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Abstract

The single cycle T-function is a particular permutation function with complex

algebraic structures, maximum period and efficient implementation in software

and hardware. In this paper, on the basis of existing methods, by using a class

of single cycle T-functions that satisfy some certain conditions, we first present

a new construction of single cycle T-function families. Unlike the previous

approaches, this method can construct multiple single cycle T-functions at once.

Then the mathematical proof of the feasibility is given. Next the numeration for

the newly constructed single cycle T-functions is also investigated. Finally, this

paper is end up with a discussion of the properties which these newly constructed

functions preserve, such as linear complexity and stability (k-error complexity),

as well as a comparison with previous construction methods.

Keywords: cryptography; permutation function; single cycle T-function;

numeration; linear complexity

1. Introduction

Permutation functions are widely used in cryptography. It can be used for

the construction and analysis of symmetric cryptography such as the stream

cipher, block cipher, hash function and PRNG (Pseudo Random Number Gen-

erator). It has also played an important role in the analysis of public key5

cryptography and the construction of special code in communication system. In
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2002, Klimov and Shamir proposed a new class of particular permutation func-

tions called T-function [1]. As it is able to mix arithmetic operations (negation,

addition, subtraction, multiplication) and boolean operations (not, xor, and,

or), it has a naturally complex nonlinear structure. In addition, T-functions10

can generate maximum period sequences and have high software and hardware

implementation speed. Since T-functions have so many desirable cryptographic

properties, the sequence derived from T-functions is a good type of nonlinear

sequence source for stream cipher design, which has a promising prospect in

practice.15

T-function has gained much attention since its introduction. New construc-

tion methods and discussions of their cryptographic properties are presented[2,

3, 4, 5, 6]. Configuration and properties of derived sequences from T-functions

are carefully examined[7, 8, 9, 10]. The design and analysis of the new crypto-

graphic system based on T-functions is also flourishing[11], such as Mir-1[12],20

TSC series ciphers[13].

Current construction methods of single cycle T-functions mainly fall into

the following several categories. The first uses parameters. Parameter as an

important tool for the research on T-functions was proposed by Klimov and

Shamir[14]. By using parameters, single-word single cycle T-functions can be25

obtained, such as the Klimov-Shamir T-function [1] and the functions proposed

by Yang[15]. The second uses algebraic dynamical system. Anashin described a

method using current T-functions to construct single cycle T-functions, which

used p-aidc analysis and infinite power series[16]. The method is also a necessary

and sufficient condition to determine whether a T-function has a single cycle.30

Practically, however, this method is not so easy-to-use. The third uses polyno-

mial functions. The necessary and sufficient conditions of a single cycle function

is a polynomial function f(x) =
∑

k≥0 akx
k over Z/(2n) was given[17, 18]. The

forth is multiword single cycle T-functions. It was first introduced by Klimov

and Shamir in[18]. As the characteristics of multiword single cycle T-functions35

can also be reflected in single-word single cycle T-functions, and single-word

single cycle T-functions have high algebraic degree, good stability and other ex-
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cellent properties, nowadays researches mainly focus on single-word single cycle

T-functions.

Klimov and Shamir presented a method to get a larger cycle from single40

cycle T-functions[14]. Using its idea of construction, this paper discovered

a new construction of single cycle T-functions. Using several single cycle T-

functions which satisfy certain conditions, it is able to construct new single

cycle T-function families. Meanwhile, we give the proof by induction and also

the numeration for this construction, and analysis the properties these newly45

constructed functions preserve at the meantime

2. Notations and Definitions

Definition 1. [1] Let x = (x0, . . . , xm−1)
T ∈ Fmn

2 , y = (y0, . . . , yl−1)
T ∈ Fln

2 ,

where xi = (xi,0, . . . , xi,n−1), yi = (yi,0, . . . , yi,n−1). Let f be a mapping from

Fmn
2 to Fln

2 , that is

f :


x0,0 x0,1 . . . x0,n−1

x1,0 x1,1 . . . x1,n−1

...
... . . .

...

xm−1,0 xm−1,1 . . . xm−1,n−1

 −→


y0,0 y0,1 . . . y0,n−1

y1,0 y1,1 . . . y1,n−1

...
... . . .

...

yl−1,0 yl−1,1 . . . yl−1,n−1

 ,

for 0 ≤ j ≤ n− 1, if the j-th column of the output Rj(y) depends only on the

first j+1 columns of the input: Rj(x), . . . ,R0(x) , then f is called a T-function.

Definition 2. A T-function f(x) : Fn
2 −→ Fn

2 is called invertible if f(x) =50

f(y) ⇐⇒ x = y.

Definition 3. [1] Let f : Fn
2 −→ Fn

2 be a T-function. Given the initial state

x0 = (x0,n−1, x0,n−2, . . . , x0,0)
T , for i ≥ 0, let xi+1 = f(xi). If the sequence

x = (x0, x1, . . .) has the period of 2n, then f(x) is called a single cycle T-

function and sequence x is called to be generated by the single cycle T-function55

f(x) and the initial state x0.

Definition 4. [14] x = (x0, x1, . . .) is a sequence over Fn
2 , where

xi = (xi,n−1, xi,n−2, . . . , xi,0)
T , i ≥ 0.
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For 0 ≤ j ≤ n− 1, xj = (x0,j , x1,j , . . .) is called as the j-th coordinate sequence

of x.

Theorem 1. [14] Given a sequence x = (x0, x1, . . .) generated by single cycle

T-function f(x) and x0 is the initial state. Then the j-th coordinate sequence60

of x, xj(0 ≤ j ≤ n−1) has the period of 2j+1. Meanwhile, for 0 ≤ j ≤ n−1, the

two parts of the sequence xj are complementary, that is xi+2j ,j = xi,j ⊕1, i ≥ 0.

Definition 5. ([19], linear complexity) The linear complexity of a sequence S

refers to the minimum order of the linear feedback shift register that produces

it, denoted as LC(S).65

Definition 6. ([20], k-error linear complexity) For a periodic sequence S, after

changing at most k bits in a period of S, and the minimum linear complexity of

all the sequences obtained is called as the k-error linear complexity of S, denoted

as LCk(S), and the minimum error minerror(S) = mink|LCk(S) < LC(S).

Theorem 2. [21] For the output sequence {(x)} of a single cycle T-function over70

Fn
2 , its linear complexity LC({(x)}) = n×2n−1+n, and its minimum polynomial

is xn×2n−1+n + xn×2n−1

+ xn + 1, meanwhile, minerror({(x)}) ≤ 2n−1(when

n = 2t,the equality holds).

In [1], T-functions like f(x) = x + (x2 ∨ C)mod2n were studied, and the

authors presented the equivalency conditions of this type is invertible or has a75

single cycle.

Lemma 1. ([1],K-S single cycle T-function) The mapping f(x) = x + (x2 ∨

C) mod 2n is invertible if and only if [C]0 = 1. For n ≥ 3, f(x) is a single

cycle T-function if and only if [C]0 = [C]2 = 1, that is C mod 8 = 5 or 7, where

x is a n-bit word and C is some constant.80

Before multiword single cycle T-functions were introduced, Klimov and Shamir

presented a method to increase the period of single-word single cycle T-functions

[14]. By using m (m is odd) invertible functions over Fn
2 , it can construct se-

quences of period m2n.

4



Consider the sequence {(xi)} defined by iterating

xi+1 = xi + (x2
i ∨ Cki) mod 2n, ki+1 = ki + 1 mod m (1)

where for any k = 0, . . . ,m− 1, Ck is some constant.85

Lemma 2. [14] For the sequence {(xi)} defined in (1), the sequence of pairs

{(xi, ki)} has the maximal period m2n if and only if m is odd, and for all k,

[Ck]0 = 1, ⊕m−1
k=0 [Ck]2 = 1.

Unfortunately , authors of [14] claimed that the proof of Lemma 2 is quite

difficult, and due to the limitations of space, they omitted it.90

3. The New Construction

Unlike [14], which used odd invertible functions to get a larger period cy-

cle(not a single cycle T-function), we found that when m is an even number,

in particular, m = 2l(l ∈ N+), by using m single cycle T-functions satisfying

certain conditions of period 2n, we can construct m pairwise different new single95

cycle T-functions of period 2n.

Theorem 3. (New Construction) Consider the sequence {(xi)} defined by it-

erating

F (x) : xi+1 = fki(xi) mod 2n, ki+1 = ki + 1 mod m

where the component function defined as fki(xi) = xi+(x2
i ∨Cki)mod2n, n ≥ 4,

and note here Ck is an arrangement of different ordered elements.

When m = 2l(l = 1, 2, . . . , n − 3), if for each element of < Ck >, all the

conditions below could be satisfied simultaneously:100

1) for all k, Ck ≡ 5 mod 8 simultaneously or Ck ≡ 7 mod 8 simultaneously;

2) for i = 0, 1, . . . ,m− 1, [Cki ]3 ⊕ [Cki+1 ]3 = 1,⊕m−1
i=0 [Cki ]l+1 = 0;

3) when 3 ≤ l ≤ n−3, for each t which satisfies 2 < t < l,⊕2t−1
j=0 [Cki+j ]t+1 =

0, where i+ j is module m.

Then for any different input initial state x0 modulo m, F (x) is a single cycle105

T-function, and it can generate m pairwise different single cycle T-functions of

period 2n in total.
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Proof. From the iterative relation we have,

xi+1 = xi + (x2
i ∨ Cki) mod 2n,

xi+2 = xi + (x2
i ∨ Cki) + (x2

i+1 ∨ Cki+1) mod 2n,

...

xi+2n−1 = xi + (x2
i ∨ Cki) + (x2

i+1 ∨ Cki+1) + . . .+ (x2
i+2n−1−1 ∨ Cki+2n−1−1

)

= xi +
2n−1−1∑

j=0

(x2
i+j ∨ Cki+j ) mod 2n,

where i + j is modulo m. To prove F (x) is a single cycle T-function, it only

needs to prove xi+2n−1 ̸= xi mod 2n, which equals to testify

2n−1−1∑
j=0

(x2
i+j∨Cki+j ) =

2n−l−1−1∑
t=0

2l−1∑
j=0

(x2
2lt+j∨Ckj ) =

2l−1∑
j=0

2n−l−1−1∑
t=0

(x2
2lt+j∨Ckj ) = 2n−1 mod 2n.

Firstly we prove that when theorem conditions are met, for any initial state,

F (x) can always generate single cycles. We prove it by using dual induction on110

n and l.

1) When n = 4, l = 1 and n = 5, l = 2, using enumeration, it can be verified

that the conclusion is established.

2) Assume the conclusion holds when it comes to n(n > 5) and l(2 < l ≤

n− 3), then

2n−l−1−1∑
t=0

2l−1∑
j=0

(x2
2lt+j ∨ Ckj ) =

2l−1∑
j=0

2n−l−1−1∑
t=0

(x2
2lt+j ∨ Ckj ) = 2n−1 mod 2n.

At this time F (x) mod 2n is a single cycle T-function for some fixed initial

state, and the sequence {(xi)} generated by F (x) satisfies xi+2n−1 = xi ⊕ 1.115

a) when it comes to n+ 1 and l,

2l−1∑
j=0

2n−l−1∑
t=0

(x2
2lt+j ∨ Ckj )

=
2l−1∑
j=0

(
2n−l−1−1∑

t=0

(x2
2lt+j ∨ Ckj ) +

2n−l−1∑
t=2n−l−1

(x2
2lt+j ∨ Ckj ))

=
2l−1∑
j=0

2n−l−1−1∑
t=0

(x2
2lt+j ∨ Ckj ) +

2l−1∑
j=0

2n−l−1−1∑
t′=0

(x2
2lt′+j+2n−1 ∨ Ckj ) (I)
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where xi is modulo 2n+1 and the subscript j of Ckj
is modulo 2l.

By the induction hypothesis,
∑2l−1

j=0

∑2n−l−1−1
t=0 (x2

2lt+j∨Ckj ) = 2n−1 mod 2n+1,

and x2lt+2n−1+j = x2lt+j ⊕ 1. So {(x2lt′+j+2n−1)} mod 2n is also a single cycle

T-function,(I)= 2n−1 + 2n−1 = 2n mod 2n+1. Hence the conclusion is true for

n+ 1 and l.120

b) When it comes to n and l + 1,

2n−l−1−1∑
t=0

2l+1−1∑
j=0

(x2
2l+1t+j ∨ Ckj )

=
2n−l−2−1∑

t=0

(
2l−1∑
j=0

(x2
2l+1t+j ∨ Ckj ) +

2l+1−1∑
j=2l

(x2
2l+1t+j ∨ Ckj ))

=
2n−l−2−1∑

t=0

2l−1∑
j=0

(x2
2l+1t+j ∨ Ckj

) +
2n−l−2−1∑

t=0

2l−1∑
j′=0

(x2
2l+1t+j′+2l ∨ Ck

j′+2l
) mod 2n

(II)

where xi is modulo 2n, and the subscript j of Ckj is modulo 2l+1.

Noted here requires l − 1 ≤ n− 3, might as well let l − 1 = n− 3. Then for

s > n, the conclusion can be obtained by using induction on n.

It is easy to know, there are 2lt elements between x2lt+j and x2l+1t+j , and

m is a factor of 2lt. Thus
∑2n−l−2−1

t=0

∑2l−1
j=0 (x2

2l+1t+j ∨ Ckj ) = 2n−2 mod 2n,125

x2lt+2n−1+j = x2l+j⊕1, and for the same reason,
∑2n−l−2−1

t=0

∑2l−1
j′=0(x

2
2l+1t+j′+2l∨

Ck
j′+2l

) = 2n−2 mod 2n.

Note that in condition 2) , different adjacent [Cki ]3 ensures the next state

differs from the previous, and at this time l − 1 ≤ n − 3, so these < Ck >

would not carry 2n−2. Condition 3) is set to meet the definition of induction.130

Thus when it comes to n and l+ 1, (II)= 2n−2 + 2n−2 = 2n−1 mod 2n, and the

conclusion is true.

Therefore, for any positive integer n and l,
∑2n−1−1

j=0 (x2
i+j∨Cki+j ) = 2n−1 mod 2n.

F (x) is a single cycle T-function of period 2n for any initial state.

Secondly, we give the proof that these m cycles are pairwise different.135

Make the residue system {x0
0, x

1
0, . . . , x

m−1
0 } modulo m initial states, where

xi
0 = 0, 1, . . . ,m − 1(i = 0, 1, . . . ,m − 1), when i ̸= j mod m, xi

0 ̸= xj
0 mod m.
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Consider F (x) is a single cycle T-function, so all the states modulo m will

appear on the cycle generated by F (x)). Therefore, any arbitrary state can be

the initial sate, and for the same initial states xi
0 modulo m, they generate the140

exactly same single cycle.

Since every component function is pairwise different, at least two states xi,

xj might be found which satisfy fki(xi) ̸= fkj (xi)(i ̸= j mod m). Thus for

different initial states xi
0, x

j
0, it is able to find such a state which has different

subsequent states on the two cycles they generated. Therefore, for different145

initial states xi
0 and xj

0 modulo m, they generate totally different single cycles.

In summary, these m single cycles are different from each other. ♯

We give an explanation of Theorem 3: The key to the new construction

lies in the elements of ordered array < Ck >=< C0, C1, . . . , Cm−1 >. Let

Ck = 2n−1Cn−1
k + 2n−2Cn−2

k + . . .+ 2C1
k + C0

k . We call Ci
k(i = 0, 1, . . . , n− 1)150

as the i-th bit of Ck.

Condition 1)⇐⇒ fki(xi) is a single cycle T-function of modulo 8 congruence,

which is equivalent to weaving the sequences generated by component single

cycle T-functions to obtain a new one.

Condition 2) ⇐⇒ In the 3rd-bit of Ck, ”0” and ”1” appears alternately, and155

for the l+1-th bit of all the Ck, their xor sum is 0. The former is to change the

parity of the 3rd-bit to ensure a state transition; the latter is to guarantee that

when the induction is made from l to l+ 1, it would not result in a carry 2n−2.

Condition 3)⇐⇒ When 3 ≤ l ≤ n − 3, for the remaining l − 3 bits in the

middle, divide Ck into m groups according to the j-th bit, and every group160

has t(2 < t < l) elements. It is satisfied that from any Ck, the xor sum of t

consecutive j-th bits is 0.

In fact, to achieve the target above, the order of bit ”0” and ”1” in every

group should be exactly the same. However, we can compare t to the size of

sliding window.165

Example 1: Let n = 7,m = 15, l = 4. For

< Ck >=< 21, 61, 101, 45, 53, 93, 69, 13, 85, 125, 37, 109, 117, 29, 5, 77 >,
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every component function fki
(xi) = xi + (x2

i ∨ Cki
) mod 2n is a single cycle

T-function, and for any initial state 0, 1, . . . , 2n − 2, 2n − 1,

F (x) : xi+1 = xi + (x2
i ∨ Cki

) mod 2n, ki+1 = ki + 1 mod m

is always a single cycle T-function. See Figure 1.

Figure 1: example of new construction

Corollary 1. For the sequence {(xi)} defined as (1) and m ∈ N∗,m =

2lm′(0 ≤ l ≤ n − 3), where m′ is an odd number. If one of the following

situations is true, then the sequence of pairs {(xi, ki)} has the maximal period

m′2n. And at the same time, for different initial state x0 modulo 2l, there are170

2l pairwise different cycles:

1) arrangement < Ck > can be divided into m′ groups < Ci0
k >,< Ci1

k >

, . . . , < C
im′−1

k > with each group has 2l elements, and in any group of < Cit
k >

(t = 0, 1, . . . ,m′ − 1), Cit
k satisfies conditions in Theorem 3, meanwhile, these

m′ functions determined by < Cit
k > satisfy conditions in Lemma 2;175
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2) arrangement < Ck > can be divided into 2l groups < Cj0
k >,< Cj1

k >

, . . . , < C
j
2l−1

k > with each group has m elements, and in any group of < Cjs
k >

(s = 0, 1, . . . , 2l−1), satisfies conditions in Lemma 2, meanwhile, these 2l func-

tions determined by < Cjs
k > satisfy conditions in Theorem 3.

The proof is quite apparently due to Lemma 2 together with Theorem 3.180

4. Analysis of the newly constructed T-function families

4.1. Numeration

Next we give a numeration of the newly constructed single cycle T-function

families. Every bit of Ck and its count of corresponding feasible options accord-

ing to Theorem 3 are as Table 1:185

Table 1: numeration of newly constructed single cycle T-functions

[Ck]j 0,1,2 3 4 5 . . . j . . . l l+ 1 l+2, . . . , n−1

options 2 2 C4
8 C8

16 . . . C2j−2

2l−1 . . . C2l−2

2l−1 C2l−1

2l 2n−3−l

Theorem 4. (Numeration) Using Theorem 3,

2 · 2 · C4
8 · C8

16 · · · ·C2l−1

2l · 2n−3−l = 2n−1−l
l∏

i=3

C2i−1

2i

single cycle T-functions can be obtained.

4.2. Cryptographic Properties

Theorem 3 is a construction method based on K-S single cycle T-functions,

using only two arithmetic operations(addition and multiplication) and one log-

ical operation(OR). And three primitive operations is also the lower bound of a190

nonlinear single cycle T-function could have[1]. At the same time, a number of

single cycle T-functions can be obtained at one time according to the selection

of < Ck > and initial input states. The essence of this method is to weave

and re-arrange the output sequences of multiple original component single cycle
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T-functions. In addition, the multiplication operation enhances the statistical195

properties, and the logical operation increases the algebraic order of the square

operation, which both better guarantee the security of the newly get functions.

For a sequence output from some general single cycle T-function, Theorem

2 gives its linear complexity and the upper bound of the minimum error of k-

error linear complexity. This conclusion also applies to the newly constructed200

functions from Theorem 3. That is, for any single cycle T-function obtained

by Theorem 3, its linear complexity is n × 2n−1 + n, and its minimum error

≤ 2n−1(when n = 2t,the equality holds).

In summary, the construction of only three primitive operations makes the

new methods in Theorem 3 more efficient in software, and in the meantime,205

the newly generated sequences preserve quite high linear complexity and good

stability as well.

4.3. Comparison with other construction methods

At last, we give an comparison about our method and the other existing

T-function construction methods as Table 2.210
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Table 2: comparisons with currently known other four methods

Method Ideal Advantages Shortcomings

Parameter Recursive thought, the

parameter is actually a

particular T-function

whose j-th output bit

only related to the

previous j bits input

Perfect

theoretical basis

Depends on the

elaborate

construction of

parameters

Algebraic

dynamical

system

Using non - Archimedes

analysis theory

Broader

theoretical vision

and more general

approach

Difficult practical

implementation

Polynomial It is widely used and

requires large cycles;

addition and

multiplication are

natural T-functions

Large optional

space and easy to

get

Poor non-linearity

with significant

security

weaknesses

Multiword

single cycle

T-function

Promotion of single

circle T-functions

Widely used in

practical

algorithm’s design

Same as

parameter

method

Theorem 3 Re-weave of the existing

T-function’s output

sequence

Fast software

implementation,

high efficiency,

not bad security

A storage of

single cycle

T-functions is

needed

5. Conclusion

In this paper, we propose a method using m single cycle T-functions satis-

fying certain conditions of period 2n to construct m new and distinct pairwise
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single cycle T-functions of period 2n, where m = 2l(l ∈ N+). Then, the nu-

meration, linear complexity and stability of the newly constructed functions215

is investigated. Finally, we compare our method with the existing construc-

tion approaches. It is a kind of efficient, simple and easy-to-do method, and

is provided with a large optional parameter space. Furthermore, by applying

this construction method for other functions, we may get a lot of new function

families.220
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Appendix A.

Taking m = 4, n = 5 as an example, the construction is given as follows.280

Select Ck =< 5, 13, 21, 29 >, then the component functions are

fk0 = x+ (x2 ∨ 5) mod 25, fk1 = x+ (x2 ∨ 13) mod 25,

fk2 = x+ (x2 ∨ 21) mod 25, fk3 = x+ (x2 ∨ 29) mod 25.

Sequences generated by fk0 , fk1 , fk2 and fk3 are as follows. Figure A.2

which has red numbers with black solid circle is generated by fk0 , figure A.3

which has blue numbers with black hollow circle is generated by fk1 , figure A.4

which has yellow numbers with grey solid circle is generated by fk2 , figure A.5285

which has green numbers with green hollow circle is generated by fk3 . Numbers

in brackets outside the cycle are the current states, and numbers inside the cycle

are the serial numbers of the states (0 stands for the initial state).
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Figure A.2: cycle structure of fk0 Figure A.3: cycle structure of fk1

Figure A.4: cycle structure of fk2 Figure A.5: cycle structure of fk3

When xi+1 = xi + (x2
i ∨ Cki) mod 25, Ck =< 5, 13, 21, 29 >, ki+1 =

ki + 1 mod 4 respectively takes (00000), (00001), (00010) and (00011) as its290

initial state, it generates cycles as figure A.6, A.7, A.8 and A.9 below. Red

numbers with black solid circle are the output of fk0 , blue numbers with hollow

circle are the output of fk1 , yellow numbers with grey solid circle are the output

of fk2 , green numbers with green hollow circle are the output of fk3 . And num-

bers inside the cycles are serial numbers in their original component functions.295

It is obviously to see that for an ordered < Ck >, states selected from each

component functions are fixed, it is just the combination order that different.
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Figure A.6: output of initial state ”0” Figure A.7: output of initial state ”1”

Figure A.8: output of initial state ”2” Figure A.9: output of initial state ”3”

17


	Introduction
	Notations and Definitions
	The New Construction
	Analysis of the newly constructed T-function families
	Numeration
	Cryptographic Properties
	Comparison with other construction methods

	Conclusion
	Appendix

