
Comparative Study of Various Approximations
to the Covariance Matrix in Template Attacks

Mathias Wagner, Yongbo Hu, Chen Zhang, Yeyang Zheng

NXP Semiconductors
mathias.wagner@nxp.com

Abstract. Template attacks have been shown to be among the strongest
attacks when it comes to side–channel attacks. An essential ingredient
there is to calculate the inverse of a covariance matrix. In this paper
we make a comparative study of the effectiveness of some 24 different
variants of template attacks based on different approximations of this
covariance matrix. As an example, we have chosen a recent smart card
where the plain text, cipher text, as well as the key leak strongly. Some
of the more commonly chosen approximations to the covariance matrix
turn out to be not very effective, whilst others are.

1 Introduction

Side–channel attacks have by now a very long history [1–3], and also the par-
ticular variant of template attacks [5–9] has been studied for quite some years.
A critical piece in all these analysis is the calculation of a covariance matrix,
and possibly approximations to it. The majority of the work published so far
either uses the original definition, a simple average over all covariances, or some
linearization thereof.

Template attacks take place in two phases — a first Profiling Phase, where
templates are generated of the target function when all parameters and data are
known. These templates are stored in a data base and are used in the second
phase — the Exploitation Phase — to be matched against measurements of the
target system when not all data are known anymore. The target system may be a
physically different one than the one the templates were created with. The attack
is successful, when the patterns found in Exploitation Phase can be matched with
the correct templates generated during Profiling Phase. It often does not matter
how many measurements (traces) are used in the Profiling Phase, since there it is
assumed that the attacker has full control over the device and can take as many
measurements as are required. It is even conceivable that more than one device
is used in the Profiling Phase and this may in fact improve the robustness of
the attack when applied to many target devices, due to the averaging effect. On
the other hand, usually, the number of traces available for attacking the target
device in the Exploitation Phase may well be limited due to countermeasures
built into the target device, or the eco system it is operating in.

2

Table 1. Non–linear, non–differential template attack variants with generic names.
Variables tj and pi refer to the templates / profiles created in the profiling respectively
the Exploitation Phase, and m is the number of Points of Interest (POI). Averages
over the entire respective data sets are denoted as t̄ and p̄, respectively. The various
averages of the covariance matrix, like C̄, C̃, and Ĉ are defined in Eqs. (4–6).

individual C
(≡ LnP)

− ln(det(Cj))−
〈
pi − tj

∣∣C−1
j

∣∣ pi − tj〉
normalised C
(≡ LnP NormC)

− m
√

det(Cj)
〈
pi − tj

∣∣C−1
j

∣∣ pi − tj〉
NoLnDet C
(≡ LnP NoDetC)

−
〈
pi − tj

∣∣C−1
j

∣∣ pi − tj〉
average C
(≡ LnP AvC)

−
〈
pi − tj

∣∣C̄−1
∣∣ pi − tj〉

weighted average C
(≡ LnP wAvC)

−
〈
pi − tj

∣∣∣C̃−1
∣∣∣ pi − tj〉

global average C
(≡ LnP gAvC)

−
〈
pi − tj

∣∣Č−1
∣∣ pi − tj〉

normalised average C
(≡ LnP nAvC)

−
〈
pi − tj

∣∣∣Ĉ−1
∣∣∣ pi − tj〉

least square C ≡ Im
(≡ LnP LSqr)

−
〈
pi − tj | pi − tj

〉

In this paper we will address an improvement over what is currently state
of the art for template attacks with regards to the evaluation and use of the
covariance matrix.

In Sec. 2 we will discuss various approximations to the probability density
function of the multivariate normal distribution typically used in template at-
tacks. It will be seen that it is worthwhile evaluating all these approximations,
since they can yield widely different results, depending on the situation, but
every time consistently so. Since the attacker can study the strengths of these
approximations in the Profiling Phase, we have to assume that the attacker will
pick the strongest one for the actual attack.

Following a recent finding [10], in Sec. 3 these approximations are applied
to the analysis of the DES hardware coprocessor of a recent smart card, where
leakage is found for plain text, cipher text, as well as key in the form of P [i] ⊕
P [i+ 4], where P [i] refers to the i–th byte of the plain text, and C[i]⊕C[i+ 4],
as well as K[i]⊕K[i+ 4], i = 0...3.

2 Approximations to the Probability Function

The starting point is the standard definition of the template–matching proba-
bility Pij , which except for constant terms that neither depend on the template
j nor the pattern i is given by the “exact” formula [5] — using Dirac’s Bra, 〈.|,

3

Table 2. Differential non–linear template attack variants.

diff. individual C
(≡ LnP d)

− ln(det(Cj))−
〈
pi − p̄+ t̄− tj

∣∣C−1
j

∣∣ pi − p̄+ t̄− tj
〉

diff. normalised C
(≡ LnP dNormC)

− m
√

det(Cj)
〈
pi − p̄+ t̄− tj

∣∣C−1
j

∣∣ pi − p̄+ t̄− tj
〉

diff. NoLnDet C
(≡ LnP dNoDetC)

−
〈
pi − p̄+ t̄− tj

∣∣C−1
j

∣∣ pi − p̄+ t̄− tj
〉

diff. average C
(≡ LnP dAvC)

−
〈
pi − p̄+ t̄− tj

∣∣C̄−1
∣∣ pi − p̄+ t̄− tj

〉
diff. weighted average C
(≡ LnP dwAvC)

−
〈
pi − p̄+ t̄− tj

∣∣∣C̃−1
∣∣∣ pi − p̄+ t̄− tj

〉
diff. global average C
(≡ LnP dgAvC)

−
〈
pi − p̄+ t̄− tj

∣∣Č−1
∣∣ pi − p̄+ t̄− tj

〉
diff. normalised average C
(≡ LnP dnAvC)

−
〈
pi − p̄+ t̄− tj

∣∣∣Ĉ−1
∣∣∣ pi − p̄+ t̄− tj

〉
diff. least square C ≡ Im
(≡ LnP dLSqr)

−
〈
pi − p̄+ t̄− tj | pi − p̄+ t̄− tj

〉

and Ket, |.〉, vector notation [11] —

ln (Pij) ≈ − ln(det(Cj))−
〈
pi − tj

∣∣C−1j

∣∣ pi − tj〉 (1)

for its logarithm. Here pi is the ith pattern of the Exploitation Phase, obtained
by taking the mean over all traces found in class i during exploitation, whilst
{tj , C−1j } denote the jth template (mean and inverse covariance) of the Profiling
Phase. The ranking of each pattern i is derived by calculating ln (Pij) for all
templates j and then ordering this list for the largest value.

Using Eq. (1) as a starting point, various approximations to it can be derived.
First, one often finds that the ln(det(Cj)) term is actually more a nuisance than
a help — possibly because in “reality” the determinant of the covariance might
not depend on the template j at all, and all we see here are numerical and
statistical errors due to the discreetness and finite size of C. Then the maximal
value of ln(Pij) is trivially obtained in the limit pi → ti, so by way of pattern
matching, and not due to some fancy structure of C−1j . In such a case it may be
better to simply drop this term,

ln (Pij) ≈ −
〈
pi − tj

∣∣C−1j

∣∣ pi − tj〉 , (2)

or, alternatively, one can renormalise all the covariances Cj such that their de-
terminants are all the same. This latter approach leads to

ln (Pij) ≈ − m

√
det(Cj)

〈
pi − tj

∣∣C−1j

∣∣ pi − tj〉 , (3)

where m is the number of Points of Interest (POI).
Another way of getting rid of the variable determinant term is to average

over all covariances in a suitable form. We will consider four different ways of

4

Table 3. Linear (differential) template attack variants.

lin. average C
(≡ LnP lAvC)

〈
pi − t̄

∣∣C̄−1
∣∣ tj − t̄〉

lin. weighted average C
(≡ LnP lwAvC)

〈
pi − t̄

∣∣∣C̃−1
∣∣∣ tj − t̄〉

lin. global average C
(≡ LnP lgAvC)

〈
pi − t̄

∣∣Č−1
∣∣ tj − t̄〉

lin. least square C ≡ Im
(≡ LnP lLSqr)

〈
pi − t̄ | tj − t̄

〉
diff. lin. average C
(≡ LnP dlAvC)

〈
pi − p̄

∣∣C̄−1
∣∣ tj − t̄〉

diff. lin. weighted average C
(≡ LnP dlwAvC)

〈
pi − p̄

∣∣∣C̃−1
∣∣∣ tj − t̄〉

diff. lin. global average C
(≡ LnP dlgAvC)

〈
pi − p̄

∣∣Č−1
∣∣ tj − t̄〉

diff. lin. least square C ≡ Im
(≡ LnP dlLSqr)

〈
pi − p̄ | tj − t̄

〉

averaging, two of which should converge in the limit of many traces taken. The
standard average C̄ is simply given by

C̄ =
1

M

∑
j

Cj , (4)

where M is the number of templates, whilst C̃ is a weighted average,

C̃ =
1

M ′

∑
j

njCj , (5)

where as weights the number of traces nj pertinent to template j have been
used, and M ′ =

∑
j nj . Clearly, these two definitions are identical when nj does

not depend on j, or at least very nearly so, which is often the case for large
data sets created with random data. However, when the target is not the value
itself, but rather the Hamming weight, then this is not normally the case, as the
Hamming weight distribution is highly uneven. Small and very large Hamming
weights are much less frequently seen than average Hamming weights.

Yet another way to arrive at a normalised average covariance Ĉ is to ex-
pand on the idea underlying Eq. (3), and renormalise all covariances Cj prior to
averaging such that all have the same determinant,

Ĉ =
1

M

∑
j

−m

√
det(Cj)Cj . (6)

Still another idea is to view all traces of all templates belonging to a single
super template and then work out the covariance Č of this data set.

5

But the most aggressive level of approximation is to assume C ≡ Im, leading
to

ln (Pij) ≈ −
〈
pi − tj | pi − tj

〉
, (7)

which for obvious reasons is also referred to as the least–square approximation.
If this variant is any good, then clearly it is the trivial mechanism of pattern
matching, pj → tj for large nj , which is the dominant effect, and not a fancy
structure of C−1j .

Finally, when we assume C to be the same across all templates, anyway, then
with a few more approximations it is possible to linearise all these expressions,
where for instance Eq. (1) then becomes

ln (Pij) ≈
〈
pi − t̄

∣∣C−1∣∣ tj − t̄〉 , (8)

where t̄ = (1/M ′)
∑

j njtj , and C being defined by either Eq. (4), or Eq. (5), or
again by simply setting C ≡ Im. Please heed the opposite sign in this equation.

On a finer point, it should be noted that the calculation of t̄ is done during
the Profiling Phase, which in practice can introduce an unwanted offset into the
difference pi − t̄ needed in the term multiplied to C−1 from the left in Eq. (8),
with a negative impact on the accuracy of the resulting matching probability.
It may thus be better to replace t̄ by the weighted average over all profiles,
p̄ = (1/N ′)

∑
i n
′
ipi, obtained during the Exploitation Phase. This approximation

tends to yield very poor results when the patterns are based on very few traces
only. In such a situation the original linearisation is generally better, since the
templates have been based on more traces, usually.

This trick of replacing t̄ by p̄ can also be applied to all the non–linear variants
of ln(P), by simply inserting the difference p̄−t̄ on both sides of the bilinear form.
These variants of ln(P) may perform better when the traces in the Exploitation
Phase have a systematic offset compared to those of the Profiling Phase.

All these approximations give a grand total of 24 different definitions for
ln (Pij) — one original, one without the ln(det(Cj)) term, one with renormalised
Cj , four with different definitions of an average C, one least–square variant, then
eight variants of these first eight, where p̄ − t̄ got inserted on both sides, and
another eight different linearisations of some of the average variants of above.
Tables 1, 2 and 3 provide an overview, including the naming convention used
in all subsequent plots. The strength of these template attack variants may be
vastly different and thus one should always inspect all of them, since the attacker
can do so during the Profiling Phase and determine which one works best.

Finally, it is also worthwhile to study the case where all the values of the
pattern–template matchings relate to each other by way of having been derived
from a single common (secret) source via xoring. So, they all relate to each other
in a particular way as I ⊕ K, where K is the common secret source — like a
round key for DES and AES, or the secret cipher text of a previous DES call in a
chained DES when attacking the input of the subsequent DES computation (as
in the combined side–channel / brute–force attack on ISO9797-1 MAC [12]) —
and I is the random, but known input. In such a case, it would be clearly wrong if

6

-50

0

50

E
M

 A
m

p
lit

u
d
e

100806040200

x10
3

 SingleTrace

Input Input

DES1
DES2

DES3

DES4

Output Output

Fig. 1. A typical single EM trace of the TOE showing 4 calls to the DES hardware
engine. It was obtained by placing a commercial Langer EM probe on top of what
had previously been identified as a DES coprocessor hard macro in the chip layout.
Sampling rate: 5 GS/s.

any two patterns i and i′ were to point to the same template j as the most likely
matching candidate. Consequently, a way needs to be found to eliminate pattern–
template matchings that are not compatible with each other, and weeding out
such inconsistencies should improve the ranking lists considerably. When all
patterns relate to each other via a bijective xor mapping such that lnPi,i⊕j is
the correct matching for pattern i, then the joint probability distribution is given
by the sum over all [13],

lnP̂j =
∑
i

ni lnPi,i⊕j , (9)

where the sum runs over all patterns i. When the template attack is successful, j
will point to the unknown common secret K. Another way of looking at Eq. (9)
is to regard it as the product over all probabilities compatible with a particular
value j for the unknown common secret.

3 Results for a Contemporary Smart Card

Target of Evaluation (TOE) was a smart card from 2012 containing a JAVA OS
where we could freely call the DES function — although likely via a wrapper in
an underlying crypto library. A typical single EM trace is given in Fig. 1, show-
ing essentially 4 calls to the DES hardware engine. First we remove the strong
timing jitter between these blocks using a simple rigid–pattern filter that locks
into these four DES blocks. In a next step we refine the alignment by applying an

7

-80

-60

-40

-20

0

20

40

60

80

E
M

 A
m

p
lit

u
d
e

121086420

x10
3

 Average

DES1 DES2 DES3 DES4

Fig. 2. Average trace with all four DES blocks aligned.

10

8

6

4

2

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n

121086420

x10
3

 StdDev_Plain

DES1 DES2 DES3 DES4

Fig. 3. Standard deviation with all four DES blocks aligned. The first DES block is
the most difficult to align and far from perfect yet.

elastic alignment filter based on segment–wise parametrizing the internal clock
/ time as T = a + bt + ct2 + dt3 + et4 + ft5, where t corresponds to the exter-
nal clock / time, and then finding the best set of coefficients (a, b, c, d, e, f) for
each DES segment of each trace.1 Starting with a little over 7M raw traces with

1 The raw traces show two different types of timing jitter: Firstly, there are random
delays inserted between the four DES blocks. These are removed by taking one trace

8

random plain text and random key, this procedure yielded just over 5M aligned
traces, with their average trace given in Fig. 2, and its standard deviation shown
in Fig. 3. Likely, the multiple calls to the DES hardware engine are due to coun-
termeasures against fault attacks. We do not need to know whether these DES
calls are “forward” or “backward” calculations — it does not matter, anyway,
for launching a template attack, as long as they are static and do not change
from one call to another. However, subsequent analysis reveals that these are
forward – backward – forward – backward DES calls. Interestingly, they do not
have precisely the same run–time behaviour, and also their standard deviations
are slightly different as per Fig. 3. The last two DES blocks are much easier to
align. Other than this alignment, no further preprocessing has been performed
for calculating the templates later on.

The same procedure was then also applied to a further set of 2M raw traces,
yielding 1.5M aligned traces in the end, where again the plain text was chosen
randomly, but this time the key was kept fixed. This second set of traces will be
used for the Exploitation Phase.

Fig. 4 shows strong leakage of the plain text, cipher text, as well as the
key in the form of P [i] ⊕ P [i + 4], C[i] ⊕ C[i + 4], and K[i] ⊕ K[i + 4], where
i = 0...3, and i refers to the i–th byte. This leakage is most likely due to the
internal architecture of this DES hardware engine, where data are moved into the
frontend of the coprocessor in portions of 32 bits, and then put into place inside
the coprocessor in the next clock cycle. Without any blinding countermeasures
this will lead to a Hamming distance leakage of the left half of the plain text with
its right half, and similarly for cipher text and key. The timing of leakage seen in
the trace indicates that except for the very first DES call, where the plain text
does not seem to leak at all, plain text and key are handled in parallel, whilst
the cipher text is naturally being handled at a later point in time. Because of
this larger algorithmic noise, attacking the plain text and the key should be
somewhat harder than attacking the cipher text. Naturally, at most half of the
plain text, cipher text, and key bits are possible to recover with this attack.

In Figs. (5–6) we show the results of a template attack in Exploitation Phase
using templates generated with 5M traces as input and 576 points of interest
(POI), chosen based on a χ2 analysis2 — and this for all 24 approximations to

as a reference trace and then for each trace perform a least–square search for each
of the 4 DES blocks separately to get a rough alignment of those 4 DES blocks.
Secondly, the internal clock does not appear to be very stable. In the most simple
approximation we assume the internal clock frequency to vary smoothly over time
and model this with a polynomial fit. Since polynomial fits only work well over
rather short time intervals, it then becomes necessary to split each DES block into
a couple of time segments and apply the polynomial fit to each of them separately,
using continuity equations as needed. Again, for each trace and each time segment,
the best set of coefficients is determined using a least–square algorithm.

2 With canonical meanings of all variables, the definition of the χ2 function is given

as χ2(t) = 1
n

1
mHW−1

∑mHW
iHW=0 niHW

(µiHW
(t)−µ(t))2

σ2(t)
. With slight adaptations, this for-

mula can be used for each byte separately, as well as for all 4 bytes together.

9

50

0

-50

A
v
e
ra

g
e

121086420

x10
3

0.20

0.15

0.10

0.05

0.00

-0.05

-0.10

-0.15

3
2
-b

it C
o
rre

la
tio

n

 C[i] ⊕ C[i+4] P[i] ⊕ P[i+4] Average

-80

-60

-40

-20

0

20

40

60

80

A
v
e
ra

g
e

121086420

x10
3

0.15

0.10

0.05

0.00

-0.05

-0.10

3
2
-b

it C
o
rre

la
tio

n

 K[i] ⊕ K[i+4] Average

Fig. 4. Top: The 32–bit correlations of P [i]⊕P [i+4] and C[i]⊕C[i+4], i = 0...3, show
strong peaks up to ≈ 20%. Bottom: The 32–bit correlation of K[i]⊕K[i+ 4], i = 0...3,
shows also strong peaks but to a large extent at the same positions and similar strength
as P [i]⊕ P [i+ 4].

Eq. (1) as discussed in Sec. 2. Plotted is the average ranking as a function of
the number of traces ñ used. Here the average is always taken over all possible
256 values of the patterns. To be more precise, e.g., ñ = 1024 in Fig. 5, top
part, means that C[0]⊕C[4] is kept fixed for 1024 traces, whilst C[i]⊕C[i+ 4],
i = 1...3, is random because of the randomly chosen plain text, and this for

10

2

4

8

16

32

64

128

R
a
n
k
in

g

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

�

 LnP

 LnP_NormC

 LnP_NoDetC

 LnP_AvC

 LnP_wAvC

 LnP_gAvC

 LnP_nAvC

 LnP_LSqr
Exploitation C[0] ⊕ C[4]

 LnP_lAvC

 LnP_lwAvC

 LnP_lgAvC

 LnP_lLSqr

 LnP_dlAvC

 LnP_dlwAvC

 LnP_dlgAvC

 LnP_dlLSqr

 LnP_d

 LnP_dNormC

 LnP_dNoDetC

 LnP_dAvC

 LnP_dwAvC

 LnP_dgAvC

 LnP_dnAvC

 LnP_dLSqr

2

4

8

16

32

64

128

R
a
n
k
in

g

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

�

 LnP

 LnP_NormC

 LnP_NoDetC

 LnP_AvC

 LnP_wAvC

 LnP_gAvC

 LnP_nAvC

 LnP_LSqr
Exploitation C[1] ⊕ C[5]

 LnP_lAvC

 LnP_lwAvC

 LnP_lgAvC

 LnP_lLSqr

 LnP_dlAvC

 LnP_dlwAvC

 LnP_dlgAvC

 LnP_dlLSqr

 LnP_d

 LnP_dNormC

 LnP_dNoDetC

 LnP_dAvC

 LnP_dwAvC

 LnP_dgAvC

 LnP_dnAvC

 LnP_dLSqr

Fig. 5. Average rankings in Exploitation Phase for C[i] ⊕ C[i + 4], i = 0...1, as a
function of the number of traces used.

all 256 values of C[0] ⊕ C[4]. In the end, an average is taken over all those 256
ranking results.

The traces used in Exploitation Phase had random plain text as input, and
hence these results cannot be quite straight–forwardly applied to a situation
where the entire plain text — and hence cipher text — is constant. But still, the
results indicate strong leakage. The best performing approximations to Eq. (1)
are LnP dAvC, LnP dwAvC, LnP dnAvC and LnP dgAvC, i.e., all approximations
where some form of averaging has been performed over all covariances before

11

2

4

8

16

32

64

128

R
a
n
k
in

g

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

�

 LnP

 LnP_NormC

 LnP_NoDetC

 LnP_AvC

 LnP_wAvC

 LnP_gAvC

 LnP_nAvC

 LnP_LSqr
Exploitation C[2] ⊕ C[6]

 LnP_lAvC

 LnP_lwAvC

 LnP_lgAvC

 LnP_lLSqr

 LnP_dlAvC

 LnP_dlwAvC

 LnP_dlgAvC

 LnP_dlLSqr

 LnP_d

 LnP_dNormC

 LnP_dNoDetC

 LnP_dAvC

 LnP_dwAvC

 LnP_dgAvC

 LnP_dnAvC

 LnP_dLSqr

1

2

4

8

16

32

64

128

R
a
n
k
in

g

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

�

 LnP

 LnP_NormC

 LnP_NoDetC

 LnP_AvC

 LnP_wAvC

 LnP_gAvC

 LnP_nAvC

 LnP_LSqr
Exploitation C[3] ⊕ C[7]

 LnP_lAvC

 LnP_lwAvC

 LnP_lgAvC

 LnP_lLSqr

 LnP_dlAvC

 LnP_dlwAvC

 LnP_dlgAvC

 LnP_dlLSqr

 LnP_d

 LnP_dNormC

 LnP_dNoDetC

 LnP_dAvC

 LnP_dwAvC

 LnP_dgAvC

 LnP_dnAvC

 LnP_dLSqr

Fig. 6. Average rankings in Exploitation Phase for C[i] ⊕ C[i + 4], i = 2...3, as a
function of the number of traces used.

inversion, followed by a treatment for reducing the effect of constant offsets
between Profiling and Exploitation Phase. Close runners up are LnP dNormC

and LnP dNoDetC. In contrast, the original definition Eq. (1), i.e. LnP, is not
effective at all.

In Figs. (7–8) we perform the same analysis for the plain text, based on 193
POI. Again, the same approximations as for the cipher text perform best. As
expected, the results are not as good as for the attack on the cipher text, most
likely because there is less leakage to begin with (number of POI is substantially

12

4

8

16

32

64

128

R
a
n
k
in

g

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

�

 LnP

 LnP_NormC

 LnP_NoDetC

 LnP_AvC

 LnP_wAvC

 LnP_gAvC

 LnP_nAvC

 LnP_LSqr

Exploitation P[0] ⊕ P[4]

 LnP_lAvC

 LnP_lwAvC

 LnP_lgAvC

 LnP_lLSqr

 LnP_dlAvC

 LnP_dlwAvC

 LnP_dlgAvC

 LnP_dlLSqr

 LnP_d

 LnP_dNormC

 LnP_dNoDetC

 LnP_dAvC

 LnP_dwAvC

 LnP_dgAvC

 LnP_dnAvC

 LnP_dLSqr

4

8

16

32

64

128

R
a
n
k
in

g

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

�

 LnP

 LnP_NormC

 LnP_NoDetC

 LnP_AvC

 LnP_wAvC

 LnP_gAvC

 LnP_nAvC

 LnP_LSqr
Exploitation P[1] ⊕ P[5]

 LnP_lAvC

 LnP_lwAvC

 LnP_lgAvC

 LnP_lLSqr

 LnP_dlAvC

 LnP_dlwAvC

 LnP_dlgAvC

 LnP_dlLSqr

 LnP_d

 LnP_dNormC

 LnP_dNoDetC

 LnP_dAvC

 LnP_dwAvC

 LnP_dgAvC

 LnP_dnAvC

 LnP_dLSqr

Fig. 7. Average rankings in Exploitation Phase for P [i] ⊕ P [i + 4], i = 0...1, as a
function of the number of traces used.

smaller) and, secondly, because the plain text leakage happens at the same time
as the key leakage, which is a smart design choice.

An obvious use case for attacking the plain text is the attack on ISO9797-1
MAC [12] as scetched in Fig. 9. In fact, in this case one can do better than what
is shown in Figs. (7–8), since for this chosen–plain–text attack one is actually
trying to retrieve the output of the previous (i.e., first) DES calcuation, C1,
which is added with ⊕ to the input P2 of the second stage, and hence the plain

13

8

16

32

64

128

R
a
n
k
in

g

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

�

 LnP

 LnP_NormC

 LnP_NoDetC

 LnP_AvC

 LnP_wAvC

 LnP_gAvC

 LnP_nAvC

 LnP_LSqr
Exploitation P[2] ⊕ P[6]

 LnP_lAvC

 LnP_lwAvC

 LnP_lgAvC

 LnP_lLSqr

 LnP_dlAvC

 LnP_dlwAvC

 LnP_dlgAvC

 LnP_dlLSqr

 LnP_d

 LnP_dNormC

 LnP_dNoDetC

 LnP_dAvC

 LnP_dwAvC

 LnP_dgAvC

 LnP_dnAvC

 LnP_dLSqr

8

16

32

64

128

R
a
n
k
in

g

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

�

 LnP

 LnP_NormC

 LnP_NoDetC

 LnP_AvC

 LnP_wAvC

 LnP_gAvC

 LnP_nAvC

 LnP_LSqr
Exploitation P[3] ⊕ P[7]

 LnP_lAvC

 LnP_lwAvC

 LnP_lgAvC

 LnP_lLSqr

 LnP_dlAvC

 LnP_dlwAvC

 LnP_dlgAvC

 LnP_dlLSqr

 LnP_d

 LnP_dNormC

 LnP_dNoDetC

 LnP_dAvC

 LnP_dwAvC

 LnP_dgAvC

 LnP_dnAvC

 LnP_dLSqr

Fig. 8. Average rankings in Exploitation Phase for P [i] ⊕ P [i + 4], i = 2...3, as a
function of the number of traces used.

text input of the second DES call is interrelated via a simple ⊕, and thus Eq. (9)
applies.

The fact that only half of the plain text can be recovered with the current
attack does not matter, since for the attack on ISO9797-1 MAC one then simply
takes twice as many traces eventually, using two different but fixed inputs IV
and P1 to the first DES call. This will then mean twice as much effort in the
remaining brute–force attack, but this is negligible.

14

DES DES DES

DESi

DES

MAC

K1 K1 K1

K1

K2

P1

……

P2 Pk

IV

C1 C2

Fig. 9. ISO9797-1 MAC: IV, P1, P2 are all known and can be freely chosen. The attack
according to [12] consists of a first step in which a side–channel attack in performed
on the input of the second DES, which can be mapped back to the cipher text of the
first DES, C1, and knowing IV and P1 a final brute–force attack is required to obtain
the secret key K1 of the first DES.

Tables 4 and 5 show the results based on Eq. (9) and a chosen–plain–text
attack. Here, ñ = 256 means that each of the 256 possible pattern values has
been selected precisely once for a given target byte, whilst ñ = 1024 means each
pattern value has been selected precisely four times.

For all four targets P [i]⊕P [i+4], i = 0...3, the two approximations perform-
ing consistently best are LnP lLSqr and LnP dlLSqr, which require between 256
and 2048 traces to achieve top rankings. It should be noted that although all the
plain text bytes need to be chosen independently for each trace and each target
byte anew, at least the choices for the first 256 traces can be the same for all
four target (⊕) bytes. Hence, those 256 traces can be reused and do not have to
be counted four times when working out the total number of traces required to
perform this attack.

In principle, it is even possible to use the cipher text results shown in Figs. (5–
6), when applied to the first DES in the attack on ISO9797-1 MAC, as shown
in Fig. 9, to reduce the number of required traces even further. Hence, in the
end roughly 4K traces are required to have enough reliable plain text / cipher
text relations to perform a brute–force attack on the first (single) DES. This
remaining brute–force attack requires twice the normal effort because of the fact
that, eventually, only ⊕ relations of the cipher text of the first DES are known
via this template attack, but not the values themselves.

15

10
-7

10
-6

10
-5

10
-4

2
8
-b

it
 χ

2

121086420

x10
3

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

4
 x

 7
-b

it χ
2

 28-bit χ
2 7-bit χ

2
: K[0] ⊕ K[4]

 7-bit χ
2
: K[1] ⊕ K[5]

 7-bit χ
2
: K[2] ⊕ K[6]

 7-bit χ
2
: K[3] ⊕ K[7]

Fig. 10. χ2 leakage for K[i] ⊕ K[i + 4], i = 0...3, individually, as well as aggregated
over all 28 bits.

Next, we investigate the leakage of the key more closely. In Fig. 10 we have
plotted the χ2 leakage for each 7-bit target K[i]⊕K[i+4], i = 0...3, separately, as
well as the χ2 leakage aggregated over all 28 bits. Four regions leak particularly,
but there are some smaller peaks also seen inbetween, where, e.g., K[0] ⊕K[4]
leaks, but none of the other three does.

Figs. 11 and 12 show the rankings obtained for K[i] ⊕ K[i + 4], i = 0...3,
for a fixed but randomly chosen key, using 1696 POI that had been derived
from a χ2 analysis of Fig. 10. The fact that the key is fixed and only the plain
text is randomly chosen does have a detrimental effect on the strength of the
attack. Only some of the 24 approximations to Eq. (1) seem to converge to
better ranking values, but none achieves top rank 1. For instance, LnP d stays
fairly constant at rankings 5, 15, 36, and 16, respectively. On the other hand,
the approximations LnP lAvC, LnP lwAvC, and LnP lgAvC start out somewhat
poorly, but then converge to values ≈ 11...32. This means a little over 2 bits leak
per 7 bits, or some 8 – 10 bits of the 56–bit key, and this for as little as a few
hundred traces (or even a single trace3 in the case of LnP d).

Presumably, this lack of convergence has to do with the fact that the tem-
plates chosen are smaller than the number of fixed bits (i.e., bits that are kept
constant for all traces) that leak at the same time, and thus can “interfere”
with each other (cross–talk). For instance, whilst according to Fig. 4 the leakage
correlation amplitudes for plain text, cipher text as well as key are all of simi-
lar amplitude, the plain and cipher text turn out to be much more vulnerable

3 If an attack is successful in a single trace during Exploitation Phase, there are
no software countermeasures possible since, one way or another, those all rely on
averaging over many traces. The only solution then is to fix the hardware.

16

2

4

8

16

32

64
R
a
n
k
in

g

2
0 2

2 2
4 2

6 2
8 2

10 2
12 2

14 2
16 2

18 2
20

�

 LnP

 LnP_NormC

 LnP_NoDetC

 LnP_AvC

 LnP_wAvC

 LnP_gAvC

 LnP_nAvC

 LnP_LSqr

Exploitation K[0] ⊕ K[4]

 LnP_lAvC

 LnP_lwAvC

 LnP_lgAvC

 LnP_lLSqr

 LnP_dlAvC

 LnP_dlwAvC

 LnP_dlgAvC

 LnP_dlLSqr

 LnP_d

 LnP_dNormC

 LnP_dNoDetC

 LnP_dAvC

 LnP_dwAvC

 LnP_dgAvC

 LnP_dnAvC

 LnP_dLSqr

2

4

8

16

32

64

R
a
n
k
in

g

2
0 2

2 2
4 2

6 2
8 2

10 2
12 2

14 2
16 2

18 2
20

�

Exploitation K[1] ⊕ K[5]

Fig. 11. Average rankings in Exploitation Phase for K[i] ⊕ K[i + 4], i = 0...1, as a
function of the number of traces used.

to template attacks than the key when comparing Figs. 5 – 8 with Figs. 11 –
12. The difference is that for the attack on the key 28 bits needed to be kept
constant, whilst for plain and cipher text only 8 bits were kept constant at a
time. Yet, the size of the templates was nearly the same — 7 respectively 8 bits.
If this hypothesis is true, then the results for the attack on the key should im-
prove when increasing the template size relatively to those fixed but leaky bits.

17

For instance, one could attack the Hamming weight of the entire 28–bit vector4,
or use larger template sizes, e.g., 14 bits per template. In any case, since the
key is attacked directly, these results are straight–forwardly applicable to TDES
without the need to invoke meet–in–the–middle attacks and the like.

4

8

16

32

64

128

R
a
n
k
in

g

2
0 2

2 2
4 2

6 2
8 2

10 2
12 2

14 2
16 2

18 2
20

�

Exploitation K[2] ⊕ K[6]

4

8

16

32

64

R
a
n
k
in

g

2
0 2

2 2
4 2

6 2
8 2

10 2
12 2

14 2
16 2

18 2
20

�

Exploitation K[3] ⊕ K[7]

Fig. 12. Average rankings in Exploitation Phase for K[i] ⊕ K[i + 4], i = 2...3, as a
function of the number of traces used.

4 Preliminary results indicate, though, that also when attacking the Hamming weight
of all 28 bits, rankings do not seem to improve when increasing the number of traces
used in the Exploitation Phase.

18

It is, of course, possible to combine this leakage of the key with the leakage of
the plain and cipher text to create an even stronger attack on ISO9797-1 MAC,
since it would help to reduce the remaining brute–force attack on the key by
performing the brute–force attack on the ranked lists.

4 Conclusions

In conclusion we have shown that it is worth spending some effort on analysing
a variety of approximations to the standard probability density function of the
multivariate normal distribution, Eq. (1), when applying this to template at-
tacks. Some approximations yield substantially and consistently so better results
than others. Generally, approximations based on averaged covariance matrices
seem to perform consistently better, and measures to reduce the effects of con-
stant offsets between templates and patterns are also beneficial. In any case, the
attacker can always study during the Profiling Phase which approximation is
likely to yield the best results in the Exploitation Phase.

As an example, we have studied the attack on the ISO9797-1 MAC, applied
to a fairly recent smart card, which exhibits leakage of plain text, cipher text, as
well as the secret key itself during a DES calculation. Only some 4K traces are
required to perform the attack, and this does not yet include the possibility of
making trade-offs between the number of measurement traces taken on the one
hand, and the remaining brute–force effort required on the other hand.

The analysis of the key leakage requires more work. Preliminary results in-
dicate leakage of about 6 – 10 bits per DES, and thus 18 – 30 bits per TDES.

For this particular platform the issue becomes even more severe as it is using
a DES hardware coprocessor built in what is called a hard–macro design tech-
nology, meaning that it is a design block with fixed geometry all the way down
to the gate level. This hard macro is thus visible in the layout, and it is used
in many other products in precisely the same shape over and over again. Hence,
once a weakness such as this one has been found in one family member, it can
be found in all other family members as well. Worse still, one has to assume
that templates generated for one family member will be applicable for all other
family members as well.

References

1. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J.
(ed.) Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceed-
ings. Lecture Notes in Computer Science, vol. 1666, pp. 388–397. Springer (1999),
http://dx.doi.org/10.1007/3-540-48405-1 25

2. Messerges, T.S.: Using second-order power analysis to attack DPA resistant soft-
ware. In: Koç, Ç.K., Paar, C. (eds.) Cryptographic Hardware and Embedded Sys-
tems - CHES 2000, Second International Workshop, Worcester, MA, USA, August
17-18, 2000, Proceedings. Lecture Notes in Computer Science, vol. 1965, pp. 238–
251. Springer (2000), http://dx.doi.org/10.1007/3-540-44499-8 19

19

3. Gierlichs, B., Batina, L., Preneel, B., Verbauwhede, I.: Revisiting higher-order
DPA attacks:. In: Pieprzyk, J. (ed.) Topics in Cryptology - CT-RSA 2010, The
Cryptographers’ Track at the RSA Conference 2010, San Francisco, CA, USA,
March 1-5, 2010. Proceedings. Lecture Notes in Computer Science, vol. 5985, pp.
221–234. Springer (2010), http://dx.doi.org/10.1007/978-3-642-11925-5 16

4. Xiao, L., Heys, H.M.: A simple power analysis attack against the key sched-
ule of the camellia block cipher. Inf. Process. Lett. 95(3), 409–412 (2005),
http://dx.doi.org/10.1016/j.ipl.2005.03.013

5. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Jr., B.S.K., Koç, Ç.K.,
Paar, C. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2002, 4th
International Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised
Papers. Lecture Notes in Computer Science, vol. 2523, pp. 13–28. Springer (2002),
http://dx.doi.org/10.1007/3-540-36400-5 3

6. Archambeau, C., Peeters, E., Standaert, F., Quisquater, J.: Template attacks in
principal subspaces. In: Goubin, L., Matsui, M. (eds.) Cryptographic Hardware
and Embedded Systems - CHES 2006, 8th International Workshop, Yokohama,
Japan, October 10-13, 2006, Proceedings. Lecture Notes in Computer Science, vol.
4249, pp. 1–14. Springer (2006), http://dx.doi.org/10.1007/11894063 1

7. Medwed, M., Oswald, E.: Template attacks on ECDSA. In: Chung, K., Sohn,
K., Yung, M. (eds.) Information Security Applications, 9th International Work-
shop, WISA 2008, Jeju Island, Korea, September 23-25, 2008, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 5379, pp. 14–27. Springer (2008),
http://dx.doi.org/10.1007/978-3-642-00306-6 2

8. Fouque, P., Leurent, G., Réal, D., Valette, F.: Practical electromagnetic template
attack on HMAC. In: Clavier, C., Gaj, K. (eds.) Cryptographic Hardware and Em-
bedded Systems - CHES 2009, 11th International Workshop, Lausanne, Switzer-
land, September 6-9, 2009, Proceedings. Lecture Notes in Computer Science, vol.
5747, pp. 66–80. Springer (2009), http://dx.doi.org/10.1007/978-3-642-04138-9 6

9. Choudary, O., Kuhn, M. G., Efficient Template Attacks in Smart Card Research
and Advanced Applications. Springer International Publishing, 2013:253-270

10. Hu, Y.B., Zhang, C., Zheng, Y.Y., Wagner, M.: Ciphertext and Plaintext Leakage
Reveals the Entire TDES Key. Cryptology ePrint Archive, Report 2016/1143, 2016

11. http://en.wikipedia.org/wiki/Bra-ket notation
12. Feix, B., Thiebeauld, H.: Defeating ISO9797-1 MAC algo 3 by combining side-

channel and brute force techniques. Cryptology ePrint Archive, Report 2014/702,
2014

13. Bayes, M., Price, M.: An Essay towards Solving a Problem in the Doctrine of
Chances. By the Late Rev. Mr. Bayes, Communicated by Mr. Price, in a Letter to
John Canton, Resonance, 2003, 95(4), pp 11–60.

20

Table 4. Rankings for P [0]⊕ P [4] and P [1]⊕ P [5] based on Eq. (9).

ñ LnP LnP NormC LnP NoDetC LnP AvC LnP wAvC LnP gAvC LnP nAvC LnP LSqr

256 101 108 101 1 1 1 1 5
512 3 3 3 1 1 1 1 1
1024 1 1 1 1 1 1 1 1
2048 1 1 1 1 1 1 1 1
4096 2 2 2 1 1 1 1 1
8192 1 1 1 1 1 1 1 1
16384 1 1 1 1 1 1 1 1

ñ LnP d LnP dNormC LnP dNoDetC LnP dAvC LnP dwAvC LnP dgAvC LnP dnAvC LnP dLSqr

256 100 106 100 1 1 1 1 5
512 3 3 3 1 1 1 1 1
1024 1 1 1 1 1 1 1 1
2048 1 1 1 1 1 1 1 1
4096 2 2 2 1 1 1 1 1
8192 1 1 1 1 1 1 1 1
16384 1 1 1 1 1 1 1 1

ñ LnP lAvC LnP lwAvC LnP lgAvC LnP lLSqr LnP dlAvC LnP dlwAvC LnP dlgAvC LnP dlLSqr

256 1 1 1 5 1 1 1 5
512 1 1 1 1 1 1 1 1
1024 1 1 1 1 1 1 1 1
2048 1 1 1 1 1 1 1 1
4096 1 1 1 1 1 1 1 1

ñ LnP LnP NormC LnP NoDetC LnP AvC LnP wAvC LnP gAvC LnP nAvC LnP LSqr

256 196 188 196 3 3 3 3 7
512 79 76 79 1 1 1 1 5
1024 23 22 23 1 1 1 1 1
2048 17 17 17 1 1 1 1 1
4096 1 1 1 1 1 1 1 1
8192 1 1 1 1 1 1 1 1
16384 1 1 1 1 1 1 1 1

ñ LnP d LnP dNormC LnP dNoDetC LnP dAvC LnP dwAvC LnP dgAvC LnP dnAvC LnP dLSqr

256 195 182 195 3 3 3 3 7
512 67 62 67 1 1 1 1 5
1024 21 20 21 1 1 1 1 1
2048 15 15 15 1 1 1 1 1
4096 1 1 1 1 1 1 1 1
8192 1 1 1 1 1 1 1 1
16384 1 1 1 1 1 1 1 1

ñ LnP lAvC LnP lwAvC LnP lgAvC LnP lLSqr LnP dlAvC LnP dlwAvC LnP dlgAvC LnP dlLSqr

256 3 3 3 7 3 3 3 7
512 1 1 1 5 1 1 1 5
1024 1 1 1 1 1 1 1 1
2048 1 1 1 1 1 1 1 1
4096 1 1 1 1 1 1 1 1

21

Table 5. Rankings for P [2]⊕ P [6] and P [3]⊕ P [7] based on Eq. (9).

ñ LnP LnP NormC LnP NoDetC LnP AvC LnP wAvC LnP gAvC LnP nAvC LnP LSqr

256 34 36 34 2 2 2 2 51
512 12 10 12 1 1 1 1 4
1024 4 4 4 1 1 1 1 2
2048 1 1 1 1 1 1 1 1
4096 72 73 72 1 1 1 1 1
8192 6 6 6 1 1 1 1 1
16384 1 1 1 1 1 1 1 1

ñ LnP d LnP dNormC LnP dNoDetC LnP dAvC LnP dwAvC LnP dgAvC LnP dnAvC LnP dLSqr

256 38 37 38 2 2 2 2 51
512 10 10 10 1 1 1 1 4
1024 4 4 4 1 1 1 1 2
2048 1 1 1 1 1 1 1 1
4096 63 63 63 1 1 1 1 1
8192 3 3 3 1 1 1 1 1
16384 1 1 1 1 1 1 1 1

ñ LnP lAvC LnP lwAvC LnP lgAvC LnP lLSqr LnP dlAvC LnP dlwAvC LnP dlgAvC LnP dlLSqr

256 2 2 2 51 2 2 2 51
512 1 1 1 4 1 1 1 4
1024 1 1 1 2 1 1 1 2
2048 1 1 1 1 1 1 1 1
4096 1 1 1 1 1 1 1 1

ñ LnP LnP NormC LnP NoDetC LnP AvC LnP wAvC LnP gAvC LnP nAvC LnP LSqr

256 129 121 129 5 5 5 5 1
512 21 15 21 1 1 1 1 1
1024 1 1 1 3 3 3 3 1
2048 2 2 2 2 2 2 2 1
4096 1 1 1 1 1 1 1 1
8192 4 4 4 1 1 1 1 1
16384 1 1 1 1 1 1 1 1

ñ LnP d LnP dNormC LnP dNoDetC LnP dAvC LnP dwAvC LnP dgAvC LnP dnAvC LnP dLSqr

256 134 130 134 5 5 5 5 1
512 29 26 29 1 1 1 1 1
1024 1 1 1 3 3 3 3 1
2048 2 2 2 2 2 2 2 1
4096 1 1 1 1 1 1 1 1
8192 3 3 3 1 1 1 1 1
16384 1 1 1 1 1 1 1 1

ñ LnP lAvC LnP lwAvC LnP lgAvC LnP lLSqr LnP dlAvC LnP dlwAvC LnP dlgAvC LnP dlLSqr

256 5 5 5 1 5 5 5 1
512 1 1 1 1 1 1 1 1
1024 3 3 3 1 3 3 3 1
2048 2 2 2 1 2 2 2 1
4096 1 1 1 1 1 1 1 1

