ISOGENY-BASED QUANTUM-RESISTANT UNDENIABLE BLIND SIGNATURE SCHEME

SRINATH M. S. AND V. CHANDRASEKARAN

Abstract. In this paper, we propose an Undeniable Blind Signature scheme (UBSS) based on isogenies between supersingular elliptic curves. The proposed UBSS is an extension of the Jao-Soukharev undeniable signature scheme [19]. We formalize the notion of a UBSS by giving the formal definition. We then study its properties along with the pros and cons. Based on this, we provide a couple of its applications. We then state the isogeny problems in a more general form and discuss their computational hardnesses. Finally, we prove that the proposed scheme is secure in the presence of a quantum adversary under certain assumptions.

Mathematics Subject classification: 94A60, 14H52, 14K02

1. Introduction

Blind signature scheme is a protocol in which the requester requests the signer to sign a document without disclosing the contents of the document. In 1982, Chaum [8] proposed the first blind signature scheme. It is based on the RSA problem [27]. Since then a host of blind signature schemes and their variations have been proposed based on different hardness assumptions such as the Discrete Logarithm Problem (DLP), pairing-based problems and lattice-based problems [7, 26, 37]. However, all the known blind signature schemes suffer from a common drawback that they are not secure in the presence of a quantum adversary. The blind signatures by Chaum [8], Camenisch et al. [7] and Zhang and Kim [37] are not quantum secure due to the polynomial time quantum algorithm by Shor [31] for solving integer factorization and discrete logarithms. The lattice-based blind signature by Rückert [26] uses Fiat-Shamir paradigm [12] which is not secure in the quantum random oracle model as shown in [10].

Blind signature provides both anonymity and authentication. Hence it is used in the privacy-preserving protocols such as e-cash and e-voting. However, the signer has neither any control on the content of the document nor on the way the signature is used. Therefore, there is a crucial need to give a certain degree of control to the signer. One possible way is to let the signer

Key words and phrases. isogeny, supersingular elliptic curve, undeniable blind signature, post-quantum cryptography.

This work is supported by Indian Space Research Organization (ISRO) through Sponsored Research (RESPOND) programme.
and the requester agree on a part of the message (e.g., certain metadata about the specific message). This can be achieved through the technique introduced by Abe and Fujisaki [1].

Alternatively, one could let the signer decide who can verify the signature. This will keep unauthorized verifiers at bay and provide a certain control on the way the signature is used. The Undeniable Signature scheme introduced by Chaum and van Antwerpen [9] precisely has the said requirement. In an undeniable signature scheme the signer can decide who can verify the signature.

So, it seems desirable to have a scheme that would provide anonymity and controlled verification satisfying the properties of both blind signature and undeniable signature. Such a scheme can be devised but not obvious. In 1996, Sakurai and Yamane [29] have come up with an undeniable blind signature scheme based on the DLP. Their technique is also applicable for blinding the RSA based undeniable signature described in [9]. However, their scheme is not quantum secure either.

In this paper, we propose a new undeniable blind signature scheme based on the hardnesses of isogeny problems over supersingular elliptic curves. The isogeny problems for supersingular curves (details in Section 5) do not have any subexponential quantum algorithm. Hence, our scheme is quantum resistant.

Sun et al. [33] have used the hardness of isogeny problems for constructing designated verifier signature scheme. Jao and Soukharev [19] have proposed an isogeny-based undeniable signature. We extend Jao-Soukharev scheme into an Undeniable Blind Signature scheme.

To sum up, the main contributions of this paper are:

1. The concept of an UBSS seems to have been first mentioned in the work of Sakurai and Yamane [29]. However, to the best of our knowledge, it has never been formally defined in the literature till date. In this paper, we make such an attempt and give a formal definition of UBSS. We also study its properties including its strengths and weaknesses.

2. In [20], Jao and Venkatesan, speculate the use of hardness assumptions related to isogeny problems in constructing blind signature. We confirm this speculation by constructing an undeniable blind signature scheme.

3. The existing isogeny-based schemes [11, 19], including the current work, use primes of special forms that depend on a given set of small primes. Therefore, we state isogeny problems in their general form. These definitions can be used for the construction of any isogeny-based cryptographic scheme.

The rest of the paper is organized as follows. In Section 2, a formal definition of a UBSS is given and its properties as well as the possible attacks are studied. In Section 3, a brief and relevant mathematical background
about isogenies between supersingular elliptic curves is provided. Section 4 describes the proposed UBSS in detail. In Section 5, we state the isogeny problems in their general form and discuss related hardness assumptions. The security of the proposed scheme is proved in Section 6. We conclude in Section 7.

2. Undeniable Blind Signature: Definition and Properties

2.1. Formal Definition. One would expect that a UBSS combines the properties of undeniable signature scheme and blind signature scheme. This means that UBSS would offer anonymity of the message origination and controlled verification of the signature. We have not found any definition that would fulfill both the requirements. Taking inspiration from Rogaway [28], ours is an attempt to provide a definition for UBSS.

Definition 2.1 (Undeniable Blind Signature Scheme). An interactive signature scheme given by the tuple

\[UBSS = (\text{KeyGen}, \text{Blind}, \text{Sign}, \text{Unblind}, \text{Check}, \text{CON}, \text{DIS}) \]

is said to be undeniable blind signature scheme if it satisfies the following:

1. The randomized key generation algorithm \text{KeyGen} takes as input a security parameter \(1^\lambda\) and outputs a pair of keys \((vk, sk)\) which are called the verification key and the secret key respectively. This is written as \((vk, sk) \leftarrow \text{KeyGen}(1^\lambda)\).
2. The randomized blinding algorithm \text{Blind} takes as input a message \(m\) and outputs a blinded message \(m'\), denoted as \(m' \leftarrow r \cdot \text{Blind}(m)\) where \(r\) is the random choice made by the algorithm.
3. The randomized or deterministic signing algorithm \text{Sign} takes as input a secret key \(sk\) and a message \(m\). It outputs a signature \(\sigma\), denoted \(\sigma \leftarrow \text{Sign}_{sk}(m)\).
4. The deterministic unblinding algorithm \text{Unblind} takes as input a blinded signature \(\sigma'\) and a random choice \(r\). It outputs an unblinded signature \(\sigma\), to be denoted by \(\sigma := \text{Unblind}_r(\sigma')\).
5. The deterministic checking algorithm \text{Check} takes as input a message \(m\), a signature \(\sigma\) and the key pair \((vk, sk)\). It outputs a bit \(b\) with \(b = 1\) meaning valid and \(b = 0\) meaning invalid. This is written as \(b := \text{Check}_{(vk, sk)}(m, \sigma)\).
6. The confirmation protocol, \(\pi_{\text{con}}\) initiated by the signer, assures the verifier that the signature is indeed valid.
7. The disavowal protocol, \(\pi_{\text{dis}}\) also initiated by the signer, assures the verifier that the signature is not valid.

It is required that, for every key pair \((vk, sk)\) output by \text{KeyGen}(1^\lambda), every \(m\) in the message space, and every random choice \(r\) made by \text{Blind}, the following holds:

\[\text{Check}_{(vk, sk)}(m, \text{Unblind}_r(\text{Sign}_{sk}(r \cdot \text{Blind}(m)))) = 1 \]
Additionally, if the signature algorithm is deterministic, we may also assume that the effect of \textit{blinding-signing-unblinding} on a message is the same as directly signing the message. In the above notation, this means
\[
\text{Unblind}_r(\text{Sign}_{sk}(\text{Blind}(m))) = \text{Sign}_{sk}(m)
\]

2.2. \textbf{Working of UBSS}. We will now run through the protocol to illustrate the role of the different algorithms in the definition. The illustration also makes it clear when these algorithms are run and by whom.

At first the signer chooses a security parameter \(\lambda \) and runs \text{KeyGen}(1^\lambda) to obtain the key pair \((vk, sk)\). The signing key \(sk \) is kept secret and the verification key \(vk \) is published by the signer. Let \(m \) be the message which the requester wishes to communicate anonymously. The requester first creates a blinded version \(m' \) of \(m \) by running the algorithm \text{Blind}(m). Let \(r \) be the random choice made by the algorithm \text{Blind}. The requester then sends \(m' \) along with his identity \(Id_R \). The signer verifies the requester’s identity (see Remark 2.2) and runs \text{Sign}_{sk} on \(m' \) to obtain the blinded signature \(\sigma' \). After receiving \(\sigma' \) from the signer, the requester unblinds it by using the algorithm \text{Unblind} and the same random choice \(r \) made by \text{Blind}. The requester then sends the original message \(m \) and the unblinded signature \(\sigma \) to the concerned party.

![Figure 1. Illustration of the flow of information in an Undeniable Blind Signature Protocol](image)

Any party who wishes to verify the signature sends the message-signature pair \((m, \sigma)\) along with his identity \(Id_V \) to the signer. The signer verifies the identity of the verifier (see Remark 2.2). If \(Id_V \) is not the identity of an authorized verifier, then the signer simply ignores; otherwise, runs the algorithm \text{Check}. If \text{Check} returns \textit{valid} then the signer initiates the confirmation protocol \(\text{CON} \); otherwise initiates the disavowal protocol \(\text{DIS} \). Figure 1 gives the flow of information in the UBSS.

\textbf{Remark 2.2}. We intentionally do not specify how the signer verifies the identity of the requester and the verifier. It is the problem that can be best dealt with \textit{mutual authentication} which can be done in one of the many ways [1] [5] [15], all of which are \textit{quantum secure}.
2.3. Properties. The UBSS is desired to have the following three security properties viz., unforgeability, blindness and invisibility. The above properties are elaborated and their formal definitions are given below.

Unforgeability. As with any signature scheme, we require that the UBSS is unforgeable. The strongest notion of unforgeability is obtained when the adversary is allowed to corrupt both the requester and the verifier. The strongest notion of unforgeability for a UBSS is given here. The UBSS must be unforgeable against one-more forgery i.e., a requester who has received signatures for \(t \) messages (where \(t \) is polynomially bound by the security parameter), should not be able to output \(t + 1 \) distinct message-signature pairs even after collaborating with the verifier. This notion of unforgeability is formalized by the following security game:

1. The challenger runs \(\text{KeyGen}(1^\lambda) \) to obtain the key pair \((vk, pk)\) and gives the verification key \(vk \) to \(A \).
2. \(A \) is allowed to make polynomially many queries to the signing oracle on chosen messages or any of their blinded versions adaptively and arbitrarily interleaved.
3. \(A \) is also allowed to submit message-signature pairs \((m, \sigma)\) to the confirmation/disavowal oracle. If \((m, \sigma)\) is valid (resp. invalid), then the oracle engages in confirmation (resp. disavowal) protocol with the adversary.
4. After making \(t \) queries to the signing oracle, \(A \) outputs \(t' \) distinct pairs \((m_i, \sigma_i)\) such that

\[
\text{Check}_{(vk, sk)}(m_i, \sigma_i) = 1
\]

Definition 2.3 (Unforgeability). Let UBSS be a given undeniable blind signature scheme as in Definition 2.1. We say that the UBSS is unforgeable if \(\Pr[t' > t] \) is negligible for any probabilistic polynomial-time (PPT) adversary \(A \) in the above game.

Blindness. The blindness property is essential for preserving the anonymity of the message content originator. The signer should not be able to relate the message-signature pair and associated blinded versions. Although blindness theoretically ensures anonymity, to what degree the requester remains anonymous can vary in the real world as discussed in [2]. The strongest notion of blindness is obtained when the adversary is allowed to corrupt both the signer and verifier. Since the verification happens collaboratively with the signer, we allow the signer to view the signature after unblinding it. Incidentally, the existing definition of blindness for blind signature already accounts for this. Excepting notation, we consider the following security game as described by Schröder and Unruh in [30 Sec. 3 Defn. 4].

1. The adversary \(A \) runs \(\text{KeyGen}(1^\lambda) \) and generates a key pair \((vk, sk)\).
2. \(A \) then chooses two messages \(m_0 \) and \(m_1 \) and gives them to the challenger.
(3) The challenger chooses a random bit b hidden from \mathcal{A} and reorders the messages as (m_b, m_{b-1}).

(4) The challenger then blinds the two messages; $m'_b \leftarrow r_1 \text{Blind}(m_b)$ and $m'_{b-1} \leftarrow r_2 \text{Blind}(m_{b-1})$.

(5) \mathcal{A} engages in signing the blinded versions m'_b and m'_{b-1}. If signing requires multiple interactions, then \mathcal{A} may engage parallely and arbitrarily interleaved.

(6) The challenger receives the blinded signatures σ'_b and σ'_{b-1} and unblinds them; $\sigma_b := \text{Unblind}_{r_1}(\sigma'_b)$ and $\sigma_{b-1} := \text{Unblind}_{r_2}(\sigma'_{b-1})$.

(7) The challenger then sends σ_b and σ_{b-1} to \mathcal{A}.

(8) At the end of the attack game, \mathcal{A} outputs a guess bit b'.

Definition 2.4 (Blindness). We say that the UBSS has blindness property if $|\Pr[b' = b] - 1/2|$ is negligible for any PPT adversary \mathcal{A} in the above game.

Invisibility. A verifier should be able to accept (or reject) a signature only with the signer’s cooperation via the confirmation (or disavowal) protocol and not otherwise. This notion is formalized by the following security game between a challenger \mathcal{C} and an adversary \mathcal{A}. This definition is based on the work of Kurosawa and Heng [24, Sec. 3 Defn. 5 p. 39].

(1) The challenger runs $\text{KeyGen}(1^\lambda)$ to obtain the key pair (vk, pk) and gives the verification key vk to \mathcal{A}.

(2) \mathcal{A} is permitted to issue a series of signing queries for messages m_i; and their blinded versions to the signing oracle adaptively and receives signatures σ_i.

(3) \mathcal{A} is also allowed to submit message-signature pairs (m, σ) to the confirmation/disavowal oracle. If (m, σ) is valid (resp. invalid), then the oracle engages in confirmation (resp. disavowal) protocol with the adversary.

(4) At some point, \mathcal{A} chooses a message m^* and sends it to the challenger.

(5) \mathcal{C} chooses a random bit b. If $b = 1$, \mathcal{C} runs $\sigma^* \leftarrow \text{Sign}_{sk}(m^*)$, otherwise, \mathcal{C} chooses a random value for σ^* from the signature space. \mathcal{C} returns σ^* to \mathcal{A}.

(6) \mathcal{A} performs some signing queries again (see Remark 2.6).

(7) \mathcal{A} can also perform some queries to the confirmation/disavowal oracle but not allowed to query the challenge (m^*, σ^*).

(8) At the end of the attack game, \mathcal{A} outputs a guess bit b'.

Definition 2.5 (Invisibility). We say that the UBSS is invisible against full attack if $|\Pr[b' = b] - 1/2|$ is negligible for any PPT adversary \mathcal{A} in the above game.

Remark 2.6. If the signing algorithm is deterministic, we do not allow the adversary \mathcal{A} to query m^* or any of its blinded versions to the signing oracle.

2.4. **Attacks: Blindness vs. Invisibility.** A couple of attacks which exploit blindness property and invisibility property are demonstrated here. We
show that all the existing schemes \cite{17,23} that combine these two requirements are vulnerable to the following attacks. At the end of the section, some suggestions to choose the appropriate model and suitable application are made in order that the system is secure.

The restriction in Remark 2.6 is a standard practice. However it seems rather forced. Suppose that the signing algorithm is deterministic and adversary A queries for a signature on a blinded version of m^*. If the UBSS is blind, then it is impossible for the signer to distinguish m^* from any of the previously signed messages. Hence, A can easily guess b and the signature is visible for the requester without actually engaging in the confirmation/disavowal protocol.

Suppose the signer does not conform to his inputs, say a different key pair (vk^*, sk^*) is used instead of (vk, sk) for signing all the messages form a particular requester. If the UBSS is invisible, it is impossible for the requester to know that the signer has used a different key pair. During the verification of a message-signature pair (m, σ), if $\text{Check}_{(vk, sk)}(m, \sigma)$ returns invalid, and $\text{Check}_{(vk^*, sk^*)}(m, \sigma)$ returns valid, then the signer can trace the origin of the message m. Thus, compromising the anonymity of the content originator. The signer seamlessly continues with the disavowal protocol. This anomaly could be seen as an advantage. Suppose the requester becomes aware that the signer has used a different key pair for signing. The requester may choose to give up the anonymity of the message to expose the signer. The signatures can be used as an evidence against the signer.

One way to circumvent the above attacks is to allow the requester to be a valid verifier. This makes the signatures visible to the requester and empowers the requester to check whether the signer has used the correct input.

The definition of UBSS is decoupled from the actual security model and the applications. While anonymity and invisibility appear to be conflicting goals, by choosing an appropriate model (like semi-honest model \cite{16}), UBSS can be very useful in certain applications. For example, in the case of e-cash, one may consider the bank as a semi-honest signer. For security reasons, the bank could decide to verify signatures only for its customers. Then the bank should use UBSS instead of blind signatures.

Another example where the UBSS becomes a natural choice is Anonymous Feedback System. Suppose the chief organizer of an event wishes to take anonymous feedback from the participants. It should be done such that (i) only the participants should be able to give the feedback anonymously and (ii) only the organizing committee should be able to verify the authenticity of the feedback. The participants who give feedback request for a blind signature from the chief organizer. After obtaining the signature, the participants send the feedback along with the signature to the organizing committee. The committee members then verify the signature with the chief organizer. E-voting can be considered as a special case of anonymous feedback system.
This completes our discussion on the definition of the UBSS. In the next few sections, we give an example of a UBSS using the isogeny-based hardness assumptions.

3. Mathematical Background

Let \mathbb{F}_q be the finite field (up to isomorphism) of characteristic p and cardinality q. It is a well known fact that two elliptic curves are isomorphic over an algebraic closure of \mathbb{F}_q if and only if they have the same j-invariant. Also, given two elliptic curves, the isomorphism between them can be efficiently computed [14]. An elliptic curve E / \mathbb{F}_q is said to be super-singular if $#E(\mathbb{F}_q) \equiv 1 \mod p$. For equivalent definitions kindly refer [18, Ch.13 Sec.3 p.259].

Isogenies. A homomorphism between two groups is a map that preserves the group structure. The kernel of a homomorphism is the subset of elements whose image is the identity. An isogeny is a group homomorphism between two elliptic curves with a finite kernel. Let $\phi : E_1 \to E_2$ be an isogeny between two elliptic curves E_1 and E_2. Thus $\phi(O_{E_1}) = O_{E_2}$ and ϕ can be written as

$$\phi(x,y) = \left(\frac{f_1(x,y)}{g_1(x,y)}, \frac{f_2(x,y)}{g_2(x,y)} \right),$$

where f_1, f_2, g_1, g_2 are polynomials in two variables x, y with co-efficients in \mathbb{F}_q. The degree of the isogeny ϕ, $\deg \phi = \max\{\deg f_1, \deg f_2\}$. An isogeny ϕ is said to be separable if $\deg \phi = \#\ker \phi$. An isogeny of degree ℓ is often referred to as an ℓ-isogeny. For any ℓ-isogeny $\phi : E_1 \to E_2$, there exists an ℓ-isogeny $\hat{\phi} : E_2 \to E_1$, called the dual of ϕ, such that $\phi \circ \hat{\phi} = \hat{\phi} \circ \phi = [\ell]$ where $[\ell]$ is a multiplication-by-ℓ map. Two elliptic curves E_1 and E_2 are said to be ℓ-isogenous if there exists an ℓ-isogeny ϕ between them. Tate’s isogeny theorem [34] says that E_1 and E_2 are isogenous over \mathbb{F}_q if and only if $\#E_1(\mathbb{F}_q) = \#E_2(\mathbb{F}_q)$. An isogeny is uniquely identified (up to isomorphism) by its kernel. Any generator of the kernel will produce a unique isogeny up to isomorphism via Vélu’s formulae [36]. In our work we will be considering only supersingular elliptic curves and separable isogenies with cyclic kernels.

Isogeny Graph. An ℓ-isogeny graph is a graph in which the nodes are represented by isomorphism classes of elliptic curves. There is an edge from E_1 to E_2 in the ℓ-isogeny graph if there is an ℓ-isogeny form E_1 to E_2. The isogeny graph is undirected due to the existence of dual isogenies. The ℓ-isogeny graph of supersingular curves is connected [25]. Given two random nodes in the isogeny graph finding a path of fixed length is hard. This hardness is used for constructing isogeny-based cryptosystems, explained in detail in Section 5.
4. A New Undeniable Blind Signature Scheme based on Isogenies

In this section, we describe a new undeniable blind signature scheme based computing an isogeny between two supersingular elliptic curves over a finite field \mathbb{F}_q. We borrow the notation as in the paper of Jao and Soukharev [19].

4.1. Public parameters. Choose a prime p of the form $p = \ell_A^{e_A} \ell_M^{e_M} \ell_C^{e_C} \ell_R^{e_R}$. Let $f = \pm 1$. Generate a random supersingular elliptic curve E_0 defined over the field \mathbb{F}_p^2. Such a curve can be efficiently found using the algorithm by Bröker et al. [6, Sec. 4 Alg. 4.1 p. 106]. Choose base points $\{P_A, Q_A\}$, $\{P_M, Q_M\}$, $\{P_C, Q_C\}$ and $\{P_R, Q_R\}$ that generate $E_0[\ell_A^{e_A}]$, $E_0[\ell_M^{e_M}]$, $E_0[\ell_C^{e_C}]$ and $E_0[\ell_R^{e_R}]$ respectively. Choose a hash function $H : \{0, 1\}^* \rightarrow \mathbb{Z}_{\ell_R^{e_R}Z}$.

4.2. KeyGen. The signer generates two random numbers $m_A, n_A \in \mathbb{Z}_{\ell_A^{e_A}Z}$. Computes the curve $E_A = E_0/\langle K_A \rangle$ where $K_A = [m_A]P_A + [n_A]Q_A$ is the generator of the kernel of the isogeny $\phi_A : E_0 \rightarrow E_A$. The signer also computes $\phi_A(P_C)$ and $\phi_A(Q_C)$.

Public Key: $E_A, \phi_A(P_C), \phi_A(Q_C)$

Private Key: m_A, n_A, K_A

![Figure 2](image)

Figure 2. The isogeny ϕ_A computed during the key generation phase.

4.3. Blind. Let M be the message for which the signature is required. Let $h = H(M)$. Compute the isogeny ϕ_M and the curve

$$E_M = \frac{E_0}{\langle P_M + [h]Q_M \rangle}$$

The image points $\phi_M(P_A), \phi_M(Q_A), \phi_M(P_C), \phi_M(Q_C), \phi_M(P_R)$ and $\phi_M(Q_R)$ are also computed. Now this message curve E_M has to be blinded. Choose a random $r \in \mathbb{Z}_{\ell_R^{e_R}Z}$ which is hidden from the signer. Compute the isogeny $\phi_{M,RM}$ and the curve

$$E_{RM} = \frac{E_M}{\langle \phi_M(P_R) + [r]\phi_M(Q_R) \rangle}$$

E_{RM} is the blinded curve on which the signer will sign. The blinding process is illustrated in Figure 3.

Before sending the curve E_{RM} for signing, one has to compute the dual isogeny $\hat{\phi}_{M,RM}$, so that unblinding is possible. To do that, first we need to find a point $K \in E_M[\ell_R^{e_R}]$ of order $\ell_R^{e_R}$ such that $K \notin Ker\phi_{M,RM}$, say $K = \phi_M(Q_R)$. Compute the image point $\phi_{M,RM}(K) \in E_{RM}$. The isogeny with kernel $\langle \phi_{M,RM}(K) \rangle$ is the dual isogeny $\hat{\phi}_{M,RM}$.

Figure 3. The isogenies ϕ_M and $\phi_{M,RM}$ computed while blinding the message. The dashed arrow is the isogeny unknown to the requester.

Remark 4.1. Strictly speaking, this will not be the dual of $\phi_{M,RM}$ because this isogeny will lead to a curve which is isomorphic to E_M. Since isomorphic curves represent the same node in the isogeny graph, this isogeny maps back to the same node. By the abuse of notation, we denote it as $\hat{\phi}_{M,RM}$.

Now, choose basis $\{P'_R, Q'_R\} \in E_{RM}$ that generate $E_{RM}[\ell]$. Compute $m, n \in \mathbb{Z}/\ell \mathbb{Z}$ such that $\phi_{M,RM}(K) = [m]P'_R + [n]Q'_R$

This amounts to solving extended discrete logarithm problem on E_{RM}. Since E_{RM} is isogenous to E_0, by Tate’s theorem [34], we have

$$\#E_{RM}(\mathbb{F}_{p^2}) = \#E_0(\mathbb{F}_{p^2})$$

Hence E_{RM} is a curve of smooth order. Therefore, m, n can be found efficiently using generalized Pohlig-Hellman algorithm given by Teske in [35 Sec. 4 Alg. 4.1 p. 529]. The masked curve E_{RM} along with the points

$$P'_A = \phi_{M,RM}(\phi_M(P_A))$$

$$Q'_A = \phi_{M,RM}(\phi_M(Q_A))$$

$$P'_C = \phi_{M,RM}(\phi_M(P_C))$$

$$Q'_C = \phi_{M,RM}(\phi_M(Q_C))$$

P'_R and Q'_R (all belonging to E_{RM}) is sent to the signer.
4.4. Sign. The signer computes the curve

\[E_{RM} = \frac{E_{RM}}{([m_A]P_A + [n_A]Q'_A)} \]

The signer also computes the image points \(\phi_{RM,ARM}(P'_C), \phi_{RM,ARM}(Q'_C), \phi_{RM,ARM}(P'_R) \) and \(\phi_{RM,ARM}(Q'_R) \), and sends all the computed values to the user.

![Figure 4](image)

Figure 4. The isogeny \(\phi_{RM,ARM} \) computed for signing the blinded message. The dashed arrows are the isogenies unknown to the signer.

4.5. Unblind. The requester computes the isogeny \(\hat{\phi}_{AM,ARM} \) and the curve

\[E_{AM} = \frac{E_{ARM}}{([m_A]\phi_{RM,ARM}(P'_C) + [n_A]\phi_{RM,ARM}(Q'_C))} \]

The requester also computes the points

\[P_S = \hat{\phi}_{AM,ARM}(\phi_{RM,ARM}(P'_C)) \]
\[Q_S = \hat{\phi}_{AM,ARM}(\phi_{RM,ARM}(Q'_C)) \]

The signature \(\sigma = \{E_{AM}, P_S, Q_S\} \).

4.6. Check. At the end of Unblind algorithm, the signature curve generated by our scheme is isomorphic to Jao-Soukharev signature curve. Hence the signature verification can be done in the same way as in Jao-Soukharev signature. When a message \(M \) and signature \(\sigma \) is submitted for verification, the signer first checks whether the square \((E_0, E_A, E_{AM}, E_M)\) in Figure 6 commutes. If it does, then the signer initiates the confirmation protocol \(CON \), initiates the disavowal protocol \(DIS \). The confirmation and disavowal protocols are same as in [19].
Figure 5. The isogeny $\hat{\phi}_{AM,ARM}$ computed while unblinding the signature. The dashed arrows are the isogenies unknown to the requester.

Figure 6. The isogenies ϕ_M, $\phi_{M,AM}$, $\phi_{A,AM}$ are computed to check whether the given signature E_{AM} is valid.

Remark 4.2. Strictly speaking, the effect of blinding-signing-unblinding is not the same as directly signing the message. The action of an isogeny followed by the action of its dual is equivalent to multiplication-by-degree map [32, III.6.2a p. 83]. Hence, the points P_S and Q_S will have a factor of $\ell^e R$ multiplied to them when compared to the Jao-Soukharev signature. But then, this factor is relatively prime to their order $\ell^e C$. It would not affect the signature verification since both the pairs generate the same kernel.

The prime used in our work is different from the primes already used in the literature [11, 19] for constructing isogeny-based cryptographic primitives. This motivates us to give generalized statements and hardness assumptions for isogeny-problems. We review them in the next section.
The current work uses the prime p of the form $p = \ell_A^e \ell_M^f \ell_C^{e'} \ell_R^{e''} \cdot f \pm 1$ which has not been used so far in the literature. The security of the isogeny-based schemes depend on the size of the corresponding torsion subgroup. Hence, such a choice for the prime does not have any security implications so long as the torsion groups are large enough.

Let p be a prime of the form $p = f \cdot \prod_{i=1}^N \ell_i^{e_i} \pm 1$ where ℓ_i are distinct small primes, e_i are positive integers and $f \geq 1$ is a small cofactor. Let E_0 be a supersingular elliptic curve defined over \mathbb{F}_{p^2} and having order $(p \pm 1)^2$.

For each $1 \leq i \leq N$, let $\{P_i, Q_i\}$ be an arbitrarily chosen basis of $E_0[\ell_i^{e_i}]$. The above informations form the global parameters.

Problem 5.1 (Decisional Supersingular Isogeny (DSSI) problem). Given the global parameters and another curve E' defined over \mathbb{F}_{p^2} such that $\# E_0(\mathbb{F}_{p^2}) = \# E'(\mathbb{F}_{p^2})$, decide whether E' is $\ell_i^{e_i}$-isogenous to E_0 for a specified $1 \leq i \leq N$.

For a fixed but arbitrary $1 \leq i \leq N$, let $\phi_i : E_0 \rightarrow E_i$ be an isogeny whose kernel is $\langle [m_i] P_i + [n_i] Q_i \rangle$ where $m_i, n_i \in \mathbb{Z}/\ell_i^{e_i} \mathbb{Z}$ are chosen randomly and not both divisible by ℓ_i.

Problem 5.2 (Computational Supersingular Isogeny (CSSI) problem). Given the global parameters, the curve E_i and the points $\phi_i(P_j), \phi_i(Q_j)$ for all $j = 1, 2, \cdots, N$, $j \neq i$, find a generator of $\langle [m_i] P_i + [n_i] Q_i \rangle$.

5.1. **DSSI and CSSI Assumptions.** The DSSI and CSSI assumptions are the assumptions that DSSI and CSSI problems are hard to solve for any $1 \leq i \leq N$. This notion is formalized in this section.

DSSI Assumption. The DSSI assumption says that the following two probability distributions are *computationally indistinguishable* for all i:

- $(E, E/(R))$ where $R \in E$ is a random point of order $\ell_i^{e_i}$.
- (E, E') where E' / \mathbb{F}_{p^2} is a random curve such that $\# E(\mathbb{F}_{p^2}) = \# E'(\mathbb{F}_{p^2})$.

Let λ be the security parameter. Let \mathcal{G} be a (possibly randomized) polynomial-time algorithm that, on input 1^λ, outputs the global parameters described above. Let us denote the set of all the global parameters by \mathcal{G}.

Definition 5.3. We say that the DSSI problem is *hard* relative to \mathcal{G} if $\forall 1 \leq i \leq N$ and for all bounded quantum polynomial-time algorithms \mathcal{A}, the quantity

$$\Pr [\mathcal{A}(\mathcal{G}, E, E/(R)) = 1] - \Pr [\mathcal{A}(\mathcal{G}, E, E') = 1]$$

is negligible and the probabilities in each case is taken over the experiment in which $\mathcal{G}(1^\lambda)$ outputs $\mathcal{G}, R \in E$ is a random point of order $\ell_i^{e_i}$ and E' is a random curve such that $\# E(\mathbb{F}_{p^2}) = \# E'(\mathbb{F}_{p^2})$.

CSSI Assumption. Consider the following experiment for a given parameter-generating algorithm \mathcal{G}, algorithm \mathcal{A}, and parameter λ:
The computational supersingular isogeny experiment \(\text{CSSIso}_{A,G}(\lambda) \):

1. Run \(G(1^\lambda) \) to obtain the global parameters \(G = (p, E_0, \ell_i, e_i, P_i, Q_i) \).
2. For a fixed \(1 \leq i \leq N \), choose \(m, n \leftarrow \mathbb{Z}/\ell_i e_i \) not both divisible by \(\ell_i \) and compute
 \[E' \equiv \frac{E_0}{([m]P_i + [n]Q_i)} \]
3. \(A \) is given \(G, i, E' \) and outputs a point \(R \in E_0 \).
4. The output of the experiment is defined to be 1 if \(E' \equiv E_0 \langle R \rangle \) and 0 otherwise.

Definition 5.4. We say that the CSSI problem is hard relative to \(G \) if for all bounded quantum polynomial-time algorithms \(A \) there exists a negligible function \(\text{negl} \) such that
\[
\Pr[\text{CSSIso}_{A,G}(\lambda) = 1] \leq \text{negl}(\lambda)
\]

5.2. Hardness of CSSI and DSSI Assumptions. Since the DSSI and CSSI problems need to be hard for all values of \(i \), it is expected that the parameter generating algorithm \(G \) outputs the prime \(p \) such that the values \(\ell_i e_i \) are roughly of the same size for all \(i \). Hence, we assume \(\ell_i e_i \approx \sqrt[3]{Np} \). The generic attack for solving DSSI and CSSI problems that improve on exhaustive search involve solving the claw problem for the domain size \(\ell_i e_i / 2 \). The optimal complexity for the above black-box claw attack using a quantum computer is \(O(\ell_i e_i / 3) = O(3\sqrt[3]{Np}) \). Suppose \(\lambda = \log p \), then the complexity of the attack is \(O(2^{\lambda/3N}) \) which is clearly exponential in \(\lambda \). Kohel et al. [22] have given a probabilistic algorithm for solving the quaternion analog of CSSI problem. However, translating it to CSSI problem is not known to be efficient. The quantum algorithm by Biasse et al. [3] yields a subexponential attack if the base curve is defined over \(\mathbb{F}_p \). There is no known subexponential attack if the base curve is not defined over \(\mathbb{F}_p \).

5.3. Other Isogeny Problems. There have been several other variants of DSSI and CSSI problems whose hardness have been assumed to build the cryptographic primitives. We present only those that are relevant to the current work. For a complete list, we refer the reader to [19] Sec. 5). Henceforth in the rest of the paper, for the sake of simplicity, we follow the notation as in Section 4.

Problem 5.5 (Decisional Supersingular Product (DSSP) problem). Given an isogeny \(\phi : E_0 \to E_3 \) of degree \(\ell_i e_i \) and a tuple sampled with probability 1/2 from one of the following two distributions:
- \((E_1, E_2, \phi') \) where the product \(E_1 \times E_2 \) is chosen at random among those \(\ell_j e_j \)-isogenous \((i \neq j) \) to \(E_0 \times E_3 \), and where \(\phi' : E_1 \to E_2 \) is an isogeny of degree \(\ell_i e_i \), and
- \((E_1, E_2, \phi') \) where \(E_1 \) is chosen at random among the curves having the same cardinality as \(E_0 \), and \(\phi' : E_1 \to E_2 \) is a random isogeny of degree \(\ell_i e_i \),
Problem 5.6 (Modified Supersingular Computational Diffie-Hellman (MSS-CDH) problem). Given E_A, E_M and $\ker(\phi_M)$, determine E_{AM}.

Problem 5.7 (One-sided Modified Supersingular Computational Diffie-Hellman (q-OMSSCDH) problem). For a fixed E_A and given oracle access of at most q times to MSSCDH for any set of inputs E_A, E_M, $\ker(\phi_M)$, $(1 \leq i \leq q)$, Solve MSSCDH for E_A, E_M and $\ker(\phi_M)$ where $E_M \not\equiv E_M_i \forall i$.

Problem 5.8 (Modified Supersingular Decisional Diffie-Hellman (MSSDDH) problem). Given E_A, E_M, E_C and $\ker(\phi_M)$, decide whether $E_C \equiv [m_A]P + [n_A]Q$

where $m_A, n_A \in \mathbb{Z}/\ell_A^e\mathbb{Z}$ form the private key.

Problem 5.9 (One-sided Modified Supersingular Decisional Diffie-Hellman (q-OMSSDDH) problem). For a fixed E_A and given oracle access of at most q times to MSSDDH for any set of inputs E_A, E_M, $\ker(\phi_M)$, $(1 \leq i \leq q)$, Solve MSSDDH for E_A, E_M, E_C and $\ker(\phi_M)$ where $E_M \not\equiv E_M_i \forall i$.

Signing Oracle. Given any supersingular elliptic curve $\mathcal{E}/\mathbb{F}_{p^2}$ of order $(\ell_A^e \ell_M^e \ell_C^e \ell_R^e)^2$ and points $P, Q \in \mathcal{E}$ both of order ℓ_A^e, the signing oracle outputs the curve \mathcal{E}_A such that

$$\mathcal{E}_A \equiv \frac{\mathcal{E}}{[m_A]P + [n_A]Q}$$

6. Security of the Proposed Construction

In this section, we prove that our UBSS has unforgeability, blindness and invisibility.

6.1. Unforgeability. The challenger chooses a security parameter and generates the secret key m_A, n_A. The corresponding public key $E_A, \phi_A(P_C), \phi_A(Q_C)$ is given to the adversary \mathcal{A}. \mathcal{A} then issues a series of at most q signing queries to the challenger for the messages m_i ($1 \leq i \leq q$). Let E_{M_i} and E_{AM_i} be the corresponding message curves and signatures respectively. \mathcal{A} is allowed to submit the message-signature pairs (m, E_{AM}) to the signer for verification. If the signature is correct then the signer engages in confirmation protocol otherwise initiates disavowal protocol. At some point adversary then outputs q' message-signature pairs (m_j, E_{AM_j}). The adversary wins the game if $q' > q$.

Theorem 6.1 (Unforgeability). If the DSSP and 1MSSCDH assumptions hold, then the proposed UBSS is unforgeable.
Proof. Suppose there exists an adversary A that forges the proposed UBSS. Without any loss of generality we may assume that A issued exactly q signing queries and output exactly $q + 1$ valid message-signature pairs. The confirmation and disavowal protocols are shown to be zero-knowledge in [19, Sec.7] provided DSSP is hard to solve. Hence we may further assume that A does not have access to the confirmation/disavowal oracle at all. But then A in turn solves 1MSSCDH problem. □

Remark 6.2. Since the signature for a message m obtained at the end of the proposed UBSS protocol is the Jao-Soukharev signature for m, we also need to assume that solving q-OMSSCDH problem is hard. This is omitted in the statement of Theorem 6.1 as 1MSSCDH assumption is stronger than q-OMSSCDH assumption.

6.2. Blindness. To prove that the proposed signature scheme has blindness property, the security game described in [21, Sec. 2, p. 156] is used. The adversary A is given the security parameter. A generates the secret key m_A, n_A and the corresponding public key $E_A, \phi_A(P_C), \phi_A(Q_C)$. The adversary outputs two messages $\{m_0, m_1\}$. The same two messages are ordered as $\{m_b, m_{1-b}\}$ according to a random bit b which is hidden from A. Then A engages in two parallel interactive protocols, possibly with two different users. If the users output the corresponding signatures, then A is also given E_{AM_0} and E_{AM_1}. A’s goal is to guess the value of the bit b and the blindness property requires that such a guess is negligibly close to $\frac{1}{2}$.

Theorem 6.3 (Blindness). If the DSSP is hard to solve, then the proposed UBSS has the blindness property.

Proof. Given $E_{M_0}, E_{M_1}, E_{RM_b}, E_{RM_{1-b}}, E_{AM_0}, E_{AM_1}$ the goal of the adversary A is to figure out the value of the bit b. Note that A also has the knowledge of the isogenies $\phi_{s_0} : E_{M_0} \to E_{AM_0}, \phi_{s_1} : E_{M_1} \to E_{AM_1}, \phi_{s_b} : E_{RM_b} \to E_{ARM_b}$ and $\phi_{s_{1-b}} : E_{RM_{1-b}} \to E_{ARM_{1-b}}$. To decide whether $b = 0$ or $b = 1$ is equivalent to deciding whether, $E_{RM_b} \times E_{ARM_b}$ is ℓ^R-isogenous to $E_{M_0} \times E_{AM_0}$ or not. Further, this essentially amounts to solving DSSP on the inputs $(E_{M_0}, E_{AM_0}, \phi_{s_b})$ and $(E_{RM_b}, E_{ARM_b}, \phi_{s_b})$. □

6.3. Invisibility. The challenger chooses a security parameter and generates the secret key m_A, n_A. The corresponding public key $E_A, \phi_A(P_C), \phi_A(Q_C)$ is given to the adversary A. A then issues a series of at most q signing queries to the challenger for the messages m_i. Let E_{M_i} and E_{AM_i} be the corresponding message curves and signatures respectively. A is allowed to query E_{M_i} and any of its blinded versions to the signing oracle. A is also allowed to submit the message-signature pairs (m_j, E_{AM_j}) to the confirmation/disavowal protocols. At some point A outputs a message m^*. The challenger chooses a random bit b. If $b = 0$, the challenger replies with the correct signature E_{AM}, otherwise chooses a random curve E_R with $\#E_R(F_{p^2}) = \#E_0(F_{p^2})$. Let E_{AM} be the signature for the message m. According to the definition
of invisibility, the message curve E_M and none of its blinded versions are allowed to query the signing oracle.

Theorem 6.4 (Invisibility). If the DSSP and q-OMSSDDH assumptions hold, then the proposed UBSS is invisible.

Proof. If the DSSP assumption holds, then the confirmation and disavowal protocols are shown to be zero-knowledge [19, Sec.7] in the presence of a quantum adversary. Hence we may assume that the adversary A does not have access to confirmation/disavowal oracle. Instead, the access is given to an oracle which on querying (m, E) outputs valid or invalid depending on whether E is a valid signature for m or not. Further, A is not allowed to query the signing oracle for the curve E_M or any of its blinded versions. Hence showing the invisibility of our signature scheme is equivalent to showing that the Jao-Soukharev signature is invisible. The reader may refer [19, Sec.6] for the proof of invisibility.

7. Conclusion

We give a formal definition of UBSS as well as modified definitions of blindness, invisibility and unforgeability; concepts that are key in defining UBSS. As we mentioned earlier, though the concept of UBSS is not new and has been mentioned in Sakurai and Yamane [29], this is the first time a formal definition has been given. We also show that blindness and invisibility play against each other. This affects the specifics of how UBSS can be used for the application at hand. We then described a new UBSS based on the isogeny problem for supersingular elliptic curves. We also give the generalized statements of isogeny problems. This makes it convenient for constructions of isogeny-based cryptographic primitives. We finally prove that our UBSS has the desired properties under the assumptions that DSSP, OMSSDDH and 1MSSCDH are hard to solve.

8. Acknowledgements

The first author thanks Vijay M. Patankar for guidance, helpful discussions and a careful first reading of the manuscript. He also thanks David Jao for suggestions (i) to formalize the definition of UBSS (ii) to give a careful thought to its applications (iii) to state the isogeny problems in a general form and (iv) to improve the exposition.

References

Sri Sathya Sai Institute of Higher Learning, Puttaparthi, INDIA 515134.
E-mail address: srinathms@sssihl.edu.in

Sri Sathya Sai Institute of Higher Learning, Puttaparthi, INDIA 515134.
E-mail address: vchandrasekaran@sssihl.edu.in