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Abstract. Group signatures are a central tool in privacy-enhancing
cryptography, which allow members of a group to anonymously produce
signatures on behalf of the group. Consequently, they are an attractive
means to implement privacy-friendly authentication mechanisms. Ide-
ally, group signatures are dynamic and thus allow to dynamically and
concurrently enroll new members to a group. For such schemes, Bel-
lare et al. (CT-RSA’05) proposed the currently strongest security model
(BSZ model). This model, in particular, ensures desirable anonymity
guarantees. Given the prevalence of the resource asymmetry in current
computing scenarios, i.e., a multitude of (highly) resource-constrained
devices are communicating with powerful (cloud-powered) services, it is
of utmost importance to have group signatures that are highly-efficient
and can be deployed in such scenarios. Satisfying these requirements in
particular means that the signing (client) operations are lightweight.
‘We propose a novel, generic approach to construct dynamic group sig-
nature schemes, being provably secure in the BSZ model and particularly
suitable for resource-constrained devices. Our results are interesting for
various reasons: We can prove our construction secure without requir-
ing random oracles. Moreover, when opting for an instantiation in the
random oracle model (ROM) the so obtained scheme is extremely effi-
cient and outperforms the fastest constructions providing anonymity in
the BSZ model—which also rely on the ROM—known to date. Regard-
ing constructions providing a weaker anonymity notion than BSZ, we
surprisingly outperform the popular short BBS group signature scheme
(CrYPTO’04; also proven secure in the ROM) and thereby even ob-
tain shorter signatures. We provide a rigorous comparison with existing
schemes that highlights the benefits of our scheme. On a more theoretical
side, we provide the first construction following the “without encryption”
paradigm introduced by Bichsel et al. (SCN’10) in the strong BSZ model.
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1 Introduction

Group signatures, initially introduced by Chaum and van Heyst [CvH91], are an
important privacy-enhancing cryptographic tool which allow a group manager
to set up a group so that every member of this group can later anonymously sign
messages on behalf of the group. Thereby, a dedicated authority (called opening
authority) can open a given group signature to determine the identity of the ac-
tual signer. They allow authentication without revealing the individals’ identity
and are thus an ideal means to implement privacy-friendly authentication. Group
signatures have received significant attention from the cryptographic community
beginning in the early 90ies [CvH91] and gain increasing practical relevance due
to technological innovations in intelligent transportation systems (e.g., floating
car data, toll systems, parking) as well as public transportation systems (i.e.,
smart ticketing), where user privacy is considered to play an important role
(cf. [PPF*12]). In particular, operators must not trace and profile passengers,
but in case of a court order there is a party that can re-identify the otherwise
anonymous passengers. Such privacy aspects are for instance highlighted in the
EU Directive 2010/40/EU on intelligent transport systems and more broadly
in the upcoming EU General Data Protection Regulation (GPDR), latter be-
coming effective in May 2018. These developments and in particular considering
that users’ devices in most use-cases are rather resource constrained, make it
important to have particularly efficient group signature candidates at hand.

Motivation. As an illustrative example for the importance of very fast signa-
ture generation and verification times, as well as re-identification functionality
as provided by group signatures, consider public transportation system where
every user needs to sign on passing a gate. Here, a large number of tickets (sig-
natures) need to be processed in the shortest possible time and the more tickets
can be processed the more effective and competitive such solutions are. Also for
the subjective comfort of users these times are extremely critical. For instance,
it makes a significant difference between processing/waiting time of one second
compared to 500 or even 250 ms in terms of efficiency of the system as well
as user satisfaction. While former is at the edge of acceptability, the latter two
values significantly increase the passengers’ comfort and will not influence the
passenger in his behavior (i.e., requirement to stop and wait at a gate). More-
over it doubles and quadruples the number of processed passengers respectively,
which can make a huge difference during peak hours.

In such a scenario, we observe a significant resource asymmetry between user
(signer) and verifier devices. While former are typically resource-constrained,
latter are much more powerful. Consequently, while verification can be per-
formed by powerful devices, an efficient signing routine running on the resource-
constrained clients is the most important characteristic of group signatures.

We also observe that especially the re-identification feature is highly valuable
and indeed typically required feature in public-transport, as law-enforcement
requires to re-identify users within ongoing investigations, say after terroristic
attack. This is a gap which is not covered by the existing body of work on privacy
for public transportation [HCDF06, HZB*13, RHBP13, MDND15, RBHP15], as



they all build upon privacy-friendly cryptography which does not provide a re-
identification feature, i.e., single-show attribute-based credentials or e-cash.

Goal. Despite their increasing practical importance, no progress has been
made with respect to computational efficiency improvements of group signature
schemes providing the desirable notions of CPA- as well as CCA2-full anonymity
within the last decade. The most efficient schemes known to date are the BBS
group signature scheme [BBS04] (which achieves weaker CPA-full anonymity)
and the XSGS group signature scheme [DP06] (which achieves stronger CCA2-
full anonymity as required by BSZ). In this paper we set the goal to further push
the computational efficiency limits of group signature schemes providing those
desirable anonymity notions. Before we discuss our contributions, we take a look
at previous work on group signatures to put our contributions in context.

1.1 Previous Work on Group Signatures

Group signatures were first rigorously formalized for static groups by Bellare et
al. [BMWO3]. In this setting, all members are fixed at setup and also receive
their honestly generated keys at setup from the group manager. This model
was later extended to the dynamic case by Bellare et al.[BSZ05] (henceforth
denoted as BSZ model), where new group members can be dynamically and
concurrently enrolled to the group. Further, it separates the role of the issuer
and the opener so that they can operate independently. The BSZ model requires
a strong anonymity notion, where anonymity of a group signature is preserved
even if the adversary can see arbitrary key exposures and openings of other
group signatures. A slightly weaker model, which is used to prove the security
(and in particular anonymity) of the popular BBS group signature scheme was
introduced by Boneh et al. [BBS04]. This model is a relaxation of the BSZ model,
and in particular weakens anonymity so that the adversary can not request
openings for signatures. As it is common, we refer to this anonymity notion as
CPA-full anonymity, whereas we use CCA2-full anonymity to refer to anonymity
in the sense of BSZ.

Over the years, two main construction paradigms for group signatures have
been established. The first one is the widely used sign-encrypt-prove (SEP)
paradigm [CS97]. Here, a signature is an encrypted membership certificate to-
gether with a signature of knowledge, where the signer demonstrates knowledge
of some signed value in the ciphertext [ACJT00, BBS04, NS04, BSZ05, KY05,
DP06, BW07, BW06, Gro07, LPY15, LLM™16, LMPY16]. As an alternative to
this paradigm, Bichsel et al. in [BCN*10] proposed an elegant design paradigm
for group signatures which does not require to encrypt the membership certificate
to produce signatures. Henceforth we call this paradigm sign-randomize-proof
(SRP). Essentially, they use a signature scheme which supports (1) randomiza-
tion of signatures so that multiple randomized versions of the same signature
are unlinkable, and (2) efficiently proving knowledge of a signed value. In their
construction, on joining the group, the issuer uses such a signature scheme to
sign a commitment to the user’s secret key. The user can then produce a group



signature for a message by randomizing the signature and computing a signa-
ture of knowledge on the message, which demonstrates knowledge of the signed
secret key. To open signatures, in contrast to constructions following SEP, which
support constant time opening by means of decrypting the ciphertext in the
signature, constructions in this paradigm require a linear scan, i.e., to check a
given signature against each potential user. We, however, want to stress that
opening is an infrequent operation typically run on a powerful machine and thus
such a linear scan does not impact the practicality of such schemes. Bichsel et al.
proposed an instantiation based on the randomizable pairing-based Camensich-
Lysyanskaya (CL) signature scheme [CL04] (whose EUF-CMA security is based
on the interactive LRSW assumption). Recently, Pointcheval and Sanders [PS16]
proposed another randomizable signature scheme (whose EUF-CMA security is
proven in the generic group model), which allows to instantiate the approach
due to Bichsel et al. more efficiently.

The main drawback of existing constructions following SRP is that they rely
on a security model that is weaker than the BSZ model [BSZ05]: anonymity only
holds for users whose keys do not leak (we will henceforth use CCA~ to refer
to anonymity in this sense). This essentially means that once a user key leaks,
all previous signatures of this user can potentially be attributed to this user.
Furthermore, the model used for SRP constructions assumes that the opening
authority and the issuing authority are one entity, meaning that the issuer can
identify all signers when seeing group signatures. Both aforementioned weaken-
ings can be highly problematic in practical applications of group signatures. It
is thus a natural question to ask whether it is possible to prove that construc-
tions following the SRP paradigm provide CPA- or even CCA2-full anonymity.
Unfortunately, for existing constructions we have to answer this negatively. Even
when allowing to modify the existing constructions in [BCN*10, PS16] to allow
the explicit use of encryption upon joining the group (which might solve the
separability issue regarding issuer and opener), it is easy to see that knowledge
of the user secret key breaks CCA2- as well as CPA-full anonymity for both con-
structions.® Since CCA2-full anonymity straight forwardly implies anonymity in
the SRP model, this example confirms that CCA2-full anonymity is a strictly
stronger notion. The weaker notion of CPA-full anonymity is somewhat orthogo-
nal to the anonymity notion used by the SRP model: it appropriately models the
leakage of user secret keys, but restricts the open oracle access. Yet, in practice
it seems that the risk that a user secret key leaks is extremely hard to quantify,
which is why we deem CPA-full anonymity to be more desirable. This is also
underpinned by the fact that—to the best of our knowledge—mno attacks arising
from the restriction of the open oracle access in CPA-full anonymity are known.

3 Each valid group signature contains a valid randomizable signature on the secret key
of the user. While group signatures only contain a proof of knowledge of the signed
secret key, being in possession of secret key candidates allows to simply test them
using the verification algorithm of the randomizable signature scheme. This clearly
provides a distinguisher against CCA2- as well as CPA-full anonymity.



1.2 Contribution

We tackle the following open questions, which are of highly practical relevance
but also of theoretical interest:

— Is it possible to further push the computational efficiency limits of group
signature schemes providing the more desirable CPA-full and CCA2-full anon-
ymity notions?

— Is it possible to construct schemes providing those more desirable anonymity
notions, where compelling efficiency is reached by relying on the SRP para-
digm?

We answer both questions posed above to the affirmative by contributing a novel
approach to construct group signatures. Our approach is a composition of struc-
ture preserving signatures on equivalence classes (SPS-EQ) [HS14, FHS18], con-
ventional digital signatures, public key encryption, non-interactive zero-knowledge
proofs, and signatures of knowledge. Although these tools may sound quite heavy,
we obtain conceptually simple and surprisingly efficient group signatures, which
provably provide CCA2-full anonymity in the strongest model for dynamic group
signatures, i.e., the BSZ model. In doing so, we obtain the first construction
which achieves this strong security notion following the SRP paradigm. In addi-
tion to that, we introduce an even more efficient CPA-fully anonymous variant
of our scheme.

We proceed in showing how to instantiate our constructions in the random
oracle model (ROM) to obtain particularly efficient schemes. We are thereby able
to further push the long standing computational efficiency limits for both CPA-
and CCA2-fully anonymous group signature schemes regarding signature genera-
tion and verification. When comparing to the celebrated and popular BBS group
signature scheme [BBS04] (which achieves CPA-full anonymity in the ROM),
besides being more efficient we surprisingly even obtain shorter signatures. Ul-
timately, when comparing to instantiations in the vein of Bichsel et al. (which
provide a less desirable anonymity notion), our instantiations provide compara-
ble computational efficiency.

A Remark on SRP. While existing constructions following the SRP paradigm
(sometimes also called “without encryption” paradigm) do not explicitly use
public key encryption, they all rely on assumptions which imply public key
encryption. In general, their goal is not to avoid public key encryption, but to
make efficiency gains by constructing schemes which do not make explicit use of
public key encryption in the sense of SEP, i.e., upon signature generation. We,
thus, may henceforth refer to such schemes as “without explicit encryption”.
Our scheme is in the same spirit and also makes its efficiency gains by avoiding
the explicit use of encryption upon signature generation (note that we explicitly
use encryption upon joining and opening).

2 Preliminaries

In this section, we provide some preliminaries and recall the required primitives.



Notation. Let z <& X denote the operation that picks an element uniformly at
random from a finite set X and assigns it to z. We assume that all algorithms
run in polynomial time and use y + A(x) to denote that y is assigned the output
of the potentially probabilistic algorithm A on input = and fresh random coins
and write y < A(z; r) to make the random coins r of A explicit. We assume
that every algorithm outputs a special symbol L on error. We write Pr[{2 : £]
to denote the probability of an event £ over the probability space {2. A function
€: N — Rt is called negligible if for all ¢ > 0 there is a ko such that e(k) < 1/k¢
for all £ > kg. In the remainder of this paper, we use € to denote such a negligible
function. We use the [-] operator to access list entries, i.e., let L = (a,b,...,2)
then L[1] refers to a.

Let G; = (P), Gy = <}5>, and G be groups of prime order p. A bilinear map
e : Gy x Gy — G is a map, where it holds for all (P,Cla,b) € Gy x Gy x Zf,
that e(aP, bQ) = e(P,Q)“b, and e(P, I:’) # 1, and e is efficiently computable.
We assume the Type-3 setting, where G; # Gy and no efficiently computable
isomorphism ¥ : Go — G is known.

Definition 1 (Bilinear Group Generator). Let BGGen be an algorithm which
takes a security parameter k and generates a bilinear group BG = (p, G1, G, Gr,
e, P, P) in the Type-3 setting, where the common group order p of the groups
G1,Gs and Gr is a prime of bitlength K, e is a pairing and P and P are gener-
ators of Gy and Go, respectively.

Definition 2 (Decisional Diffie-Hellman Assumption (DDH)). The DDH
assumption relative to a prime-order p group G = (P) with log, p = k states that
for all PPT adversaries A there exists a negligible function €(-) such that:

b <2 {0,1}, r,s,t(ﬁZp,

Pl e A(PrPsP,(b- (rs) + (1—b)- )P

D b=0"| <12+ e(k).
Definition 3 (Symmetric External Diffie-Hellman Assumption (SXDH)).
Let BG be a bilinear group generated by BGGen. Then, the SXDH assumption
states that the DDH assumption holds in G1 and Gs.

Additionally, we introduce a natural assumption in the Type-3 bilinear group
setting. We justify its plausibility in Appendix A.

Definition 4 (Computational co-Diffie-Hellman Inversion Assumption
(co-CDHI)). The co-CDHI assumption states that for all PPT adversaries A
there exists a negligible function €(-) such that:

BG + BGGen(1*),

At =1/q < .
"oz, €+« ABG,aP,1/aP) C="1aP| <e(x)

Structure Preserving Signatures on EQ Classes. Subsequently, we briefly
recall structure-preserving signatures on equivalence classes (SPS-EQ) as pre-
sented in [HS14, FHS18]. Therefore, let p be a prime and ¢ > 1; then Zf, is a
vector space and one can define a projective equivalence relation on it, which



propagates to Gf and partitions Gf into equivalence classes. Let ~x be this rela-
tion, i.e., for M,N € GY : M ~g N & Is € Zy : M = sN. An SPS-EQ scheme
now signs an equivalence class [M]r for M € (G})* by signing a representa-
tive M of [M]g. One of the design goals of SPS-EQ is to guarantee that two
message-signature pairs from the same equivalence class cannot be linked. Be-
low, we formally recall the definition of an SPS-EQ scheme.

Definition 5 (SPS-EQ). An SPS-EQ on G} (for i € {1,2}) consists of the
following PPT algorithms:

BGGeng (1%): On input of a security parameter x outputs a bilinear group BG.

KGeng (BG,¢): On input of a bilinear group BG and a vector length £ > 1 outputs
a key pair (sk, pk).

Signr (M,sk): On input a representative M € (G})* and a secret key sk outputs
a signature o for the equivalence class [M]r.

ChgRepr (M, o, p, pk): On input of a representative M € (G¥)* of class [M], a
signature o for M, a scalar p and a public key pk returns an updated message-
signature pair (M',o"), where M’ = p- M is the new representative and o’ its
updated signature.

Vrfr (M, o,pk): On input of a representative M € (G¥)’, a signature o and a
public key pk outputs a bit b € {0,1}.

VKeyr (sk, pk): This algorithm on input a secret key sk and a public key pk
outputs a bit b € {0,1}.

For security, one requires the following properties.

Definition 6 (Correctness). An SPS-EQ scheme on (G})’ is called correct
if for all security parameters k € N, £ > 1, BG < BGGeng(17), (sk,pk) «
KGeng (BG,¢), M € (G})* and p € Ly:

VKeyy(sk,pk) =1 A Pr [VrfR(M,SignR(M, sk), pk) = 1] 1 A
Pr [Vrfr (ChgRepg (M, Signg (M, sk), p, pk), pk) = 1] = 1.

For EUF-CMA security, a valid message-signature pair, corresponding to an un-
queried equivalence class, is considered a forgery.

Definition 7 (EUF-CMA). An SPS-EQ over (G})* is existentially unforgeable
under adaptively chosen-message attacks, if for all PPT adversaries A with
access to a signing oracle O>8"= | there is a negligible function e(-) such that:

BG «+ BGGeng (17),
Pr | (sk, pk) <= KGenr (BG, ¢),
(M*,0%) = AO™"™ (pk)

[M*]r # [M]r VM € Q%"= A
Vitr(M*, 0%, pk) = 1| = (%)

where Q38"= is the set of queries that A has issued to the signing oracle O58"= .
q gning

Besides EUF-CMA security, an additional security property for SPS-EQ was in-
troduced in [FHS15] (cf. Definition 8).



Definition 8 (Perfect Adaption of Signatures). An SPS-EQ scheme on
(G})* perfectly adapts signatures if for all tuples (sk, pk, M, o, p) where it holds
that VKeyg (sk,pk) = 1, Vrfr(M,o,pk) = 1, M € (G})*, and p € Z}, the
distributions (pM, Signr (pM, sk)) and ChgRepr (M, o, p, pk) are identical.

Digital Signature Schemes. Subsequently, we recall a definition of digital
signature schemes.

Definition 9 (Digital Signatures). A digital signature scheme ¥ consists of
the following PPT algorithms:

KGen(1%) : Takes a security parameter k as input and outputs a secret (signing)
key sk and a public (verification) key pk with associated message space M (we
may omit to mention the message space M ).

Sign(sk,m) : Takes a secret key sk and a message m € M as input and outputs
a signature o.

Vrf(pk,m, o) : Takes a public key pk, a message m € M and a signature o as
input and outputs a bit b € {0,1}.

Besides correctness we require existential unforgeability under adaptively chosen
message attacks (EUF-CMA) [GMRSS]. Below, we recall formal definitions of
these properties.

Definition 10 (Correctness). A digital signature scheme ¥ is correct, if for
all k, all (sk, pk) « KGen(1%), and all m € M it holds that Pr[Vrf(pk, m, Sign(sk,
m)) =1]=1.

Definition 11 (EUF-CMA). A digital signature scheme ¥ is EUF-CMA secure,
if for all PPT adversaries A there is a negligible function €(-) such that

(sk, pk) + KGen(1*), Vrf(pk,m*,0*) =1, A
P .- . bl bl bl <

r (m*,0*) AOS(k* )(pk) m* ¢ QS <e(k),
where A has access to an oracle O3 that allows to execute the Sign algorithm
and the environment keeps track of all message queried to O via Q.

Public Key Encryption. We also require public key encryption, which we
recall below.

Definition 12 (Public Key Encryption). A public key encryption scheme Q
consists of the following PPT algorithms:

KGen(1%) : Takes a security parameter k as input and outputs a secret decryption
key sk and a public encryption key pk (and we assume that the message space
M is implicit in pk).

Enc(pk,m) : Takes a public key pk and a message m € M as input and outputs
a ciphertext c.

Dec(sk,c) : Takes a secret key sk and a ciphertext ¢ as input and outputs a
message m € MU {L}.



We require a public key encryption scheme to be correct and IND-T secure.
Below we formally recall those notions.

Definition 13 (Correctness). A public key encryption scheme S is correct if
it holds for all k, for all (sk, pk) < KGen(1*), and for all messages m € M that

Pr[Dec(sk, Enc(pk,m)) = m| = 1.

Definition 14 (IND-T Security). Let T € {CPA, CCA2}. A public key encryp-
tion scheme Q is IND-T secure, if for all PPT adversaries A there exists a
negligible function €(-) such that

(sk, pk) « KGen(1%),

(mo, my,st) < AT (pk), ) b=">b" A
b<={0,1}, ¢+ Enc(pk,mp), = c¢ QP A |mg| = |my|
b* < A9 (c, st)

Pr < 1/2+ €(k),

where the adversary runs in two stages, Ot <+ 0 if T = CPA, and Ot <«
{OPee(sk, )} if T = CCA2. QP denotes the list of queries to OP* and we set
QP « () if T = CPA.

Non-Interactive Zero-Knowledge Proof Systems. Now, we recall a stan-
dard definition of non-interactive zero-knowledge proof systems. Therefore, let
L be an NP-language with witness relation R : Lr = {z | 3w : R(z,w) = 1}.

Definition 15 (Non-Interactive Zero-Knowledge Proof System). 4 non-
interactive proof system I consists of the following PPT algorithms:

Setup(1¥) : Takes a security parameter £ as input, and outputs a common ref-
erence string crs.

Proof (crs, z,w) : Takes a common reference string crs, a statement x, and a
witness w as input, and outputs a proof .

Vrf(crs,xz, ) : Takes a common reference string crs, a statement x, and a proof
7 as input, and outputs a bit b € {0,1}.

We require proof systems to be complete, sound, and zero-knowledge. Below, we
recall formal definition of those properties (adapted from [BGI14]).

Definition 16 (Completeness). A non-interactive proof system T is com-
plete, if for every adversary A it holds that

crs < Setup(1%), (x,w) < Alcrs), Vrf(crs,z,m) =1

Pr 7 < Proof(crs, z, w) ‘ V (z,w) ¢ R

~ 1.

Definition 17 (Soundness). A non-interactive proof system I is sound, if for
every PPT adversary A there is a negligible function €(-) such that

Pr [crs < Setup(1%), (z,m) < Alcrs) : Vrf(ers,z,m) =1 A x ¢ Lg| < €(r).



If we quantify over all adversaries A4 and require € = 0, we have perfect soundness,
but we present the definition for computationally sound proofs (arguments).

Definition 18 (Adaptive Zero-Knowledge). A non-interactive proof system
M is adaptively zero-knowledge, if there exists a PPT simulator S = (S81,82)
such that for every PPT adversary A there is a negligible function €(-) such that

Pr [crs + Setup(1%) : AP (crs) = 1] — < (r)

e(k),

Pr[(crs,7) + Si(17) + ASEs™)(ers) =1] |~

where, T denotes a simulation trapdoor. Thereby, P and S return L if (z,w) ¢ R
or m < Proof(crs, x,w) and w < Sa(crs, 7, x), respectively, otherwise.

Signatures of Knowledge. Below we recall signatures of knowledge (SoKs)
[CLO6], where Lg is as above. For the formal notions we follow [BCC*15]
and use a stronger generalization of the original extraction property termed
f-extractability. A signature of knowledge (SoK) for Lg is defined as follows.

Definition 19 (Signatures of Knowledge). A SoK consists of the following
PPT algorithms:

Setup(1%) : Takes a security parameter K as input and outputs a common refer-
ence string crs. The message space M is implicitly defined by crs.

Sign(crs, z,w,m) : Takes a common reference string crs, a word xz, a witness w,
and a message m as input and outputs a signature o.

Vrf(crs, z,m, o) : Takes a common reference string crs, a word x, a message m,
and a signature o as input and outputs a bit b € {0,1}.

We require signatures of knowledge to be correct, simulatable and f-extractable.
We formally recall those notions below.

Definition 20 (Correctness). A SoK w.r.t. Ly is correct, if there exists a
negligible function €(-) such that for all x € L, for all w such that (z,w) € R,
and for all m € M it holds that

Pr [crs < Setup(1%), o < Sign(crs,z,w,m) : Vrf(crs,z,m,0) = 1] > 1 — €(k).

Definition 21 (Simulatability). A SoK w.r.t. Lr is simulatable, if there ex-
ists a PPT simulator S = (SSetup, SimSign) such that for all PPT adversaries
A there exists a negligible function €(-) such that it holds that

Pr [crs < Setup(1*), ASig"(ch!"'v')(crs) — 1] _

; <
Pr [(crs, 7) « SSetup(1%), ASm(Ers.e) (crs) = 1] | — e(k),

where Sim(crs, 7, z, w, m) = SimSign(crs, 7, x,m) and Sim only responds if (x,w) €

R.



Definition 22 (f-Extractability). A SoK w.r.t. Lr is f-extractable, if in ad-
dition to S there exists a PPT extractor Extract, such that for all PPT adver-
saries A there exists a negligible function €(-) such that it holds that

Vrf(crs,z,m,0) =0 V
(z,m,0) € Q5™ V

Fw: (x,w)€R A
y = f(w))

where Q5™ denotes the queries (resp. answers) of Sim.

(crs, 7) + SSetup(17),
Pr (a:,m,a) — ASim(CrS,T7‘7',')(Crs)7 .
y < Extract(crs, 7,2, m, o)

>1- 6("{)1

We note that, as illustrated in [BCC'15], this notion is a generalization of the
original extractability notion from [CL06] which implies the original extractabil-
ity notion if f is the identity. In this case, we simply call the f-extractability
property extractability. Analogous to [BCCT15], we require the used SoK to be
at the same time extractable and straight-line f-extractable with respect to some
f other than the identity, where straight-line as usual says that the extractor
runs without rewinding the adversary [Fis05].

3 Dynamic Group Signatures

Subsequently, we recall the established model for dynamic group signatures. We
follow Bellare et al. [BSZ05] (BSZ model), with the slight difference that we
relax the perfect correctness to only require computational correctness. Further-
more, we also present the weaker anonymity notion of CPA-full anonymity from
[BBS04] and the notion of opening soundness [SSE*12], which addresses issues
regarding hijacking of signatures by malicious group members. In particular, we
use the notion of weak opening soundness, where the opening authority is re-
quired to be honest, since we believe that this notion provides a good tradeoff
between computational efficiency of potential instantiations and expected secu-
rity guarantees (even the authors of [SSE*12] say that weak opening soundness
already addresses the attacks they had in mind).

GKGen(1") : Takes a security parameter x as input and outputs a triple (gpk, ik,
ok) containing the group public key gpk, the issuing key ik as well as the opening
key ok.

UKGen(1") : Takes a security parameter  as input and outputs a user key pair
(usk;, upk;).

Join(gpk, usk;, upk;) : Takes the group public key gpk and the user’s key pair
(usk;,upk;) as input. It interacts with the Issue algorithm and outputs the
group signing key gsk; of user 7 on success.

Issue(gpk, ik, 7, upk;, reg) : Takes the group public key gpk, the issuing key ik, the
index ¢ of a user, user ¢’s public key upk;, and the registration table reg as
input. It interacts with the Join algorithm and adds an entry for user ¢ in reg
on success. In the end, it returns reg.

Sign(gpk, gsk,;, m) : Takes the group public key gpk, a group signing key gsk,,
and a message m as input and outputs a group signature o.



Vrf(gpk, m, o) : Takes the group public key gpk, a message m and a signature o
as input and outputs a bit b € {0,1}.

Open(gpk, ok, reg, m, o) : Takes the group public key gpk, the opening key ok,
the registration table reg, a message m, and a valid signature ¢ on m under
gpk as input. It extracts the identity of the signer and returns a pair (i,7),
where T is a proof.

Judge(gpk, m, 0,1, upk;, 7) : Takes the group public key gpk, a message m, a valid
signature o on m under gpk, an index ¢, user i’s public key upk,, and a proof
7. It returns a bit b € {0, 1}.

Oracles. In the following we recall the definitions of the oracles required by the
security model. We assume that the keys (gpk, ik, ok) created in the experiments
are implicitly available to the oracles. Furthermore, the environment maintains
the sets HU, CU of honest and corrupted users, the set GS of message-signature
tuples returned by the challenge oracle, the lists upk, usk, gsk of user public keys,
user private keys, and group signing keys. The list upk is publicly readable and
the environment also maintains the registration table reg. Finally, SI represents
a list that ensures the consistency of subsequent calls to CrptU and SndTol. All
sets are initially empty and all list entries are initially set to L. In the context
of lists, we use upk;, usk;, etc. as shorthand for upk[i], usk[i], etc.

AddU(7) : Takes an index ¢ as input. If ¢ € CU U HU it returns L. Otherwise it
runs (usk,, upk;) <~ UKGen(1%) and (reg, gsk;) <+
(Issue(gpk, ik, i, upk,, reg) <> Join(gpk, usk;, upk;)).

Finally, it sets HU «— HU U {i} and returns upk;.

CrptU(i, upkj) : Takes an index 7 and user public key upk; as input. If ¢ € CUUHU
it returns L. Otherwise it sets CU <— CUU {i}, SI[i] <~ T and upk; < upk;.

SndTol(i) : Takes an index ¢ as input. If SI[{] # T it returns L. Otherwise, it
plays the role of an honest issuer when interacting with the corrupted user i.
More precisely, it runs reg < (Issue(gpk, ik, i, upk;, reg) <> A). In the end it sets
SI[i] « L.

SndToU(7) : Takes an index 4 as input. If ¢ ¢ HU it sets HU « HU U {i}, runs
(usk;, upk;) < UKGen(1%). Then it plays the role of the honest user ¢ when
interacting with a corrupted issuer. More precisely, it runs gsk;, + (A4 «
Join(gpk, usk;, upk;)).

USK(7) : Takes an index ¢ as input and returns (gsk;, usk;).

RReg(7) : Takes an index i as input and returns reg;.

WReg(i, p) : Takes an index 7 and a registration table entry p as input and sets
reg; < p.

GSig(i,m) : Takes an index ¢ and a message m as input. If ¢ ¢ HU or gsk, = L it
returns L and o < Sign(gpk, gsk;, m) otherwise.

Ch(b, 40,71, m) : Takes a bit b, two indexes iy and 41, and a message m as input.
If {ig,i1} ZHU V gsk,, = L V gsk, = L it returns L. Otherwise, it computes
o « Sign(gpk, gsk;, ,m), sets GS <= GSU {(m, o)} and returns o.

Open(m, o) : Takes a message m and a signature o as input. If (m,o) € GS or
Vrf(gpk, m,c) = 0 it returns L. Otherwise, it returns (¢,7) < Open(gpk, ok,
reg, m, o).



Security Notions. We require dynamic group signatures to be correct, anony-
mous, traceable, non-frameable, and weakly opening sound. Correctness, requires
that everything works correctly if everyone behaves honestly. Note that we relax
perfect correctness to computational correctness.

Definition 23 (Correctness). A GSS is correct, if for all PPT adversaries A
there is a negligible function €(-) such that

(gpk, ik, ok) + GKGen(1*),

O + {AddU(-), RReg(-)}, Vrf(gpk,m,0) =1 A i € HU
Pr | (i,m) «+ A (gpk), : Agsk, # L Adi=7A|>1—¢€r).
o < Sign(gpk, gsk;, m), Judge(gpk, m, 0,1, upk;, 7) =1

Anonymity captures the intuition that group signers remain anonymous for ev-
eryone except the opening authority. Thereby, the adversary can see arbitrary
key exposures. Furthermore, in the CCA2 case the adversary can even request
arbitrary openings of other group signatures.

Definition 24 (T-Full Anonymity). Let T € {CPA, CCA2}. A GSS is T-fully
anonymous, if for all PPT adversaries A there is a negligible function e(-) such
that

Pr [(gpk, ik, ok) < GKGen(1"),

b — b 1
b {01}, b*  AOT(gpk,ik) 0T ] <2+ elr),

where

{Ch<b,-,-,-), SndToU(-), WReg(-, ),
USK(+), CrptU(,-)

Ch(b,-,-,-), Open(-,-), SndToU(-)
{WReg(-w% USK(-), CrptU(-,-)

} if T=CPA, and
T <
’ } if T = CCA2.

Traceability models the requirement that, as long as the issuer behaves honestly
and its secret key remains secret, every valid signature can be traced back to a
user. This must even hold if the opening authority colludes with malicious users.

Definition 25 (Traceability). A GSS is traceable, if for all PPT adversaries
A there is a negligible function €(-) such that

(gpk, ik, ok) + GKGen(1*),

O <+ {SndTol(-), AddU(-), Vrf(gpk,m,o) =1 A
Pr | RReg(-), USK(:), CrptU(-)}, : (i=1 V| <elr).
(m, o) + A°(gpk, ok), Judge(gpk, m, o, i, upk;, 7) = 0)

(i,7) < Open(gpk, ok, reg, m, o)

Non-frameability requires that no one can forge signatures for honest users.
This must even hold if the issuing authority, the opening authority, and, other
malicious users collude.



Definition 26 (Non-Frameability). A GSS is non-frameable, if for all PPT
adversaries A there is a negligible function €(-) such that

(gpk, ik, ok) + GKGen(1"), Vrf(gpk,m,c) =1 A
p O <+ {SndToU(-), WReg(-,-), i €HU A gsk; # L A < €(k)
" GSig(-,-), USK(), CrptU()}, i ¢ USK A (i,m) ¢SIGA | = )

(m,o,i,7) + A (gpk, ok, ik) Judge(gpk, m, 0,1, upk;, 7) =1
where USK and SIG denote the queries to the oracles USK and Sign, respectively.

Weak opening soundness [SSE*12] essentially requires that no malicious user
can claim ownership of a signature issued by an honest user, as long as the
opening authority behaves honestly.

Definition 27 (Weak Opening Soundness). A GSS is weakly opening sound,
if for all PPT adversaries A there is a negligible function €(-) such that

(gpk, ik, ok) = GKGen(1"),
O « {AddU(-)},

Pr | (1, i, j,st) + A° (gpk),
o « Sign(gpk, gsk;, m),
7« A9(st, 0, gsk;)

i#j A {i,j} CHU A

Judge(gpk, m, o, j, upk;, 7) = 1 < k).

4 Construction

Our idea is inspired by [HS14], who use the “unlinkability” feature of SPS-EQ
signatures to construct anonymous credentials. Essentially, a credential in their
approach represents a signature for an equivalence class and to show a credential
they always present a newly re-randomized signature to a random representative
of this class. While, due to the intuitive relation of anonymous credentials and
group signatures, it might seem straightforward to map this idea to group sig-
natures, it turns out that there are various subtle, yet challenging issues which
we need to solve.

First, the anonymity notion is much stronger than the one of anonymous
credentials (see, e.g., [FHS18]) in that it does not put many restrictions on the
Ch and the USK oracles. In particular, Ch can be called an arbitrary number
of times and USK can be called for all users. Thus, the user secret keys must
be of a form so that it is possible to embed decision problem instances into
them upon simulation, while not influencing their distribution (as the adversary
sees those keys and would be able to detect the simulation otherwise). More
precisely, anonymity in our paradigm seems to require that the user keys contain
no Z, elements, which, in turn, renders the non-frameability proof more difficult.
Second, if CCA2-full anonymity is required, the simulatability of the open oracle
needs to be ensured, while the reduction must not be aware of the opening
information (as otherwise the reduction could trivially break anonymity on its
own and would be meaningless). This seems to crucially require a proof system
providing rather strong extractability properties. To maintain efficiency, it is



important to find the mildest possible requirement which still allows the security
proofs to work out. Third, the non-frameability adversary is given the issuing
key as well as the opening key. Thus, the reduction must be able to simulate
the whole join process without knowledge of a user secret key in a way that the
distribution change is not even detectable with the knowledge of these keys.

Now, before we present our full construction, we briefly revisit our basic
idea. In our scheme, each group member chooses a secret vector (R, P) € (G})?
representing an equivalence class where the second component P is identical for
all users. When joining the group, a blinded version ¢ - (R, P) with ¢ <& Ly, of
this vector, i.e., another representative of the class, is signed by the issuer using
an SPS-EQ, and, by the re-randomization property of SPS-EQ and the feature to
publicly change representatives of classes, the user thus obtains a signature on
the unblinded key (R, P) using ChgRepr with ¢~1. To provide a means to open
signatures, a user additionally has to provide an encryption of a value R e G,
such that e(R, P) = e(P,R) on joining (and has to sign the ciphertext as an
identity proof). The group signing key of the user is then the pair consisting of
the vector (R, P) and the SPS-EQ signature on this vector. A group member
can sign a message m on behalf of the group by randomizing its group signing
key and computing a signature of knowledge (SoK) to the message m proving
knowledge of the used randomizer.# The group signature is then the randomized
group signing key and the SoK.

Very roughly, a signer remains anonymous since it is infeasible to distinguish
two randomized user secret keys under DDH in G;. The unforgeability of SPS-EQ
ensures that each valid signature can be opened. Furthermore, it is hard to forge
signatures of honest group members since it is hard to unblind a user secret key
under co-CDHI and the signature of knowledge essentially ensures that we can
extract such an unblinded user secret key from a successful adversary.

Detailed Construction. We require zero-knowledge proofs upon Join and
Open. The NP relation Rj corresponding to the proof carried out in Join is
defined as

((UinaéJia pk0)7 (T, W)) €ER) —
Cy, = QEnc(pko, 7P; w) A Ui =7-Q.

Essentially, the NP language which is associated to this relation consists of all
tuples where U; and the group element rP, encrypted within C), share the
same discrete logarithm r with respect to bases () and P, respectively. The NP
relation R corresponding to the proof carried out upon Open is

((Cy,, pko, @), (sko, R)) € Ro <= R = Q.Dec(sko,

Cy) A pko =sko A e(o1[l][1], P) = e(o1[1][2], R).

4 For technical reasons and in particular for extractability, we actually require a sig-
nature of knowledge for message m’ = o1||m, where o1 contains the re-randomized
user secret key and SPS-EQ signature.



Thereby, pk = sk denotes the consistency of pk and sk. Note that o; represents
the randomized user secret key, i.e., is of the form ((pR, pP), ¢’) and consists of a
randomized message vector and a corresponding randomized SPS-EQ signature.
We use o1[1][j] to refer to the jth element in the (randomized) message vector.
Essentially, the NP language associated to this relation consists of all tuples
where the element R being encrypted in C), and the element ¢ [1][1] share the
same discrete logarithms with respect to bases P and o4[1][2], respectively.

Furthermore, upon Sign we require a signature of knowledge which is with
respect to the following NP relation Rs.

((P7Q>7p) ERS — Q=p~P.

For the sake of compactness, we assume that the languages defined by Rj, Ro, Rs
are implicit in the CRSs crsy, crsg, and crsg, respectively. The full construction
is presented as Scheme 1. Note that if multiple users collude and use the same
value r upon Join(l)7 we always return the first user who registered with this
particular value r in Open. Then, Open always returns the signer who initiated
the collusion by sharing the r value, which, we think, is the most reasonable
choice. Note that this is in line with the BSZ model: traceability only requires
that every valid signature can be opened, while not requiring that it opens to one
particular user out of the set of colluding users; correctness and non-frameability
are defined for honest users and are therefore clearly not influenced.

4.1 Security

First, note that our Join <> Issue protocol is inherently concurrently secure: we
only have two moves which means that interleaving different Join <+ Issue will
not be accepted as valid Join < Issue. Since the simplicity of a two-move protocol
makes it rather hard to see from the proof that we actually consider concurrent
security, we explicitly stress it here to make sure that this additional feature is
not overlooked.

In our proofs, we omit to make the negligible distribution switches which arise
when sampling uniformly random from Z,, instead of Z; explicit and instead treat
them as conceptual changes for the sake of compactness.

Theorem 1. IfSPS-EQ is correct, SoK is correct, and I is sound, then Scheme 1
s correct.

Proof (Proof (Sketch)). Correctness is straight forward to verify by inspection.
We only have to take care of one detail: There is the possibility that two honest
executions of AddU yield the same value r (which is chosen uniformly at random
upon Join(l)). Thus, the probability of two colliding r is negligible.

Theorem 2. If 1 is adaptively zero-knowledge, SoK is simulatable, Q is IND-
CPA secure, SPS-EQ perfectly adapts signatures, and the DDH assumption holds
in Gq, then Scheme 1 is CPA-full anonymous.



GKGen(1%) : Run BG <+ BGGenz(1%), (skz,pkr) « KGenz(BG,2), (sko,pky)
Q.KGen(17), crs; + M.Setup(1”), crso < [M.Setup(1¥), crss « SoK.Setup(1®), set
gpk < (pkg, Pko,crsy, crso, crss), ik < sk, ok <— sko and return (gpk, ik, ok).

UKGen(1%) : Return (usk;, upk;) < X.KGen(1").

Join™ (gpk, uski, upk;) : Choose g, <= Zy, set (Us, Q) < (r-qP,¢qP), and output M «+
(Ui, Q), éJi ,01;,my;) and st < (gpk, ¢, U;, Q), where

C'J,i — Q.Enc(pko,rp; w), oy, Z.Sign(uski,CA’Ji),
my, < M.Proof(crsy, (Us, Q, é_ji,pko)7 (r,w)).

Issue(gpk, ik, i, upk;, reg) : Receive My = ((Us,Q),Cy,,0y,,7;,), return reg and send o
to user ¢, where

reg; < (éJi7JJi)’ o' SignR((Uin)vskR)z

if I'I.Vrf(crsJ,(Ui7Q,C'Ji,pko),ﬂJi) =1 A Z.Vrf(upki,CA'Ji,(ni) = 1, and return L
otherwise.

Join<2)(st7 o') : Parse st as (gpk, ¢, U;, Q) and return gsk;, where
gSk'L = ((TP’ P)? U) <~ Cthep’R((U’b? Q)?le q717 ka),
if Vrfr ((U;,Q), 0, pkr ) = 1, and return L otherwise.

*
YRl

Sign(gpk, gsk;,m) : Choose p < 7%, and return o < (o1, 02), where
o1 < ChgRepy (gsk;, p, pkg ), ® o2 < SoK.Sign(crss, (P, 01[1][2]), p, o1||m).
Vrf(gpk,m,o) : Return 1 if the following holds, and 0 otherwise:

Vrfr(o1,pkg) =1 A SoK.Vrf(erss, (P, o1[1][2]), 01||m, 02) = 1.

Open(gpk, ok, reg, m, o) : Parse o as (01,02), and ok as sko. Obtain the lowest index

z'lb so that it holds for (CJ;,0y,) + reg, that R « Q.Dec(sko, Cy,) and e(o[1][1],
P) = e(01[1][2], R). Return (¢,7) and L if no such entry exists, where

T+ (’ﬂ'o,é_ji,o'_ji), and 7o < MN.Proof(crso, (é_j,“ pko, o), (sko,I:Z)).

Judge(gpk, m, 0,4, upk;, 7) : Parse 7 as (o, C'J,i ,0J;), and return 1 if the following holds
and 0 otherwise:

Y .Vrf(upk,,Cy,,05,) =1 A MVrf(erso, (Cy,, pko, o), m0) = 1.

* Note that gsk; is of the form ((R, P), o) and o1 is a randomization of gsk,. We slightly
abuse the notation of Vrfgz and ChgRepr and input message-signature tuples instead
of separately inputting messages and signatures.

b We assume that the indexes are in ascending order w.r.t. the time of registration.

Scheme 1: Fully-Anonymous Dynamic Group Signature Scheme




Theorem 3. IfI1 is adaptively zero-knowledge, SoK is simulatable and straight-
line f-extractable, where f : Z, — Go is defined as r — r - P, Q is IND-CCA2
secure, SPS-EQ perfectly adapts signatures, and the DDH assumption holds in
G, then Scheme 1 is CCA2-full anonymous.

Proof. We prove Theorem 2 and 3 by showing that the output distributions of
the Ch oracle are (computationally) independent of the bit b, where we highlight
the parts of the proof which are specific to Theorem 3 and can be omitted to
prove Theorem 2. Therefore, let gcp, < poly(k) be the number of queries to Ch,
go < poly(k) be the number of queries to Open, and gspatou < poly(k) be the
number of queries to SndToU.

Game 0: The original anonymity game.

Game 1: As Game 0, but we run (crsy, 7)) + M.51(1") instead of crs; <«
M.Setup(1*) upon running GKGen and store the trapdoor 7. Then, we simulate
all calls to M.Proof executed in Join using the simulator (without a witness).

Transition - Game 0 — Game 1: A distinguisher D°~! is an adversary against
adaptive zero-knowledge of I, and, therefore, the probability to distinguish
Game 0 and Game 1 is negligible, i.e., | Pr[S1] — Pr[So]| < ezk, (k).

Game 2: As Game 1, but we run (crsp,70) + 1.51(1%) instead of crso +
M.Setup(1”) upon running GKGen and store the trapdoor 7o. Then, we simulate
all calls to M.Proof in Open using the simulator (without a witness).

Transition - Game 1 — Game 2: A distinguisher D' 7?2 is an adversary against
adaptive zero-knowledge of I, and, therefore, the probability to distinguish
Game 1 and Game 2 is negligible, i.e., | Pr[Ss] — Pr[S1]] < ez, (k).

Game 3: As Game 2, but we run (crss, 75) < SoK.SSetup(1*) instead of crss
SoK.Setup(1*) upon running GKGen and store the trapdoor 7s. Then we sim-
ulate all calls to SoK.Sign using the simulator (without a witness).

Transition - Game 2 — Game 3: A distinguisher D273 is an adversary against
simulatability of SoK. Therefore, the distinguishing probability is negligible,
ie., |P1"[S3] — PI‘[SQH < esim(k)-

Game 4: As Game 3, but instead of (sko, pkg) < Q.KGen(1%) in GKGen, we
obtain pkg from an IND-CPA (resp. IND-CCA2) challenger and set sko < L.

In the CCA2 case, we additionally maintain secret lists AU and 0I, and upon
each call to the SndToU oracle we store AU[i] < (gsk;,C),) = (((R, P),
0),C},). Then, we simulate the WReg oracle as follows

WReg (i, p) : As the original oracle, but we additionally parse p as
(Cy,,04,). If there exists an index j so that AU[j][2] = C),, we parse
AU[j][1] as ((R,P),0) and set OI[i] < (R,L). If there exists no such
index, we obtain R using the decryption oracle and set 0I[i] « (L, R).

Furthermore, we simulate the Open algorithm within the Open oracle as
follows.



Open(gpk, ok, reg, m, o) : First, obtain ¥ = pP using the straight-line
f-extractor. Then, obtain the lowest index ¢ where either e(oq[1][1],
P) = e(01[1][2],01[i][2]) holds, or e(01[i][1],¥) = e(o1[1][1], P) holds.
Compute a simulated proof 7 and return (i,7) and L if no such index
exists.

If the extractor fails at some point, we choose b <~ {0, 1} and return b.

Transition - Game 3 — Game 4 (CPA): In the CPA case, we do not have to
simulate the open oracle, and we only obtain the opening key from an IND-
CPA challenger. Thus, this change is conceptual, i.e., Pr[S5] = Pr[Sy].

Transition - Game 8 — Game 4 (CCA2): By the straight-line f-extractability
of the SoK, one can extract a witness p in every call to Open with overwhelm-
ing probability 1 — egxt(x). Thus, both games proceed identically unless the
extraction fails, i.e., | Pr[Ss] — Pr[S4]| < qgo - eexT (k).

Game 5: As Game 4, but we compute the ciphertext C 'j; in the Join algorithm
(executed within the SndToU oracle) as C), + Q.Enc(pk, P), i.e., with a con-
stant message that is independent of the user.

Transition - Game 4 — Game 5: A distinguisher D*~? is a distinguisher for the
IND-CPA (resp. IND-CCA2) game of Q. That is, | Pr[S5] — Pr[S4]| < ¢sndTou -

ecea(r) (resp. | Pr[Ss] — Pr[S4]| < gsnatou - €ccaz(#)).”

Game 6: As Game 5, but we re-add sko, i.e., we again obtain (sko, pkg)
Q.KGen(1%). In the CCA2 case, we again decrypt ourselves with in the WReg
simulation instead of using the decryption oracle.

Transition - Game 5 — Game 6: This change is conceptual. That is, Pr[Ss] =
PT[SG].

Game 7: As Game 6, but all calls to ChgRepg (M, p,pkyr) are replaced by
Signg (p - M, skg).

Transition - Game 6 — Game 7: Under perfect adaption of signatures, the out-
put distributions in Game 6 and Game 7 are identical, i.e., Pr[S7] = Pr[Sg].
Game 8: As Game 7, but we modify the Ch oracle as follows. Instead of run-
ning o1 < Signg (p - gsk;, [1],skr ), we choose S, T <* Gy, and compute o1

Signg (T, S),skr).

Transition - Game 7 — Game 8: We claim | Pr[S7]—Pr[Ss]| < qch-eppn(k). We

prove this separately below.

In Game 8, the simulation is independent of the bit b, i.e., Pr[Ss] = 1/2; what
remains is to obtain a bound on the success probability in Game 0. In the CPA
case, we have that Pr[Sy] < /2 + gsndtou * €cpa(K) + gch - €ppH (k) + €z, (k) +
€zKo (k) + €sim(k), which proves Theorem 2. In the CCA2 case, we have that
Pr[So] < 1/2 + gsndTou - €ccaz2(k) + qch - €ppH(K) + €z, (k) + €zko (k) + esim(k) +
qo - €exT(k), which proves Theorem 3.

5 For compactness, we collapsed the gsnatou game changes into a single game change
and note that one can straight forwardly unroll this to gsnatou game changes where
a single ciphertext is exchanged in each game.



Proof (Proof (of Claim)). Below we will show that Game 7 and Game 8 are
indistinguishable by introducing further intermediate hybrid games.

Game 7;: As Game 7, but we introduce a conceptual change which will make
the subsequent distribution changes easier to follow. In particular upon each
SndToU, we modify the simulation of Join so that we no longer choose r <* Z,,
to obtain (U;,Q) « (r - ¢P,qP), but choose R <~ G, and obtain (U;, Q) +
(qR,qP).

Transition - Game 7 — Game 7;: This is a conceptual change, i.e., Pr[S;] =
Pr[S7,]. Observe that we do not need to know r, as the proofs upon Join are
simulated without a witness. Also the user secret keys gsk, = ((R, P),0) are
exactly the same as honest secret keys.

Game 7; (2 <j <gqch+1): As Game 71, but we modify the Ch oracle as fol-
lows. For the first j —1 queries, instead of running o < Signg (p-gsk;, [1], skr),
we choose S, T < Gy, and compute o1 < Signg (T, S), skr).

Transition - 7; — 741 (1 < j < gcn + 1) For each transition, we present a hy-
brid game, which uses a DDH challenger to interpolate between Game 7; and
Game 7;1. First, we obtain a DDH instance (aP, bP, cP) € G3 relative to BG.
Then we proceed as follows:

— Upon each SndToU, we modify the simulation of Join as follows. Let i be
the index of the user to join. We use the random self reducibility of DDH
to obtain an independent DDH instance (R;, S;, T;) & (aP,bP,cP) and
set CH[i] « (Ry, Si, T;). Then, we let (U;, Q) < (qR;, ¢P).

— Up to the j — 1th query to Ch (i.e., for all queries where the answers are
already random in Game 7,), we compute o1 by choosing S, T £ G4, and
compute o1 < Signg (T, S), skr).

Upon the jth query to Ch, we obtain (-,S;,,T;,) < CH[ip] and set o1

SignR((Tiba Sib)’ SkR)'

— Starting from the j+1th query to Ch (i.e., for all queries where the answers
are still honest in Game 7;), we obtain (R;,,-,-) < CH[is], choose p <= Z,
and set o1 « Signg ((pRi,, pP),skr).

In Game 7; the first j — 1 answers are already random due to the previous

switches. Furthermore, the validity of the DDH instance (aP,bP, cP) provided

by the challenger determines whether the answer of Ch for the jth query are
for user i, or random, i.e., if we are in Game j or in Game j + 1. That is,
| Pr[S;] — Pr(S41]| < coom(r).

In Game 74,41 all answers of Ch are random, i.e., this Game is equal to Game
8, i.e., Pr[Sg] = Pr[74,+1]. We can conclude the proof by summing over the
distinguishing probabilities of all game changes which yields | Pr[S7] — Pr[Ss]| <
gch - €ppH(K).

Theorem 4. If SPS-EQ is EUF-CMA secure, and I is sound, then Scheme 1 is
traceable.

Proof. We proceed using a sequence of games, where we let ¢ < poly(k) be the
number of queries to the SndTol oracle.



Game 0: The original traceability game.

Game 1: As Game 0, but we obtain crs; from a soundness challenger of I1.

Transition - Game 0 — Game 1: This change is conceptual. That is Pr[Sy] =
PI‘[S]_].

Game 2: As Game 1, but after every successful execution of SndTol, we obtain
R+ Q.Dec(sko, Cy,) and abort if e(U;, P) # e(Q, R).

Transition - Game 0 — Game 1: If we abort we have a valid proof 7, attesting
that (U;, @, OJi7 pko) € Lg,, but by the perfect correctness of Q there exists no
w such that Cj, = Q.Enc(pkg, - P; w) AU =r-Q,ie., (Ui,Q,éJi, pko) is
actually not in Lg,. Thus, both games proceed identically unless the adversary
breaks the soundness of I1 in one oracle query, i.e., | Pr[S1] = Pr[S3]| < ¢-es(k).

Game 3: As Game 2, but we obtain BG and a public key pky from an EUF-
CMA challenger of the SPS-EQ. Whenever an SPS-EQ signature is required,
the message to be signed is forwarded to the signing oracle provided by the
EUF-CMA challenger.

Transition - Game 2 — Game 3: This change is conceptual. That is, Pr[S3] =
PI‘[Sg].

If the adversary eventually outputs a valid forgery (m, o), we know that o con-
tains an SPS-EQ signature oy for some (rP, P) such that we have never seen
a corresponding rp, i.e., there is no entry ¢ in the registration table where
¢y, contains 7P s.t. e(o1[1][1], P) = e(o1[1][2], 7P) holds. Consequently, o, is
a valid SPS-EQ signature for an unqueried equivalence class and we have that
Pr[S3] < ep(k). This yields Pr[Sp] < ep(k) + ¢ - es(x), which proves the theorem.

Theorem 5. If 1 is sound and adaptively zero-knowledge, SoK is simulatable
and extractable, ¥ is EUF-CMA secure, Q is perfectly correct, and the co-CDHI
assumption holds, then Scheme 1 is non-frameable.

Proof. We proceed using a sequence of games. Thereby we let the number of
users in the system be ¢ < poly(k).

Game 0: The original non-frameability game.

Game 1: As Game 0, but we guess the index i* that will be attacked by the
adversary. If the adversary attacks another index, we abort.

Transition - Game 0 — Game 1: The winning probability in Game 1 is the same
as in Game 0, unless an abort event happens, i.e., Pr[S;] = Pr[So] - V/a.

Game 2: As Game 1, but we run (crsy,7;) + .51(1%) instead of crs; +
M.Setup(1”) upon running GKGen and store the trapdoor 7;. Then, we sim-
ulate all calls to M.Proof in Join using the simulator (without a witness).

Transition - Game 1 — Game 2: A distinguisher D72 is an adversary against
adaptive zero-knowledge of I, and, therefore, the probability to distinguish
Game 1 and Game 2 is negligible, i.e., | Pr[Sa] — Pr[S1]| < ezk, (k).

Game 3: As Game 2, but we obtain crsg from a soundness challenger upon
running GKGen.

Transition - Game 2 — Game 3: This change is conceptual. That is, Pr[S3] =
PI‘[SQ].



Game 4: As Game 3, but we setup the SoK in simulation mode, i.e., we run
(crss, 7s) < SoK.SSetup(1”) instead of crss - SoK.Setup(1*) upon running
GKGen and store the trapdoor 7¢. Then, we simulate all calls to SoK.Sign
using the simulator, i.e., without a witness.

Transition - Game 38 — Game 4: A distinguisher D374 is an adversary against
simulatability of SoK. Therefore, the distinguishing probability is negligible,
Le., [Pr[Ss] — Pr[Ss]| < esim(k).

Game 5: As Game 4, but we choose the values r, g < Z,, used in the Join algo-
rithm (executed within the SndToU oracle) when queried for user with index
i* beforehand and let (U;«, Q;+) denote (rqP, ¢P). Then, on every Join (within
SndToU) for a user ¢ # i* we check whether we have incidentally chosen the
same class as for user ¢*. This check is implemented as follows: with r; being
the value for r chosen upon Join for user i, we check whether U;» = r; - Q=
(note that this check does not require to know the discrete logarithms ¢ and r
for user i*).

Transition - Game 4 — Game 5: Both games proceed identically unless we have
to abort. We abort with probability €guess() = 9/p—1 and we have that | Pr[S4]—
PI‘[S5]| < 6g;uess("f)-

Game 6: As Game 5, but we obtain a co-CDHI instance (aP,!/aP) relative to
BG and choose 7 <~ Z,. Then, we modify the Join algorithm (executed within
the SndToU oracle) when queried for user with index i* as follows. We set
(Ui+, Qi) + (7- P,aP), and compute C., < Q.Enc(pkg, T -1/aP) and store 7.
On successful execution we set gsk;. < (Ui, Q;+),0’) (note that m, ., as well
as the signatures in the GSig oracle are already simulated, i.e., the discrete log
of no @Q; value is required to be known to the environment).

Transition - Game 5 — Game 6: Since 7 is uniformly random, we can write it
as 7 = ra for some r € Z,. Then it is easy to see that the game change is
conceptual, i.e., Pr[Ss] = Pr[Sy].

Game 7: As Game 6, but for every forgery output by the A, we extract p <
SoK.Extract(crss, 7s, (P, 01[1][2]), 01||m, 02) and abort if the extraction fails.
Transition - Game 6 — Game 7: By the extractability of the SoK, one can ex-
tract a witness p with overwhelming probability 1 — egxTt(x). Thus, both games

proceed identically unless the extractor fails | Pr[Sg] — Pr[S7]| < eext (k).

Game 8: As Game 7, but we further modify the Join algorithm when queried
for user with index i* (executed within the SndToU oracle) as follows. Instead of
choosing (usk;, upk;.) = UKGen(1%), we engage with an EUF-CMA challenger,
obtain upk,. and set usk;+ ). If any signature is required, we obtain it using
the oracle provided by the EUF-CMA challenger.

Transition Game 7 — Game 8: This change is conceptual. That is, Pr[S;] =
PI[S@'].

Now we have three possibilities if .4 outputs a valid forgery.

1. If a signature for C J,» was never requested, A is an EUF-CMA forger for
Y and the forgery is (C’ J;«501,. ). The probability for this event is upper
bounded by (k).



2. Otherwise, we know that C J,~ is honestly computed by the environment
and—by the perfect correctness of Q—thus contains 7/aP, which leaves us
two possibilities:

(a) If e(o[1][1], P) = e(o[1][2],7/aP), A is an adversary against co-CDHI,
since we can obtain (((7 - 1/aP, P),0")) < ChgRepx(c1,p !, pk) and
use 7 to output 7! - (7 - 1/aP) = 1/aP. The probability for this to
happen is upper bounded by €co.cphi(k).

(b) If e(o[1][1], P) # e(o[1][2],7/aP), A has produced an opening proof for
a statement which is actually not in Lg,. The probability for this to
happen is upper bounded by es(k).

Taking the union bound we obtain eg(k) < €f(k) + €co-coni(k) + €s(k), which
yields the following bound for the success probability in Game 1: Pr[Sp] < ¢ -
(enfs (k) + €z, (K) + €sim(K) + €guess(k) + €exT (%)), which is negligible.

Theorem 6. IfQ is perfectly correct, and ¥ is EUF-CMA secure, then Scheme 1
is weakly opening sound.

Proof (Proof (Sketch)). Upon honestly executing Join for users ¢ and j, the prob-
ability that their r (resp. ]-A"i) values collide is negligible. The perfect correctness
of  and the EUF-CMA security of ¥ thus uniquely determine user i as the signer
of o with overwhelming probability. Then, it is easy to see that an adversary
against weak opening soundness is an adversary against soundness of I1.

5 Instantiation in the ROM

To compare our approach to existing schemes regarding signature size and com-
putational effort upon signature generation and verification, we present the
sign and verification algorithms for an instantiation of our scheme with the
SPS-EQ from [FHS18, FHS15]. We instantiate SoKs in the ROM by applying the
transformation from [FKMV12] to Fiat-Shamir (F'S) transformed X-protocols.

We note that the proofs performed within Join and Open, i.e., proving mem-
bership in the languages associated to NP relations R and Ro, respectively, can
straight forwardly be instantiated using standard techniques. Therefore, and
since they are neither required within Sign nor Vrf, we do not discuss instantia-
tions here.

The SPS-EQ Scheme from [FHS18, FHS15]. Before we introduce the
approaches to obtain CPA-fully (resp. CCA2-fully) anonymous instantiations, we
recall the SPS-EQ scheme from [FHS18, FHS15], which provides all required
security properties, in Scheme 2 (we omit BGGen for brevity). Here, assuming
the DDH assumption to hold on the message space yields that different message-
signature pairs from the same equivalence class cannot be linked.

5 We note that we could also write the three cases in the final step as three additional
game changes where we abort upon the respective forgeries. However, we opted for
this more compact presentation, which also gives us the same bound.



KeyGeng (BG, £): On input a bilinear-group description BG and vector length ¢ > 1
. R ¢ .
in unary, choose (x;);c[q < (Zp)*, set secret key sk < (z:);c[¢, compute public key
pk + (Xi)ie[g] = (l'ip)ie[g] and output (sk, pk). We assume that all other algorithms
have implicit input BG.

Signy (M, sk) : On input a representative M = (M;);c[q of equivalence class [M]r and
a secret key sk = (2:)ic(¢ € (Zp)", return L if M; ¢ G} for some i € [¢]. Else, choose
y & Z, and output o  (Z,Y,Y) with

1 .
Z =y iy viMi Y« =P Y« =P

<
< |

Verify (M, o, pk): On input a representative M = (M;);c(g of equivalence class [M]r,
a signature o = (Z,Y,Y) and public key pk = (Xi)ie[g], output 0 if for some i € [{]:
M; ¢ Gi or X; ¢ Gs;orif Z¢ Gy or Y ¢ Gf or Y ¢ G. Return 1 if the following

equations hold and 0 otherwise:
[Licg e(Mi, Xi) = e(Z,Y) A e(Y,P)=e(P,Y).

ChgRepy (M, 0, 1, pk): On input a representative M = (M;);ciq of equivalence
class [M]r, signature o = (Z,Y,Y), B € Zp and public key pk, return L if
Verifyr (M, o, pk) = 0. Otherwise pick 1 & Zp and return & <+ (YuZ, %Y, iY)

VKeyr (sk, pk): On input sk = (z:);cf¢ and pk = (Xi)ic(g, output 1 if for all i € [€]:
x; € Zp and X; € G5 and z; P = X;; return 0 otherwise.

Scheme 2: The SPS-EQ scheme from [FHS18, FHS15]

The group signing key gsk; consists of a vector of two group elements (R, P) €
(G%)? and an SPS-EQ signature o € G1 x G} x G} on this vector. Randomization
of gsk; with a random value p € Z7, i.e., ChgRepg, requires 4 multiplications in
Gy and 1 multiplication in Gg. Verification of the signature in gsk, requires 5
pairings.

5.1 CPA-Full Anonymity

Subsequently, we show how Sign and Vrf are instantiated in the CPA-full anonymity
setting. Therefore, let H : {0,1}* — Z, be a random oracle and let x be the
proven statement (which is implicitly defined by the scheme):

Sign(gpk, gsk;,m) : Parse gsk; as ((R, P), o), choose p <* Z,,, compute o1 = ((R/,
P'),0") <+ ChgRepg (gsk;, p, pkg ). Choose v < Z,, compute N <« vP, ¢ <
H(Nl|o1||m||z), z <= v+ c- p, set 02 < (¢, 2), and return o < (o1, 02).

Vrf(gpk, m, o) : Parse o as (01,02) = (((R', P’),0), (¢, 2)), return 0 if Vrfg (o,
pkr) = 0. Otherwise let N « zP — c¢P’ and check if ¢ = H(N||o1||m/||z) holds.
If so return 1 and 0O otherwise.

The used X-protocol is a standard proof of knowledge of the discrete logarithm
logp P’, and it is easy to see that applying the transformations from [FKMV12]



yields a SoK in the ROM with the properties we require. Group signatures con-
tain 4 elements in Gq, 1 element in G2 and 2 elements in Z,. Counting only the
expensive operations, signing costs 5 multiplications in G; and 1 multiplication
in G, and verification costs 2 multiplications in Gy and 5 pairings.

5.2 CCAZ2-Full Anonymity

CCA2-full anonymity requires straight-line extractable SoKs, as standard re-
winding would lead to an exponential blowup in the reduction (cf. [BFW15]).
One possibility would be to rely on the rather inefficient approach to straight-line
extraction due to Fischlin [Fis05]. However, as we do not need to straight-line
extract the full witness w, but it is sufficient to straight-line extract an image of
w under a one-way function f: p— p- P, we can use the notion of straight-line
f-extractable SoKs as recently proposed by Cerulli et al. [BCC™15]. This allows
us to still use the FS paradigm with good efficiency. The construction uses the
generic conversion in [FKMV12, BPW12]. The generic trick in [BCCT15] to ob-
tain straight-line f-extractability is by computing an extractable commitment
to the image of the witness w under a function f with respect to an extraction
key in the CRS and proving consistency with the witness.”

For straight-line extractability, we let Y be a public key for the ElGamal vari-
ant in G from [BCC'15], which is generated upon SoK. Setup and represents
the CRS of SoK. SoK.SSetup additionally returns 7 such that ¥ = 7 - P. Fur-
thermore, let = be the proven statement (implicitly defined by the scheme and
the generic compiler). Subsequently, we show how Sign and Vrf are instantiated
in this setting, where H : {0,1}* — Z, is modelled as a random oracle:

Sign(gpk, gsk;,m) : Parse gsk; as ((R, P), o), choose p <* Z,,, compute o1 = ((R,
P’),0’) + ChgRepg(gsk;, p, pkg). Choose u, v, 77<—Zp, compute (01,02) =
(uY, pP+uP), N < vP, My « nY, My + (v+n)P, ¢ « H(N||M,||M,||o1]|
m||z), z1 & v+c-p, 22 & N+ c-u, set oo (C’l,ég,c, 21, 22), and return
o+ (01,02).

Vrf(gpk,m, o) : Parse o as (01,02) = (R, P'),0), (¢, 21, 22)), return 0 if Ver-
ifyg (01, pkg) = 0. Otherwise let N « 2P — cP’, M1 — 2 Y —c- C’h
My + (21 + 29) - P — ¢ Cs, and check if ¢ = (N\|M1\|M2\|01Hm||x) holds. If
so return 1 and 0 otherwise.

Perfect completeness is easy to verify. Below, we prove SHVZK, i.e., that there
is an efficient simulator, and special soundenss, i.e., and that there exists an
extractor. Note that we additionally require the X-protocol to provide quasi-
unique respounses [Fis05], i.e., given an accepting proof it should be infeasible to
find a new valid response for that proof, in order for the compiler in [BCC*15]

to apply.

Lemma 1. The above X -protocol is perfectly complete, SHVZK, special-sound
and has quasi-unique responses.

7 Note that one can still obtain the full witness w using a rewinding extractor.



Proof. We investigate all properties, but omit perfect completeness as it is
straight forward to verify.

SHVZK. We describe a simulator which outputs transcripts being indistin-
guishable from real transcripts. First, it chooses P’ <% Gy, Cy <& Go, Co <2 Go.
While P’ and C; are identically distributed as in a real transcript, the ran-
dom choice of (5 is not detectable under DDH in G which holds in the SXDH
setting (more generally under IND-CPA of the used encryption scheme). Then,
the simulator chooses 21, za, ¢ <~ Z, and computes N < z; - P —c- P, Ml —
Y —c- 6’1, My (z1 + 22) - P—c - Cy It is easy to see that the transcript
(P, C'l, C'g, N, Ml, Mg, 21, 22, ¢) represents a valid transcript and its distribution
is computationally indistinguishable from a real transcript.

Special soundness. Let us consider that we have two accepting answers (z1, 22,
¢) and (21, 25, ') from the prover for distinct challenges ¢ # ¢/. Then we have
that

z1—c-p=zj—c-pand zg—c-u=2z,— -u,

ZQ—Z;
c—c' °

’
21—21
c—c' ?

and extract a witness as p < U

Quasi-unique responses. The answers z; and zo are uniquely determined by
the word Y, P’, C1, Cs, the commitments N, My, Ms as well as the challenge ¢
(and thus the verification equation).

Lemma 2. Applying the generic conversions from [FKMV12] to the Fiat-Shamir
transformed version of the above X-protocol with the setup SoK.Setup as de-
scribed in Section 5.2 produces a signature of knowledge in the random oracle
model, that is extractable and straight-line f-extractable.

Proof. The proof is analogous to [BCC™15], but we re-state it for completeness:
For simulatability, we observe that the CRS output by SoK.SSetup is identical
to the CRS output by SoK.Setup and SoK.SimSign programs the random oracle
to simulate proofs. Simulatability then follows from SHVZK. For extractability
we rely on rewinding, special soundness and quasi-unique responses, using the
results from [FKMV12]. For straight-line f-extractability, we use the trapdoor
T to decrypt (C’l, C'g) in the proof transcript and obtain pP = f(p).

Switching Groups. The above protocol requires more operations in the more
expensive group Go than in G;. As we work in the SXDH setting, we can switch
the roles of G; and Gy and thus all elements in G; to Go and vice versa, which
trades computational efficiency for signature size.

6 Evaluation and Discussion

We now discuss our work in the light of recent concurrent, independent work.
Then, we provide a performance evaluation targeting resource-constrained de-
vices.



The [BCC'16] Model. In independent and concurrent work, a new model
for fully-dynamic group signatures was proposed by Bootle et al. in [BCC™T16].
Bootle et al. address maliciously generated issuer and opener keys, include the
notion of opening soundness from [SSE*12] and formally model revocation by
means of epochs. Although we target security in a different model, we want to
briefly put our construction in context of their recent model.

We could easily incorporate the requirement to support maliciously generated
keys in the fashion of [BCCT16] by extending the actual public keys of issuer
and opener by a (straight-line extractable) zero-knowledge proof of knowledge
of the respective secret keys.

For a practical revocation approach, it seems to be reasonable to choose
a re-issuing based approach, i.e., to set up a new group after every epoch, as
also used in [BCC'16]. Their group signature construction being secure in their
model builds upon accountable ring signatures [BCC'15]. It comes at the cost of
a group public key size linear in the number of group members and a signature
size logarithmic in the number of group members, and the revocation related
re-issuing requires every group member to obtain the new group public key.?
Applying the same revocation approach to our scheme yields public keys as
well as signatures of constant size, and re-issuing requires each remaining group
member to re-join the new group.

While our scheme provides weak opening soundness, achieving the stronger
notion for our scheme (where the opening authority may be malicious) would
require the opening authority to additionally prove that the opened index ¢ cor-
responds to the lowest index in reg so that the respective entry together with the
signature in question satisfies the relation Rg. Such a proof could efficiently be
instantiated using non-interactive plaintext in-equality proofs [BDSS16]. Never-
theless, we opted to stick with weak opening soundness because: (1) The only
benefit of strong opening soundness would be to also cover dishonest opening
authorities, while we believe that assuming the opening authority’s honesty—
given its power to deanonymize every user—is a crucial and very reasonable as-
sumption. (2) Even [SSE*12], who introduced the notion of opening soundness
emphasize that already weak opening soundness addresses all the attacks that
motivated opening soundness in the first place. (3) Strong opening soundness
would unnecessarily degrade the simplicity of our scheme.

6.1 Performance Evaluation and Comparison

To underline the practical efficiency of our approach, we provide a comparison
of our ROM instantiation with other schemes in the ROM. Although in recent
time we have seen increasing interest in group signatures schemes based on as-
sumptions related to lattices and codes, existing schemes [LLNW16, LLM™16,
ABCG17] are far from being competitive with regard to performance, let alone
their suitability for current resource constrained devices. Consequently, we put

8 There is a recent accountable ring signature scheme [LZCS16], which enables con-
stant size signatures.



our focus on pairing based schemes. In particular we use two schemes who follow
the approach of Bichsel et al., i.e., [BCNT10, PS16], which provide less desir-
able anonymity guarantees (denoted CCA™ henceforth), and the well known
BBS scheme [BBS04] (with and without precomputations) providing CPA-full
anonymity. We note that we use the plain BBS scheme for comparison, which
does not even provide non-frameability and the non-frameable version would be
even more expensive. Moreover, we use the group signature scheme with the
shortest known signatures [DP06] (with and without precomputations) being
secure in the strong BSZ model and thus providing CCA2-full anonymity. Fi-
nally, we also compare our scheme to the recent CCA2-fully anonymous scheme
by Libert et al. [LMPY16] which is secure in the ROM under SXDH.

In Table 1 we provide a comparison of the estimated efficiency in a 254bit
BN-pairing setting, where we highlight the values where our scheme is currently
the best known scheme among other existing schemes providing the same secu-
rity guarantees. Our estimations are based on performance values on an ARM-
Cortex-M0O+ with drop-in hardware accelerator [UW14]. This processor is small
enough to be suited for smart cards or wireless sensor nodes [UW14]. Table 2
provides an abstract comparison regarding signature size, computational costs,
and type of the underlying assumption.

Scheme Anon. Signature Size Sign Verify
[BCNT10] CCA~ 1273bit  351ms  1105ms
[PS16] CCA™ 1018bit  318ms 777ms
[BBS04] CPA 2289bit  1545ms  2092ms
[BBS04] (prec.)  CPA 2289bit  1053ms  1600ms
Ours CPA 2037bit 266ms 886ms
Ours CCA2 3309bit 771lms 1290ms
Ours (switch) CCA2 3563bit 703ms 1154ms
[DPO6] CCA2 2290bit  1380ms  2059ms
[DP06] (prec.) CCA2 2290bit  1020ms  1353ms
[LMPY16] CCA2 2547bit  1688ms 2299ms

Table 1. Estimations based on a BN-pairing implementation on an ARM-Cortex-
MO+ with drop-in hardware accelerator, operating at 48MHz [UW14]. The performance
figures using 254-bit curves are 33ms-101ms-252ms-164ms (G1-G2-Gr-pairing). For the
estimation of signature sizes, we use 255bit for elements in G1, 509bit for elements in
G2 and 254bit for elements in Z,. The bold values highlight where our schemes are
currently the fastest and have the shortest signatures.

Computational Efficiency. When comparing our CPA-fully ano-nymous scheme
as well as our CCA2-fully anonymous scheme to other schemes providing the
same anonymity guarantees, ours are the by now fastest ones regarding signa-
ture generation and verification costs. While there are schemes which use slightly
less progressive assumptions, it seems that very good performance requires more
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progressive ones. When looking for instance at the most compact CCA2-fully
anonymous group signatures in the standard model under standard assumptions
(SXDH and XDLIN) by Libert et al. [LPY15], signature sizes in the best case
will have 30 Gy and 14 G2 elements (= 15000 bit when taking the setting in Ta-
ble 1), large public keys and computation times that are far from being feasible
for resource constrained devices.

Regarding signature generation, we emphasize that our CPA-fully anony-
mous instantiation is the fastest among all schemes used for comparison (even
among the ones providing CCA~ anonymity), and, to the best of our knowl-
edge, the fastest among all existing schemes. This is of particular importance
since signature generation is most likely to be executed on a constrained device.
Regarding signature verification our CPA-fully anonymous instantiation is only
outperformed by the CCA™ anonymous instantiation in [PS16].

Signature Size. Comparing schemes providing the same anonymity guar-
antees, our CPA-fully anonymous instantiation even provides shorter signature
sizes than the popular BBS scheme [BBS04] and, to the best of our knowledge,
the shortest signature sizes among all CPA-fully anonymous schemes. Regarding
CCA2-fully anonymous schemes, it seems that gained efficiency in the “without
explicit encryption” paradigm comes at the cost of larger signatures compared
to instantiations following the SEP paradigm.

6.2 Implementation Results

To confirm the relative performance advantage of our scheme as presented in
Table 1 (where we present estimations on a smart card like device using the per-
formance figures from [UW14]), we benchmarked actual Java implementations
of the scheme in [DP06] and our CCA2-fully anonymous scheme using the JMH
benchmarking framework? and the BN-pairing implementation of the ECCeler-
ate library.'® The benchmarks were run on an Intel Core i7-4790 CPU with 16
GB RAM running Ubuntu 17.04. Clearly, on such a powerful platform signature
generation and verification is much faster (signature generation and verification
are not even noticable). However, it still gives us an insight in the accuracy of our
estimations with respect to the relative computational costs of the schemes. We
compare the absolute numbers of possible signing operations per second (i.e., the
throughput) for both schemes. Our results show that our scheme allows twice as
much signature generations per second as [DP06] (34.589 ops/s vs. 17.0670ps/s),
which shows that our relative performance advantage is even slightly better than
suggested by the estimations. When increasing the bitlength of p, our scheme
even gets more favorable compared to all other schemes, which is mainly due
to the fact that we do not require operations in the computationally expensive
target group Gr. For example, when switching from 100 bit security (which
is the current estimate for 256 bit BN-curves [BD18]) to 128 bit security (i.e.,

® http://openjdk. java.net/projects/code-tools/jmh/
0 yttps://jce.iaik.tugraz.at/sic/Products/Core_Crypto_Toolkits/ECCelerate


http://openjdk.java.net/projects/code-tools/jmh/
https://jce.iaik.tugraz.at/sic/Products/Core_Crypto_Toolkits/ECCelerate

462 bit BN-curves [BD18]), we can even compute ~ 2.5 times more signatures
than [DPOG6].

7 Conclusion

In this paper we further pushed the efficiency limits of CPA- as well as CCA2-fully
anonymous group signature schemes with respect to signature generation and
verification. We also pushed the limits with respect to signature size for CPA-
fully anonymous group signature schemes. We observe that our construction is
the only one which does neither require any pairing computations nor computa-
tions in the target group G upon signature creation, which makes it especially
suitable for constrained devices. It is also interesting to note that the dynamic
Join in [DP06] (and also for [BBS04] when turning it into a dynamic scheme)
requires an extractable commitment to a discrete logarithm, which renders their
Join procedure rather inefficient. The suggestion in [DP06] is to use Paillier en-
cryption, which besides adding an additional hardness assumption (DCR) in
the hidden order group (factoring-based) setting, induces a rather significant
performance penalty due to an additional expensive equality proof of discrete
logarithms in two different groups (see, e.g., [CM99]). In contrast, our scheme
achieves this without any such performance penalty and without additionally
requiring the hidden-order setting. Finally, our results affirmatively answer the
theoretical question whether CPA- as well as CCA2-fully anonymous schemes fol-
lowing the “without explicit encryption” paradigm are possible at all. Finally,
we want to mention that recently Fuchsbauer and Gay [FG18] have proposed a
variant of SPS-EQ with a relaxed unforgeability notion under standard assump-
tioms, i.e., Matrix-Diffie-Hellman assumptions. They show that their scheme can
be plugged into the group signature construction in this paper. However, relying
on standard assumption comes at the cost of decreased performance, making the
resulting scheme less attractive regarding efficiency.
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A Plausibility of co-CDHI

To justify that co-CDHI is a plausible assumption, we state the following addi-
tional assumption in the Type-3 bilinear group setting, which falls into the Uber
assumption family [Boy08] with R = (1,1/s), S = (1,b), T = (1), and f = b%.

Definition 28. Relative to BGGen we have that for all PPT adversaries A there
exists a negligible function €(-) such that:

Pr [BG « BGGen(1"), b<% Z,, c + A(BG,/oP,bP) : c = ¢(P, P)ﬂ < (k).

Lemma 3. If the assumption in Definition 28 holds, then also the co-CDHI
assumption holds.

Proof. Assume a co-CDHI adversary B. We obtain a problem instance /6P, bP
relative to BG for the problem underlying the assumption in Definition 28, start
B(BG, /sP,bP) to obtain ¢ = bP, and output e(P, P)*" « e(c,bP) with the
same probability as B outputs bP, i.e., breaks co-CDHI. O
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