ)

2 > m and ` > m+ 6 log(1/δ), we have

HHILL
δ
2 ,T

(X) = n (4)

where5 T > c · 2m/δ with some absolute constant c but

HHILL−rlx
δ,T ′ (X|Z) < `+ 1 (5)

where T ′ captures a circuit of size only O(n) making only 1 oracle query.

I Remark (On the technical restrictions). Note that the assumptions on ` and δ are automat-
ically satisfied in most interesting settings, as typically we assume m� n and log(1/δ)� n.

I Remark (A strict separation). For T ′ = O(1) (rather than T = 1) the term Θ(δ) can be
assumed smaller than δ (see ?? B.0.0.4 in the proof).

The full proof appears in Appendix B. The heart of the argument is a lower bound on the
query complexity for the corresponding “coin problem”: we need to distinguish between T
random bits, and the distribution where we sample equally likely T independent bits Bp or T
independent bits Bq where p = 1

2 + δ and q = 1−p. (see Appendix C for more details). The
rest of the proof is based on a standard concentration argument, using extensively Chernoff
Bounds.

5 Open Problems

As shown in Figure 2, there remains a gap between the best proofs for the chain-rule, which
lose a factor ε2/2|Z| in circuit size, and the required loss of ε/2|Z| we prove in this paper.
Closing this bound by either improving the proof for the chain-rule or give an improved
lower bound remains an intriguing open problem.

The lower bound on deterministic Metric entropy in Theorem 6 (eq.(2)) is only proven
for adversaries that make all queries non-adaptively. Adaptive queries don’t seem to help
against our oracle, but rigorously proving this fact seems tricky.

Finally, the lower bounds we prove on the loss of circuit size assume that the distinguish-
ing advantage remains roughly the same. There exist results which are not of this form, in
particular – as shown in Figure 2 – the HILL to Metric transformation from [8] only loses in
distinguishing advantage, not in circuit size (i.e., we have s ≈ s′). Proving lower bounds and
giving constructions for different circuit size vs. distinguishing advantage trade-offs leave
many challenges for future work.
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A Proof of Theorem 6

A.1 Majority is best
We prove two statements which are quantitative forms of (i) and (ii) discussed after the state-
ment of Theorem 6. First we show that the probabilistic adversary A∗ easily distinguishes
X from all Y of high min-entropy.

I Claim 1 (Probabilistic Metric Entropy of X is small). Let A∗ be a probabilistic adversary
who given x samples i← [1, . . . , h] at random and outputs Di(x). Then for any δ 6 (p−q)/3
we have

Pr[∀Y : H∞ (Y ) > m+ 1, ∆A∗(X,Y ) > (p− q)/3] > 1− 2max(n−1,m+1) exp(−hδ2). (6)

I Remark (The complexity of the probabilistic distinguisher). We can chose h in Claim 1 to
be 2n, then A∗ is of size O (n) and makes only one query.

Suppose now that the deterministic adversary A obtains x and can make at most t queries
asking what for Di(x′) for any i ∈ [1, . . . , h] and x′ ∈ {0, 1}n. We claim that

I Claim 2 (Deterministic Metric Entropy is big). Suppose that n > k + log(1/ε) + 4 and
δ 6 ε2

2+2ε . Then for every nonadaptive adversary A which makes t 6 ln(2/ε)
6(p−q)2 queries we have

Pr
X,D1,...,Dh

[
∃Y : H∞ (Y ) > k, advA(X,Y ) 6 ε

]
> 1− 4 exp(−2mδ2). (7)

Setting p− q = 6ε we see that Equation (2) follows from Claim 1 and Equation (3) follows
from Equation (7) combined with the union bound over O (2t) circuits of size t. Now we
give the proofs.
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Proof of Claim 1 . Note that, by the Chernoff Bounds6 and the union bound,

Pr[∀x ∈ Sc Pr[A∗(x) = 1] 6 q + δ] > 1− 2n−1 exp(−2δ2h) (8)

similarly

Pr[∀x ∈ S : |Pr[A∗(x) = 1]− p| 6 δ] > 1− 2m · 2 exp(−2δ2h). (9)

The advantage of A∗, with probability 1− 2n−1 exp(−hδ2), is equal to

∆A∗(X;Y ) > (p− δ)− (p+ δ) Pr[Y ∈ S]− (q + δ) Pr[Y ∈ Sc]
> p− q − (p− q) Pr[Y ∈ S]− 2δ.

Since by the assumption we have Pr[Y ∈ S] 6 1
2 , Equation (6) follows. J

Proof of Claim 2. We will prove this rigorously for any adversary A of the following, slightly
restricted, form

A(x) = g
(
x,Di1(x)(x), . . . , Dit(x)(x)

)
, (10)

where g : {0, 1}t → {0, 1} is some fixed deterministic boolean function. Without losing
generality we can assume that

ij = ij′ =⇒ xij = xij′ , (11)

because duplicates only restricts the adversary’s power. We start by simplifying the event
(7) using the following proposition, which gives an alternative characterization of the de-
terministic metric entropy.

I Lemma 8 ( [?,3]). Let D be a boolean deterministic function on {0, 1}n. Then there exists
Y of min-entropy at least k such that δD(X;Y ) 6 ε if and only if

ED′(X) 6 2n−k ED′(U) + ε (12)

holds for D′ ∈ {D,1−D}

Since |Sc| > 2n−1, we have ED(U) > Ex←Sc D(x)/2 for any function D. Therefore, by
Theorem 8, the inequality (7) will be proved if we show that the following inequality holds:

Pr
X,D1,...,Dh

[
∀A′ ∈ {A,1− A} : E

x←S
A′ 6 2n−k−1 E

x←Sc
A′(x) + ε

]
6 . . . (13)

By the union bound, it is enough to show that for A′ ∈ {A,1− A} we have

Pr
X,D1,...,Dh

[
E

x←S
A′(x) 6 2n−k−1 E

x←Sc
A′(x) + ε

]
6 . . . (14)

In the next step we simplify the expressions Ex←S A′(x) and Ex←Sc A′(x). The following
fact is a direct consequence of the Chernoff Bound.

6 We use the following version: let Xi for i = 1, . . . , N be independent random variables such
that Xi ∈ [ai, bi]. Then for any positive t we have PrX1,...,XN

[∑N

i=1 Xi − E
[∑N

i=1 Xi

]
> t
]

6

exp
(

2t2∑N

i=1
(bi−ai)2

)
.
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I Proposition 1. For any function f we have∣∣∣ E
x←X

f
(
x,Di1(x)(x), . . . , Dit(x)(x)

)
− E f(U,B1

p , . . . , B
t
p)
∣∣∣ 6 δ (15)∣∣∣ E

x←Xc
f
(
x,Di1(x)(x), . . . , Dit(x)(x)

)
− E f(Un, B1

q , . . . , B
t
q)
∣∣∣ 6 δ (16)

with probability 1− 4 exp(−2 · 2mδ2) over the choice of X and D1, . . . , Dh.
For any r = (r1, r2, . . . , rt) we denote Erf = Ef(Br1 , . . . , Brt). It is enough to show that

Erf + δ 6 2n−k−1 max(Er′f − δ, 0) + ε. (17)

This inequality will follow by the following lemma.

I Lemma 9. Suppose that p, q > 0 are such that p + q = 1. Let f : {0, 1}t → {0, 1} be an
arbitrary function and let r, r′ be such that {ri, r′i} ⊂ {p, q} for i = 1, . . . , t. Then for any
c we have

Erf 6 exp
(

(c+ 1)(p− q)2

q
· t
)
·Er′f + exp(−2c2(p− q)2t).

Proof. The idea of the proof is to show that for most values of z the ratio Pr[Br =
z]/Pr[Br′ = z] is bounded. We have

Pr[Br = z]
Pr[Br′ = z] = (p/q)#{i:zi=1, ri>r′i}−#{i:zi=1, ri<r′i} · (q/p)#{i:zi=0, ri>r′i}−#{i:zi=0, ri<r′i}

= (p/q)#{i:zi=1, ri>r′i}−#{i:zi=0, ri>r′i}−#{i:zi=1, ri<r′i}+#{i:zi=0, ri<r′i}

= (p/q)
∑t

i=1
(2zi−1)·sgn(ri−r′i) (18)

The random variables ξi = (2zi − 1) · sgn(ri − r′i) for i = 1, . . . , t, where z is sampled from
Br, are independent with the expectations Eξi = (2ri − 1)sgn(ri − r′i) 6 p − q. By the
Chernof Bound for any c > 0 we get

Pr
z←Br

[
t∑
i=1

(2zi − 1) · sgn(ri − r′i) > (p− q)t+ c(p− q)t
]
6 exp(−2c2(p− q)2t). (19)

Therefore,

Erf 6 (p/q)(c+1)(p−q)tEr′f + 2 exp(−2c2(p− q)2t) (20)

and the claim follows by observing that p/q = 1 + (p− q)/q 6 exp((p− q)/q). J

From Theorem 9 it follows that Equation (17) is satisfied with

δ 6
ε

2 exp ((c+ 1)(p− q)2 · t/q) + 2 (21)

provided that

exp(−2c2(p− q)2 · t) 6 ε/2 (22)
exp

(
(c+ 1)(p− q)2 · t/q

)
6 2n−k−1 (23)

It is easy to see that Equation (23) and Equation (22) are satisfied if and only if

ln(2/ε)
2c2(p− q)2 6 t 6 (n− k − 3) ln 2 · q

(c+ 1)(p− q)2 .
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This inequality can be satisfied if and only if

ε > 2 · 2(k−n+3)· 2qc
2

c+1 .

If we set t = ln(2/ε)
2c2(p−q)2 then Equation (21) becomes

δ 6
ε

(2/ε)
c+1
2qc2 + 2

Choosing c so that 2qc2

c+1 = 1 we see that it is enough to assume ε > 2 · 2k−n+3, any δ such
that δ 6 ε2

2+2ε and t ≈ ln(2/ε)
6(p−q)2 (the constant 6 is sightly bigger than the exact value, but if

Claim 2 holds true for some t then also for t′ < t). This finishes the proof of Claim 2. J

B Proof of Theorem 7

B.0.0.1 A Remark on The Oracle.

For convenience, the oracle O(.) we use in the proof is probabilistic, in the sense that it
flips some random coins before answering a query (in particular, making the same query
twice might give different outputs). We remark that, as the adversaries considered are
probabilistic, one can replace this oracle with a deterministic one Odet by assigning to every
possible query x a 2L tuple (x, r), r ∈ {0, 1}L of queries (for some sufficiently large L), where
the output for Odet((x, r)) is sampled according to O(x) for every r. We can emulate the
probabilistic O(x) by querying O((x, r)) for a random r.

Proof of Theorem 7. First we describe how we construct the distribution (X,Z) and the
oracle O.

B.0.0.2 Construction details.

We chose at random two sets X0,X1 ⊂ {0, 1}n of size 2` and define X = X0 ∪X1. we define
a random function π : {0, 1}n → {0, 1}m−1. The oracle now takes an extra m− 1 bit string
j, and for x ∈ X , the output of O(x, j) only has bias δ if π(x) = j (and outputs a uniform
bit everywhere else). More precisely, if π(x) = j and x ∈ X0 then oracle outputs B1/2−δ
else if x ∈ X1 then it outputs B1/2+δ. Finally, if x 6∈ X or π(x) 6= j then O outputs B1/2.
We define the joint distribution (X,Z) by sampling X ← X and setting Z = π(X)‖Z ′ (s.t.
X ∈ XZ′).

B.0.0.3 Adversaries.

We allow the adversary to make on every point x ∈ {0, 1}n at most T queries j1(x), . . . , jT (x)
to the oracle, which responses with the sequence

(
Ri(x, ji)

)T
j=1 according to the definition of

O. The adversary is allowed to process the response by a boolean function f . For the sake of
clarity we assume that the function f and the querying strategy (j1(x), . . . , jT (x)) are fixed.
However, since we construct the oracle and the distribution with error probability double-
exponentially small, by the union bound argument we can assume that they are chosen by
the adversary at his will, provided that are computed by circuits of subexponential size
(which can be thought as some nonuniform advice).
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B.0.0.4 Formal proof.

Let R(x) = (R1(x, j1(x)), . . . , RT (x, jT (x))) be the sequences of the oracle’s responses and
B(x) = B1

1/2, . . . , B
T
1/2 be independent random bits. For every x the number of useful

responses, that is indexes i such that Ri(x, ji(x)) is biased, is defined to be

T (x) =
T∑
i=1

[ji(x) = π(x)] (24)

On average we have EO(·) T (x) = T/2m−1. We claim that the adversary actually learns
nothing about X : the sequence he looks at is close to the sequence of unbiased bits. We
start by showing that X is pseudorandom for our adversary.
I Claim 3 (X is pseudorandom, even given oracle responses). For any f we have∣∣∣∣ E

x←X
f(x,R(x))− E

x←Un
f(x,R(x))

∣∣∣∣ = ε+O
(
δ2T/2m

)
(25)

with error probability at most O
(
exp (−Ω (2n−m)) + exp

(
−Ω

(
2`ε2

)))
.

Proof. By Theorem 10 and the definition of O, for every x ∈ X we obtain

|Ef(x,R(x))− Ef(x,B(x))| =
{
O
(
T (x)δ2) , x ∈ X

0, x 6∈ X (26)

for every boolean function f and some absolute constant hidden under big-Oh. Thus∣∣∣ E
x←X

f(x,R(x))− E
x←X

f(x,B(x))
∣∣∣ = O

(
E

x←X
T (x)δ2

)
(27)

Note that the random variables f(x,R(x)) for different values of x are independent and simil-
arly f(x,B(x)) for different values of x are independent. Since the set X is chosen at random
by the Hoeffding-Chernoff Bound we obtain that with probability 1−2 exp

(
−Ω

(
2`ε2

))
over

O the following inequalities hold:∣∣∣∣ E
x←X

f(x,B(x))− E
x←Un

f(x,B(x))
∣∣∣∣ 6 ε (28)∣∣∣∣ E

x←X
f(x,R(x))− E

x←Un
f(x,R(x))

∣∣∣∣ 6 ε. (29)

Combining Equation (27) and Equation (28) we obtain (with probability 1−2 exp
(
−Ω

(
2`ε2

))
over O)

.

∣∣∣∣ E
x←X

f(x,R(x))− E
x←Un

f(x,B(x))
∣∣∣∣ 6 ε+O

(
E

x←X
T (x)δ2

)
(30)

By Equation (26) we have∣∣∣∣ E
x←Un

f(x,R(x))− E
x←Un

f(x,B(x))
∣∣∣∣ 6 O

(
E

x←Un
T (x)δ2

)
. (31)

Now Equations (30) and (31) imply∣∣∣∣ E
x←X

f(x,R(x))− E
x←Un

f(x,R(x))
∣∣∣∣ 6 ε+O

(
E

x←Un
T (x)δ2

)
. (32)
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The random variables T (x) for different x are independent, bounded by T and have the first
moment EO(T (x)) = T/2m−1. By the multiplicative Chernoff Bounds, with probability 1−
2 exp (−Ω (2n−m)) overO it holds that Ex←Un T (x) < 2·T/2m−1. This implies Equation (25)
with error probability at most

Perr = O
(
exp

(
−Ω

(
2n−m

))
+ exp

(
−Ω

(
2`ε2

)))
.

J

I Claim 4. There exists a distinguisher D over {0, 1}n × {0, 1}m which calls the oracle O
one time and such that for any joint distribution Y,Z ′ over {0, 1}n × {0, 1}m with entropy
H̃∞(Y |Z ′) > `+ 1 it holds that

ED(X,Z)− ED(Y, Z) > δ

2
with probability 1− 2 exp(−Ω

(
2`δ2)

)
).

I Remark (Amplified distinguisher). Assuming that T is sufficiently large, we can modify D
by taking the majority vote over T queries on O(x, z). This will boost the advantage from
δ to Cδ where C is an arbitrary constant.

Proof of Claim 4. The distinguisher D simply calls the oracle O on the pair (x, z)). Prob-
ability that D outputs 1 on (Y,Z ′) is at most

Pr
O(·)

(D(Y,Z ′) = 1) = E
z←Z′

Pr (D(Y |Z′=z, z) = 1)

= E
z←Z′

[Pr (D(Y, z) = 1 ∧ Y 6∈ X |Z ′ = z)] + E
z←Z′

[Pr (D(Y, z) = 1 ∧ Y ∈ X |Z ′ = z)]

= 1
2 + δ · E

z←Z′
[Pr (Y ∈ X |Z ′ = z)]

6
1
2 + δ E

z←Z′

[
|X | · 2−H∞(Y |Z′=z)

]
= 1

2 + δ · |X | · 2−H̃∞(Y |Z′)

which is at most 1
2 + δ

2 . On the other hand we have Pr(D(X,Z) = 1) = 1
2 + δ. From this we

see that the advantage is δ on average - but we need stronger concentration guarantees. Note
that Pr(D(X,Z) = 1) =

∑
x∈S Pr[X = x] ·D(x, i(x)) can be viewed as a sum of independent

random variables. By the Chernoff-Hoeffding Bound we get

Pr
O(·)

[
Pr(D(X,Z) = 1) > 1

2 + δ − δ

8

]
> 1− exp(−Ω

(
2`δ2)

)
)

Similarly, Pr(D(Y, Z ′) = 1) =
∑
x,z Pr[Y = x, Z ′ = z] · D(x, z′). Since∑

x,z

Pr[Y = x, Z ′ = z]2 =
∑
z

∑
xPr[Z ′ = z]2 Pr[Y = x|Z ′ = z]2

6
∑
z

Pr[Z ′ = z]2−H∞(Y |Z′=z)

6 2−H̃∞(Y |Z),

the Chernoff-Hoeffding Bound implies

Pr
O(·)

[
Pr(D(Y ′, Z) = 1) 6 1

2 + δ

2 + δ

8

]
> 1− exp(−Ω

(
2`δ2))

and the result follows. J
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We set ε = δ
3 and T = c · 2m/ε. Now Claim 4 directly implies Equation (5) whereas

Equation (4) follows, when c is sufficiently small, from Claim 3 combined with the union
over O

(
exp(2T )

)
circuits of size T and the assumption on δ and ε. J

C Proof of Theorem 10

I Lemma 10 (Lower bounds on the coin problem). Fix δ ∈ (0, 1/2) and define p = 1
2 + δ and

q = 1− p. Consider the following two experiments:
(a) We flip a fair coin, and depending on the result we toss T times a biased coin Bp

(probability of the head is p) or toss T times a coin Bq (probability of the head is q).
The output is the result of these T flips.

(b) We flip T times a fair coin and output the results.
Then one cannot distinguish (a) from (b) better than with advantage O

(
Tδ2).

I Remark. We give a simple proof based on calculating Renyi divergences. This result can
be also easily derived by (more sophisticaed) techniques from Fourier analysis (generalized
XOR lemma).
Before we give the proof, let’s recall some basic facts about Pearson Chi-Squared Distance.
For any two distributions P,Q over the same space, their Chi-Squared distance defined by

Dχ(P ‖ Q) =
∑
x

Q(x)
(
P (x)
Q(x) − 1

)2
=
∑
x

P (x)2

Q(x)2 − 1 (33)

Now let U1, . . . , Un be independent uniform bits, X1, . . . , Xn be i.i.d. bits where 1 appears
with probability p = 1

2 + δ and Y1, . . . , Yn be i.i.d. bits where 1 appears w ith probability
q = 1 − p = 1

2 − δ. We want to estimate the distance between U = U1, . . . , Un and Z

distributed as an equally weighted combination of X = X1, . . . , Xn and Y = Y1, . . . , Yn. We
think of δ as a fixed parameter and n as a growing number. Our statement will easily follow
by combining the following two claims
I Claim 5. With U and Z as above, and for n = O

(
δ−2), it holds that

Dχ2 (U ;Z) = O
(
n2δ4) (34)

I Claim 6. For any R and uniform U

SD(R ‖ U) 6
√
Dχ2(R ‖ U), (35)

Indeed, combining these claims we obtain SD(Z ‖ U) = O(nδ2) when n = O
(
δ−2). Since

the left-hand side is bounded by 1, this is true also when n > cδ−2 for some absolute constant
c and the result follows.

Proof of Claim 5. We have

Dχ2

(
1
2PX1,...,Xn + 1

2PY1,...,Yn ‖ PU1 · . . . · PUn
)

=

2n ·
∑

z1,...,zn

(
1
2PX1(z1) · . . . · PXn(zn) + 1

2PY1(z1) · . . . · PYn(zn)
)2
− 1 =

1
4

(
2n
∏
i

(∑
z

PXi(z)2

)
+ 2 · 2n

∏
i

(∑
z

PXi(z)PYi(z)
)

+ 2n
∏
i

(∑
z

PYi(z)2

)
− 4
)

=

1
4
(
(1 + 4δ2)n + 2(1− 4δ2)n + (1 + 4δ2)n − 4

)
(36)
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and the result follows by the Taylor expansion (1+u)n = 1+nu+O(n2u2) where nu = O(1),
remaining valid as long as n = O

(
δ−2). J

Proof of Claim 6. This inequality follows immediately from the Cauchy-Schwarz inequality
and the definition of Dχ2 . J
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