
A new algorithm for residue multiplication
modulo 2521 − 1

Shoukat Ali and Murat Cenk

Institute of Applied Mathematics
Middle East Technical University, Ankara, Turkey

shoukat.1983@gmail.com

mcenk@metu.edu.tr

Abstract. We present a new algorithm for residue multiplication mod-
ulo the Mersenne prime 2521 − 1 based on the Toeplitz matrix-vector
product. For this modulo, our algorithm yields better result in terms
of the total number of operations than the previously known best algo-
rithm of R. Granger and M. Scott presented in Public Key Cryptography
- PKC 2015. Although our algorithm has nine more multiplications than
Granger-Scott multiplication algorithm, the total number of additions
is forty-two less than their algorithm. Even if one takes a ratio of 1 : 4
between multiplication and addition our algorithm still has less total
number of operations. We also present the test results of both the mul-
tiplication algorithms on an Intel Sandy Bridge Corei5-2410M machine,
with and without optimization option in GCC.

Keywords: residue multiplication, Toeplitz matrix-vector product, Mersenne
prime, elliptic curve cryptography

1 Introduction

In elliptic curve crytography (ECC) point multiplication is a vital operation and
used for key generation, key exchange using Diffie-Hellman and digital signa-
ture. For cryptographic sizes, a scalar multiplication requires several hundreds
of modular multiplications and the cost of other primitive operations is negli-
gible with respect to this operation. Therefore, a good amount of research has
focused on improving the efficiency of the modular multiplication. In modu-
lar multiplication the bottleneck is reduction, therefore, Solinas [6] constructed
a group of modulus, Generalized Mersenne Numbers (GMN), to speedup the
modular reduction. That is why his four recommended moduli are fully part of
the standards, NIST [10] and SECG [9]. On the other hand, reduction modulo
the Mersenne prime 2521−1 is optimal because the cost of reduction is equivalent
to modular addition due to the constant term 1.

Based on most of the past research, it is recommended the use of schoolbook
multiplication for ECC sizes because the cost of overheads in other techniques
outweighs the saving of the multiplication operation. Karatsuba technique is
good for binary fields but for prime fields the bitlength was perceived not to be

sufficient enough to make the cost of saved multiplication worth more than the
addition overhead. However, Bernstein et al. [3] have used two levels of refined
Karatsuba followed by schoolbook multiplication in an ingenious way on the
modulus of size 414-bit. They achieved a good efficiency by splitting the operands
into limbs of size less than the word-size - 32-bit - of the machine in order to
postpone the carry and avoiding the overflow in double-word. On the other hand,
Granger-Scott [1] proposed an efficient algorithm for multiplication modulo the
Mersenne prime 2521 − 1. They achieved the efficiency because of the modulus
form and finding out that residue multiplication can take as many word-by-word
multiplication as squaring with very little extra addition as overhead.

We applied the technique proposed by Bernstein et al. [3] to modulus 2521−1
and found that it is more costly in terms of the number of operations than
the technique proposed by Granger-Scott [1]. Bernstein technique uses many
optimization factors but we have considered the case where the operands, both
the scalar and the point on the curve, comprise of 9-limb and applied both the
techniques straight away.

The work of R. Granger and M. Scott [1] made us interested to explore
and exploit the structure of modular multiplication. So we started to look at
the problem from top-to-bottom by considering the residue structure once the
reductions have been performed and to reckon the remainder from the given
inputs. This shift of paradigm has already led to many good results.

In this paper we propose a new algorithm for residue multiplication modulo
the Mersenne prime 2521 − 1 that is cheaper in terms of the total number of
operations – even if we take the ratio of multiplication to addition 1 : 4 – than
the recently proposed algorithm of Granger and Scott [1]. We have achieved this
efficiency based on the representation and structure of multiplication modulo the
Mersenne prime 2521− 1 as matrix-vector multiplication in general and Toeplitz
matrix in particular. The Toeplitz matrix has the great properties of (1) par-
titioning of a Toeplitz matrix results into Toeplitz matrices (2) addition and
subtraction of Toeplitz matrices is also a Toeplitz matrix (3) addition and sub-
traction require only computation of first row and first column and (4) Topelitz
matrix-vector product can be performed efficiently. Using these four properties
we have achieved a better efficiency than Granger-Scott algorithm [1]. We also
tested two versions of our algorithm along with Granger-Scott multiplication
algorithm [1] on different set of (random) values.

The rest of the paper is organized as follows. In Section 2, we explain the
previous work on Toeplitz matrix-vector product (TMVP) with special focus on
matrix and vector of size 3. Then, we investigate the variants of Topletiz matrix-
vector multiplication in terms of the number of operations for our problem case
in Section 3. Next, we apply and explain our proposed method in detail in
Section 4. We provide our multiplication and squaring algorithms and compare
the multiplication algorithm in [1] to our’s in Section 5. Finally, we conclude our
paper in Section 6.

2 Algorithms for Toeplitz matrix-vector product

We observed that residue multiplication modulo 2521 − 1 can be presented by
Toeplitz matrix-vector multiplication (TMVP). A Toeplitz matrix or diagonal-
constant matrix is a square matrix in which each descending diagonal from left
to right is constant i.e. a Toeplitz matrix is of the following form:

a0 a1 a2 an−1

an a0 a1
. . .

. . .
. . . an−2

an+1 an a0
. . .

. . .
. . . an−3

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . . an a0 a1
a2(n−1) an+1 an a0


One of the techniques for TMVP is to use the schoolbook method and for size n
the time complexity is O(n2). In the literature, there are algorithms better than
the schoolbook. For example a study on this subject for multiplication over F2

can be found in [2]. For a TMVP of size 3 we havea0 a1 a2
a3 a0 a1
a4 a3 a0

×
 b0b1
b2

 =

m3 + m4 + m6

m2 −m4 + m5

m1 −m2 −m3

 (1)

where

m1 = (a4 + a3 + a0)b0, m2 = a3(b0 − b1), m3 = a0(b0 − b2),

m4 = a1(b1 − b2), m5 = (a0 + a3 + a1)b1, m6 = (a2 + a0 + a1)b2

The total cost of mi for i = 1, . . . , 6 is 6M+8A+6Ad where M is the cost of
a single precision/word multiplication, A is the cost of a single precision/word
addition and Ad is the cost of a double precision/word addition. The cost of
single precision addition is 8 because one can take common either (a3 + a0)
between m1 and m5 or (a0 + a1) between m5 and m6. For all those machines
where the ratio of multiplication to addition is greater than or equal to 1 : 3
this observation is worth to apply. For larger sizes, we can use this technique
recursively and for size n it results in a time complexity of O(n1.63) which is
better than schoolbook.

3 Multiplication modulo 2521 − 1 using TMVP

Suppose F and G are two large integers of 521-bit to be multiplied and we
are working on a 64-bit architecture. We partition each into nine limbs. Since
521/9 = 57.88, so each limb comprises of at most 58-bit stored in a 64-bit word
as shown below.

58 116 174 232 290 348 406 464

f0 f1 f2 f3 f4 f5 f6 f7 f8
64-bit 64-bit 64-bit 64-bit 64-bit 64-bit 64-bit 64-bit 64-bit

58 116 174 232 290 348 406 464

g0 g1 g2 g3 g4 g5 g6 g7 g8
64-bit 64-bit 64-bit 64-bit 64-bit 64-bit 64-bit 64-bit 64-bit

The limbs f8 and g8 are 57-bit and we would like to work in modulo p = 2521−1.
Let Z = FG mod (2521−1). Then, the limbs will be Z = [Z0, Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8]
where

Z0 = f0g0 + 2f8g1 + 2f7g2 + 2f6g3 + 2f5g4 + 2f4g5 + 2f3g6 + 2f2g7 + 2f1g8,
Z1 = f1g0 + f0g1 + 2f8g2 + 2f7g3 + 2f6g4 + 2f5g5 + 2f4g6 + 2f3g7 + 2f2g8,
Z2 = f2g0 + f1g1 + f0g2 + 2f8g3 + 2f7g4 + 2f6g5 + 2f5g6 + 2f4g7 + 2f3g8,
Z3 = f3g0 + f2g1 + f1g2 + f0g3 + 2f8g4 + 2f7g5 + 2f6g6 + 2f5g7 + 2f4g8,
Z4 = f4g0 + f3g1 + f2g2 + f1g3 + f0g4 + 2f8g5 + 2f7g6 + 2f6g7 + 2f5g8,
Z5 = f5g0 + f4g1 + f3g2 + f2g3 + f1g4 + f0g5 + 2f8g6 + 2f7g7 + 2f6g8,
Z6 = f6g0 + f5g1 + f4g2 + f3g3 + f2g4 + f1g5 + f0g6 + 2f8g7 + 2f7g8,
Z7 = f7g0 + f6g1 + f5g2 + f4g3 + f3g4 + f2g5 + f1g6 + f0g7 + 2f8g8,
Z8 = f8g0 + f7g1 + f6g2 + f5g3 + f4g4 + f3g5 + f2g6 + f1g7 + f0g8

Since the modulus is a Mersenne prime, the reduction is just addition of two
times of higher degree components – those whose exponent is greater than 521
and on reduction one more than the residue exponent – to respective lower
degree component. There are two important things (i) the summation of figj
don’t cause overflow in double-word and (ii) each Zi will be reduced to the size
as those of the input limbs. So the above expression in matrix-vector form will
be 

f0 2f8 2f7 2f6 2f5 2f4 2f3 2f2 2f1
f1 f0 2f8 2f7 2f6 2f5 2f4 2f3 2f2
f2 f1 f0 2f8 2f7 2f6 2f5 2f4 2f3
f3 f2 f1 f0 2f8 2f7 2f6 2f5 2f4
f4 f3 f2 f1 f0 2f8 2f7 2f6 2f5
f5 f4 f3 f2 f1 f0 2f8 2f7 2f6
f6 f5 f4 f3 f2 f1 f0 2f8 2f7
f7 f6 f5 f4 f3 f2 f1 f0 2f8
f8 f7 f6 f5 f4 f3 f2 f1 f0


×



g0
g1
g2
g3
g4
g5
g6
g7
g8


(2)

If we use the schoolbook algorithm for computing (2), then for 521-bit Mersenne
prime and 64-bit word, we have n = 9 and the cost will be

Cost = 81M + 72Ad = 81M + 144A = 225 operations

The recursive use of (1) for n = 9 will result into

Cost = 6
(
6M + 8A + 6Ad

)
+ 34A + 18Ad = 36M + 190A = 226 operations

Now, we first use TMVP for partitioning the matrix into sub-matrices of size
n/3 and then use the schoolbook. We call it the mixed version and for our case

of n = 9 the cost will be

Cost = 6
(
32M + 3(3− 1)Ad

)
+ 34A + 18Ad = 54M + 142A = 196 operations

Clearly this technique seems to be a good alternative to Granger-Scott algorithm
[1] where the total cost of their observation is 205 operations. The cost of our
observation can be further reduced by exploiting the structure of Toeplitz matrix
as explained in detail in the next section.

4 Proposed Method: Multiplication modulo 2521 − 1

Now, we apply the mixed version for TMVP. First, we establish sub-matrices
and using (1) we obtainA11 2A31 2A21

A21 A11 2A31

A31 A21 A11

×
B11

B21

B31

 =

M3 + M4 + M6

M2 −M4 + M5

M1 −M2 −M3


where the sub-matrices Aij are of size 3 × 3 and not independent whereas the
vectors Bkl are of size 3× 1. From here onwards by a word we mean 64-bit and
double-word 128-bit. From (1) we have

M1 = (A31 + A21 + A11)B11, M2 = A21(B11 −B21)

M3 = A11(B11 −B31), M4 = 2A31(B21 −B31)

M5 = (A11 + A21 + 2A31)B21, M6 = (2(A31 + A21) + A11)B31

Computing M1:

A31 + A21 =

[
f6 f5 f4
f7
f8

]
+

[
f3 f2 f1
f4
f5

]
=

[
f6 + f3 f5 + f2 f4 + f1
f7 + f4
f8 + f5

]
=

[
S1 S2 S3

S4

S5

]

(A31 + A21) + A11 =

[
S1 S2 S3

S4

S5

]
+

[
f0 2f8 2f7
f1
f2

]
=

[
S6 S7 S8

S9

S10

]

(A31 + A21 + A11)B11 =

[
S6 S7 S8

S9

S10

]
×

[
g0
g1
g2

]
Hence, the total cost of M1 is 9M+10A+6Ad

Computing M6: From the above equation it is evident that M6 has common
operations with M1 on computing (A31 + A21) so we have

2(A31 + A21) =

[
2S1 2S2 2S3

2S4

2S5

]

(2(A31 + A21) + A11 =

[
2S1 2S2 2S3

2S4

2S5

]
+

[
f0 2f8 2f7
f1
f2

]
=

[
S11 S12 S13

S14

S15

]

((2(A31 + A21) + A11)B31 =

[
S11 S12 S13

S14

S15

]
×

[
g6
g7
g8

]
Hence, the total cost of M6 is 9M+5A+6Ad+5(M*2), where the expression
5(M*2) means that there are 5 multiplications by 2.

Computing M5: We observe some common operations between M5 and M1 as
explained below

A11 + A21 =

[
f0 2f8 2f7
f1
f2

]
+

[
f3 f2 f1
f4
f5

]
=

[
S16

S3

S2

]

(A11 + A21) + 2A31 =

[
S16 2f8 + f2 2f7 + f1
S3

S2

]
+

[
2f6 2f5 2f4
2f7
2f8

]
=

[
S17 S15 S14

S8

S7

]

(A11 + A21 + 2A31)B21 =

[
S17 S15 S14

S8

S7

]
×

[
g3
g4
g5

]
Hence, the total cost of M5 is 9M+2A+6Ad

Computing M2:

B11 −B21 =

[
g0
g1
g2

]
−

[
g3
g4
g5

]
=

[
g0 − g3
g1 − g4
g2 − g5

]
=

[
U1

U2

U3

]

A21(B11 −B21) =

[
f3 f2 f1
f4
f5

]
×

[
U1

U2

U3

]
Hence, the total cost of M2 is 9M+3A+6Ad

Computing M3:

B11 −B31 =

[
g0
g1
g2

]
−

[
g6
g7
g8

]
=

[
g0 − g6
g1 − g7
g2 − g8

]
=

[
U4

U5

U6

]

A11(B11 −B31) =

[
f0 2f8 2f7
f1
f2

]
×

[
U4

U5

U6

]
Hence, the total cost of M3 is 9M+3A+6Ad

Computing M4:

B21 −B31 =

[
g3
g4
g5

]
−

[
g6
g7
g8

]
=

[
g3 − g6
g4 − g7
g5 − g8

]
=

[
U7

U8

U9

]

2A31(B21 −B31) =

[
2f6 2f5 2f4
2f7
2f8

]
×

[
U7

U8

U9

]

Hence, the total cost of M1 is 9M+3A+6Ad+5(M*2), again the expression
5(M*2) means that there are 5 multiplication by 2.

Final Computation: At last, we have to compute

M3 + M4 + M6

M2 −M4 + M5

M1 −M2 −M3


where each Mi is a 3× 1 vector and the elements are of double-word size so the
total cost is 18Ad. Finally, the overall cost of the whole method for the mixed
version is 54M(64) + 26A(64) + 54A(128) + 10(M(64)*2).

5 Algorithms and comparison

The Algorithm 1 presents the residue multiplication modulo 2521−1 as discussed
in detail in Section 4. The output of algorithm is in reduced form rather than the
unique residue for two reasons: the first reason is that for a large amount of inputs
this reduced form is most probably the unique residue. The second reason is to
save operations when the algorithm is used for the point multiplication as it has
been done by others in the literature. The unique residue can be computed after
the result is returned by the point multiplication procedure. So the intermediate
results during the point multiplication are in reduced coefficient form.

The squaring algorithm, Algorithm 2, is same as the one in [1] except the
range of limbs and modulus. We are not comparing the two squaring algorithms.
We find that the cost of multiplication algorithm in [1] working modulo 2p =
t9 − 2, where t = 258, is 45M(64) + 74A(64) + 60A(128) + 9(M(64)*2) +
5(M(128)*2))+ 1(M(128)*4)). As shown in the last paragraph of the Section 4
clearly, our algorithm is better in terms of multiplication by small constants i.e.
2, 4. But for the real comparison of the two multiplication algorithms we consider
multiplication and addition/subtraction operations. So, the cost of multiplication
algorithm in [1] can be written as 45M(64) + 194A(64). While on the other hand,
the cost of our Algorithm 1 is 54M(64) + 28A(64) + 62A(128) or 54M(64) +
152A(64) working in modulo p = 2521−1. Suppose the ratio of multiplication to
addition is 1 : 4, then the total number of operations in [1] and our algorithm will
be 374 and 368 respectively. Hence, in terms of the total number of operations our
algorithm performs better and even more as the ratio gets smaller and smaller.

Algorithm 1 Multiplication

Input: F = [f0, , f8], G = [g0, , g8] ∈ [0, 258 − 1]8 × [0, 257 − 1]
Output: Z = [z0, , z8][0, 258 − 1]8 × [0, 257 − 1] where Z ≡ FG (mod 2521 − 1)

tmp← [2f8, 2f7, 2f6, 2f5]
T1[0]← F [4] + F [1], T1[1]← F [5] + F [2]
T1[2]← F [6] + F [3], T1[3]← F [7] + F [4]
T1[4]← F [8] + F [5]
T6[0]← 2T1[0] + tmp[1], T6[1]← 2T1[1] + tmp[0]
T6[2]← 2T1[2] + F [0], T6[3]← 2T1[3] + F [1]
T6[4]← 2T1[4] + F [2]
T5 ← F [0] + F [3], T5 ← T5 + tmp[2]
T1[0]← T1[0] + tmp[1], T1[1]← T1[1] + tmp[0]
T1[2]← T1[2] + F [0], T1[3]← T1[3] + F [1]
T1[4]← T1[4] + F [2]
T2[0]← G[2]−G[5], T2[1]← G[1]−G[4], T2[2]← G[0]−G[3]
T3[0]← G[2]−G[8], T3[1]← G[1]−G[7], T3[2]← G[0]−G[6]
T4[0]← G[5]−G[8], T4[1]← G[4]−G[7], T4[2]← G[3]−G[6]

X10 ← (F [1] · T2[0]) + (F [2] · T2[1]) + (F [3] · T2[2])
X11 ← (F [2] · T2[0]) + (F [3] · T2[1]) + (F [4] · T2[2])
X12 ← (F [3] · T2[0]) + (F [4] · T2[1]) + (F [5] · T2[2])
X13 ← (tmp[1] · T3[0]) + (tmp[0] · T3[1]) + (F [0] · T3[2])
X14 ← (tmp[0] · T3[0]) + (F [0] · T3[1]) + (F [1] · T3[2])
X15 ← (F [0] · T3[0]) + (F [1] · T3[1]) + (F [2] · T3[2])
X16 ← (2F [4] · T4[0]) + (tmp[3] · T4[1]) + (tmp[2] · T4[2])
X17 ← (tmp[3] · T4[0]) + (tmp[2] · T4[1]) + (tmp[1] · T4[2])
X18 ← (tmp[2] · T4[0]) + (tmp[1] · T4[1]) + (tmp[0] · T4[2])

C ← (T1[2] ·G[2]) + (T1[3] ·G[1]) + (T1[4] ·G[0])−X12 −X15

z8 ← C mod 257

C ← (T6[0] ·G[8]) + (T6[1] ·G[7]) + (T6[2] ·G[6]) + X13 + X16 + (C >> 57)
z0 ← C mod 258

C ← (T6[1] ·G[8]) + (T6[2] ·G[7]) + (T6[3] ·G[6]) + X14 + X17 + (C >> 58)
z1 ← C mod 258

C ← (T6[2] ·G[8]) + (T6[3] ·G[7]) + (T6[4] ·G[6]) + X15 + X18 + (C >> 58)
z2 ← C mod 258

C ← (T6[3] ·G[5]) + (T6[4] ·G[4]) + (T5 ·G[3]) + X10 −X16 + (C >> 58)
z3 ← C mod 258

C ← (T6[4] ·G[5]) + (T5 ·G[4]) + (T1[0] ·G[3]) + X11 −X17 + (C >> 58)
z4 ← C mod 258

C ← (T5 ·G[5]) + (T1[0] ·G[4]) + (T1[1] ·G[3]) + X12 −X18 + (C >> 58)
z5 ← C mod 258

C ← (T1[0] ·G[2]) + (T1[1] ·G[1]) + (T1[2] ·G[0])−X10 −X13 + (C >> 58);
z6 ← C mod 258

C ← (T1[1] ·G[2]) + (T1[2] ·G[1]) + (T1[3] ·G[0])−X11 −X14 + (C >> 58)
z7 ← C mod 258

c← C >> 58 where ’c’ is a single-word variable
c← c + z8, z8 ← c mod 257, z0 ← z0 + (c >> 57)
Return [z0, z1, z2, z3, z4, z5, z6, z7, z8]

Algorithm 2 Squaring

Input: F = [f0, , f8],∈ [0, 258 − 1]8 × [0, 257 − 1]
Output: Z = [z0, , z8][0, 258 − 1]8 × [0, 257 − 1] where Z ≡ F 2 (mod 2521 − 1)

C ← 2(F [0] · F [8] + F [1] · F [7] + F [2] · F [6] + F [3] · F [5]) + F [4] · F [4]
z8 ← C mod 257

C ← F [0] · F [0] + 4(F [1] · F [8] + F [2] · F [7] + F [3] · F [6] + F [4] · F [5]) + (C >> 57)
z0 ← C mod 258

C ← 2(F [0] ·F [1] +F [5] ·F [5]) + 4(F [2] ·F [8] +F [3] ·F [7] +F [4] ·F [6]) + (C >> 58)
z1 ← C mod 258

C ← 2(F [0] ·F [2]) +F [1] ·F [1] + 4(F [3] ·F [8] +F [4] ·F [7] +F [5] ·F [6]) + (C >> 58)
z2 ← C mod 258

C ← 2(F [0] ·F [3] +F [1] ·F [2] +F [6] ·F [6]) + 4(F [4] ·F [8] +F [5] ·F [7]) + (C >> 58)
z3 ← C mod 258

C ← 2(F [0] ·F [4] +F [1] ·F [3]) +F [2] ·F [2] + 4(F [5] ·F [8] +F [6] ·F [7]) + (C >> 58)
z4 ← C mod 258

C ← 2(F [0] ·F [5] +F [1] ·F [4] +F [2] ·F [3] +F [7] ·F [7]) + 4(F [6] ·F [8]) + (C >> 58)
z5 ← C mod 258

C ← 2(F [0] ·F [6] +F [1] ·F [5] +F [2] ·F [4]) +F [3] ·F [3] + 4(F [7] ·F [8]) + (C >> 58)
z6 ← C mod 258

C ← 2(F [0] · F [7] + F [1] · F [6] + F [2] · F [5] + F [3] · F [4] + F [8] · F [8]) + (C >> 58)
z7 ← C mod 258

c← C >> 58 where ’c’ is a single-word variable
c← c + z8, z8 ← c mod 257, z0 ← z0 + (c >> 57)
Return [z0, z1, z2, z3, z4, z5, z6, z7, z8]

5.1 Implementation Result

For implementation we use Ubuntu LTS 14.04 on an Intel Sandy Bridge Corei5−
2410M CPU with 8GB RAM. We have implemented our algorithm in C language
using GCC compiler. The program contains both the multiplication algorithms
as two procedures. Both algorithms are tested on the same set of (random) values
with and without optimization options in GCC. The tests include two versions
of Algorithm 1 in the first version the arrays and variables were taken signed
integers and in the second version the arrays T1, T6 and variables T5, c were taken
as unsigned integers while the rest of the data were signed. The result of our
tests in terms of the number of clock cycles is shown in Table 1.

Unlike the arithmetic complexity – total number of operations – the prac-
tical result depicts a different story especially when the level of optimization is
increased. Similarly, from the Table 1 it is clear that the behavior of V-1 is some
what according to expectation with respect to higher optimization level while
V-2 is showing a strange behavior. To find out these reasons we generated the
assembly code of our program for each option as in Table 1.

Option Granger-Scott V-1 V-2

No Optimization 758 627 618

-O (level 1) 413 358 306

-O2 (level 2) 266 366 384

-O3 (level 3) 266 355 317

Table 1. Number of clock cycles with and without optimization option in GCC. V-
1=Algorithm 1 (Signed) V-2=Algorithm 1 ((Un)signed)

First we investigated the difference of clock cycles between Granger-Scott
multiplication algorithm [1] and our multiplication algorithm based on the num-
ber of operations. We find that in the sum of products expressions unlike the
Granger-Scott algorithm where the compiler performs the signed integer multi-
plication with one imul instruction, in our case the same operation is performed
as the follows:

– sar by 0x3f to determine the sign of operand1
– imul to obtain {0, −operand2}
– mul multiplication of operands
– add {0, −operand2} to the higher part/digit of the mul result

Therefore, the total number of multiplications and additions/subtractions oper-
ation in the assembly code of both V-1 and V-2 were more than the expected
result. Since our algorithm is based on the idea of storing the result of common
operations the space required by our algorithm is more as compared to Granger-
Scott algorithm [1] especially with respect to the number of General Purpose
Registers (GPRs) on Intel processors. We find that on our machine the GCC
compiler uses only the GPRs for optimization which in turn makes the available
registers become more scarce and resulting into more and more unncessary op-
erations. So, we believe that this strange behavior of compiler is all due to the
small number GPRs with respect to our algorithm requirement. We think that
an architecture with larger number of GPRs may give better result with our
algorithm for compiler optimization just like the Granger-Scott algorithm [1].

Since V-2 contains less number of signed operations than V-1 therefore, for
the second behavior, clock cycle difference between V-1 and V-2, we found the
total number of operations in V-1 were more than V-2.

6 Conclusion

In this paper we have shown that TMVP approach for residue mutliplication
modulo the Mersenne prime 2521 − 1 takes less number of operations than
Granger-Scott algorithm [1]. We have tested both multiplication algorithms in
C language using GCC compiler with and without optimization option on dif-
ferent set of (random) values. In spite of the arithmetic complexity and taking

a ratio of 1 : 4 between multiplication and addition we have found implementa-
tion results, clock cycles, different. Upon investigation we have reached to the
conclusion that our algorithm requires more memory as compared to Granger-
Scott multiplication algorithm [1] especially with respect to the General Purpose
Registers (GPRs) on Intel machine. Therefore, we are exploring three frontiers
(1) assembly level optimizaiton on Intel machines (2) architectures with large
number of registers in general and GPRs in particular and (3) comparison of the
mixed version to recursive version on such machine(s).

Acknowledgment

The second author is supported in part by TÜBİTAK under Grant No. BIDEB-
114C052.

References

1. Robert Granger, Michael Scott. Faster ECC over F2521−1. Public-Key Cryptography–
PKC 2015. Lecture Notes in Computer Science Volume 9020, pages 539-553, 2015.

2. Haining Fan, M. Anwar Hasan. A New Approach to Subquadratic Space Complexity
Parallel Multipliers for Extended Binary Fields. IEEE Trans. Computers 56(2), pages
224-233, 2007.

3. Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange. Curve41417:
Karatsuba revisited. In Cryptographic hardware and embedded systemsCHES
201416th international workshop, Busan, South Korea, September 2326, 2014, pro-
ceedings, edited by Lejla Batina, Matthew Robshaw. Lecture Notes in Computer
Science 8731, Springer, pages 316334, 2014.

4. Daniel J. Bernstein, Tanja Lange. Faster addition and doubling on elliptic curves.
In Advances in cryptologyASIACRYPT 2007, 13th international conference on the
theory and application of cryptology and information security, Kuching, Malaysia,
December 26, 2007, proceedings, edited by Kaoru Kurosawa. Lecture Notes in Com-
puter Science 4833, Springer, pages 2950, 2007.

5. Daniel J. Bernstein. Curve25519: new Diffie-Hellman speed records. In Public key
cryptography-PKC 2006, 9th international conference on theory and practice in
public-key cryptography, New York, USA, April 2426, 2006, proceedings, edited by
Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, Tal Malkin. Lecture Notes in Computer
Science 3958, Springer, Pages 207228, 2006.

6. Jerome A. Solinas, Generalized Mersenne Numbers (GMN), Technical Report, Na-
tional Security Agency, Ft. Meade, MD, USA, 1999.

7. Darrel Hankerson, Alfred Menezes, Scott Vanstone. Guide to Elliptic Curve Cryp-
tography. Springer, 2004.

8. Diego F. Aranha, Paulo S. L. M. Barreto, Geovandro C. C. F. Pereira, Jef-
ferson Ricardini. A note on high-security general-purpose elliptic curves. 2013.
http://eprint.iacr.org/2013/647

9. Standards for Efficient Cryptography Group. SEC 2: Recommended Ellip-
tic Curve Domain Parameters. Version 2.0, 27 January 2010, available on
http://www.secg.org/sec2-v2.pdf.

10. US Department of Commerce, National Institute of Standards and Technol-
ogy (NIST). Federal Information Processing Standards Publication (FIPS) 186-
4, Digital Signature Standard (DSS). FIPS PUB 186-4, July 2013, available on
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

