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Abstract

The Learning with Errors (LWE) is one of the most promising primitive for post-quantum
cryptography due to its strong security reduction from the worst-case of NP-hard problems and its
lightweight operations. The Public Key Encryption (PKE) scheme based on LWE has a simple and
fast decryption, but its encryption is rather slow due to large parameter sizes for Leftover Hash
Lemma or expensive Gaussian samplings.

In this paper, we propose a novel PKE without relying on either of them. For encryption, we
first combine several LWE instances as in the previous LWE-based PKEs. However, the following
step to re-randomize this combination before adding a message is different: remove several least
significant bits of ciphertexts rather than inserting errors. We prove that our scheme is IND-CPA
secure under the hardness of LWE and can be converted into an IND-CCA scheme in the quantum
random oracle model.

Our approach accelerates encryption speed to a large extent and also reduces the size of cipher-
texts. The proposed scheme is very competitive for all applications requiring both of fast encryption
and decryption. In our single-core implementation in Macbook Pro, encryption and decryption of
a 128-bit message for quantum 128-bit security take 7 and 6 microseconds that are 3.4 and 4.2
times faster than those of NTRU PKE, respectively. To achieve these results, we further take some
advantage of sparse small secrets, under which the security of our scheme is also proved.

Keywords: Post-Quantum Cryptography, Public-Key Encryption, Learning with Rounding (LWR),
Learning with Errors (LWE)

1 Introduction

Since the National Institute of Standards and Technology (NIST) launched the project to develop
new quantum-resistant cryptography standards [2], post-quantum cryptography has gained a growing
attention at this moment. Lattice based cryptography, one of the most attractive candidates of the
post-quantum cryptography, has been studied actively over the last decade due to its distinctive ad-
vantages on strong security, fast implementations, and versatility in many applications. In particular,
the Learning with Errors (LWE) problem [53] has very attractive features for many usages due to its
rigorous reduction from the worst-case of the lattice problems that are NP-hard and regarded to be
secure even after the advance of quantum computers.

The LWE problem was first introduced to construct a public key encryption by Regev [53] in
2005. Some well-known variants of Regev’s scheme [33, 51] had a drawback requiring somewhat large
parameters to be used in practice. It was improved by Lindner and Peikert [41] by taking a method to
insert noises to a combination of LWE samples in the encryption stage, but the noise sampling from the
discrete Gaussian distribution requires inefficient floating point operations of high bit precision [29].
Recently, several post-quantum key exchanges [25, 50, 18, 17, 9] and one more efficient PKE [22] with
sparse small secrets have been proposed on the hardness assumptions of the LWE problem and its
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ring variant. They enjoy fast performance in practice as well as its quantum-resistant security, but
still suffer from some inefficiency due to Gaussian sampling. Several attempts were made to improve
this [49, 17], but not satisfactory yet.

In this paper, we propose a novel LWE-based PKE scheme without Gaussian samplings in the
encryption stage which is based on the hardness of learning with rounding (LWR) problem. The LWR
problem, introduced by Banerjee, Peikert and Rosen [13], is a variant of the LWE problem. Instead of
adding small errors, an instance of LWR problem is generated by the deterministic rounding process
into a smaller modulus. It is shown in [13, 10] that the LWR problem is not easier than the LWE
problem when modulus is somewhat large, but due to this constraints, LWR has been used only for
special applications such as pseudorandom generator (PRG) [13]. Our key observation on other LWE-
based schemes such as [41] is that a ciphertext generated by an ephemeral secret forms the restricted
number of LWE instances of this ephemeral secret together with public information. This leads us to
securely make the use of LWR assumption in encryption process relying on the recent result that LWR is
hard under the hardness assumption of LWE when the number of samples is bounded [16]. The change
of hardness assumption problem to LWR for encryption procedure not only reduces the parameters
and ciphertext size, but also substitutes the expensive discrete Gaussian sampling by deterministic
and efficient rounding.

Technical Details. Our public key encryption scheme consists of the algorithms KeyGen, Enc, and
Dec. In the key generation phase, we choose the private key s and use it to generate several instances
of LWE problem in modulo q. The public key is (A, b = As+ e) (mod q), where the error term e is
sampled from the discrete Gaussian distribution. To encrypt a message m ∈ Zt, we first generate an
ephemeral secret vector r and calculate (rTA, rTb + (q/t) ·m). Then, we rescale the vector into a
lower modulus p < q using the rounding function defined by

Zk
q → Zk

p , x 7→ ⌊(p/q) · x⌉ ,

where k is the number of components of the vector, and ⌊·⌉ denotes the component-wise rounding
of entries to the closest integers. Additionally, the second component of the public key can also be
rescaled to reduce the size of public keys.

For efficiency, we take private keys and ephemeral secrets used in our encryption procedure from
the set of signed binary vectors in {0,±1}∗ with small Hamming weights. The Hamming weight of
the ephemeral secret vectors has an effect on the error size after subset sum of public data, while the
secret key size is related to the error caused by rounding into a smaller modulus p. Therefore, the
sparsity of the private keys and ephemeral secrets takes an important role in efficiency of our scheme
including parameter size, encryption speed, and ciphertext compression.

Security Analysis and Parameter Selection. Our scheme relies on the hardness of both LWE
and LWR problems. By utilizing a reduction from LWE to LWR for some parameters, we show that
our scheme is IND-CPA secure under the hardness of LWE. We also extend our proof to the scheme
with sparse signed binary secrets.

For practical parameters, we survey all the existing attacks against LWE and LWR and arrived at
the conclusion that the best attacks for LWR with bounded number of samples are the primal and dual
attacks for LWE instances transformed from LWR instances. We further extend the attacks to exploit
the sparsity of secrets, which is of an independent interest. We categorize the parameter sets with four
different security levels and estimate the security of these parameter sets, following the methodology
of NewHope [9] and Frodo [17]. We also provide the recommended parameter set for the long-term
security, which remains secure against all known quantum attacks.

Three Variants. Additionally, we describe several useful variants of our PKE. First, we propose a
ring variant whose security is based on the hardness of ring-LWE and ring-LWR. The public key size
of our LWE-based PKE is compelled to be large because of the matrix structure in LWE and LWR
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instances. However, due to the compactness of ring structure, the public key size of our ring variant is
considerably small compared to that of our original scheme (smaller than the size of one ciphertext.).

Second, we describe an IND-CCA version of our scheme that is secure in the quantum random
oracle model, applying the Targhi-Unruh CCA conversion [59] on our IND-CPA scheme. Since the
conversion is quite light, our IND-CCA scheme is still very efficient.

Finally, we extend our scheme to an additive homomorphic encryption scheme supporting some
bounded number of additions. We provide a specific parameter of post-quantum 128-bit security for
our scheme. As in [24], additive homomorphic encryptions have numerous applications. Our scheme
could be a post-quantum secure alternative for additive homomorphic encryptions. The previous
schemes [24, 47, 46] appeared to require large parameters [30] or insecure under the attack using a
quantum computer [57].

Implementation and Comparison. We implement the proposed public-key encryption scheme and
provide several parameter sets with different level of security as in [17]. We compare our scheme with
NTRU [34] and RSA [54] in various (quantum) security levels. The experimental result shows that
the size of ciphertexts is reduced more than a half and the encryption (resp. decryption) speed is less
than 7 microseconds (µs) (resp. 6 µs) which is about 3 times (resp. 4 times) faster than 24 µs (resp.
25 µs) of NTRU scheme. The ring variant of our scheme takes 12 µs for encryption with reduced size
of public information. All the implementations of our schemes were written in C++, and performed
on Macbook Pro with an Intel core i5 running at 2.9 GHz processor. The implementation of our
schemes will be uploaded at https://github.com.

Our scheme has stronger security guarantee than NTRU in the sense that LWE problem has a
reduction from the standard lattice problems (GapSVP, SIVP) but NTRU does not have any reduc-
tions.1 Our ring variant has a security level similar to NTRU. Recently, several attacks to exploit ring
structure of NTRU have been proposed [4, 23, 15].

Applications in Practice. Our Public-key encryption scheme can be applied to various applications
requiring public-key cryptosystems, and gives some advantages on efficiency. One immediate appli-
cation is for Transport layer security (TLS) which provides secure communication and server-client
authentication in the internet using public key cryptosystems such as RSA and Diffie-Hellman (DH)
key exchange. Recently, there have been some attempts to replace RSA and DH by quantum-resistant
schemes such as NTRU [3] and (ring-)LWE-based key exchange [17, 9].

Our PKE can be an appropriate alternative of RSA and NTRU on TLS protocol due to its quantum-
resistant security and faster Enc / Dec speed. For 128-bit security, our scheme has comparable
ciphertext size with RSA, but our encryption and decryption speeds are about 5 times and 450 times
faster than RSA, respectively.

Organization. The rest of the paper is organized as follows. In Section 2, we summarize some
notations used in this paper, and introduce Learning with Errors (LWE) and Learning with Rounding
(LWR). We describe our public-key encryption scheme based on both LWE and LWR in Section 3, and
provide the concrete analysis and parameters of our scheme in Section 4. In Section 5, we propose
some variants of our scheme including ring-based PKE. Finally, we provide implementation results,
and compare the performance of our schemes with other encryption schemes in Section 6.

1Some NTRU-like encryption schemes [58, 36] have reductions from worst-case of lattice hard problems, but they
contain Gaussian sampling process in encryption procedures.

https://github.com
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2 Preliminaries

2.1 Notation

All logarithms are base 2 unless otherwise indicated. For a positive integer q, we use Z ∩ (−q/2, q/2]
as a representative of Zq. For a real number r, ⌊r⌉ denotes the nearest integer to r, rounding upwards
in case of a tie. We denote vectors in bold, e.g., a, and every vector in this paper is a column vector.
The norm ∥·∥ is always 2-norm in this paper. We denote by ⟨·, ·⟩ the usual dot product of two vectors
and shortly write ⟨·, ·⟩q = ⟨·, ·⟩ (mod q). We use x ← D to denote the sampling x according to
the distribution D. It denotes the uniform sampling when D is a finite set. For an integer n ≥ 1,
Dn denote the product of i.i.d. random variables Di ∼ D. We let λ denote the security parameter
throughout the paper: all known valid attacks against the cryptographic scheme under scope should
take Ω(2λ) bit operations. For two matrices A and B with the same number of rows, (A∥B) denotes
their concatenation, i.e., for A ∈ Zm×n1 and B ∈ Zm×n2 , the m × (n1 + n2) matrix C = (A ∥ B) is

defined as cij =

{
ai,j 1 ≤ j ≤ n1

bi,(j−n1) n1 < j ≤ n1 + n2

.

2.2 Distributions

For a positive integer q, we define Uq by the uniform distribution over Zq. For a real σ > 0, the discrete
Gaussian distribution DGσ is a probability distribution with support Z that assigns a probability
proportional to exp(−πx2/σ2) to each x ∈ Z. We will adapt the following simplified lemmas about
tail bound on the discrete Gaussian distribution.

Lemma 1 ([11], Lemma 1.5). Let c ≥ 1. Then for any real σ > 0 and any integer n ≥ 1, we have

Pr

[
∥e∥ ≥ c

√
n

2π
σ : e← DGn

σ

]
≤ cn exp

(
n(1− c2)

2

)
.

Lemma 2 ([12], Lemma 2.4). For any real σ > 0 and t > 0, and any x ∈ Rn, we have

Pr[|⟨x, e⟩| ≥ t · σ · ∥x∥ : e← DGn
σ] < 2 exp(−πt2).

For an integer 0 ≤ h ≤ n, the distribution HWTn(h) samples a vector uniformly from {0,±1}n,
under the condition that it has exactly h nonzero entries.

2.3 Learning with Errors

Since Regev [53] introduced the learning with errors (LWE) problem, a lot of cryptosystems based on
this problem have been proposed relying on its versatility. For an n-dimensional vector s ∈ Zn and
an error distribution χ over Z, the LWE distribution ALWE

n,q,χ(s) over Zn
q × Zq is obtained by choosing a

vector a uniformly and randomly from Zn
q and an error e from χ, and outputting

(a, b = ⟨a, s⟩+ e) ∈ Zn
q × Zq.

The search LWE problem is to find s ∈ Zq for given arbitrarily many independent samples (ai, bi) from
ALWE

n,q,χ(s). The decision LWE, denoted by LWEn,q,χ(D), aims to distinguish the distribution ALWE
n,q,χ(s)

from the uniform distribution over Zn
q × Zq with non-negligible advantage, for a fixed s ← D. When

the number of samples are limited by m, we denote the problem by LWEn,m,q,χ(D).
In this paper, we only consider the discrete Gaussian χ = DGαq as an error distribution where α

is the error rate in (0, 1), so α will substitute the distribution χ in description of LWE problem, say
LWEn,m,q,a(D). The LWE problem is self-reducible, so we usually omit the key distribution D when it
is a uniform distribution over Zn

q .
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The hardness of the decision LWE problem is guaranteed by the worst case hardness of the standard
lattice problems: the decision version of the shortest vector problem (GapSVP), and the shortest
independent vectors problem (SIVP). After Regev [53] presented the quantum reduction from those
lattice problems to the LWE problem, Peikert et al. [48, 20] improved the reduction to a classical
version. In this case, note that the reduction holds only for the GapSVP, not SIVP.

After the works on the connection between the LWE problem and some lattice problems, some
variants of LWE, of which the secret distributions are modified from the uniform distribution, were
proposed. In [20], Brakerski et al. proved that the LWE problem with binary secret is at least as hard
as the original LWE problem. Following the approach of [20], Cheon et al. [22] proved the hardness of
the LWE problem with sparse secret, i.e., the number of non-zero components of the secret vector is
a constant.

As a result of Theorem 4 in [22], the hardness of the LWE problem with signed-binary secret of
Hamming weight h, LWEn,m,q,β(HWTn(h)), is guaranteed by the following theorem.

Theorem 1. (Informal) If log(nCh)+h > k log q and β > α
√
10h, the LWEn,m,q,β(HWTn(h)) problem

is at least as hard as the LWEk,m,q,α problem.

In [52, 51, 19], to pack a string of messages in a ciphertext, LWE with single secret was generalized
to LWE with multiple secrets. An instance of multi-secret LWE is (a, ⟨a, s1⟩+e1, ..., ⟨a, sk⟩+ek) where
s1, ..., sk are secret vectors and e1, ..., ek are independently chosen error vectors. Using the hybrid
argument, multi-secret LWE is proved to be at least as hard as LWE with single secret. With this
hardness guarantee, we use the LWE instances with a number of sparse signed-binary secrets in our
encryption scheme in Section 3.

2.4 Learning with Rounding

The learning with rounding (LWR) problem was firstly introduced by Banerjee et al. [13] to improve the
efficiency of pseudorandom generator (PRG) based on the LWE problem. Unlikely to the LWE problem,
errors in the LWR problem are deterministic so that the problem is so-called a “derandomized” version
of LWE problem. To hide secret information, the LWR problem uses a rounding by a modulus p instead
of inserting errors. Then, the deterministic error is created by scaling down from Zq to Zp.

For an n-dimensional vector s over Zq, the LWR distribution ALWR
n,q,p(s) over Zn

q ×Zp is obtained by
choosing a vector a from Zn

q uniform randomly, and returning(
a,

⌊
p

q
· ⟨a, s⟩q

⌉)
∈ Zn

q × Zp.

As in the LWE problem, ALWR
n,m,q,p(s) denotes the distribution of m samples from ALWR

n,q,p(s); that is
contained in Zm×n

q ×Zm
p . The search LWR problem are defined respectively as finding secret s just as

same as the search version of LWE problem. In contrary, the decision LWRn,m,q,p(D) problem aims to
distinguish the distribution ALWR

n,q,p(s) from the uniform distribution over Zn
q ×Zp with m instances for

a fixed s← D.
In [13], Banerjee et al. proved that there is an efficient reduction from the LWE problem to the

LWR problem for modulus q of super-polynomial size. Later, the follow-up works by Alwen et al. [10]
and Bogdanov et al. [16] improved the reduction by eliminating the restriction on modulus size and
adding a condition of the bound of the number of samples. In particular, the reduction by Bogdanov
et al. works when 2mBp/q is a constant, where B is a bound of errors in the LWE problem, m is the
number of samples in both problems, and p is the rounding modulus in the LWR problem. That is,
the rounding modulus p is proportional to 1/m for fixed q and B. Since the reduction from LWE to
LWR is independent of the secret distribution, the hardness of the LWRn,m,q,p(HWTn(h)) problem is
obtained from that of the LWE problem with signed-binary secret of hamming weight h.
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2.5 Ring variants of LWE and LWR

In [43], Lyubashevsky et al. deal with the LWE problem over rings, namely ring-LWE. For positive
integers n and q, and an irreducible polynomial g(x) ∈ Z[x] of degree n, we define the ring R =
Z[x]/(g(x)) and its quotient ring modulo q, Rq = Zq[x]/(g(x)). The ring-LWE problem is to distinguish
between the uniform distribution and the distribution of (a, a ·s+e) ∈ R2

q where a is uniform randomly
chosen polynomial, e is chosen from a error distribution, and s is a secret polynomial.

Due to the efficiency and compactness of ring-LWE, many lattice-based cryptosystems are con-
structed as ring-LWE based, rather than LWE-based. Similarly to LWE, the ring-LWE problem over
the ring R is at least as hard as GapSVP over the ideal lattices in R.

The ring variant of LWR is introduced in [13, 16] as an analogue of LWR. In the ring-LWR problem,
the vectors chosen from Zn

q are substituted by polynomials in Rq, i.e., the ring-LWR instance for a
secret polynomial s ∈ Rq is (

a,

⌊
p

q
· a · s

⌉)
∈ Rq ×Rp.

where ⌊(p/q) · a · s⌉ is obtained by applying the rounding function to each coefficient of (p/q) · a · s.
The search and decision ring-LWR problems are defined the same way as the LWR problem, but over
rings.

In [13], Banerjee et al. proved that decision ring-LWR is at least as hard as decision ring-LWE for
sufficiently large modulus. Later, reduction from search ring-LWE to search ring-LWR was constructed
in overall scope of the modulus [13] when the number of samples is bounded.

3 LWR-Based Public-key Encryption Scheme

In this section, we present a (probabilistic) LWR-based public-key encryption scheme. Note that the
LWE hardness assumption is also used in our scheme even though the scheme is described as “LWR-
based”.

Our construction has several advantages: one is that we could compress the ciphertext size by
scaling it down from Zq to Zp where p is the rounding modulus, and the other is that we speed up the
encryption algorithm by eliminating the Gaussian sampling process.

3.1 The Construction

We present a public-key encryption scheme based on both LWE and LWR problems with sparse signed-
binary secrets. The public key consists of m number of n dimensional LWE instances with a signed-
binary secret distribution of Hamming weight hs. On the other hand, encryptions of zero form (n+ ℓ)
instances of m dimensional LWR with signed binary secret of Hamming weight hr. The scheme is
described as follows:

• Setup(1λ): Choose positive integers m, n, hs, hr, ℓ, t, p, and q satisfying hs < n, hr < m, and
t | p | q. Fix an error parameter α with 0 < α < 1. Output params← (m,n, hs, hr, ℓ, t, p, q, α).

• KeyGen(params): Generate a random matrix A← Zm×n
q . Sample a signed binary secret matrix

S = (s1∥ · · · ∥sℓ) from HWTn(hs)
ℓ, and an error matrix E = (e1∥ · · · ∥eℓ) from Dm×ℓ

αq . Let

B ← −AS + E ∈ Zm×ℓ
q . Output the public key pk ← (A∥B) ∈ Zm×(n+ℓ)

q and the secret key

sk← S ∈ {0,±1}n×ℓ.

• Encpk(m): For a message m ∈ Zℓ
t, choose a vector r ← HWTm(hr). Compute the vectors

a′ ← AT r and b′ ← BT r, and output the vector

c← (a,b) ∈ Zn+ℓ
p
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where a← ⌊(p/q) · a′⌉ ∈ Zn
p and b← (p/t) ·m+ ⌊(p/q) · b′⌉ ∈ Zℓ

p.

• Decsk(c): For a ciphertext c = (a,b) ∈ Zn+ℓ
p , compute and output the vector

m′ ←
⌊
t

p
(STa+ b)

⌉
(mod t).

Remark 1. The size of the public key pk = (A∥B) can be compressed by using a pseudorandom

generator G : Zk
2 → Zm×n

q (≃ Zmn log q
2 ), where k < mn log q. In the KeyGen phase, instead of choosing

the matrix A uniform randomly, choose a vector v ∈ Zk
2 uniform randomly and let A = G(v). Then,

we can set the compressed public key as pk′ = (v, B) ∈ Zk
2 × Zm×ℓ

q .

3.2 Correctness and Security

We argue that the proposed encryption scheme is IND-CPA secure under the hardness assumptions
of the LWE problem with sparse signed binary secrets. The following theorem gives an explicit proof
of our argument on security.

Theorem 2 (Security). The public key encryption scheme (Setup,KeyGen,Enc,Dec) is IND-CPA se-
cure under the hardness assumption of the LWEn,m,q,α(HWTn(hs)) problem and the LWRm,n+ℓ,q,p(HWTm(hr))
problem.

Proof. It is enough to show that the distribution of ((A∥B), c) generated by params ← Setup(1λ),
pk = (A∥B) ← KeyGen(params), and c ← Encpk(0) is computationally indistinguishable from the

uniform distribution over Zm×(n+ℓ)
q × Zn+ℓ

q .
First, pk = (A∥B) is generated by sampling m instances of n dimensional LWE problem of error

parameter α with ℓ independent secret vectors s1, . . . , sℓ ← HWTn(hs). In addition, the multi-secrets
LWE problem is no easier than the ordinary LWE problem as noted in Section 2.3. Hence, pk is

computationally indistinguishable from the uniform over Zm×(n+ℓ)
q under the LWEn,m,q,α(HWTn(hs))

assumption.

Now assume that pk is uniform random over Zm×(n+ℓ)
q . Then pk and c← Encpk(0) together form

(n+ ℓ) instances of the m dimensional LWR problem with secret r← HWTm(hr), which is computa-

tionally indistinguishable from the uniform over Zm×(n+ℓ)
q ×Z(n+ℓ)

p under the LWRm,n+ℓ,q,p(HWTm(hr))
assumption.

Theorem 3 (Correctness). Let params ← Setup(1λ) and (sk, pk) ← KeyGen(params). Let c ←
Encpk(m) be an encryption of a plaintext m ∈ Zℓ

t. Then its decryption result m′ ← Decsk(c) is equal
to m with an overwhelming probability in the security parameter λ if

η · αp ·
√

hr +
1

2
+ ξ · hs ≤

p

2t

for some positive numbers η and ξ such that η2 ≥ λ
π log e and (e · (1/2− ξ))hs ≤ 2−λ.

Proof. Let r ∈ {0,±1}m be a vector sampled from HWTm(hr) in our encryption procedure, and
let c′ = (a′,b′) ← (AT r, BT r) ∈ Zn+ℓ

q . Let u ← ⌊(p/q) · a′⌉ − (p/q) · a′ ∈ (−1/2, 1/2]n and v ←
⌊(p/q) · b′⌉− (p/q) ·b′ ∈ (−1/2, 1/2]ℓ be the negative fractional part of vectors (p/q) ·a′ and (p/q) ·b′,
respectively. Then we have

STa+ b = (p/t) ·m+ (p/q) · (STa+ b′) + (STu+ v).
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Note that its i-th entry is

(p/t) ·mi + (p/q) · ⟨ei, r⟩+ ⟨si,u⟩+ vi (mod p),

for any i = 1, . . . , ℓ, and so the correctness of our scheme is guaranteed as long as the error term
(p/q) · ⟨ei, r⟩+ ⟨si,u⟩+ vi is bounded by (p/2t) with an overwhelming probability.

1. Entries of ei are sampled from i.i.d. discrete Gaussian distribution of parameter σ, and r ←
HWTm(hr) has the constant norm ∥r∥ =

√
hr. From Lemma 2, the value ⟨ei, r⟩ is bounded by

η · αq ·
√
hr with a probability ≥ 1− 2 exp(−πη2). In this case, its scaled value (p/q) · ⟨ei, r⟩ is

bounded by η · αp ·
√
hr.

2. Trivially, each vi is bounded by 1/2.

3. We can heuristically assume that entries of u seem to be i.i.d. uniform random variables on the
interval (−1/2, 1/2], and so ⟨u, si⟩ seems to be the sum of hs-number of uniform random variable
on (−1/2, 1/2]. By using the Chernoff bound, the tail probability of sum of i.i.d. uniform random
variables can be bounded by

Pr[|⟨si,u⟩| ≥ ξ · hs] ≤ 2

(
e ·

(
1

2
− ξ

))hs

for any ξ > 0.

Thus, putting these analysis together, the correctness of our scheme holds with an overwhelming
probability if

η · αp ·
√

hr +
1

2
+ ξ · hs ≤

p

2t

for some numbers η > 0 and ξ > 0 such that exp(−πη2) and (e · (1/2− ξ))hs are bounded by 2−λ.

For a security parameter λ = 128 and hs = 64, to make exp(−πη2) and (e · (1/2 − ξ))hs both
negligible in the security parameter λ = 128, we set η = 5.3 and ξ = 0.41.

4 Analysis and Parameter Selection

In this section, we analyze the parameter conditions to provide conservative security against both
quantum and classical attacks. To do that, we survey all known typical attacks against LWE such as
exhaustive search, distinguishing attack, embedding attack, BKW attack [6, 5, 26, 37], etc. Since the
LWE problems used in our scheme publish a limited number of instances, it suffices to consider the
attacks using lattice basis reduction algorithm, the BKZ algorithm [56, 21]. Main strategies for these
attacks are categorized as follows.

• One can reduce the LWE problem to the Short Integer Solution (SIS) problem. The distinguishing
attack analyzed in [44, 55] follows this strategy, which is extended to the dual attack.

• Regarding LWE as the Bounded-Distance Decoding (BDD) problem, one can reduce it to unique-
SVP (uSVP). The embedding attack analyzed in [42, 7] follows this strategy, which is extended
to the primal attack.

Assembling all methods, we concluded that the dual attack and the primal attack are the best attacks
against the LWE instances for our scheme, as concluded in NewHope [9] and Frodo [17].

Since our scheme is based on the hardness of LWE with sparse signed binary secrets, we enhance the
best attacks with a single idea to exploit sparse small secrets: for each attack, we make components of
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the short vector which gives a hint to solve the LWE problem balanced. We call the enhanced attacks
as weighted primal attack and weighted dual attack, and analyze the success conditions for the attacks
against decisional LWE in the following subsections. We also observed that there is no difference
between LWE and LWR in attack contexts. Actually, instances of the LWR problem can be simply
transformed into LWE instances. We would analyze this aspects, adjusting the best attacks against
LWE to LWR.

For security assessment, we follow NewHope and Frodo that gives convincing and clear perspective
through this section, when measuring the BKZ complexity and selecting parameter sets of various
security levels. At the end of this section, as in the both papers [9, 17], we give a recommended
parameter set for our scheme that can be exploited in the real world for the long-term security.

4.1 Attacks

In this subsection, we analyze the conditions to make the LWE problem secure against the best attacks,
and adjust them to the LWR problem. Note that the main strategy of the best attacks for LWE is to
build an arbitrary lattice in which a short vector gives a hint to solve the LWE problem. We achieve
the required short vector by running the BKZ algorithm for the target lattice: if Λ is a target lattice
of dimension n, then the norms of the shortest vectors in the output of BKZ is approximately

∥b1∥ = δn · det(Λ)1/n,

where δ converges to a constant rapidly as n grows. This δ, called root Hermite factor, is used to
measure the security of lattice problems. In other words, the runtime of the BKZ algorithm to achieve
a given root Hermite factor in large dimension (> 200) is determined heuristically by δ only. In
analysis, once we obtain a condition of the root Hermite factor to make an attack successful, then we
can calculate the attack complexity against LWE from δ. Hence, we would analyze the conditions of
δ for the best attacks.

In Section 4.1.1 and 4.1.2, we describe and analyze the primal and dual attacks optimized for
the short secret variants of LWE, and give elegant formulas. In Section 4.1.3, we transform the LWR
instances by simply multiplying (q/p) on the last components, and then apply the same attacks on
the transformed instances that has a look of LWE instances in the attacker’s view.

4.1.1 Weighted Dual Attack

Let (A,b = As + e) ∈ Zm×(n+1)
q be given LWE samples of dimension n. In the original dual attack,

an attacker constructs a lattice

Λ = {(x,y) ∈ Zm × Zn : xTA = yT (mod q)}

that is the orthogonal lattice of the matrix (−A∥In) modulo q. one can find a short vector v = (x,y) in
Λ using BKZ and then check if ⟨x,b⟩ (mod q) is small or not. If (A,b) is an LWEn,m,q,α(HWTn(hs))
instance with secret s and ⟨x,b⟩ is less than q in Z, then ⟨x,b⟩ = ⟨y, s⟩+⟨x, e⟩ behaves as a Gaussian,
otherwise it is distributed uniformly. Hence, if the attacker can find and collect short vectors v = (x,y)
in Λ such that ⟨x,b⟩ < q, then the attacker would solve the distinguish problem.

Our observation is that since the secret s is a sparse signed binary vector, the term ⟨y, s⟩ is
somewhat smaller than ⟨x, e⟩. From this point, we optimize this attack when the variances of the
components in the secret vector s are significantly smaller than those of the error vector e: We
consider a weighted lattice

Λ′ = {(x,y′) ∈ Zm × (w−1 · Z)n : (x, w · y) ∈ Λ}
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for some positive number w > 0. The optimal choice of w is

w = (αq)

√
n

2πhs

for reconciliation of variances w2 · (hs/n) and (αq)2/(2π) of w · si and ej , respectively.
Let q̂ = q/w =

√
2πhs/n·α−1. The lattice Λ′ has the dimension (m+n) and the volume q̂n. Hence,

the BKZ algorithm outputs a short vector v = (x,y′) of size ∥v∥ ≈ δm+n ·(q̂)
n

m+n which can be reduced
down to 22

√
n log q̂·log δ when m + n =

√
n log q̂/ log δ. Then ⟨x,b⟩ = ⟨y, w · s⟩ + ⟨x, e⟩ is distributed

as a Gaussian centered around zero and of standard deviation σ = ∥v∥ · (αq/
√
2π) by central limit

theorem (CLT). If
√
2πσ < q, then ⟨x,b⟩ can be distinguished from the uniform distribution modulo

q with advantage about 1
23 [8]. Therefore, the LWEn,m,q,α(HWTn(hs)) problem is secure only if

n log q̂

log2 α
≥ 1

4 log δ
,

where q̂ =
√
2πhs/n · α−1.

4.1.2 Weighted Primal Attack

The key idea of the primal attack is the reduction from LWE to unique-SVP over a special lattice
generated by a LWE instance. If the gap between λ1 and λ2 of this lattice is large enough, an attacker
may find the shortest vector using the BKZ algorithm.

For a given LWEn,m,q,α(HWTn(hs)) instance (A,b = As+ e) ∈ Zm×(n+1)
q , construct the lattice

Λ = {v ∈ Zn+m+1 : (A∥Im∥ − b)v = 0 (mod q)}

with the unique shortest vector (s, e, 1). Similarly to the case of dual attack, we consider the weighted
lattice

Λ′ = {(x,y′, z) ∈ Zn × (w−1Z)m × Z : (x, w · y, z) ∈ Λ}.

for the constant w = (αq)
√

(n/2πhs), which contains the unique shortest vector (s, w−1 · e, 1).
Let q̂ = q/w =

√
2π(hs/n) ·α−1. Since the lattice Λ′ has the dimension n+m+1 and the volume

q̂m, we get λ2(Λ
′) ≈

√
m+n+1

2πe q̂
m

m+n+1 by the Gaussian heuristic. The attacker succeeds to find the

unique-SVP solution (s, w−1e, 1) if

λ2(Λ
′)

λ1(Λ′)
≈

√
m+n
2πe q̂

m
m+n

√
m+ n · αq̂

=
α−1

√
2πe · q̂

n
m+n

≥ τ · δm+n

for a constant 0 < τ < 1. To minimize the complexity, an attacker may choose m+n =
√

n log q̂
log δ which

yields q̂
n

m+n · δm+n = 22
√
n log q̂·log δ. Therefore, the LWEn,m,q,α(HWTn(hs)) problem is secure against

the primal attack only if
n log q̂

log2 α̂
≥ 1

4 log δ

for q̂ =
√

2π(hs/n) · α−1 and α̂ = (
√
2πe · τ)α.

The constant τ is a constant that can be experimentally determined. Gama and Nguyen [32] and
Albrecht et al. [7] estimated τ within the range [0.18, 0.48] for some special lattices. Observing those
results, we assume a mild conjecture: τ ≥ 0.242. Then, the weighted dual attack is the best attack in
our cases.
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4.1.3 Weighted Dual and Primal attacks on LWR

Now we return to the LWR problem. For a given LWR instance (A,b = ⌊(p/q) ·Ar⌉) ∈ Zm×n
q × Zm

p ,
we compute

q

p
· b =

q

p
·
⌊
p

q
·Ar

⌉
= Ar+ t

where t ∈ (−q/2p, q/2p]m. We can heuristically assume that the rounding error t seems to be an
uniform random variable on (−q/2p, q/2p]m. Therefore, in the view of attacker, the transformed
instance (A, (q/p) · b) is regarded as a LWE instance, and the attacks on LWE described above can be
applied to (A, (q/p) · b).

Since the variance of uniform random variable on (−q/2p, q/2p] is (q2/12p2), the parameter condi-
tions to make LWR secure against the attacks can be obtained by simply substituting α with p−1

√
π/6.

The following inequalities are the conditions for LWRm,n+ℓ,q,p(HWTm(hr)) to be secure against the
weighted primal and dual attacks, respectively.

• Weighted dual attack:
m log q̂

log2 p̂
≥ 1

4 log δ

for p̂ =
√

6/π · p and q̂ = p
√

12hr/m.

• Weighted primal attack:
m log q̂

log2 p̂
≥ 1

4 log δ

for q̂ = p
√

12(hr/m) and p̂ = (
√

3/π2e · τ−1)p.

4.2 Measuring BKZ Complexity

In this subsection, we investigate and fix the root Hermite factor such that the minimum attack
complexities for given δ exceed 2λ, following the strategies in [9, 17].

For the BKZ algorithm, we review the relations among the root Hermite factor δ, the block size b,
and the time complexity T as follows.

• (pessimistic) T can be estimated as 2cb (about b2cb CPU cycles) in our scheme, where c is some
constant. This is an approximate lower bound of the complexity for a single SVP calculation
using the sieve algorithm [14, 38, 39, 40].

• δ = ((πb)1/b · b/2πe)1/2(b−1).

From this, if we fix the constant c, we can calculate T from a given δ.
According to the constant c, we consider the three cases, c = cC for classical security, c = cQ for

quantum security, and c = cP for very pessimistic view, following the definitions in [9, 17]. We would
explain how to set these constants briefly for self-containedness. On the classical view, the constant
c has been studied for a long time, reaching cC = 0.292 (See in [14, 39]). Quantum attacks make
the constant c decline. The best known constant is achieved by applying Grover’s quantum search
algorithm to those sieve algorithms [40, 38], resulting in decrease of c to cQ = 0.265. Since all the
algorithms require building lists of (4/3)b/2 = 20.2075 vectors, we set cP = 0.2075 as a pessimistic lower
bound of the constant c.

Hence, in the each point of view, to make the BKZ-style attack infeasible for security parameter
λ = 128, we should set the parameters such that the best attack is successful only when δC ≤ 1.003922,
δQ ≤ 1.00367, and δP ≤ 1.00309, respectively. This can be shown in simple calculations visualized in
Table 1.
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Table 1: Our views in BKZ complexity; estimated root Hermite factor δ for BKZ running time 2128

(in cycles).

c T b δ

0.292 2128.1 409 1.003922

0.265 2128 450 1.00367

0.2075 2128 573 1.00309

4.3 Proposed Parameters

Some parameter sets derived from the security estimates against both classical and quantum attacks
are described in Table 2. To satisfy the correctness condition in Theorem 3, we fix the message
modulus t = 2, Hamming weights hs = hr = 64 achieving security guarantee against the exhaustive
search of secrets for λ = 128. We provide several parameter sets with different level of security as in
[9, 17] assuring an overwhelming probability of decryption correctness.

Table 2: Suggested parameter sets for fixed λ = 128 and message bit length ℓ = 128; m and n are
dimensions of LWR and LWE, respectively. q is a large modulus in LWE and LWR, and p is a rounding
modulus in LWR. α is an error rate in LWE.

m n log q p α−1

Challenge 274 303 11 178 419

Classical 361 386 11 186 391

Recommended 383 414 11 184 400

Paranoid 470 504 12 188 389

Challenge Parameters. This parameter set can be a challenge for the state-of-the-art cryptanalysis.
We set the root Hermite factor δ = 1.00488 for setting this parameter set, and it takes more than
2128 time complexity to achieve the root Hermite factor with current best BKZ algorithm when the
dimension of a target lattice is sufficiently high (> 200). However, we do not guarantee the security
of this parameter.

Classical Parameters. This parameter set supplies the 128 bits of security against the classical
attacks, but not enough against quantum attacks.

Recommended Parameters. It provides 128-bit security against all the known quantum attacks.
We recommend to use this parameter for the long-term security.

Paranoid Parameters. This parameter set would remain secure and have 128 bis of security against
quantum attacks even if a remarkable improvement towards solving SVP arises.

Note that the bit size of ciphertexts is very small, and it was not achievable in previous construc-
tions based on the hardness of LWE. The following Table 3 shows the time complexity for solving
LWEn,m,q,α(HWTn(hs)) and LWRm,n,q,p(HWTm(hr)). We considered the best known attacks against
these problems described in the previous subsection. In the table, the column labeled b denotes the
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required block size of the BKZ algorithm to achieve a root Hermite factor which draws the best known
attack successful against LWEn,m,q,α(HWTn(hs)) and LWRm,n,q,p(HWTm(hr)) respectively, and the
values in the columns labeled C, Q, and P shows the bit size of required time complexity in CPU
cycles measured with the constants cC , cQ, and cP , respectively.

Table 3: Attack Complexity of LWE and LWR for the best attack on the suggested parameter
sets according to our analysis. Numbers in bold type point to the security claim for the particular
parameter set. For example, the recommended set provides 128-bit post-quantum security.

Parameter Problem b C Q P

Challenge
LWE 297 - - -

LWR 297 - - -

Classical
LWE 418 131 119 95

LWR 425 133 121 97

Recommended
LWE 456 142 130 103

LWR 460 143 131 104

Paranoid
LWE 590 181 166 132

LWR 595 183 167 133

5 Variants of Our Scheme

In this section, we propose some variants of our public-key encryption scheme introduced in Section
3; its ring variant, IND-CCA secure encryption scheme, (bounded) additive homomorphic encryption
scheme, and symmetric encryption scheme.

5.1 Ring variant of our PKE

Our scheme has a natural analogue based on the harness of Ring-LWE and Ring-LWR problems.
Although the security ground of ring variant of our scheme is weaker than that of original scheme
based on LWE and LWR, the ring variant exploits better key sizes, message expansion rate, and
Enc/Dec speed.

We bring some notations for the description of our ring-based encryption scheme. For an integer
d, let Φd(X) be the d-th cyclotomic polynomial of degree n = ϕ(d). We write the cyclotomic ring and
its residue ring modulo an integer q by R = Z[X]/(Φd(X)) and Rq = Zq[X]/(Φd(X)). We identify
the vectors of Zn

q with the elements of Rq by (a0, ..., an−1) 7→
∑n−1

i=0 aiX
i. For the simplicity of ring

operations, we choose a power-of-two degree in the following description.

• Setupring(1λ) : Choose positive integers t, p, and q satisfying t|p|q. Let n ∈ Z be a power of 2
and Φ(X) = Xn +1 be the 2n-th cyclotomic polynomial. Choose hs, hr less than or equal to n.
Fix an error parameter 0 < α < 1. Output params← (n, hs, hr, t, p, q, α).

• KeyGenring(params) : Generate a random polynomial a ← Rq. Sample a secret polynomial
s ← HWTn(hs), and an error polynomial e ← DGn

αq. Let b = −a · s + e ∈ Rq. Output the
public key pk← (a, b) ∈ R2

q and the secret key sk← s ∈ R2.
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• Encringpk (m) : For a message m ∈ Rt = R/tR, choose r ← HWTm(hr), and compute a′ ← a · r
and b′ ← b · r. Output the vector

c← (c1, c2) ∈ R2
p,

where c1 ← ⌊(p/q) · a′⌉ ∈ Rp and c2 ← (p/t) ·m+ ⌊(p/q) · b′⌉ ∈ Rp.

• Decringsk (c) : For a ciphertext c = (c1, c2), compute and output the polynomial

m′ ←
⌊
t

p
(c1 · s+ c2)

⌉
(mod t) ∈ Rt.

Note that all the polynomial multiplications with s or r required in key generation, encryption,
and decryption phases can be done very efficiently by shifting and adding vectors.

5.1.1 Parameter Consideration

Since the best known attacks do not utilize the ring structure so far, we analyze the hardness of
Ring-LWE as an LWE problem without ring structure as in the previous section. Setting hs = hr = 64,
we can achieve our parameter set: we recommend to use the parameter

n = 512, log q = 12, p = 128, α−1 = 957 (1)

to resist all known quantum attacks for the security parameter λ = 128. For the Challenge and
Classical parameter sets, since n should be a power of two, just use the same set as in the condition
(1) with q = 211.

5.1.2 Hardness of Ring-LWR

There have been many progress in studying the hardness of the ring-LWR problem. Banergee et al. [13]
proved that the decision version of the ring-LWR problem is harder than that of the ring-LWE problem
for large modulus. Bogdanov et al. [16] extended the scope of the modulus, but the extension holds
only for the search version of the ring-LWR problem. They stated that the search version of the ring-
LWR problem is not easier than that of the ring-LWE problem when the number of samples is bounded
with a flexible upper bound in Theorem 3 in [16].

5.2 IND-CCA Secure Encryption Scheme

Following the hybrid conversion technique [31], we can easily convert our IND-CPA secure encryption
scheme into an encryption scheme that is IND-CCA secure in the Random Oracle Model (ROM). In
this subsection, in particularly, we introduce an encryption scheme that is IND-CCA secure in the
Quantum Random Oracle Model (QROM) following the conversion in [59].

We define three hash functions G : Zℓ
t → {0, 1}d, H : {0, 1}∗ → R, and H ′ : Zℓ

t → Zℓ
t, where {0, 1}d

is a message space of the IND-CCA secure encryption scheme and R is a set of vectors r ∈ {0,±1}m
of Hamming weight hr. Our IND-CCA public-key encryption scheme is a hybrid encryption scheme
of the IND-CPA public-key encryption scheme in Section 3 and the One-Time pad as a symmetric
encryption scheme required for the conversion.

• Setuphy(1λ): Take params = (m,n, hs, hr, ℓ, t,p, q, α) ← Setup(1λ). Choose hash functions G :
Zℓ
t → {0, 1}d, H : {0, 1}∗ → R, and H ′ : Zℓ

t → Zℓ
t.

• KeyGenhy(params): Run and output the secret and public keys sk = S, pk = (B∥A) ←
KeyGen(params).
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• Enchypk (m): For a message m ∈ {0, 1}d, choose δ ← Zℓ
t and compute

c1 ← G(δ)⊕m,

v ← H(δ∥c1),
c2 ← ((p/t) · δ +

⌊
(p/q) ·BTv

⌉
,
⌊
(p/q) ·ATv

⌉
)

c3 ← H ′(δ).

Then, output the ciphertext c = (c1, c2, c3) ∈ {0, 1}d × Zn+ℓ
p × Zℓ

t.

• Dechysk (c): Compute δ′ ← Decsk(c2) and v′ ← H(δ′∥c1). If c2 = Encpk(δ
′;v′) and c3 = H ′(δ′),

compute and output M ′ ← G(δ′)⊕ c1. Else, abort and output ⊥.

Here, Encpk(δ
′;v′) denotes the encryption of δ′ with random vector v′, i.e., Encpk(δ

′;v′) = ((p/t) · δ′+⌊
(p/q) ·BTv′⌉ , ⌊(p/q) ·ATv′⌉).
Remark 2. Assuming the hardness of LWE and LWR, Our hybrid public-key encryption scheme
(Setuphy,KeyGenhy,Enchy,Dechy) is IND-CCA secure by the Theorem 4 in [59] since the original
scheme in Section 3 satisfies that the min-entropy of Encpk(0) is bounded by ω(log λ) for every pk with
overwhelming probability.

5.3 Additive Homomorphic Encryption Scheme

Our scheme in Section 3 can be naturally seen as an additive homomorphic encryption supporting the
bounded number of additions together with the following addition procedure:

• Add(c1, · · · , ck): Output
∑k

i=1 ci through componentwise modular p addition.

Corollary 1 (Correctness). When the inequality

η · αp ·
√

hr +
1

2
+ ξ · hs ≤

p

2tk

holds for some positive reals η and ξ such that exp(−πη2) and (e · (1/2 − ξ))hs are negligible, our
LWR-based additive homomorphic encryption scheme supporting k additions works correctly.

Proof. This is directly from Theorem 3, by the triangle inequality.

5.3.1 Parameter Consideration

For our additive homomorphic encryption scheme, we set the message size to be 128 bits, and the
maximum number of allowed additions among fresh ciphertexts to be 100. Setting hs = hr = 64, we
achieve our recommended parameter set as follows to resist all known quantum attacks for λ = 128:

m = 728, n = 748, p = 19201, α−1 = 37565. (2)

Yet there have been many proposals on the additive homomorphic encryption [47, 45, 35], and [24],
some of them are too heavy due to the large parameters and the others does not provide quantum
security. Hence, our scheme can be considered as a good candidate of quantum-secure additive homo-
morphic encryption scheme.
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6 Implementation

We implemented our encryption schemes: Lizard and its ring variant called Ring-Lizard. We fol-
low the recommended parameters from Table 2 and the condition (1) for the 128-bit security. The
subsection 6.1 and 6.2 give comparisons of our post-quantum IND-CPA and IND-CCA schemes with
RSA/NTRU and CHK+ [22], respectively.

All the implementations of our schemes in this paper were written in C++, and performed on
Macbook Pro with an Intel dual-core i5 running at 2.9 GHz processor without parallelization. The
performance of our schemes Lizard and Ring-Lizard in Table 5, 6, and 7 are reported as a mean
value across 1000 measurements. The measurements of RSA and NTRU schemes, on a PC with Intel
quad-core i5-6600 running at 3.3GHz processor, are taken from the website ECRYPT Benchmarking
of Cryptographic Systems [1]. The implementation in [22] were performed on Macbook Pro with CPU
2.6GHz Intel Core i5 without parallelization.

Since the algorithms of Lizard and Ring-Lizard are very simple, the code sizes of the encryption
and decryption algorithms are greatly small, about 33 lines and 25 lines of C++ code, respectively.

6.1 Post-Quantum 128-bit IND-CPA Security

Like the ElGamal encryption scheme [27], our IND-CPA secure encryptions themselves are useful prim-
itives, and can be easily converted into an IND-CCA secure schemes using the conversion techniques
such as Fujisaki-Okamoto conversion. Thus, we implemented Lizard and Ring-Lizard, and compare
the results to those of NTRU and RSA. Our schemes would be set with the recommended parameters
to achieve 128-bit post-quantum security, and the message sizes of Lizard and Ring-Lizard are 128
bits and 64 bytes, respectively.

We compare our performances with RSA-3072 that is known to achieve classical 128-bit security [3].
2 For NTRU, we compare our scheme to the 192-bit set EES593EP1 since the 128-bit set EES439EP17
is attacked with 2112 complexity using a quantum computer [28]. The message size of RSA-3072 and
NTRU in the implementations is 59 bytes.

We present the sizes of ciphertexts, public keys, and private keys in Table 4. The ciphertext size
of Lizard is comparable to that of RSA-4096 and is 63 percents of that of NTRU EES593EP1. The
key sizes of Lizard are large among them because of the lattice structure, but we can reduce the key
sizes adopting the ring structure: the public key size of Ring-Lizard is comparable to those of NTRU
and RSA. The private key size of Ring-Lizard is comparable to that of NTRU and is only 2 percent
of that of RSA.

Table 4: Parameter sizes of standalone PKE schemes in bytes. (∗RSA-3072 provides only classical
128-bit security, and is insecure against attacks using a quantum computer.)

Encryption Ciphertext Public Key Private Key
Scheme (bytes) (bytes) (bytes)

(RSA-3072∗) (384) (384) (3072)

NTRU 816 820 87

Lizard 510 67424 9926

Ring-Lizard 935 784 72

2Note that Shor’s algorithm [57] shows that integer factorizing is efficient on a quantum computer so that RSA can
be defeated by constructing a large quantum computer.
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Table 5: Performance of standalone PKE schemes; the numbers of cycles per each operation. (∗RSA-
3072 provides only classical 128-bit security, and is insecure against attacks using a quantum com-
puter.)

Encryption KeyGen Enc Dec
Scheme (cycles) (cycles) (cycles)

(RSA-3072∗) (614,546,420) (116,894) (8,776,864)

NTRU 785,590 80,558 82078

Lizard 37,658,918 22,928 18,844

Ring-Lizard 230,425 37,366 15,569

In Table 5, the performances of Lizard, Ring-Lizard, NTRU, and RSA are represented by the
number of cycles per operation. Lizard has the best record in encryption speed among the four
encryption schemes, more than 3 and 5 times faster than NTRU and RSA, respectively. Note that, for
Lizard, it takes only 7 microseconds for an encryption operation and 6 microseconds for a decryption
as in Table 6. The key generation of Ring-Lizard only takes 230425 cycles and less than 0.1 ms, which
is the fastest result among the four schemes. Decryption of Ring-Lizard also has the best performance;
takes only 5 microseconds and is about 5 times faster than NTRU.

Table 6: The running time of Lizard and Ring-Lizard for each operation in milliseconds.

Encryption KeyGen Enc Dec
Scheme (ms) (ms) (ms)

Lizard 11.637 0.007 0.006

Ring-Lizard 0.074 0.012 0.005

6.2 Post-Quantum 128-bit IND-CCA Security

In this subsection, we consider Lizard to be plugged in Targhi-Unruh conversion for achieving prov-
able post-quantum IND-CCA security and present the implementation results. Note that the NTRU
encryption was proved to achieve IND-CCA security in ROM only, and would be defeated in QROM.

For the Targhi-Unruh CCA conversion in QROM, the message sizes of an IND-CPA secure PKE
used in the conversion should be equal to the hash output size of the collision-resistant hash function
H ′, and the message sizes of a resulting hybrid IND-CCA secure PKE should be equal to the output
size of the one-way hash function G, respectively. Since the collision-resistant (resp. one-way) hash
output size is required to be 3λ (resp. 2λ) to achieve λ-bit post-quantum security, the required message
sizes of IND-CPA secure PKE and hybrid IND-CCA secure PKE would be 384 bits and 256 bits when
λ = 128. Thus, for a fixed security parameter λ = 128, we implemented the IND-CPA secure Lizard
of the message size 384 bits, and the IND-CCA secure conversion of Lizard of the message size 256
bits.

We compare our results to those of PKE schemes in [22], say CHK+, in Table 7, which also
suggested a CPA-secure PKE scheme and converted it to obtain post-quantum 128-bit IND-CCA
security by using the Targhi-Unruh conversion technique. Before conversion, the encryption speed of
Lizard is more than 30 times faster than that of the IND-CPA secure CHK+, and is about 26 times
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faster when converted into IND-CCA secure schemes. The decryption speed of Lizard is more than 5
times faster than that of CHK+, and is about 12 times faster when converted into IND-CCA secure
schemes. The ciphertext sizes in both CPA and CCA versions are comparable to those of CHK+.

Table 7: Performance comparison of Lizard and CHK+ [22] for both IND-CPA and IND-CCA versions;
CCA-CHK+ is the Targhi-Unruh conversion of CHK+ which is secure in Quantum Random Oracle
Model.

IND-CPA Enc Dec Cpxt
Encryption (ms) (ms) (bytes)

Lizard 0.010 0.020 745

CHK+ 0.314 0.106 770

IND-CCA Enc Dec Cpxt
Encryption (ms) (ms) (bytes)

CCA-Lizard 0.012 0.025 778

CCA-CHK+ 0.313 0.302 804
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[58] D. Stehlé and R. Steinfeld. Making ntru as secure as worst-case problems over ideal lattices. In An-
nual International Conference on the Theory and Applications of Cryptographic Techniques, pages 27–47.
Springer, 2011.

[59] E. E. Targhi and D. Unruh. Quantum security of the fujisaki-okamoto and oaep transforms. Cryptology
ePrint Archive, Report 2015/1210, 2015. http://eprint.iacr.org/2015/1210.

http://eprint.iacr.org/2010/137
http://eprint.iacr.org/2015/1210

	Introduction
	Preliminaries
	Notation
	Distributions
	Learning with Errors
	Learning with Rounding
	Ring variants of LWE and LWR

	LWR-Based Public-key Encryption Scheme
	The Construction
	Correctness and Security

	Analysis and Parameter Selection
	Attacks
	Weighted Dual Attack
	Weighted Primal Attack
	Weighted Dual and Primal attacks on LWR

	Measuring BKZ Complexity
	Proposed Parameters

	Variants of Our Scheme
	Ring variant of our PKE
	Parameter Consideration
	Hardness of Ring-LWR

	IND-CCA Secure Encryption Scheme
	Additive Homomorphic Encryption Scheme
	Parameter Consideration


	Implementation
	Post-Quantum 128-bit IND-CPA Security
	Post-Quantum 128-bit IND-CCA Security


