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Abstract

In this paper, we present two new adaptively secure identity-based encryption (IBE)
schemes from lattices. The size of the public parameters, ciphertexts, and private keys are
Õ(n2κ1/d), Õ(n), and Õ(n) respectively. Here, n is the security parameter, κ is the length
of the identity, and d ∈ N is a flexible constant that can be set arbitrary (but will affect
the reduction cost). Ignoring the poly-logarithmic factors hidden in the asymptotic notation,
our schemes achieve the best efficiency among existing adaptively secure IBE schemes from
lattices. In more detail, our first scheme is anonymous, but proven secure under the LWE as-
sumption with approximation factor nω(1). Our second scheme is not anonymous, but proven
adaptively secure assuming the LWE assumption for all polynomial approximation factors.

As a side result, based on a similar idea, we construct an attribute-based encryption scheme
for branching programs that simultaneously satisfies the following properties for the first time:
Our scheme achieves compact secret keys, the security is proven under the LWE assump-
tion with polynomial approximation factors, and the scheme can deal with unbounded length
branching programs.

1 Introduction

Background. Identity-based encryption (IBE) is an advanced form of public key encryption
(PKE) where any string such as an email address can be used as a public key. The notion of IBE
was proposed by Shamir in 1984 [42]. Since then, it took nearly 20 years for the first realizations
of IBE [41, 10, 18] to appear. Boneh and Franklin [10] and Sakai, Ohgishi, and Kasahara [41]
used groups equipped with efficiently computable bilinear maps to construct the first IBE. On the
other hand, Cocks [18] used quadratic residue for a composite modulus. These constructions are
only proven secure in the random oracle model. In subsequent works, pairing-based schemes in the
standard model appeared [15, 8, 9, 47, 48]. While earlier works [15, 8] focus on the constructions
that are only selectively secure, later works [9, 47, 48] focus on a much more realistic security,
i.e., adaptive security.

Another important line of research is construction of IBE from lattices. The first lattice-based
IBE was proposed in the seminal work by Gentry, Peikert, and Vaikuntanathan [25] in the random
oracle model. Later, constructions in the standard model were proposed [1, 16, 12]. To achieve
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adaptive security in the lattice-based settings, we have to either rely on an analogue of Waters’
hash [47] or an admissible hash [9, 16]. In any case, we require O(κ) number of basic matrices in
the public parameters (master public key), where κ is the bit length of the identities. This results
in very large public parameters with size Õ(n2κ). Here, n is the security parameter (dimension
of the lattices). On the other hand, in the selectively secure variant of lattice IBE in [1], we
only require small constant number of basic matrices in the public parameters. This stands in
sharp contrast to pairing-based settings, in which we have adaptively secure IBE schemes [17, 31]
that are as efficient as selectively secure ones [8], up to only small constant factors. A natural
important question is:

Can we construct adaptively secure IBE schemes from lattices, which is as efficient as
selectively secure ones? In particular, can we reduce the size of the public parameters?

Difficulties. A natural approach to achieve short public parameters in lattice based IBE schemes
would be to mimic the technique for pairing based IBE schemes. However, all IBE schemes
with short public parameters based on pairings are constructed using dual system encryption
methodology [48], for which there is still no lattice analogue. The realization of the dual system
encryption methodology in the lattice settings is an important open problem [38]. Another possible
approach would be to use a technique from Naccache’s IBE scheme [36], as is done in [44]. Using
this approach, we can obtain a scheme with the public parameters shorter by a factor of u, at the
cost of 2u-loss in security. Therefore, using this approach, we are only allowed to reduce the size
of public parameters up to logarithmic factor.

Our Contribution. Instead of taking the above approaches, we use a technique unique to the
lattice setting. Namely, we use the fully homomorphic computation of trapdoors, which is recently
devised in [11] to reduce the size of the public parameters. We obtain the following two different
IBE schemes with trade-off between the security, efficiency, and underlying hardness assumptions.
See Table 1 in Section 6 for the overview.

• We propose an adaptively secure and anonymous IBE with asymptotically short parameters.
In particular, the size of the public parameters, ciphertexts, and private keys are Õ(n2κ1/d),
Õ(n), and Õ(n) respectively. Here, d ∈ N is a flexible constant which can be set arbitrary.
Ignoring poly-logarithmic factors hidden in the asymptotic notation, our scheme achieves the
best efficiency among all previous adaptively secure IBE schemes from lattices. The security
of the scheme is proven under the LWE assumption with super-polynomial approximation
factors.

• We propose an adaptively secure IBE (without anonymity) that achieves asymptotically the
same efficiency as the above scheme. The difference from the above scheme is that our scheme
can be proven secure assuming the LWE assumption with all polynomial approximation
factor. The assumption is weaker than the one used in the above scheme, but the sizes of
the public parameters, ciphertexts, and private keys are larger than the above scheme by a
super-constant factor.

In the second construction, different from lattice IBE schemes in the literature [1, 16, 2, 12], we
have to rely on the LWE assumption for all polynomial approximation factors, rather than some
fixed polynomial approximation factor (e.g., O(n3)). The interesting feature of the reduction is
that the problem we reduce the security to varies according to the power of the adversary. More
specifically, as the number of key extraction queries grows or as the advantage of the adversary
drops, we would need the LWE assumption with larger approximation factor. This is somewhat
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similar to the security proof based on the q-type assumptions (e.g., [24]), in which the problem
that the reduction algorithm solves depends on the number of key extraction queries made by the
adversary. However, unlike the q-type assumptions, our assumptions enjoy reduction to the worst
case lattice problems [40, 37, 13].

To present our schemes in a unified manner, we define the new notion of parametrized IBE
(PIBE). The syntax of PIBE is the same as that of ordinary IBE except that it is parametrized
by a variable c. As for the security, roughly speaking, we require the advantage of any adversary
to be at most 1/nc if the number of key extraction queries is bounded by nc. In the case of c is
a super-constant function, the notion of PIBE corresponds to that of (ordinary) IBE. We then
construct a specific PIBE scheme from the LWE assumption. By setting c to be a super-constant
function, we obtain our first IBE scheme. Our second IBE scheme is obtained by running several
instances of the PIBE scheme in parallel with different values of c. This is captured as a generic
conversion from PIBE to (ordinary) IBE.

We note that our IBE schemes might not be as efficient as previous adaptively secure lattice
IBE schemes [1, 12] for a practical choice of parameters, due to the super-constant factors hidden in
the asymptotic notation. However, we believe that our technique would be of theoretical interest.
In particular, the security proof of our PIBE scheme is based on the traditional partitioning
technique [47] with some novel ideas. In addition, our technique used in the generic construction
of IBE from PIBE, inspired by [7], would be useful for other settings.

Other Application of Our Technique. As a side result, we show an application of our tech-
nique to attribute-based encryption (ABE). In particular, we obtain the first ABE scheme that
simultaneously satisfies the following properties: an unbounded length branching program is us-
able as an attribute, the sizes of the private keys are compact, the security is proven under the
LWE problem for all polynomial approximation factors. We obtain such a scheme by applying a
simple conversion to the recent ABE scheme for branching programs by Gorbunov and Vinayaga-
murthy [28]. The idea for the conversion is similar in spirit to our PIBE-to-IBE conversion. We
note that the original ABE scheme of [28] is either based on the super-polynomial LWE while
dealing with unbounded length branching programs or based on the polynomial LWE while only
dealing with bounded length branching programs. See Appendix B for the details.

Related Works. We can obtain efficient PKE as well as IBE schemes over ideal lattices [45, 22].
By switching to the ring setting, we can generally reduce the size of the public parameters by an
factor of O(n). However, we have to rely on the ring LWE (RLWE) assumption [33, 34], which is
a stronger assumption than the LWE assumption.

The techniques for constructing IBE and signatures are somewhat similar and related. Indeed,
we can obtain secure signature from (adaptively) secure IBE, via the Naor transformation [10]. A
construction of short signature with short public parameters from weak assumptions has been an
important research topic. This problem has been addressed by several previous works [32, 30, 7,
23, 4]. However, their techniques heavily depend on the fact that we can convert a non-adaptively
secure signature scheme into adaptively secure (or equivalently, EUF-CMA secure) one by using
chameleon hash functions [43]. There is no known analogue of the conversion in the setting of
IBE. We also note that our technique of converting PIBE into IBE is similar to the “on the fly
adaptation technique” in [21], which was used to improve the efficiency and the reduction cost of
the Naor-Reingold PRF.

3



2 Overview of Our Technique

2.1 Overview of the Construction

We follow the general framework for constructing lattice-based IBE schemes, which is an abstrac-
tion of many existing schemes [16, 1, 2]. In the template, we associate each identity ID with the
following matrix:

(A|H(ID)) ∈ Zn×(m+m′)
q

where A ∈ Zn×mq and H(·) is a function that maps an identity to a matrix in Zn×m′q for some
n,m,m′ ∈ N and some prime number q. A ciphertext for an identity ID includes a vector of the
following form:

s>(A|H(ID)) + (x>1 |x>2 )

where s is a random vector in Znq and x1 ∈ Zmq and x2 ∈ Zm′q are small error terms. A private

key is a short vector e ∈ Zm+m′ that satisfies

(A|H(ID))e = u mod q

for some fixed u ∈ Znq . In the adaptively secure variant of the IBE scheme in [1], the function
H(ID) is defined as

H(ID) = B0 +
∑

{i∈[1,κ] | IDi=1}

Bi

where B0,B1, . . . ,Bκ ∈ Zn×mq are matrices that are included in the public parameters and IDi
is the i-th bit of the bit string ID ∈ {0, 1}κ. We typically set κ = O(n) and require rather long
public parameters B0,B1, . . . ,Bκ.

Our first idea is to use the technique called fully homomorphic trapdoor computation, which is
introduced in [11], to reduce the size of the public parameters. Namely, we set ` = d

√
κe and the

public parameters as matrices B1,1 . . . ,B1,`,B2,1 . . . ,B2,` ∈ Zn×mq . We also introduce an injective

map S : {0, 1}κ → 2[`]×[`] that maps an identity to a subset of the set [`]× [`]. Then, we change
the definition of the function as

H(ID) = B0 +
∑

(i,j)∈S(ID)

B1,i ·G−1(B2,j),

where G is a gadget matrix whose trapdoor is publicly known [35] and G−1 is a deterministic
function∗ that maps a matrix in U = Zn×mq to a matrix in V = {0, 1}m×m such that GV = U.

By this change, we are able to reduce the number of basic matrices from O(κ) to O(
√
κ). †

2.2 Overview of the Security Proof

We prove the security of the scheme under the LWE assumption. Let the input to the reduction
algorithm be A ∈ Zn×mq and v ∈ Zmq . The task of the algorithm is to distinguish whether

∗Note that we are abusing the notation here. G−1 is not an inverse matrix of G, but a function.
†For the sake of simplicity, we present a scheme that is a special case of our scheme in Section 5. More generally,

we can further reduce the number of basic matrices from O(
√
κ) to be O(κ1/d) for any constant d ∈ N.
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v> = s>A+x> mod q for some s ∈ Znq and small x ∈ Zm, or, v is a random vector. In the security
proof, we pick random y0, y1,1, . . . , y1,`, y2,1, . . . , y2,` ∈ Zq from certain domains, whose sizes grow
proportion to the number of key extraction queries Q that the adversary makes (similarly to in
[47]). Since we assume that Q is much smaller than q, these random values are bounded by some

“small” polynomial. Then, the reduction algorithm picks R0,Ri,j
$← {−1, 1}m×m and embeds

these values into the public parameters as

B0 = AR0 + y0G, Bi,j = ARi,j + yi,jG

for (i, j) ∈ {1, 2} × [1, `]. Then, we have

H(ID) = (AR0 + y0G) +
∑

(i,j)∈S(ID)

(AR1,i + y1,iG) ·G−1(B2,j)

= (AR0 + y0G) +
∑

(i,j)∈S(ID)

(AR1,iG
−1(B2,j) + y1,iB2,j)

= A

R0 +
∑

(i,j)∈S(ID)

(
R1,iG

−1(B2,j) + y1,iR2,j

)
︸ ︷︷ ︸

:=RID, which is “small”

+

y0 +
∑

(i,j)∈S(ID)

y1,iy2,j


︸ ︷︷ ︸

:=Fy(ID)

·G

= ARID + Fy(ID)G.

The reduction algorithm has a trapdoor for the matrix (A‖H(ID)) if Fy(ID) 6= 0 mod q and thus
can simulate a private key for such an identity ID. (RID corresponds to the G-trapdoor [35] of
(A‖H(ID)).) On the other hand, the reduction algorithm expects the challenge identity ID? to
satisfy Fy(ID?) = 0, for which it does not know the trapdoor. If these conditions are not satisfied,
the reduction fails. We have to estimate the probability that it does not abort. In particular, we
have to show that

Pr[Fy(ID?) = 0 ∧ Fy(ID1) 6= 0 . . . ∧ Fy(IDQ) 6= 0] (1)

is noticeable. Here, ID1, . . . , IDQ are identities for which key extraction queries are made. By a
similar analysis to [47, 6], to show a lower bound for the probability of (1), it suffices to show an
upper bound for the following probability

Pr[Fy(ID?) = 0 ∧ Fy(IDi) = 0] (2)

for identities ID? and IDi where ID? 6= IDi. To show an upper bound for (2), we first observe that

Fy(ID?) = 0 ∧ Fy(IDi) = 0

⇔ Fy(ID?) = 0 ∧ Fy(IDi)− Fy(ID?) = 0

⇔

y0 +
∑

(j,k)∈S(ID?)

y1,jy2,k = 0


︸ ︷︷ ︸

Event (A)

∧

 ∑
(j,k)∈S(IDi)

y1,jy2,k −
∑

(j,k)∈S(ID?)

y1,jy2,k = 0


︸ ︷︷ ︸

Event (B)

.

The value of y0 is clearly independent of the Event (B). Therefore, we can easily estimate the
probability of Event (A) occurring, conditioned on that Event (B) occurs. Thus, it suffices to
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show an upper bound on the probability of Event (B) occurring. This can be accomplished by
using the Schwartz-Zippel lemma.

Proof Continued. Based on the idea we have explained above, we can simulate key extraction
queries with sufficiently high success probability. However, two problems remain in order to
complete the security proof.

(C) In the above discussion, we assumed that q is much larger than Q. Therefore, if q is bounded
by some polynomial, so is Q. In such a setting, we can only prove “bounded” security, where
the number of key extraction queries is bounded by a predetermined polynomial.

(D) Furthermore, we are not able to generate a properly distributed challenge ciphertext, as we
explain below.

Let us explain the problem (D). Assume that for the challenge identity ID?, we have Fy(ID?) =
0 and thus H(ID?) = ARID? . To prove security, we have to embed the LWE problem instance A
and v into the challenge ciphertext, where v> = s>A + x> or v a random vector. A natural way
to do this is to implicitly set

x1 = x, x2 = R>ID?x

and compute the challenge ciphertext as

s>(A|H(ID)) + (x1|x2) = (v>|v>RID?).

The problem with this approach is that the vector x2 is highly correlated to the value of RID? ,
which includes the information of y = (y0, {yi,j}(i,j)∈[1,2]×[1,`]) and additionally R0,R1,1 . . . ,R1,`,
R2,1 . . . ,R2,`. While a similar (but simpler) problem is resolved in a previous work [1] using a
generalized form of the leftover hash lemma [20], we are not able to do the same argument due
to the additional correlation to y.

We can resolve the problem by a standard technique. Namely, we “smudge out” or “eat”
the problematic term R>ID?x by adding a large enough term x′ ∈ Zmq to it. This makes the
error terms essentially statistically independent from RID? . The size of the term x′ should be
super-polynomially larger than the size of R>ID?x, but it should be polynomially smaller than q.
Therefore, the size of q should be super-polynomially large, which also resolves the problem (C)
at the same time. Appropriately setting the parameters, we obtain our new adaptively secure and
anonymous IBE scheme.

2.3 An Additional Idea

However, making q super-polynomially large is not quite desirable because of the following two
reasons. Firstly, this would negatively impact the performance of the system. Secondly, since the
error term (in our case x) is super-polynomially smaller compared to q, the corresponding LWE
problem becomes easier. While we are not able to resolve the first problem, we present an idea
to avoid the second problem.

Our first observation is that for any constant c ∈ N, by making q and x′ sufficiently large (but
polynomial size), we can show that any PPT adversary whose number of key extraction queries is
bounded by nc cannot break the security of IBE with advantage non-negligibly larger than 1/nc.
Of course, this is not sufficient because we need the adversary to have only negligible (rather than
inverse of polynomial) advantage, even if the number of key extraction queries is unbounded.
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In order to accomplish this, we prepare several instances of IBE scheme with different size
of q. We call each instance of the IBE scheme as a sub-scheme. The number of sub-schemes is
super-constant (rather than super-polynomial) and therefore the resulting scheme is still efficient.
The size of q varies from very small polynomial to super-polynomial. Furthermore, we “glue”
them so that an adversary must break the security of all of the sub-schemes, in order to break
the resulting IBE scheme. This can easily be accomplished by splitting the message by k-out-of-k
secret sharing scheme, and then encrypt them by each of the sub-schemes.

In the security proof, we assume an PPT adversary A that breaks the resulting IBE scheme.
Since A is polynomial time and has non-negligible advantage, there exists some constant c ∈ N
such that the number of the key extraction queries that A makes is smaller than nc and A’s
advantage is non-negligibly larger than 1/nc. Thus, there exists at least one sub-scheme whose
size of q fits for A, and q is polynomial size. We transform the adversary A into another adversary
B that breaks the sub-scheme. Since q is polynomial size, we can reduce the security to the LWE
assumption with polynomial approximation factor. Note that similar technique is used in [21] to
improve the efficiency and the reduction cost of the Naor-Reingold PRF. There, the reduction
algorithm chooses the target sub-scheme based on the number of queries that the adversary makes.
In our reduction, we choose the target depending on the advantage of the adversary in addition
to the number of key extraction queries.

To present our results in a unified and modular manner, we introduce the notion of PIBE.
Roughly speaking, PIBE is an IBE scheme that is parametrized by a variable c. Our technique to
avoid super-polynomial factor we discussed above can be generalized to be a generic conversion
from PIBE to IBE. Furthermore, our scheme we discussed in the previous subsection also can be
captured as a special case of PIBE, in that c is set to be a super-constant.

3 Preliminaries

Notation. We denote by [n] a set {1, 2, . . . , n} for any integer n ∈ N. We treat a vector as a
column vector. If A1 is n×m and A2 is n×m′ matrix, then (A1|A2) denotes the n×(m+m′) matrix
formed by concatenating A1 and A2. We use similar notation for vectors. A function f : N→ R≥0

is said to be negligible, if for all c, there exists N such that f(n) < 1/nc for all n > N . We denote

by negl(n) a negligible function. We denote by x
$← X the process of sampling a value x according

to the distribution X. Similarly, for a finite set S, we denote by x
$← S the process of sampling

a value x according to the uniform distribution over S. Statistical distance between two random
variables X and Y with support Ω is defined as ∆(X;Y ) = 1

2

∑
s∈Ω |Pr[X = s]−Pr[Y = s]|. For

ensembles of random variable {X(n)}n∈N and {Y (n)}n∈N, we say that they are negl(n)-close if
∆(X(n);Y (n)) = negl(n).

3.1 Identity-Based Encryption

Syntax. Let ID be the ID space of the scheme. If a collision resistant hash function CRH :
{0, 1}∗ → ID is available, one can use an arbitrary string as an identity. An IBE scheme is defined
by the following four algorithms.

Setup(1n)→ (mpk,msk): The setup algorithm takes as input a security parameter 1n and outputs
a master public key mpk and a master secret key msk.

KeyGen(mpk,msk, ID)→ skID: The key generation algorithm takes as input the master public key
mpk, the master secret key msk, and an identity ID ∈ ID. It outputs a private key skID. We
assume that ID is implicitly included in skID.
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Encrypt(mpk, ID,M)→ C: The encryption algorithm takes as input a master public key mpk, an
identity ID ∈ ID, and a message M, It outputs a ciphertext C.

Decrypt(mpk, skID, C)→ M or ⊥: The decryption algorithm takes as input the master public key
mpk, a private key skID, and a ciphertext C. It outputs the message M or ⊥, which means
that the ciphertext is not in a valid form.

Correctness. We require correctness of decryption: that is, for all n, all ID ∈ ID, and all M in
the specified message space,

Pr[Decrypt(mpk, skID,Encrypt(mpk, ID,M)) = M] = 1− negl(n)

holds, where the probability is taken over the randomness used in (mpk,msk)
$← Setup(1n),

skID
$← KeyGen(mpk,msk, ID), and Encrypt(mpk, ID,M).

Security. We now define the security for an IBE scheme Π. This security notion is defined by
the following game between a challenger and an adversary A.

- Setup. At the outset of the game, the challenger runs Setup(1n) → (mpk,msk) and gives mpk
to A.

- Phase 1. A may adaptively make key-extraction queries. If A submits ID ∈ ID to the
challenger, the challenger returns skID ← KeyGen(mpk,msk, ID).

- Challenge Phase. At some point, A outputs a message M and an identity ID? ∈ ID, on which
it wishes to be challenged. Then, the challenger picks a random coin coin

$← {0, 1} and a random

ciphertext C
$← C from the ciphertext space. If coin = 0, it runs Encrypt(mpk, ID?,M)→ C? and

gives the challenge ciphertext C? to A. If coin = 1, it sets the challenge ciphertext as C? = C
and gives it to A.

- Phase 2. After the challenge query, A may continue to make key-extraction queries, with the
added restriction that ID 6= ID?.

- Guess. Finally, A outputs guess a ĉoin for coin. The advantage of A is defined as

AdvIBEA,Π =

∣∣∣∣Pr[ĉoin = coin]− 1

2

∣∣∣∣ .
We say that Π is adaptively anonymous, if the advantage of any PPT A is negligible.

We also define adaptive security (without anonymity) for Π via a similar game to the above.
To define adaptive security, we change the challenge phase as follows.

- Challenge Phase. A outputs two messages M0, M1 and an identity ID? ∈ ID, on which
it wishes to be challenged. Then, the challenger picks a random coin coin

$← {0, 1}, runs
Encrypt(mpk, ID?,Mcoin)→ C?, and gives the challenge ciphertext C? to A.

We also say that Π is adaptively secure, if the advantage of any PPT A is negligible. We
note that the adaptive anonymity implies the adaptive security. Namely, the former is a stronger
security notion.

3.2 Lattice Preliminaries

For positive integers q, m, n, a matrix A ∈ Zn×mq , and a vector u ∈ Zmq , the m-dimensional

integer lattices Λ⊥q (A) and Λu
q (A) are defined as

Λ⊥q (A) = {e ∈ Zm : Ae = 0 mod q}
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Λu
q (A) = {e ∈ Zm : Ae = u mod q}.

Let DΛ,c,σ denote the discrete Gaussian distribution over Λ with center c and parameter γ. When
c is omitted, we set c = 0.

Matrix Norms. For a vector u, we let ‖u‖ and ‖u‖∞ denote its `2 and `∞ norm respectively.
For a matrix R ≤ Zk×m we denote three matrix norms:

‖R‖ denotes the `2 length of the longest column of R.

‖R‖GS denotes ‖R̃‖ where R̃ is the result of applying Gram-Schmidt to the columns of R.

‖R‖2 is the operator norm of R defined as ‖R‖2 = sup‖x‖=1 ‖Rx‖.

We have that the following lemma holds [1].

Lemma 1. Let m, n, q be positive integers with m > n, A ∈ Zn×mq be a matrix, u ∈ Znq be a

vector, TA be a basis for Λ⊥q (A), and σ > ‖TA‖GS · ω(
√

logm). Then we have Pr[x
$← DΛu

q (A),σ :

‖x‖ >
√
mσ] < negl(n).

Trapdoor Generators and Related Operations.

Lemma 2. Let n,m, q > 0 be integers with q prime. There are polynomial time algorithms such
that

1. ([3, 5]): TrapGen(1n, 1m, q)→ (A,TA)
a randomized algorithm that, when m ≥ 6ndlog qe, outputs a full rank matrix A ∈ Zn×mq

and a basis TA ∈ Zm×m for Λ⊥q (A) such that A is negl(n)-close to uniform and ‖TA‖GS =
O(
√
n log q) with all but negligible probability in n.

2. ([16]): SampleLeft(A,F,u,TA, σ)→ e
a randomized algorithm that, given a full rank matrix A ∈ Zn×mq , a matrix F ∈ Zn×mq , a

vector u ∈ Znq , a basis TA for Λ⊥q (A), and a Gaussian parameter σ > ‖TA‖GS · ω(
√

logm),
outputs a vector e ∈ Z2m sampled from a distribution which is negl(n)-close to DΛu

q (A|F),σ.

3. ([1]): SampleRight(A,G,R, y,u,TG, σ)→ e where F = AR + yG
a randomized algorithm that, given a full rank matrix A,G ∈ Zn×mq , y ∈ Zq\{0}, a matrix

R ∈ Zm×m, a vector u ∈ Znq , a basis TG for Λ⊥q (G), and a Gaussian parameter σ >
‖TG‖GS · ‖R‖2 · ω(

√
logm) outputs a vector e ∈ Z2m sampled from a distribution which is

negl(n)-close to DΛu
q (A|F),σ.

4. ([35]): Let m > ndlog qe. Then there is a fixed full-rank matrix G ∈ Zn×mq such that the

lattice Λ⊥q (G) has a publicly known basis TG ∈ Zm×m with ‖TG‖GS ≤
√

5. Furthermore,
there exists a deterministic polynomial-time algorithm G−1 which takes the input U ∈ Zn×mq

and outputs R = G−1(U) such that R ∈ {0, 1}m×m and GR = U.

Note that in the above, we are abusing notation and G−1 is not a matrix but rather a
function. Namely, for any U there are many choices of R such that GR = U , and G−1(U)
deterministically outputs a particular short matrix from this set. Since we have ‖R‖2 ≤ m for
any R ∈ {−1, 0, 1}m×m, ‖G−1(U)‖2 ≤ m holds for any U ∈ Zn×mq .

Learning with Errors. The learning with errors (LWE) problem was introduced by Regev who
showed that solving it on the average is as hard as (quantumly) solving several standard lattice
problems in the worst case.

9



Definition 1 (LWE). For an integers n, m = m(n), a prime integer q = q(n) > 2, an error
distribution χ = χ(n) over Zq, and an PPT algorithm A, an advantage for the learning with
errors problem dLWEn,m,q,χ of A is defined as follows:

Adv
dLWEn,m,q,χ
A = |Pr[A(A, s>A + x>)→ 1]− Pr[A(A,v>)→ 1]|

where A
$← Zn×mq , s

$← Znq , x
$← χm, v

$← Zmq . We say that dLWEn,m,q,χ assumption holds if

Adv
dLWEn,m,q,χ
A is negligible for all PPT A.

Let B = B(n) ∈ N. A family of distributions χ = {χn} is called B-bounded if Pr[χ ∈
[−B,B]] = 1. For any constant d > 0 and sufficiently large q, Regev [40] through a quantum
reduction showed that taking χ as a q/nd-bounded (truncated) discretized Gaussian distribution,
the dLWEn,m,q,χ problem is as hard as approximating the worst-case GapSVP to nO(d) factors,
which is believed to be hard. In subsequent works, (partial) dequantization of the Regev’s reduc-
tion were achieved [37, 13]. More generally, let χmax < q be the bound on the noise distribution.
The difficulty of the problem is measured by the ratio q/χmax. This ratio is always bigger than
1 and the smaller it is the harder the problem. The problem appears to remain hard even when
q/χmax < 2n

ε
for some fixed ε that is 0 < ε < 1/2.

3.3 Basic Facts

Injective map. Let d and κ be some integers. Furthermore, let ` be ` = dκ1/de. Then, an element
of [1, κ] can be written as an element of [1, `]d using some canonical map. Furthermore, it is also
possible to write a subset of [1, κ] as a subset of [1, `]d, by naturally extending the canonical map.
By identifying a bit string in {0, 1}κ with a subset of [1, κ] (for example, by regarding the former
as the indicator vector of a subset of [1, κ]), we can define an efficiently computable injective map
S that maps a bit string ID ∈ {0, 1}κ to a subset S(ID) of [1, `]d.

The following lemma can be shown by a simple calculation.

Lemma 3. (Smudging out Lemma.) Let x0 ∈ Zm be a (fixed) vector such that ‖x0‖∞ ≤ δ and let

x ∈ Zm be a random vector that is chosen as x
$← [−B′, B′]m. Then, the following distributions

are within statistical distance mδ/B′:

x0 + x ≈ x.

As observed in [40, 1], the following lemma is obtained as a corollary to the (general) leftover
hash lemma.

Lemma 4. (Leftover Hash Lemma.) Let q ∈ N be an odd prime and let m > (n + 1) log q +

ω(log n). Let R
$← {−1, 1}m×m and A,A′

$← Zn×mq be uniformly random matrices. Then the
distribution of (A,AR) is negl(n)-close to the distribution of (A,A′).

The following lemma is implicitly shown in [6]. The proof can be found in Appendix A.1.

Lemma 5. Let a1, . . . , an ∈ R be real numbers such that |
∑n

i=1 ai| = ε and
∑n

i=1 |ai| ≤ 1/2.
Furthermore, let γ1, . . . , γn ∈ R be real numbers such that 0 < γmin ≤ γi ≤ γmax for i ∈ [n]. Then,
we have |

∑n
i=1 γiai| ≥ γminε− (γmax − γmin)/2.
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4 Parametrized IBE

In this section, we introduce the notion of parametrized IBE (PIBE), which is an slight extension
of the ordinary notion of IBE. The syntax and the security notion for PIBE is almost the same,
except that it is parametrized by an integer c. Roughly speaking, the larger c becomes, the more
secure PIBE becomes. In particular, when c is super-constant in n, the security notion for PIBE
corresponds to that for ordinary IBE. However, in our construction of PIBE in Section 5, in order
to prove the security of the scheme for super-constant c, we need to assume super-polynomial
LWE, which is a stronger assumption than the assumption that is needed for constant c. In this
section, to base the scheme on a weaker assumption, we provide generic construction of adaptively
secure IBE scheme from PIBE scheme that is secure only for constant c.

4.1 Definition of Parametrized IBE

Here, we define PIBE. The syntax of PIBE is the same as ordinary IBE except that the Setup
algorithm is parametrized by an integer c = c(n). Namely, Setup takes as inputs 1n and 1c and
outputs a master public key mpk and a master secret key msk. Other algorithms, KeyGen, Encrypt,
and Decrypt are defined as in ordinary IBE. We require that these algorithms work within a time
that is polynomial in n and c.

As for the security, we define advantage AdvPIBEA,Π of an adversary A for a PIBE scheme Π via
a game that is almost the same as that of an ordinary IBE scheme. The only difference is that
mpk and msk are generated by Setup(1n, 1c) at the beginning of the game. The rest of the game
is the same. We say that the scheme is c-adaptively anonymous, if for any PPT adversary A such
that Q(n) ≤ nc/2− 1,

AdvPIBEA,Π
Q+ 1

<
1

nc
+ negl(n) (3)

holds for some negligible function negl(n). Here Q = Q(n) is the upper bound for the number of
key extraction queries made by A during the game.

When c(n) is a constant, the c-adaptive anonymity is an weaker security notion than the
adaptive anonymity for IBE, since it allows an adversary to have non-negligible advantage. Fur-
thermore, there is a bound on the number of key extraction queries. On the other hand, when c(n)
is super-constant, the security definition of c-adaptive anonymity corresponds to that of adaptive
anonymity for (ordinary) IBE. More precisely, we have the following theorem.

Theorem 1. If Π = (Setup,KeyGen,Encrypt,Decrypt) is c′-adaptively anonymous for some super
constant function c′(n) = ω(1) such that c′(n) < poly(n), Π′ = (Setup′,KeyGen,Encrypt,Decrypt)
is adaptively anonymous (as an ordinary IBE) if we set

Setup′(1n) = Setup(1n, 1c
′(n)).

Proof. Since c′(n) < poly(n), Setup′, KeyGen, Encrypt, and Decrypt run in polynomial time. In
addition, since c′(n) = ω(1) and thus nc

′
is super-polynomial, there is no bound on the number of

key extraction queries for the adversary in the c′-adaptive anonymity game. Furthermore, since
1/nc

′
is a negligible function, by Equation (3), we have

AdvPIBEA,Π < (Q+ 1)

(
1

nc′
+ negl(n)

)
= negl(n)

for any adversary A. Thus, Π′ defined as above is adaptively anonymous. ut
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Comparison with Bounded Collusion IBE. Our notion of PIBE is similar to the notion of
bounded collusion IBE [19] (also called k-resilient IBE [29]), in that adversaries only learn private
keys of an a-priori bounded number of identities. The security requirement for the former is
weaker than that for the latter, because we allow adversaries to have non-negligible advantages
(in the case of c is a constant). On the other hand, we pose more severe requirement on the
efficiency for the former. We require the algorithms of PIBE to work in polynomial time in c,
rather than in nc. Because of this, existing bounded collusion IBE schemes [19, 29, 49, 26, 46] do
not satisfy the requirement of PIBE.

4.2 IBE from PIBE

In this section, we show a conversion from a PIBE scheme Π = (PIBE.Setup,PIBE.KeyGen,PIBE.Encrypt,
PIBE.Decrypt) to an (ordinary) IBE scheme Π′ = (IBE.Setup, IBE.KeyGen, IBE.Encrypt, IBE.Decrypt).
In the following, let η(n) be any function such that η(n) = ω(1) (e.g., η(n) = log log(n)). We also
let the message space of Π and Π′ be {0, 1}`M for some `M ∈ N.

IBE.Setup(1n) : It runs PIBE.Setup(1n, 1i)→ (mpk(i),msk(i)) for i = 1, . . . , η. It outputs

mpk = (mpk(1),mpk(2), . . . ,mpk(η)) and msk = (msk(1),msk(2), . . . ,msk(η)).

IBE.KeyGen(mpk,msk, ID) : It runs PIBE.KeyGen(mpk(i),msk(i), ID) → sk
(i)
ID for i = 1, . . . , η. It

outputs

skID = (sk
(1)
ID , sk

(2)
ID , . . . , sk

(η)
ID ).

Encrypt(mpk, ID,M) : To encrypt M = {0, 1}`M , it picks random M(i) ∈ {0, 1}`M for i ∈ [η] subject
to constraint that M =

⊕η
i=1 M

(i), where
⊕

denotes bitwise exclusive or. Then it runs

PIBE.Encrypt(mpk(i), ID,M(i))→ C(i) for i = 1, . . . , η.

Finally, it outputs the ciphertext C = (C(1), . . . , C(η)).

Decrypt(mpk, skID, C) : It first parses the ciphertext and the private key as C → (C(1), . . . , C(η))

and skID → (sk
(1)
ID , . . . , sk

(η)
ID ). Then, it runs

PIBE.Decrypt(mpk(i), sk
(i)
ID , C

(i))→ M(i) for i = 1, . . . , η.

Finally, it outputs M =
⊕η

i=1 M
(i).

Correctness of the scheme can be shown very easily. The following theorem addresses the security
of the scheme. Note that the resulting IBE scheme is not anonymous even if the original PIBE
scheme is anonymous.

Theorem 2. Assume that PIBE Π is secure for all (constant) c ∈ N. Then, Π′ is adaptively
secure as an (ordinary, not parametrized) IBE scheme.

Proof. Assume an adversary A that breaks Π′ with non-negligible probability. Since A is a PPT
algorithm, there exist constants c′ ∈ N and c′′ ∈ N such that

• The advantage ε(n) of A is greater than 2/nc
′

for infinitely many n.
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• The number Q(n) of key extraction queries that A makes is bounded by nc
′′
/2− 1.

Let i? be i? = c′ + c′′. Then, we have

ε(n)

2(Q(n) + 1)
− 1

ni?
≥ 2

nc′+c′′
− 1

ni?
=

1

ni?
(4)

for infinitely many n. In particular, ε/2(Q + 1) − 1/ni
?

cannot be bounded by any negligible
function. To show the theorem, we construct an adversary B against i?-adaptive anonymity of
PIBE Π from A. In the following, we assume η ≥ i?. Since η(n) = ω(1), this holds for sufficiently
large n.

Setup. First, PIBE.Setup(1n, 1i
?
)→ (mpk(i?),msk(i?)) is run and mpk(i?) is given to B. Then, A

runs PIBE.Setup(1n, 1i) → (mpk(i),msk(i)) for i = [1, η]\{i?} and sets mpk = (mpk(1),mpk(2), . . . ,
mpk(η)). B keeps msk(i) for i ∈ [1, η]\{i?} secret, and returns mpk to A.

Phase 1 and 2. When A makes a key extraction query for an identity ID, B queries a private

key for the same ID to its challenger. Then, PIBE.KeyGen(mpk(i?),msk(i?), ID)→ sk
(i?)
ID is run and

sk
(i?)
ID is given to B. Then B runs PIBE.KeyGen(mpk(i),msk(i?), ID) → sk

(i)
ID for i ∈ [1, η]\{i?} and

returns skID = (sk
(1)
ID , . . . , sk

(η)
ID ) to A.

Challenge. When A makes a challenge query for (ID?,M0,M1), B first picks random M(i) $←
{0, 1}`M for i ∈ [1, η]\{i?}. Then, it sets

M
(i?)
b = Mb ⊕

 ⊕
i∈[1,η]\{i?}

M(i)

 for b ∈ {0, 1}

and runs PIBE.Encrypt(mpk(i), ID,M(i)) → C(i) for i ∈ [1, η]\{i?}. Then, it picks random coin

coin′
$← {0, 1} and makes the challenge query for (ID?,M

(i?)

coin′
) to its challenger. Then, the chal-

lenger picks a coin coin
$← {0, 1} and returns C? to B. If coin = 0, we have PIBE.Encrypt(mpk(i?), ID?,

M
(i?)

coin′
) → C?. Otherwise, C? is a random element of the ciphertext space. Given C?, B returns

the challenge ciphertext

(C(1), . . . , C(i?−1), C?, C(i?+1), . . . , C(η))

to A.

Guess. Finally, A outputs a guess ĉoin for coin′. If ĉoin = coin′, B outputs 0 as its guess for coin
and outputs 1 otherwise.

Analysis. We can see that B is a valid adversary for the parametrized IBE Π since A does not
make a key extraction query for ID?. Furthermore, B makes the same number of key extraction
queries as A and in particular, we have Q(n) < ni

?
/2 − 1. It is easy to see that the view of the

adversary A corresponds to that in adaptive security game for IBE Π′ when coin = 0. It can also
be seen that the view of the adversary is independent of coin′ when coin = 1. Therefore, we have

AdvPIBEB,Π =

∣∣∣∣12 Pr[ĉoin = coin′|coin = 0] +
1

2
Pr[ĉoin 6= coin′|coin = 1]− 1

2

∣∣∣∣
=

1

2

∣∣∣∣Pr[ĉoin = coin′|coin = 0]− 1

2

∣∣∣∣ =
1

2
ε(n).

Thus, by Equation (4), B is a successful attacker against the i?-adaptive anonymity of Π. ut
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More Efficient Conversion. In the above conversion, we run η instances of PIBE scheme in
parallel. The number of instances can be reduced to O(log η). We briefly sketch the construction
and the security proof for it. Let us assume that η is a power of 2. In the setup algorithm of the
variant, we run PIBE.Setup(1n, 1i)→ (mpk(i),msk(i)) for i = 1, 2, 4, . . . , 2i, . . . , 2log η(= η), instead
of i = 1, 2, . . . , η. Other algorithms are defined similarly to the above. In the security proof, the
target of the reduction algorithm is set to be i? such that 2i

?−1 ≤ c′ + c′′ < 2i
?
.

5 Our Construction of PIBE from Lattices

Here, we show our constructions of PIBE from lattices. By setting the parameter c super-constant
or applying the conversions in Section 4.2, we obtain IBE schemes that provide trade-off between
the efficiency, security, and the underlying assumptions. (See Section 6 for the overview). In
this section, we first introduce some functions that will be needed to describe our construction.
Then, we show our construction of PIBE scheme for single-bit message space. We then prove the
security of the scheme. Finally, we discuss extension of the scheme to the multi-bit variant.

5.1 Homomorphic Computation

Let d be a natural number. We introduce a function PubEvald : (Zn×mq )d → Zn×mq which takes a
set of matrices B1,B2, . . . ,Bd ∈ Zn×mq as inputs and outputs a matrix in Zn×mq . The function is
defined recursively as follows:

PubEvald(B1, . . . ,Bd) =

{
B1 if d = 1

B1 ·G−1
(
PubEvald−1(B2, . . . ,Bd)

)
if d ≥ 2.

We have the following lemma. The proof of the lemma can be found in Appendix A.2.

Lemma 6. Let A, B1, . . . ,Bd be matrices in Zn×mq and R1, . . . ,Rd be matrices in Zm×m such
that Bi = ARi + yiG for i ∈ [d]. Furthermore, we assume that ‖Ri‖2 ≤ m, |yi| ≤ δ for i ∈ [d],
and δ > m. Then, there exists an efficient algorithm TrapEvald that takes R1, . . . ,Rd, y1, . . . , yd
as inputs and outputs R′ such that

PubEvald(B1, . . . ,Bd) = AR′ + y1 · · · yd ·G (5)

and ‖R′‖2 ≤ mdδd−1.

5.2 Our Construction

In the following, we present our PIBE scheme. Let d be a (flexible) constant. In addition, let the
identity space of the scheme be ID = {0, 1}κ for some κ ∈ N and the message space be {0, 1}.
For our construction, we consider an efficiently computable injective map S that maps an identity
ID ∈ {0, 1}κ to a subset S(ID) of [1, `]d, where ` = dκ1/de. Such a map can be constructed easily
as we explained in Section 3.3. We would typically set κ = O(n), and thus ` = O(n1/d) in such a
case.

Setup(1n, 1c) : On input 1n and 1c, it sets the parameters q, m, σ, B, B′, and a distribution
χ as specified in Section 5.3, where q is a prime number. Then, it picks random matri-
ces B0

$← Zn×mq , Bi,j
$← Zn×mq for (i, j) ∈ [d, `] and a vector u

$← Znq . It also picks
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TrapGen(1n, 1m, q)→ (A,TA) ∈ Zn×mq × Zm×m such that ‖TA‖GS = O(
√
n log q). It finally

outputs

mpk = (A,B0, {Bi,j}(i,j)∈[d,`],u) and msk = TA.

In the following, we use a deterministic function H : ID → Zn×mq that is defined as follows.

H(ID) = B0 +
∑

(j1,...,jd)∈S(ID)

PubEvald(B1,j1 ,B2,j2 , . . . ,Bd,jd) ∈ Zn×mq .

KeyGen(mpk,msk, ID) : It first computes H(ID) and picks e ∈ Z2m such that(
A|H(ID)

)
· e = u

by running SampleLeft(A,H(ID),u,TA, σ)→ e. It returns skID = e.

Encrypt(mpk, ID, b) : To encrypt a message b ∈ {0, 1}, it picks s
$← Znq , x0

$← χ, x1
$← χm,

x2
$← [−B′, B′]m and computes

c0 = s>u + x0 + b · dq/2e, c>1 = s>(A|H(ID)) + (x>1 |x>2 ).

Finally, it returns the ciphertext C = (c0, c1).

Decrypt(mpk, skID, C) : To decrypt a ciphertext C = (c0, c1) using a private key skID := e, it first
computes

w = c0 − c>1 · e ∈ Zq.

Then it returns 1 if |w − dq/2e| < dq/4e and 0 otherwise.

5.3 Correctness and Parameter Selection

When the cryptosystem is operated as specified, we have during decryption,

w = c0 − c>1 · e = b · dq/2e+ x0 − (x>1 |x>2 ) · e︸ ︷︷ ︸
error term

.

Lemma 7. Assuming B′ > B, the error term is bounded by O(B′σm) with overwhelming proba-
bility.

Proof. Since χ is B-bounded distribution, with overwhelming probability, we have

|x0 − (x>1 |x>2 ) · e| ≤ |x0|+ |(x>1 |x>2 ) · e|
≤ |x0|+ ‖(x>1 |x>2 )‖ · ‖e‖
≤ B + max{B,B′} ·

√
2m · σ

√
2m

= O(B′σm).

The second inequality above follows from Cauchy-Schwartz and the third inequality follows from
Lemma 1. ut
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Parameter selection. Now, to satisfy the correctness requirement and make the security proof
work, we need that

− the error term is less than q/5 with overwhelming probability (i.e., Ω(B′σm) < q),

− that q is sufficiently large so that the simulation works (i.e., q > Θ(κ(dnc)d)),

− that TrapGen can operate (i.e., m ≥ 6ndlog qe),

− that the leftover hash lemma (Lemma 4) can be applied in the security proof (i.e., m =
(n+ 1) log q + ω(log n)),

− that σ is sufficiently large so that SampleLeft and SampleRight work, (i.e., σ > O(
√
n log q) ·

ω(
√

logm) and σ > m(1 + κddnc(d−1)) · ω(
√

logm), where the latter condition turns out to be
more restrictive),

− that the “noise smudging step” in the security proof works (i.e., m5/2(1 + κddnc(d−1))B/B′ ≤
d/(κ+ 1)(dnc)d+1. See Equation (11). )

To satisfy the above requirements, we set the parameters as follows:

m = O(n log q), q = O(n3c(d−1)+3c′+6), χ = DZ,
√
n,

σ = mκnc(d−1) · ω(
√

logm), B = O(n), B′ = O(m5/2κ2n2cd+1),

where c′ is a constant such that κ = O(nc
′
). Typically, we would set c′ = 1.

5.4 Security Proof

The following theorem addresses the security of the scheme. The proof is based on the partitioning
technique, similarly to [47, 6, 1, 12]. For simplicity, we opt to use the framework of [6] in our
analysis, which does not require the artificial abort step [47]. The analysis with the artificial abort
step is also possible, and it might lead to a scheme with slightly better efficiency (up to constant
factors).

Theorem 3. The above scheme is c-adaptive anonymous assuming dLWEn,m+1,q,χ is hard, where
the ciphertext space is C = Zq × Z2m

q .

Proof. Let A be a PPT adversary that breaks c-adaptive anonymity of the scheme. In addition,
let ε = ε(n) and Q = Q(n) be its advantage and the upper bound of the number of key extraction
queries, respectively. Without loss of generality, we assume that A always makes exactly Q key
extraction queries. Let us define c̃ as a constant that satisfies

Q ≤ nc̃

2
− 1 and

ε

Q+ 1
− 1

nc̃
= nonneg(n) (6)

where nonneg(n) is some non-negligible function. We explain such c̃ always exist. In the case of
c = c(n) is a constant, we simply let c̃ = c. Let us consider the case of c(n) = ω(1). Since A
is a PPT algorithm, there exists a constant c′ such that Q(n) ≤ nc

′
/2 − 1. Furthermore, since

A breaks c-adaptive anonymity of the scheme and 1/nc is negligible, ε/(Q+ 1) is non-negligible.
Therefore, there exists a constant c′′ such that ε/(Q+ 1) > 2/nc

′′
holds for infinitely many n. By

setting c̃ = max{c′, c′′}, we are done. We note that in any case, c̃(n) ≤ c(n) holds for sufficiently
large n.
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We show the security of the scheme via the following games. In each game, a value coin′ ∈ {0, 1}
is defined. While it is set coin′ = ĉoin in the first game, these values might be different in the
later games. In the following, we define Xi be the event that coin′ = coin.

Game0 : This is the real security game. Recall that since the ciphertext space is C = Zq × Z2m
q ,

in the challenge phase, the challenge ciphertext is set as C? = (c0, c1)
$← Zq × Z2m

q if

coin = 1. At the end of the game, A outputs a guess ĉoin for coin. Finally, the challenger
sets coin′ = ĉoin. By the definition, we have∣∣∣∣Pr[X0]− 1

2

∣∣∣∣ =

∣∣∣∣Pr[coin′ = coin]− 1

2

∣∣∣∣ =

∣∣∣∣Pr[ĉoin = coin]− 1

2

∣∣∣∣ = ε.

Game1 : In this game, we change Game0 so that the challenger performs the following additional
step at the end of the game. First, the challenger picks y = (y0, {yi,j}(i,j)∈[d,`]) as

y0
$← [−(κ+ 1)(dnc̃)d + 1, 0] and yi,j

$← [1, dnc̃] for (i, j) ∈ [d]× [`].

We define a function Fy : ID → Zq as follows:

Fy(ID) = y0 +
∑

(j1,...,jd)∈S(ID)

y1,j1 · · · yd,jd .

Then the challenger checks whether the following condition holds:

Fy(ID?) = 0 ∧ Fy(ID1) 6= 0 ∧ Fy(ID2) 6= 0 ∧ · · · ∧ Fy(IDQ) 6= 0 (7)

where ID? is the challenge identity, and ID1, . . . , IDQ are identities for which A has made

key extraction queries. If it does not hold, the challenger ignores the output ĉoin of A, and
sets coin′

$← {0, 1}. In this case, we say that the challenger aborts. If condition (7) holds,

the challenger sets coin′ = ĉoin. As we will show in Lemma 8, we have∣∣∣∣Pr[X1]− 1

2

∣∣∣∣ ≥ 1

κ+ 1
·
(

1

dnc̃

)d
·
(
ε− Q

nc̃

)
.

So as not to interrupt the proof of Theorem 3, we intentionally skip the proof for the time
being.

Game2 : In this game, we change the way B0 and Bi,j are chosen. At the beginning of the game,

the challenger picks R0,Ri,j
$← {−1, 1}m×m for (i, j) ∈ [d]× [`]. It also picks y as in Game1.

Then, A, B0, and Bi,j are defined as

B0 = AR0 + y0G, Bi,j = ARi,j + yi,jG (8)

for (i, j) ∈ [d]× [`]. The rest of the game is the same as in Game1.

Then, we bound |Pr[X2]− Pr[X1]|. By Lemma 4, the distributions(
A,AR0 + y0G, {ARi,j + yi,jG}(i,j)∈[d]×[`]

)
and

(
A,B0, {Bi,j}(i,j)∈[d]×[`]

)
are negl(n)-close, where B0,Bi,j

$← Zn×mq . Therefore, we have

|Pr[X1]− Pr[X2]| = negl(n).
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Before describing the next game, we define RID for an identity ID ∈ ID as

RID = R0 +
∑

(j1,...,jd)∈S(ID)

TrapEval(R1,j1 , . . . ,Rd,jd , y1,j1 , . . . , yd,jd). (9)

Note that by Lemma 6, we have

‖R>ID‖2 = ‖RID‖2
≤ ‖R0‖2 +

∑
(j1,...,jd)∈S(ID)

‖TrapEval(R1,j1 , . . . ,Rd,jd , y1,j1 , . . . , yd,jd)‖2

≤
(
m+ κ(md · (dnc̃)d−1)

)
≤ m(1 + κddnc(d−1)) (10)

for any ID ∈ ID. The last inequality above follows from c̃ ≤ c.

Game3 : In this game, we change the way the challenge ciphertext is created when coin = 0. If
coin = 0, to create the challenge ciphertext Game3 challenger first picks s

$← Znq , x0
$← χ,

x1
$← χm, x2

$← [−B′, B′]m and computes RID? . Then, the challenge ciphertext C? = (c0, c1)
is computed as

c0 = s>u + x0 + b · dq/2e, c>1 = s>(A|H(ID?)) + (x>1 |x>1 RID? + x>2 )

where b ∈ {0, 1} is the message chosen by A.

We then proceed to bound |Pr[X3]− Pr[X2]|. Since x1 is chosen from a B-bounded distri-
bution, we have

‖R>ID?x1‖∞ ≤ ‖R>ID?x1‖2 ≤ ‖R>ID?‖2 · ‖x1‖ ≤ m3/2(1 + κddnc(d−1))B.

When all randomness other than x2 in this game is fixed, the distributions x2 and R>ID? ·
x1 + x2 are within statistical distance

m · ‖R>ID?x1‖∞/B′ = m5/2(1 + κddnc(d−1))B/B′ ≤ d

κ+ 1
·
(

1

dnc

)d+1

(11)

by Lemma 3. Averaging over all other randomness, we have that the distribution of the
challenge ciphertext is within statistical distance d/(κ+1)(dnc)d+1 from the previous game,
when coin = 0. In the case of coin = 1, the view of A is unchanged. Therefore, we conclude
that the view of A in this game is within statistical distance d/(κ + 1)(dnc)d+1 from the
previous game. Thus, we have

|Pr[X2]− Pr[X3]| ≤ d

κ+ 1
·
(

1

dnc

)d+1

.

Game4 Recall that in the previous game, the challenger aborts at the end of the game, if the
condition (7) is not satisfied. In this game, we change the game so that the challenger
aborts as soon as the abort condition becomes true. Since this is only a conceptual change,
we have

Pr[X3] = Pr[X4].
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Game5 In this game, we change the way the matrix A is sampled. Namely, Game5 challenger
picks A

$← Zn×mq instead of generating it with a trapdoor. By Lemma 2, this makes only
negligible difference. Furthermore, we also change the way the key extraction queries are
answered. When A makes a key extraction query for an identity ID, the challenger first
computes RID as in Equation (9). By the definition of RID, it holds that

H(ID) = A · (RID + Fy(ID)G) .

If Fy(ID) = 0, it aborts, as the previous game. Otherwise, it runs

SampleRight(A,G,RID,Fy(ID),u,TG, σ)→ e,

and returns e to A. Note that the private key was sampled as

SampleLeft(A,H(ID),u,TA, σ)→ e

in the previous game. By Equation (10) and the choice of σ, the output distribution of
SampleRight is negl(n)-close to DΛu

q (A|H(ID)),σ. Similarly, by the choice of σ, the output

distribution of SampleLeft is also negl(n)-close to DΛu
q (A|H(ID)),σ. Therefore, the above change

alters the view of the adversary only negligibly. Thus, we have

|Pr[X4]− Pr[X5]| = negl(n).

Game6 In this game, we change the way the challenge ciphertext is created when coin = 0. If
coin = 0, to create the challenge ciphertext for the identity ID? and the message b, Game6

challenger first picks v0
$← Zq, v1

$← Zmq , x2
$← [−B′, B′]m and computes RID? . Then, it

sets the challenge ciphertext C? = (c0, c1) as

c0 = v0 + b · dq/2e, c>1 = (v>1 |v>1 RID?) + (0>m|x>2 ).

As we will show in Lemma 9, assuming dLWEn,m+1,q,χ is hard, we have

|Pr[X5]− Pr[X6]| = negl(n).

Game7 In this game, we change the challenge ciphertext to be a random vector, regardless of
whether coin = 0 or coin = 1. Namely, Game7 challenger generates the challenge ciphertext
(c0, c1) as

c0
$← Zq, and c1

$← Zmq .

We now proceed to bound |Pr[X7] − Pr[X6]|. Since Game6 and Game7 differ only in the
creation of the challenge ciphertext when coin = 0, we focus on this case. First, it is easy
to see that c0 is uniformly random over Zq in both of Game6 and Game7. We also have to
show that the distribution of c1 is negl(n)-close to the uniform distribution over Z2m

q . To

see this, it suffices to show that (v>1 |v>1 RID?) is distributed statistically close to uniform
distribution over Z2m

q . Observe that the following distributions are negl(n)-close:

(A,AR0,v
>
1 ,v

>
1 R0) ≈ (A,A′,v>1 ,v

′
1
>

) ≈ (A,AR0,v
>
1 ,v

′
1
>

), (12)
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where A,A′
$← Zn×mq , R0

$← {−1, 1}m×m, v1,v
′
1

$← Zmq . It can be seen that the first and

the second distributions are negl(n)-close, by applying Lemma 4 for (A>|v)> ∈ Z(n+1)×m
and R0. It can also be seen that the second and the third distributions are negl(n)-close,
by applying the same lemma for A and R0. From the above, we have that the following
distributions are statistically close:

(A,AR0,v
>
1 ,v

>
1 R?

ID)

=

A,AR0,v
>
1 ,v

>
1

R0 +
∑

(j1,...,jd)∈S(ID)

TrapEval(R1,j1 , . . . ,Rd,jd , y1,j1 , . . . , yd,jd)


≈

A,AR0,v
>
1 ,v

′
1
>

+ v>1

 ∑
(j1,...,jd)∈S(ID)

TrapEval(R1,j1 , . . . ,Rd,jd , y1,j1 , . . . , yd,jd)


≈ (A,AR0,v

>
1 ,v

′
1
>

)

where A,A′
$← Zn×mq , R0

$← {−1, 1}m×m, v1,v
′
1

$← Zmq . The second and the third distri-
butions above are negl(n)-close by Equation (12). Therefore, we may conclude that

|Pr[X6]− Pr[X7]| = negl(n).

Analysis. From the above, we have∣∣∣∣Pr[X7]− 1

2

∣∣∣∣ =

∣∣∣∣∣Pr[X1]− 1

2
+

6∑
i=1

Pr[Xi+1]− Pr[Xi]

∣∣∣∣∣
≥

∣∣∣∣Pr[X1]− 1

2

∣∣∣∣− 6∑
i=1

|Pr[Xi+1]− Pr[Xi]|

≥ 1

κ+ 1
·
(

1

dnc̃

)d
·
(
ε− Q

nc̃

)
− d

κ+ 1
·
(

1

dnc

)d+1

− negl(n)

≥ 1

κ+ 1
·
(

1

dnc̃

)d
·
(
ε− Q

nc̃

)
− d

κ+ 1
·
(

1

dnc̃

)d+1

− negl(n)

=
1

κ+ 1
·
(

1

dnc̃

)d
· (Q+ 1) ·

(
ε

Q+ 1
− 1

nc̃

)
− negl(n)

=
1

poly(n)
·
(

ε

Q+ 1
− 1

nc̃

)
− negl(n). (13)

The third inequality above follows from c ≥ c̃. Since the challenge ciphertext is independent from
the value of coin in Game7, we have Pr[X7] = 1/2 and thus |Pr[X7] − 1/2| = 0. Therefore, from
inequality (13),

ε

Q+ 1
<

1

nc̃
+ negl(n)

follows. However, this contradicts to Equation (6). ut

To complete the proof of Theorem 3, it remains to show Lemma 8 and 9.
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Lemma 8. For any PPT adversary A, we have∣∣∣∣Pr[X1]− 1

2

∣∣∣∣ ≥ 1

κ+ 1
·
(

1

dnc̃

)d
·
(
ε− Q

nc̃

)
.

Proof. For a sequence of identities ID = (ID?, ID1, . . . , IDQ) ∈ IDQ+1, we define γ(ID) as

γ(ID) = Pr
y

[Fy(ID?) = 0 ∧ Fy(ID1) 6= 0 ∧ Fy(ID2) 6= 0 ∧ · · · ∧ Fy(IDQ) 6= 0]

where the probability is taken over y = (y0, {yi,j}(i,j)∈[d,`]), which is chosen as specified in Game1.
To show the lemma, we first show the following claim, which gives an upper and lower bounds
for γ(ID).

Claim 1. For any ID = (ID?, ID1, . . . , IDQ) such that ID? 6= IDi for all i ∈ [Q],

1

κ+ 1
·
(

1

dnc̃

)d
·
(

1− Q

nc̃

)
≤ γ(ID) ≤ 1

κ+ 1
·
(

1

dnc̃

)d
.

Proof. Showing the upper bound of the probability is very easy. For any {yi,j}(i,j)∈[d]×[`], there

exists exactly one y0 ∈ [−(κ+ 1)(dnc̃)d+ 1, 0] such that Fy(ID?) = 0, since for any {yi,j}(i,j)∈[d]×[`]

and ID, we have

0 ≤
∑

(j1,...,jd)∈S(ID)

y1,j1 · · · yd,jd ≤
∑

(j1,...,jd)∈S(ID)

(dnc̃)d < (κ+ 1)(dnc̃)d

Therefore, we have

γ(ID) ≤ Pr
y

[Fy(ID?) = 0] =
1

κ+ 1
·
(

1

dnc̃

)d
.

We then proceed to show the lower bound.

γ(ID) = Pr
y

[Fy(ID?) = 0 ∧ Fy(ID1) 6= 0 ∧ Fy(ID2) 6= 0 ∧ · · · ∧ Fy(IDQ) 6= 0]

≥ Pr
y

[Fy(ID?) = 0]−
∑
i∈[Q]

Pr
y

[Fy(ID?) = 0 ∧ Fy(IDi) = 0]

=
1

κ+ 1
·
(

1

dnc̃

)d
−
∑
i∈[Q]

Pr
y

[Fy(ID?) = 0 ∧ Fy(IDi) = 0]. (14)

It suffices to show an upper bound for Pr[Fy(ID?) = 0 ∧ Fy(IDi) = 0]. For i ∈ [Q], we have

Pr
y

[Fy(ID?) = 0 ∧ Fy(IDi) = 0]

= Pr
y

[Fy(ID?) = 0 ∧ Fy(ID?)− Fy(IDi) = 0]

= Pr
y

[Fy(ID?) = 0 | F′y(ID?, IDi) = 0] · Pr
y

[F′y(ID?, IDi) = 0]

= Pr
y

y0 = −
∑

(j1,...,jd)∈S(ID?)

y1,j1 · · · yd,jd

∣∣∣∣∣∣ F′y(ID?, IDi) = 0

 · Pr
y

[F′y(ID?, IDi) = 0]
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=
1

κ+ 1
·
(

1

dnc̃

)d
· Pr

y
[F′y(ID?, IDi) = 0]. (15)

In the above, we defined F′y(ID?, IDi) as

F′y(ID?, IDi) := Fy(ID?)− Fy(IDi)

=
∑

(j1,...,jd)∈S(ID?)

y1,j1 · · · yd,jd −
∑

(j1,...,jd)∈S(IDi)

y1,j1 · · · yd,jd .

The last equation in Equation (15) follows since y0 is independent from F′y(ID?, IDi). (Observe
that y0 does not appear in the definition of F′y(ID?, IDi).)

We then finally bound Pry[F′y(ID?, IDi) = 0]. Since ID? 6= IDi and S is an injective map,

we have S(ID?) 6= S(IDi). Therefore, there exists (j?1 , . . . , j
?
d) ∈ [`]d such that (j?1 , . . . , j

?
d) ∈

S(ID?)4 S(IDi), where S(ID?)4 S(IDi) denotes the symmetric difference of S(ID?) and S(IDi).
Thus, F′y(ID?, IDi) is not a zero-polynomial when we regard it as a polynomial in indeterminates

{yj,k}(j,k)∈[d]×[`]. Since each yj,k is uniformly random over [1, dnc̃] and F′y(ID?, IDi) is a polynomial
with degree d, by the Schwartz-Zippel lemma, it follows that

Pr
y

[F′y(ID?, IDi) = 0] ≤ d

dnc̃
≤ 1

nc̃
.

By combining this with Equation (14) and (15), the claim follows. ut

We then proceed to show a lower bound for |Pr[X1]− 1/2|. For ID = (ID?, ID1, . . . , IDQ) such
that ID? 6= IDi for all i ∈ [Q], we define γmax and γmin as the largest and the smallest value of
γ(ID) taken over all such ID, respectively. We define Q(ID) as the event that A chooses ID? as
its challenge identity and it makes key extraction queries for ID1, . . . , IDQ. We also define Abort
as the event that the challenger aborts. Then, we have∣∣∣∣Pr[X1]− 1

2

∣∣∣∣
=

∣∣∣∣Pr[coin′ = coin]− 1

2

∣∣∣∣
=

∣∣∣∣∣∑
ID

Pr[Q(ID)] · Pr[coin′ = coin|Q(ID)]− 1

2

∣∣∣∣∣
=

∣∣∣∣∣∑
ID

Pr[Q(ID)] ·
(

Pr[coin′ = coin ∧ ¬Abort|Q(ID)] + Pr[coin′ = coin ∧ Abort|Q(ID)]− 1

2

)∣∣∣∣∣
=

∣∣∣∣∣∑
ID

Pr[Q(ID)] ·
(

Pr[ĉoin = coin|Q(ID)] · γ(ID) +
1

2
·
(
1− γ(ID)

)
− 1

2

)∣∣∣∣∣
=

∣∣∣∣∣∑
ID
γ(ID) · Pr[Q(ID)] ·

(
Pr[ĉoin = coin|Q(ID)]− 1

2

)∣∣∣∣∣
≥ γmin · ε−

γmax − γmin

2
.

In the third equation above, we used the fact
∑

ID Pr[Q(ID)] = 1. The fourth equation above
follows from the fact that the probability of the abort is γ(ID), when conditioned on Q(ID)
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(regardless of the value of ĉoin). The last inequality above follows by Lemma 5, since we have∣∣∣∣∣∑
ID

Pr[Q(ID)] ·
(

Pr[ĉoin = coin|Q(ID)]− 1

2

)∣∣∣∣∣ =

∣∣∣∣∣∑
ID

Pr[ĉoin = coin ∧ Q(ID)]− 1

2

∣∣∣∣∣
=

∣∣∣∣Pr[ĉoin = coin]− 1

2

∣∣∣∣ = ε

and ∑
ID

∣∣∣∣Pr[Q(ID)] ·
(

Pr[ĉoin = coin|Q(ID)]− 1

2

)∣∣∣∣ ≤∑
ID

Pr[Q(ID)] · 1

2
=

1

2
.

We complete the proof of Lemma 8 by observing

γmin · ε−
γmax − γmin

2

≥ 1

κ+ 1
·
(

1

dnc̃

)d
·
(

1− Q

nc̃

)
· ε− 1

2(κ+ 1)
·
(

1

dnc̃

)d
·
(

1−
(

1− Q

nc̃

))
≥ 1

κ+ 1
·
(

1

dnc̃

)d
·
(
ε− Q

nc̃

)
.

The last inequality follows from ε ≤ 1/2. ut

Lemma 9. For any PPT adversary A, there exists another PPT adversary B such that

|Pr[X5]− Pr[X6]| ≤ Adv
dLWEn,m+1,q,χ

B .

In particular, under the dLWEn,m+1,q,χ assumption, we have |Pr[X5]− Pr[X6]| = negl(n).

Proof. Suppose an adversary A that has non-negligible advantage in distinguishing Game5 and
Game6. We use A to construct an LWE algorithm denoted B, which proceeds as follows.

Instance. B is given the problem instance of LWE (A′,v′) ∈ Zn×(m+1)
q × Zm+1

q . Let the first
column of A′ be u ∈ Znq and the last m column be A ∈ Zn×mq . It also sets the first coefficient of
v′ be v0 and the last m coefficients be v1.

Setup. To construct master public key mpk, B first picks y as in Game1. It also picks R0,Ri,j
$←

{−1, 1}m×m and sets B0 and Bi,j as Equation (8). Finally, it returns mpk = (A,B0, {Bi,j}(i,j)∈[d,`],

u) to A. B also picks a random bit coin
$← {0, 1} and keeps it secret.

Phase 1 and Phase 2. When A makes a key extraction query for ID, B first computes Fy(ID).

It aborts and sets coin′
$← {0, 1} if Fy(ID) = 0. Otherwise, B generates the private key as in

Game5.

Challenge Query. When A makes the challenge query for the challenge identity ID? and the
message b, B first computes Fy(ID?). Then, it aborts and sets coin′

$← {0, 1} if Fy(ID?) 6= 0.

Otherwise, it proceeds as follows. If coin = 0, it computes RID? and picks x2
$← [−B′, B′]m.

Then, it sets the challenge ciphertext as

c0 = v0 + b · dq/2e, c>1 = (v>1 |v>1 RID?) + (0>m|x>2 )

and returns C? = (c0, c1) to A. In the case of coin = 1, B picks c0
$← Zq, c1

$← Z2m
q and returns

the challenge ciphertext C? = (c0, c1) to A.
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Guess. At last, A outputs its guess ĉoin (if the abort condition has not been satisfied). Then, B
sets coin′ = ĉoin. Finally, B outputs 1 if coin′ = coin and 0 otherwise.

Analysis. We now show that B perfectly simulates the view of A in Game5 if (A′,v′) is a valid

LWE sample (i.e., v′> = s>A′ + x> for s
$← Znq and x

$← χm+1), and Game6 if v′
$← Zm+1

q . Note
that these games differ only in the generation of the challenge ciphertext in the case of coin = 0.
Furthermore, it is easy to see that the simulation of the master public key, Phase 1, Phase 2,
and the challenge ciphertext for the case of coin = 1 are perfect. Therefore, in the following, we
focus on the generation of the challenge ciphertext in the case of coin = 0.

We first show that if (A′,v′) is a valid LWE sample, i.e., v′> = s>A′ + x> for s
$← Znq and

x
$← χm+1, the distribution of the challenge ciphertext corresponds to that of Game5. Let us

denote x> = (x0,x
>
1 ) and assume that Fy(ID?) = 0 holds. Then, we have

c0 = v0 + b · dq/2e = (u>s + x0) + b · dq/2e and

c1 = (v>1 |v>1 RID?) + (0>m|x>2 )

=
(
s>A + x>1 |(s>A + x>1 )RID?

)
+ (0>m|x>2 )

= s>
(
A|ARID?

)
+ (x>1 |x>1 RID? + x>2 )

= s>
(
A|H(ID?)

)
+ (x>1 |x>1 RID? + x>2 ).

The last equation follows because Fy(ID?) = 0. Therefore, the challenge ciphertext is distributed
as in Game5 in this case. It is easy to see that the challenge ciphertext is distributed as in Game6,
if v′

$← Zm+1
q .

Therefore, we have Adv
dLWEn,m+1,q,χ

B = |Pr[X5]− Pr[X6]| as desired. ut

5.5 Multi-bit Encryption

Here, we explain that our scheme can be extended to deal with multi-bit messages without much
increasing the sizes of public parameters and ciphertexts, similarly to [39, 1]. To modify the scheme
so that it can encrypt messages with N -bit, we replace u ∈ Znq in mpk with u1, . . . ,uN ∈ Znq . The

component c0 = 〈u, s〉+x0 +bd q2e in the ciphertext is replaced with c0 = {〈ui, s〉+x0,i+bid q2e}
N
i=1

where x0,i
$← χ and bi ∈ {0, 1} is the i-th bit of the message. Furthermore, the private key is

changed to be short vectors e1, . . . , eN ∈ Zm such that (A|H(ID))ei = ui for i = 1, . . . , N . We
can prove the security for the variant from dLWEn,m+N,q,χ by naturally extending the proof of
Theorem 3.

As for the efficiency, the size of the master public key and the ciphertexts become O((`m +
N)n log q) and O((m + N) log q) respectively, and these are asymptotically the same as the case
of single-bit encryption when N < O(m). The case of N > O(m) can also be handled without
increasing the size of parameters, by employing the KEM-DEM approach. Namely, we encrypt a
random ephemeral key of sufficient length (e.g., O(n)) by IBE and then encrypt the message by
the ephemeral key using a symmetric cipher.

6 Comparisons and Discussions

From the PIBE scheme in Section 5, we can obtain the following new IBE schemes:

• By setting c = ω(1), we obtain adaptively anonymous IBE by Theorem 1. However, we have
to rely on super-polynomial LWE assumption, namely, dLWEn,m,q,χ with q/χmax = nω(1).
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• By applying PIBE-to-IBE conversion in Section 4.2 to our PIBE in Section 5, we obtain
(non-anonymous) adaptively secure IBE from polynomial LWE. More precisely, the security
of the scheme can be proven under the assumption that dLWEn,m,q,χ is hard for all q/χmax =
poly(n).

For concreteness, we would set c(n) = O(log log n) in the first construction, and c(n) =
log logn and η(n) = log log n for the second construction. Ignoring poly-logarithmic factors
hidden in the asymptotic notation Õ(·), both of our schemes achieve the best efficiency among
existing adaptively secure IBE schemes. See Table 1 for the comparison. Comparing in more
details, ciphertexts and private keys of both of our schemes are longer than [1, 12] by a super-
constant factor. This is because we need to use super polynomially large q. On the other hand, in
both of our schemes, the sizes of master public keys are asymptotically smaller than [1, 12], even
though we have to use larger q. This is because we require smaller number of basic matrices in the
master public keys. Our first scheme is more efficient than our second scheme by super-constant
factors, because the conversion in Section 4.2 incurs super-constant efficiency loss. We also note
that our security reduction is very loose even compared to non-tight reduction of [1, 12]. The
security degrades exponentially as d grows. Therefore, in order to have polynomial reduction, we
have to set d to be a (possibly small) constant.

Table 1: Comparison of IBE from the LWE assumption in the Standard Model.

Schemes |mpk| |C| |skID| Anonymous? Selective q/χmax for
or Adaptive LWE Assumption

[1] Õ(n2) Õ(n) Õ(n) Yes Selective Fixed poly(n)

[16] Õ(n2κ) Õ(nκ) Õ(n2) Yes Adaptive Fixed poly(n)

[1]+[12]∗ Õ(n2κ) Õ(n) Õ(n) Yes Adaptive Fixed poly(n)

Ours: Sec. 5 + Th. 1. Õ(n2κ1/d) Õ(n) Õ(n) Yes Adaptive nω(1)

Ours: Sec. 5 + Th. 2. Õ(n2κ1/d) Õ(n) Õ(n) No Adaptive All poly(n)

We compare IBE schemes from the LWE assumption in the standard model. |mpk|, |C|, and |skID| show
the size of the master public keys, ciphertexts, and private keys, respectively. In the table, κ denotes the
length of the identity (which corresponds to the output length of the collision resistant hash if we first hash
the bit string representing identity in the scheme). d ∈ N is a flexible constant, which can be set to be
any value. “Anonymous?” shows whether the scheme is anonymous. “Selective/Adaptive” shows whether
the scheme is selectively secure or adaptively secure. “q/χmax” for LWE assumption refers to the ratio of
the modulus to the error size of the underlying LWE assumption used in the security reduction. “Fixed
poly(n)” means that the corresponding scheme is proven secure under the LWE assumption with q/χmax

being some fixed polynomial (e.g., n3). “All poly(n)” mean that we have to assume the LWE assumption
for all polynomial q/χmax.

∗ In the security proof for the adaptively secure variant of IBE in [1], we have a restriction that q > Q.
Namely, only bounded form of the security is proven. This restriction is removed in the refined analysis
due to Boyen [12].
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A Omitted Proofs

A.1 The Proof of Lemma 5

Proof. We have ∣∣∣∣∣
n∑
i=1

γiai

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

γminai +

n∑
i=1

(γi − γmin)ai

∣∣∣∣∣
≥

∣∣∣∣∣
n∑
i=1

γminai

∣∣∣∣∣−
n∑
i=1

|(γi − γmin)ai|

≥ γmin · ε− (γmax − γmin)
n∑
i=1

|ai|

≥ γmin · ε− (γmax − γmin)/2.

ut

A.2 The Proof of Lemma 6

Proof. We prove it by induction. The base case (the case of d = 1) is trivial. Therefore, let us
assume the hypothesis for d− 1 where d ≥ 2. Then, we have

‖R′′‖2 ≤ m(d− 1)δd−2 and PubEvald−1(B2, . . . ,Bd) = AR′′ + y2 · · · ydG

for efficiently computable R′′. Therefore, by the definition of PubEvald, we have

PubEvald(B1, . . . ,Bd)

= (AR1 + y1G) ·G−1
(
PubEvald−1(B2, . . . ,Bd)

)
= AR1 ·G−1

(
PubEvald−1(B2, . . . ,Bd)

)
+ y1 · PubEvald−1(B2, . . . ,Bd)

= AR1 ·G−1
(
PubEvald−1(B2, . . . ,Bd)

)
+ y1(AR′′ + y2 · · · ydG)

= A(R1 ·G−1
(
PubEvald−1(B2, . . . ,Bd)

)
+ y1R

′′) + y1y2 · · · ydG.

It can be seen that Equation (5) holds by setting

R′ = R1 ·G−1
(
PubEvald−1(B2, . . . ,Bd)

)
+ y1R

′′.

It is clear that it can be efficiently computable. Furthermore, we have

‖R′‖2 ≤ ‖R1‖2 · ‖G−1
(
PubEvald−1(B2, . . . ,Bd)

)
‖2 + |y1| · ‖R′′‖2

≤ m ·m+ δ ·m(d− 1)δd−2 ≤ m · δd−1 +m(d− 1)δd−1 ≤ mdδd−1.

ut

B Application of Our Technique to Attribute-Based Encryption

Here, we discuss another application of our technique to the context of the attribute-based en-
cryption.

Recently, Gorbunov and Vinayagamurthy [28] proposed a new attribute-based encryption for
branching programs from the LWE assumption, by cleverly adapting a technique from the fully
homomorphic encryption [14]. In particular, they showed the following:
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Theorem 4. There exists selectively-secure attribute-based encryption for branching programs
assuming dLWEn,m,q,χ is hard for χ = DZ,

√
n, m = O(n log q), and q = Õ(n7 ·L2), where ` and L

denote the the length of the input to branching programs and the upper bound for the length of the
branching programs, respectively. Furthermore, the running times of the setup algorithm, key gen-
eration algorithm, encryption algorithm, and decryption algorithm are bounded by poly(n, `, logL).
In particular, the size of the private keys is compact: It is bounded by poly(n, logL) ‡, which de-
pends on L only logarithmically.

As corollaries, we have the following, which provide trade-off between the functionality and
the underlying assumptions:

• By setting L = nω(1), we obtain ABE for branching programs with small private keys, which
can deal with essentially unbounded length branching programs. However, we have to rely
on the LWE assumption with q/χmax = nω(1) to prove the security.

• By setting L = O(nc) for some constant c, we obtain ABE for branching programs with
small private keys from the LWE assumption with q/χmax = Õ(n2c+6.5), which is a weaker
assumption than the above. However, the length of the branching programs is bounded by
L.

A natural question is whether we can obtain the best of both worlds. In this section, we show
that it is possible to obtain an ABE scheme for branching programs with compact private keys
that can deal with unbounded length branching programs only assuming the LWE assumption
with q/χmax = nc for all constant c ∈ N. The assumption is weaker than the LWE assumption
with q/χmax = nω(1). We obtain such a scheme by applying simple conversion that is similar to
our PIBE-to-IBE conversion in Section 4.2 to the scheme in [28]. Namely, we run several instances
of the scheme of [28] with different sizes of L. The size of L varies from a very small polynomial
to a super-polynomial. The conversion is slightly more complex compared to our PIBE-to-IBE
conversion, reflecting the fact that we are dealing with ABE, which is more complex object than
IBE.

In the following, we first introduce necessary definitions. Then, we present our conversion.
Finally, we explain the property of our new scheme obtained by applying the conversion to the
ABE scheme in [28].

B.1 Attribute-Based Encryption

Here, we define attribute-based encryption.

Syntax. Let R : X ×Y → {0, 1} be a relation family where X and Y denote “key attribute” and
“ciphertext attribute” spaces. These spaces are equipped with a function | · | : X ∪Y → N, which
represents the size of the attribute. An ABE scheme for the relation R is defined by the following
algorithms:

Setup(1n, 1`, L)→ (mpk,msk): The setup algorithm takes as input a security parameter 1n, the
length ` (in a unary form) of the size of ciphertext attributes, and the bound L (in a binary
form) for the size of key attributes and outputs a master public key mpk and a master secret
key msk.

‡ When measuring the size of private keys, we ignore the size of the representation for the branching programs
that is associated with the key. If we take it into account, the size is L+ poly(n, logL).
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KeyGen(mpk,msk, x)→ skx: The key generation algorithm takes as input the master public key
mpk, the master secret key msk, and an key attribute x ∈ X such that |x| ≤ L. It outputs a
private key skx. We assume that x is implicitly included in skx.

Encrypt(mpk, y,M)→ C: The encryption algorithm takes as input the master public key mpk, a
ciphertext attribute y ∈ Y such that |y| = `, and a message M. It outputs a ciphertext C.
We assume that y is implicitly included in C. (Namely, we do not consider anonymity here.)

Decrypt(mpk, skx, C)→ M or ⊥: The decryption algorithm takes as input the master public key
mpk, a private key skx, and a ciphertext C. It outputs the message M or ⊥ which means
that the ciphertext is not in a valid form.

The reason why the setup algorithm takes L in a binary form (rather than in a unary form)
as input is that we will treat a scheme with super-polynomial L, which leads to a scheme that
can deal with essentially unbounded size of key attributes. On the other hand, ` is bounded by
some polynomial.

Correctness. We require (standard) correctness of decryption: that is, for all n, `, L ∈ N, all
x ∈ X with |x| ≤ L, y ∈ Y with |y| = `, and all M in the specified message space,

Pr[Decrypt(mpk, skx,Encrypt(mpk,M, y)) = M] = 1− negl(n)

holds if R(x, y) = 1. Here, the probability is taken over the randomness used in (mpk,msk)
$←

Setup(1n, 1`, L), skx
$← KeyGen(msk,mpk, x), and Encrypt(mpk,M, y).

Relation for Branching Programs. Since the precise definition of branching programs is not
necessary for our purpose, we omit this and refer to [28]. In the scheme in [28], the key attribute
space X is a set of all branching programs and the ciphertext attribute space Y is {0, 1}∗, which
corresponding to the input to the branching programs. For x ∈ X , |x| is the length of the branching
program x and for y ∈ Y, |y| is the length of the bit string y. We note that the relation family R
for branching programs satisfies the following (natural) requirement:

There exists a special element > ∈ X such that |>| = 1 and R(>, y) = 1 for all y ∈ Y.

We will use this property in Section B.2.

Security. We now define the selective security for an ABE scheme Π. This security notion is
defined by the following game between a challenger and an adversary A.

- Setup. At the outset of the game, given 1n and 1` as an input, the adversary A chooses
the challenge attribute y?, which satisfies |y?| = `. Then, the challenger runs Setup(1n, 1`, L) →
(mpk,msk) and gives mpk to A.

- Phase 1. A may adaptively make key-extraction queries. If A submits x ∈ X such that |x| ≤ L
and R(x, y?) = 0 to the challenger, the challenger returns skx ← KeyGen(mpk,msk, x).

- Challenge Phase. A outputs two messages M0, M1 on which it wishes to be challenged. Then,
the challenger picks a random coin coin

$← {0, 1}, runs Encrypt(mpk, y?,Mcoin) → C?, and gives
the challenge ciphertext C? to A.

- Phase 2. After the challenge query, A may continue to make key-extraction queries, with the
same restriction as Phase 1.

- Guess. Finally, A outputs a guess ĉoin for coin. The advantage of A is defined as

AdvIBEA,Π =

∣∣∣∣Pr[ĉoin = coin]− 1

2

∣∣∣∣ .
We say that Π is selectively-secure, if the advantage of any PPT A is negligible.
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B.2 Our Transformation

Here, we show a conversion from an an ABE scheme Π = (ABE.Setup,ABE.KeyGen,ABE.Encrypt,
ABE.Decrypt) for a relation family R from another ABE scheme Π′ = (ABE.Setup′,ABE.KeyGen′,
ABE.Encrypt′,ABE.Decrypt′) for the same relation. A nice property of the resulting scheme Π′ is
that it can deal with unbounded size of key attributes, and at the same time, its security can
be reduced to that of Π with polynomial L (rather than super-polynomial L). By applying this
transformation to the ABE scheme for branching programs in [28], we obtain an ABE with a new
property, as we will discuss in Section B.3. In the following, let η(n) be any function such that
η(n) = ω(1) (e.g., η(n) = log log(n)). We also let the message space of Π and Π′ be {0, 1}`M for
some `M ∈ N.

ABE.Setup′(1n, 1`, L := nη) : It runs ABE.Setup(1n, 1`, ni) → (mpk(i),msk(i)) for i = 1, . . . , η. It
outputs

mpk = (mpk(1),mpk(2), . . . ,mpk(η)) and msk = (msk(1),msk(2), . . . ,msk(η)).

ABE.KeyGen′(mpk,msk, x) : Let us assume that |x| < nη holds. Then, there exists unique i∗ ∈ [η]
such that

ni
∗−1 ≤ |x| < ni

∗
.

The key generation algorithm runs ABE.KeyGen(mpk(i),msk(i),>)→ sk
(i)
> for i = 1, 2, . . . , i∗−

1 and ABE.KeyGen(mpk(i),msk(i), x)→ sk
(i)
x for i = i∗, i∗ + 1, . . . , η. Then it outputs

skx = (sk
(1)
> , sk

(2)
> . . . , sk

(i∗−1)
> , sk

(i∗)
x , sk

(i∗+1)
x , . . . , sk

(η)
x ).

Note that we can use any polynomial-size x as an key attribute (in asymptotic sense), since nη is
super-polynomial. In other words, the scheme can deal with unbounded size of x.

ABE.Encrypt(mpk, y,M) : To encrypt M = {0, 1}`M , it picks random M(i) ∈ {0, 1}`M for i ∈ [η]
subject to constraint that M =

⊕η
i=1 M

(i). Then it runs

ABE.Encrypt(mpk(i), y,M(i))→ C(i) for i = 1, . . . , η.

Finally, it outputs the ciphertext C = (C(1), . . . , C(η)).

Decrypt(mpk, skx, C) : It first parses the ciphertext and the private key as C → (C(1), . . . , C(η))

and skx → (sk
(1)
> , . . . , sk

(i∗−1)
> , sk

(i∗)
x , . . . , sk

(η)
x ). Then, it runs

ABE.Decrypt(mpk(i), sk
(i)
> , C

(i))→ M(i) for i = 1, . . . , i∗ − 1

and ABE.Decrypt(mpk(i), sk
(i)
x , C(i))→ M(i) for i = i∗, . . . , η.

Finally, it outputs M =
⊕η

i=1 M
(i).

Correctness. Let us assume R(x, y) = 1. Since R(>, y) = 1 for any y and ni ≥ |y| = 1 for

all i ∈ N, ABE.Decrypt(mpk(i), sk
(i)
> , C

(i)) can recover M(i) for i = 1, . . . , i∗ − 1. Furthermore,

since ni > |x| for all i ≥ i∗, ABE.Decrypt(mpk(i), sk
(i)
x , C(i)) can recover M(i) also for i = i∗, . . . , η.

Therefore, the decryption algorithm can correctly recover the message M.
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Theorem 5. Assuming Π is selective secure for all polynomial L = L(n), so is Π′.

Proof. Assume an adversary A that breaks Π′ with non-negligible probability. Let `max be the
maximum size of the key attributes for which A makes key extraction queries. Since A is a PPT
algorithm, `max is bounded by some polynomial in n. In particular, there exists a constant i? ∈ N
such that

`max < ni
?

and i? ≤ η(n)

hold for all sufficiently large n. We will construct an adversary B against Π with L = ni
?

from A
in the following.

Setup. First, given 1n and 1`, B passes the same values to A. Then, A outputs y? satisfying
|y?| = `. B outputs the same y? as its target. Then, ABE.Setup(1n, 1`, ni

?
) → (mpk(i?),msk(i?))

is run and mpk(i?) is given to B. B then runs ABE.Setup(1n, 1`, ni) → (mpk(i),msk(i)) for i =
[1, η]\{i?} and sets mpk = (mpk(1),mpk(2), . . . ,mpk(η)). B keeps msk(i) for i ∈ [1, η]\{i?} secret,
and returns mpk to A.

Phase 1 and 2. When A makes a key extraction query for x, B proceeds as follows. B first
finds i∗ such that ni

∗−1 ≤ |x| < ni
∗
. Since we have |x| ≤ `max and `max < ni

?
, it holds that

i∗ ≤ i?. B then queries a private key for x to its challenger. Note that since |x| ≤ `max < ni
?
,

it is a valid query. Then, ABE.KeyGen(mpk(i?),msk(i?), x) → sk
(i?)
x is run and sk

(i?)
x is given to

B. B also runs ABE.KeyGen(mpk(i),msk(i),>) → sk
(i)
> for i = 1, . . . , i∗ − 1. Finally, B runs

ABE.KeyGen(mpk(i),msk(i), x)→ sk
(i)
x for i ∈ [i∗, η]\{i?} and returns

skx = (sk
(1)
> , sk

(2)
> . . . , sk

(i∗−1)
> , sk

(i∗)
x , sk

(i∗+1)
x , . . . , sk

(η)
ID ).

to A. Note that the simulation is possible since i∗ ≤ i?. Otherwise, if i∗ > i?, B has to give sk
(i?)
>

to A and thus the simulation is impossible. (B is not allowed to make a key extraction query for
>, since it allows B to decrypt the challenge ciphertext and trivially win the game).

Challenge. In the challenge phase, A outputs two messages (M0,M1). Then, B first picks random

M(i) $← {0, 1}`M for i ∈ [1, η]\{i?} and sets

M
(i?)
b = Mb ⊕

 ⊕
i∈[1,η]\{i?}

M(i)

 for b ∈ {0, 1}.

Then, B runs ABE.Encrypt(mpk(i), y?,M(i)) → C(i) for i ∈ [1, η]\{i?} and makes the challenge

query for messages (M
(i?)
0 ,M

(i?)
1 ) to its challenger. The challenger picks a coin coin

$← {0, 1}, runs

ABE.Encrypt(mpk(i?), y?,M
(i?)
coin)→ C?, and gives C? to B. Finally, B gives the challenge ciphertext

(C(1), . . . , C(i?−1), C?, C(i?+1), . . . , C(η))

to A.

Guess. Finally, A outputs a guess ĉoin for coin. B outputs the same ĉoin as its guess.

Analysis. We show that B is a valid adversary for Π. First, since A does not make a key
extraction query for x such that R(x, y?) = 1, B does not make such a query neither. It can also
be seen that the challenge ciphertext is distributed correctly. Since the simulation by B is perfect,
B has the same advantage as A, as desired. ut

More Efficient Conversion. Similarly to our conversion in Section 4.2, the number of instances
of the sub-scheme Π can be reduced to O(log η) from O(η). The idea is to run ABE.Setup(1n, 1`, ni)
for i = 1, 2, 4, . . . , 2i, . . . , 2dlog ηe. We note that this leads to a security reduction with looser
approximation factors.
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B.3 Implication and Comparison

By applying our transformation in Section B.2 to the ABE scheme in [28], we obtain a new ABE
scheme. The security of the scheme is proven from that of the scheme in [28] for polynomial size
L, which can be reduced to dLWEq,m,q,χ with polynomial q/χmax. The latter can be reduced to
the worst case lattice problems with polynomial approximation factor [40]. Furthermore, the size
of the private key is η(n) · poly(n, log(nη)) = poly(n), which is independent of L. Therefore, our
scheme

• is proven secure from the worst case lattice problems with polynomial approximation factors,

• achieves compact private keys, which means that the size of private keys is independent of
the length of the branching programs, and

• can deal with unbounded length branching programs for key attribute.

Our scheme is the first scheme that satisfies all of the above properties simultaneously. The scheme
in [27] can deal with unbounded length branching programs, but the private keys are not compact
(linear in the length of branching programs). We can obtain ABE for branching programs with
short private keys from the ABE for general circuit in [11]. However, the security of the scheme
depends on dLWEq,m,n,χ with q/χmax = nlog(n). In the original scheme in [28], either the the
length of branching programs are bounded or the security is based on the super-polynomial LWE
assumption.
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