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Abstract. SKINNY is a new lightweight tweakable block cipher family
proposed by Beierle et al. at CRYPTO 2016. SKINNY has 6 main vari-
ants where SKINNY-n-t is a block cipher that operates on n-bit blocks
using ¢-bit tweakey (key and tweak) where n = 64 or 128 and t = n, 2n,
or 3n. In this paper, we present impossible differential attacks against
reduced-round versions of all the 6 members of the SKINNY family in
the single-tweakey model. More precisely, using an 11-round impossi-
ble differential distinguisher, we present impossible differential attacks
against 18-round SKINNY-n-n, 20-round SKINNY-n-2n and 22-round
SKINNY-n-3n (n = 64 or 128). To the best of our knowledge, these are
the best attacks against these 6 variants in the single-tweakey model.
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1 Introduction

SKINNY [3] is a Substitution Permutation Network (SPN) family of tweakable
lightweight block ciphers proposed at CRYPTO 2016 by Beierle et al. It supports
two block lengths n = 64 or 128 and for each of them, the tweakey ¢ can be either
n,2n or 3n. This family of ciphers inherits the recent design trend of having an
SPN cipher with suboptimal internal components. More precisely, SKINNY uses
a light tweakey schedule along with a round function that consists of a compact
S-box and a sparse diffusion layer. However, these suboptimal components are
arranged such that tight security bounds are guaranteed. Indeed, using Mixed
Integer Linear Programming (MILP), the designers of SKINNY provide high se-
curity bounds against differential /linear attacks for all the SKINNY versions in
both the single-tweakey and related-tweakey models. Furthermore, SKINNY has
a good performance for round-based ASIC implementation as it requires a very
small area using serial ASIC. Moreover, the designers of SKINNY show that its
ASIC threshold implementation is very favorable to AES-128 threshold imple-
mentation [5]. Providing compact implementation and a high level of security
with the existence of the tweakey was feasible by generalizing the Superposition
TWEAKEY (STK) construction [7]. Lastly, being a tweakable block cipher al-
lows SKINNY to be employed into a higher level of operating modes such as
SCT [11].



The designers of SKINNY presented 16-round attacks against SKINNY-n-n
(n = 64 or 128) in the single-tweakey model utilizing 11-round impossible dif-
ferential distinguisher. To provoke public cryptanalysis of SKINNY, they have
announced a competition [2] against two particular variants of SKINNY, namely,
SKINNY-64-128 and SKINNY-128-128, in which they indicated that the best
known attack against SKINNY-64-128, in the single-tweakey model, is 18 rounds.
As a result, a handful of third-party analysis have been published [10,12,1]. How-
ever, these attacks are in the arguably weaker attack model, the related-tweakey
model, in which the attacker is assumed to have the ability to query the encryp-
tion oracle with keys that have specific relations.

In this paper, we present impossible differential attacks against reduced-round
versions of all the 6 variants of SKINNY, namely, SKINNY-n-n, SKINNY-n-2n
and SKINNY-n-3n (n = 64 or 128). All these attacks utilize the same 11-round
impossible differential distinguisher. Then, we exploit the fact that the tweakey
additions are only performed on the first two rows of the state, along with the
MixColumns operation properties and the tweakey schedule relations, to extend
this distinguisher by 7, 9, 11 rounds to launch key-recovery attacks in the single-
tweakey model against 18, 20, 22 rounds of SKINNY-n-n, SKINNY-n-2n and
SKINNY-n-3n (n = 64 or 128), respectively. Specifically, we extend the design-
ers’ 11-round impossible differential distinguisher by 3, 3 and 3 rounds above it
and 4, 6 and 8 rounds below it to launch 18, 20 and 22 rounds attacks against
SKINNY-n-n, SKINNY-n-2n and SKINNY-n-3n (n = 64 or 128), respectively.
The time, data and memory complexities of our attacks are presented in Table
1.

Table 1. The time, data and memory complexities of our attacks.

Block cipher version # of rounds Time Data Memory
SKINNY-64-64 18 2571 14752 258.52
SKINNY—128—128 18 2116494 292.42 2115442
SKINNY-64-128 20 g121.08 24769 27469
SKINNY-128-256 20 9245.72 292:1 Q1471
SKINNY—64—192 29 2183497 247.84 274484
SKINNY—128—384 29 2373448 292.22 2147422

The rest of the paper is organized as follows. Section 2 provides the notations
used throughout the paper and a brief description of SKINNY . In section 3, we
present the impossible differential distinguisher used in our attacks. The details
of our attacks are presented in sections 4, 5 and 6, respectively. Finally, the paper
is concluded in section 7.



2 Specifications of SKINNY

The following notations are used throughout the rest of the paper:

— TK;: The round tweakey used in round i.

— ETK;: The equivalent round tweakey used in round 1.

— 2;: The input to the SubCells (SC) operation at round .

— y;: The input to the AddRoundConstantTweakey (AK) operation at round
i.

— y; The input to the AddRoundConstantEquivlant Tweakey (A EK) operation
at round i.

— z;: The input to the ShiftRows (SR) operation at round i.

— w;: The input to the MixColumns (MC) operation at round i.

i[7]: The 5" cell of z;, where 0 < j < 16.

i[7+--1]: The cells from j to [ of z;, where j <.

— x;[4,1]: The cells j and [ of x;.

i[7]1[k]: The k" bit of the j™* cell of z;.

i[7]{k,l,m}: The XOR of bits k,l, m of cell j of ;.

ilcol : j]: The four cells in column j, e.g., z;[col : 0] = x;]0,4, 8,12].

— 2;[SR™[col : j]]: The four cells in column j after the SR operation is
applied, e.g., z;[SR™*[col : 0]] = ;]0,7,10,13].

— xilcol : §][k,1]: The j** and I*" cells of column j of z;, e.g., z;[col : 0][0,1] =

— Az;, Ax;[j]: The difference at state a; and cell z;[j], respectively.

[
8] 8

[
8 8 8

The SKINNY family supports two block lengths of n = 64 and 128 bits. In both
versions, the internal state IS is represented as a 4 x 4 array of cells such that
one cell represents a nibble (when the block length n = 64) and a byte (when
the block length n = 128). While classical block ciphers have two inputs, namely
the plaintext and the key, and output the ciphertext, SKINNY is a tweakable
block cipher [9,7] that uses an input called the tweakey instead of the key. Then,
the user has the freedom to choose which part of the tweakey to be assigned to
the key and which part to be assigned to the tweak. This family of block ciphers
with block length n deploys three main tweakeys of lengths ¢t = n bits, t = 2n
bits and ¢t = 3n bits. Similar to the state, the tweakey state can be represented
as z 4 x 4 arrays of cells, i.e., we have arrays TK1 (in case z = 1), TK1 and TK2
(in case z = 2), TK1, TK2, and TK3 (in case z = 3).

The encryption operation proceeds as follows. First, the plaintext m = mg|lm;
I - - fm14]/m15s (where |m;|= n/16 = s-bit) is loaded into the internal state
IS row-wise as depicted in Fig. 1. Then, the tweakey input tk = tkol|tky||- -
ltk162—1 (where |tk;| is s-bit as in the internal state) is loaded row-wise such
that TK1[i] = tk; for 0 < i < 15 (in case z = 1), TK1[i] = tk;, TK2[i] = tki6ti
for 0 < i <15 (in case z = 2) or TK1[i| = tk;, TK2[i]| = thkie+i, TKS3[i] = tksoyi
for 0 < i <15 (in case z = 3). Finally, the internal state is updated by applying
the round function r times, where the number of rounds r depends on the block
length and the tweakey size as shown in Table 2.



Table 2. Number of rounds for SKINNY-n-t, with n-bit state and t-bit tweakey
state.

Block size n Tweakey size t
n 2n 3n
64 32 36 40
128 40 48 56

As shown in Fig. 1, in each round, SKINNY applies five different operations,
namely, SubCells, AddConstants, AddRoundTweakey, ShiftRows and MixColu-
mns. The cipher does not apply whitening tweakeys. Consequently, parts of the
first and last rounds do not add any security. In what follows, we describe the
five different operations that are employed in each round:
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Fig. 1. The SKINNY round function
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— SubCells (SC): A nonlinear bijective mapping applied on every cell of the
internal state, where 4-bit (in case n = 64) or 8-bit (in case n = 128) S-boxes
are applied.

— AddConstants (AC): A 4 x 4 round constant is XORed to the state. These
round constants are generated using a 6-bit affine LFSR. The details of
generating the round constants can be found in [3].

— AddRoundTweakey (ART): The first and second rows of all the tweakey
arrays are XORed to the state. More precisely, for 0 < ¢ < 7, we have:

e [S[i] = IS[i] ® TK1[i], when z =1,
o IS[i] = IS[i]| & TK1[i] & TK2li], when z = 2,
o IS[i] = IS[i| & TK1[i] & TK2li| & TKS3[i], when z = 3.

— ShiftRows (SR): The rows of the state are rotated as in AES but to the
right, i.e., the following permutation P = [0,1,2,3,7,4,5,6,10,11,8,9,13, 14
,15,12] is applied.

— MixColumns (MC): Each column in the state is multiplied by a binary matrix
M, where M and its inverse M ! are given as follows:

1011 0100
1000 4 0111
M: 7J\4 =
0110 0101
1010 1001



Tweakey Schedule. As depicted in Fig. 2, the tweakey arrays are updated
through tweakey schedule as follows. First all the tweakey arrays, i.e., TK1 (when
z=1), TK1, TK2 (when z = 2), or TK1, TK2, TK3 (when z = 3) are permuted
using a permutation Pr such that Pr = [9,15,8,13,10,14,12,11,0,1,2,3,4,5,6
,7]. Finally, each cell in the first and second rows of TK2, TK3 (when z = 2 or
z = 3) is updated using the LFSR operations shown in Table 3, where x¢ is the
LSB of the cell.

Table 3. The SKINNY LFSR used in the tweakey schedule, where s denotes
the cell size in bits.

TK |s|LFSR
TK2|4|(zs || 22 || #1 || o) = (w2 || @1 || wo || w5 & x2)

8|(x7 [l we |l @5 || xa || @3 || @2 || @1 || ®o) = (we || @5 || za || @3 || @2 || 21 || @0 || 27 & @5)
TK3|4|(zs || z2 || 1 || w0) — (mo ® @3 || @3 || z2 || 1)

8|(x7 [l we |l @5 || xa || 3 || @2 || @1 || ®o) = (w0 @ w6 || 7 || @6 || @5 || w4 || @5 || x2 || 1)

oj12]3 LFSR
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Fig. 2. The tweakey schedule

In our attack, we use AddKey (AK) operation which compromises the AC and
ART operations. Moreover, we swap the linear operations AK, MC o SR, and
hence we use the equivalent subtweakey ETK instead of the subtweakey TK such
that ETK,+1 = MC o SR(TK,).

3 An Impossible Differential Distinguisher of SKINNY

Impossible differential cryptanalysis was proposed independently by Biham, Biry-
ukov and Shamir [4] and Knudsen [8]. It exploits a (truncated) differential char-
acteristic of probability exactly 0 and thus acts as a distinguisher. Then, this
distinguisher is turned into a key-recovery attack by prepending and/or append-
ing additional rounds, which are usually referred to as the analysis rounds. The
keys involved in the analysis rounds which lead to the impossible differential are
wrong keys and thus are excluded. Miss-in-the-Middle is the general technique



used to construct impossible differentials, where a cipher E is split such that
E = FE5 0 Fq, and we try to find two deterministic differentials, the first one
covers F and has the form AJ — A, and the second covers E; ! and has the
form A — A(. When the intermediate differences Ay, AC do not match, the
differential Aj — AP that covers the whole cipher E holds with zero probability.

The designers of SKINNY exhaustively searched for the longest truncated im-
possible differential that has one active cell in both A§ and AB. They found 16
such truncated impossible differentials where each one covers 11 rounds. They
exploited one of these 16 impossible differentials, illustrated in Fig. 3, to attack
16-round SKINNY-n-n (n = 64 or 128). This distinguisher, which we reuse in
our attacks, states that a pair of messages that has only one active cell at x3[12]
cannot have only one active cell at x14[8]. The reason is that the active cell
Ax3[12] results in 4 active cells and 12 unknown cells after 6 rounds, i.e., at
state xg. From the other side, the active cell Ax14[8] results in 4 inactive cells,
5 unknown cells and 7 active cells at state Yy contradicting with the forward
differential at Ayo[15].

Our attacks depend on the following proposition:

Proposition 1. (Differential Property of the S-box) Given two nonzero differ-
ences Ai and Ao in F16 or F256, the equation: S(x) 4+ S(x + Ai) = Ao has one
solution on average. This property also applies to S™1.

All our attacks use the same 11-round distinguisher, have 3 analysis rounds
on its top. They, however, differ in the analysis rounds appended below it. In
what follows, we describe our attack against SKINNY-64-128 in details and then
mention only the main differences for the other attacks.

4 Impossible Differential Key-recovery Attack on
20-round SKINNY-n-2n (n = 64 or 128)

4.1 Impossible Differential Key-recovery Attack on SKINNY-64-128

In this section, we present the first published attack on 20-round SKINNY-64-
128 in the single-tweakey model. We use the notion of data structures to generate
enough pairs of messages to launch the attack. In the first three rounds, we use
the equivalent tweakey ETK instead of the tweakey TK. Therefore, the first
round has no tweakey, and hence we can build our structures at y,l Then, we
propagate it backward linearly through MC~', SR™!, and SC™' to obtain the
corresponding plaintexts. Our utilized structure takes all the possible values in
7 nibbles y/1 [3,4,5,6,9,11,14] while the remaining nibbles take a fixed value.
Thus, one structure generates 24%7 x (24X7 — 1)/2 ~ 25% possible pairs. Hence,
we have 2° possible pairs of messages satisfying the plaintext differences. In
addition, we utilize the following pre-computation tables in order to efficiently
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Fig. 3. Impossible differential distinguisher of SKINNY

extract /filter the (equivalent) tweakey nibbles corresponding to the active state
nibbles involved in the analysis rounds, where the table H;{(E)T K;[S|} (also re-
ferred to as H;) is used to extract/filter the (equivalent) tweakey used in round
i at cells belonging to the set S and H* is computed once and used to extract
all the tweakey nibbles of the last analysis round and those corresponding to
column 1 in round 18.

H{{TK1g[2,6]}: For all the 22 possible values of Azy7[SR™"[col : 2][0,1]],
217[SR™col : 2]], compute Ayig[col : 2], y1s[col : 2]. Then, store Azi7[SR™[col :
2][0,1]], z17[SR™*[col : 2], y1s[col : 2][0, 1] in H; indexed by Ays[col : 2], y1g]col :
2][2,3]. Hy has 22* rows and on average about 224/224 = 1 value in each row.

Ho{TK1g[0,4]}: For all the 2% possible values of Az;7[SR™"[cal : 0][0, 2, 3]],
217[SR™[col : 0]], compute Ayig[col : 0], y1s[col : 0]. Then, store Azi7[SR™[col :
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Fig. 4. Impossible differential attack on 20-round SKINNY-n-2n
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0][0,2,3]], z17[SR™'[col : 0]],y1s]col : 0][0,1] in Hy indexed by Ayiglcol : 0],
y1s[col : 0][2,3]. Hz has 224 rows and on average about 228/224 = 2% values in
each row.

H3{TK1g[3,7]}: For all the 2% possible values of Azi7[SR™"[col : 3][0,1,3]],
217[SR™*[col : 3]], compute Ayig[col : 3], y1s]col : 3]. Then, store Az7[SR™*[col :
3][0,1,3]], z17[SR™'[col : 3]],y1s]col : 3][0,1] in Hz indexed by Ayiglcol : 3],
y1slcol : 3][2,3]. H3 has 224 rows and on average about 22%/224 = 2% values in
each row.

H4{TK17[0,4]}: For all the 22° possible values of Azg[SR™'[col : 0][0]],
216[SR™*[col : 0]], compute Ayiz[col : 0][0,1,3], yiz[col : 0]. Then, store Azg
[SR™Y[col : 0][0]], z16[SR™*[col : 0]], y17[col : 0][0, 1] in Hy indexed by Ayiz[col :
0][0, 1, 3], y17[col : 0][2,3]. Hy has 22 rows and on average about 229/220 = 1
value in each row.

Hy{T K72, 3,6]}: From the properties of the MixColumns, we have Az5[0] =
Az16[8] = Awi6[12] = Awys[8]. Therefore, for all the 240 possible values for
Ax16[8], I16[8, 12], Aw16[2, 7], W16[2, 6, 14], CC17[3, 11], Compute w16[10, 15], Ay17[2
,3,6,10, 11, 14], y17[2, 3,6, 10, 11, 14, 15] such that y17[15] = SC([w1s[15]@z17[3]),
from the MixColumns operation. Then, store Azg[SR™*[col : 2][0,2]], Azig[
SR~ [col : 3][1,3]], z16[SR *[col : 2]], z16[SR™" [col : 3][3]], v17[2,3,6] in Hs
indexed by Ayi7[2,3,6,10, 11,14],y17[10, 11, 14, 15]. H5 has 2%° rows and on av-
erage about 240/24 = 1 value in each row.

Hg{TK17[1,5]}: For all the 224 possible values of Azi6[SR™"[col : 1][0, 3]], z16
[SR™Y[col : 1]], compute Ayy7[col : 1][0,1, 3], y17[col : 1]. Then, store Azg[SR™*
[col = 1][0,3]], z16[SR™*[col : 1]],y17[col : 1][0,1] in Hg indexed by Ayiz[col :
1][0,1, 3], y17[col : 1][2,3]. Hs has 2%° rows and on average about 224/220 = 24
values in each row.

H7{TK1g[0]}: For all the 22° possible values of Az5[SR™"[col : 0][2]], 215[SR ™"
[col : 0]], compute Ayiglcol : 0][0,2,3], yig[col : 0]. Then, store Azi5[SR™*[col :
0][2]], z15[SR™*[col : 0]], y16[col : 0][0] in H indexed by Ayis[col : 0][0,2, 3], yi6[
col : 0][2, 3]. Hy has 2%° rows and on average about 22 /22° = 1 value in each row.

Hg{TK1g[2]}: For all the 22° possible values of Az5[SR™"[col : 2][0]], 215[SR ™"
[col : 2]], compute Ayiglcol : 2][0,1,3], yig[col : 2]. Then, store Azi5[SR™*[col :
2][0]], z15[SR™*[col : 2]], y16[col : 2][0,1] in Hg indexed by Ayss|col : 2][0,1, 3], y16[
col : 2][2, 3]. Hs has 22° rows and on average about 22 /220 = 1 value in each row.

Hg{TK/5[2]}: From the properties of the MixColumns, we have Ax5[2] =
Ax15[10] = Awi5[14] = Awi4[10]. Therefore, for all the 2* possible differ-
ences for Axy5[2,10], 2% possible values of z15[2,10] and 2% possible values of
TKi5[2], compute Az;5(2,10], 215[2, 10]. Then, store Az15[2] in Hy indexed by



Az15[2,10], 215[2, 10], TK15[2]. Hg has 220 rows and on average about 216/220 =
274 values in each row.

H1o{ETK{[4,11,14]}: For all the 2'? possible differences of Aw,[5,9,13],
we have only 2% valid differences that have exactly one difference in Ayy[13]
and 3 zero differences in Ay;[l, 5,9]. Therefore, for all the 2% possible differ-
ences of Aw[5,9,13], 212 possible values of w1 [5,9, 13] and 28 possible values of
ETK,[4,14], compute Ay, [4,14],y,[4,14], Az [11], z,[11]. Then, store Aw[5,9,
13], w1 [5,9,13], 21[11] in Hyo indexed by Ay, [4, 14], y,[4, 14], Az [11], ETK [4, 14].
Hi has 228 rows and on average about 224/228 = 2% values in each row.

H{1{ETK{[3,6,9]}: For all the 2'? possible differences of Aw(3,7,11], we
have only 2% valid differences that have exactly one difference in Ay,[7] and 3
zero differences in Ay,[3,11,15]. Therefore, for all the 24 possible differences of
Awn [3,7,11], 2'2 possible values of w1 [3,7,11] and 2% possible values of ETK; [6],
compute Ay, [6],y,[6], Az1[3, 9], 21[3,9]. Then, store Aw:[3,7,11],w1[3,7,11], 1]
3,9] in Hy; indexed by Az [3,9], Ay, [6], y1[6], ETK,[6]. Hy; has 22° rows and on
average about 229/220 = 1 value in each row.

H19{TKg[1]}: For all the 2% possible values of Az14[1], z16[1], compute Ay;¢[1]
,716[1]. Then, store y16[1] in Hyz indexed by Ayie[l]. Hiz has 2% rows and on
average about 28/2% = 2 values in each row.

H13{ETK{[1,5]}: For all the 2'® possible values of Aw; [6], w1 [1, 6], ETK;[1, 5]
(ETK:\[1] = ETK,[5], see Appendix A), compute Ay;[5],4;[1,5]. Then, store
Aw, [6],w1[1,6] in Hys indexed by Ay, [5],y;[1,5],ETK; [1]. Hy3 has 2'6 rows
and on average about 216/216 = 1 value in each row.

H14{ETK>5[7,10,13]}: From the properties of the MixColumns, we have
Awsl4] = Aws[8] = Aws[12] = Ays[12]. Therefore, for all the 24 possible differ-
ences for Aws[4,8,12], 2!2? possible values of ws[4,8,12] and 22 possible values
of ETK;[7,10,13], compute Ays,[7,10,13],1,[7,10,13]. Then, store Ay,[10] in
Hy4 indexed by Ayy[7,10,13], yo[7, 13], ETK,[7,10,13]. Hy4 has 232 rows and on
average about 228/232 = 274 value in each row.

H*: For all the 232 possible values of Az[SR™[col : j]], zi[SR™*[col : j]], com-
pute Ayiii[col : j],yir1[col : j]. Then, store Az [SR™'[col : j]],z[SR™[col :
Jl), yit1lcol = 4][0,1] in H* indexed by Ay;i1[col : j],yit1[col : j][2,3]. H* has
224 rows and on average about 232/224 = 2% values in each row.

Instead of guessing the tweakey nibbles involved in the analysis rounds as in the
general approach of impossible differential attacks, we use the above mentioned
pre-computation tables to deduce the tweakey nibbles that lead a specific pair of
plaintext/ciphertext to the impossible differential and thus should be excluded.
The details of our attack are as follows:
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1. Generate 2™ structures as described above. Therefore, we have 2™+55 pairs
of messages generated using 2™+2® messages. Then, ask the encryption or-
acle for their corresponding ciphertexts and decrypt them partially over
MC ', SR~ to compute z1g.

2. Determine the number of possible values of TK;9[0 : 7] that satisfy the last
round by performing the following steps for all the message pairs:

(a) Access H* fori = 18,5 = 0 and compute TKj9[0, 4] such that TK;9[0, 4] =
Y10]0, 4]B219[0, 4]*. Therefore, we have 28 possible tweakeys for TK19|0, 4].

(b) Access H* fori = 18, j = 1 and compute TKig9[1, 5] such that TK;9[1,5] =
y10[1,5] @ 219[1,5]. Therefore, we have 28+8=16 possible tweakeys for
TK19[0,1,4,5].

(¢) Access H* fori = 18, j = 2 and compute TK;9[2, 6] such that TK9[2,6] =
Y10[2, 6] ® 219[2, 6]. Therefore, we have 21678=24 possible tweakeys for
TK10[0,1,2,4,5,6].

(d) Access H* fori = 18, j = 3 and compute TK19[3, 7] such that TK9[3,7] =
Y19[3,7] @ 210[3,7]. Therefore, we have 224+8=32 possible tweakeys for
TKlg[O : 7]

3. Determine the number of possible values of TK;g[0 : 7] that satisfy the next
to last round by performing the following steps for all the message pairs and
remaining tweakeys that satisfy the path until now:

(a) Access Hy and compute TKjg[2,6] such that TKis[2,6] = y15(2,6]
218[2, 6]. Therefore, we have 232 possible tweakeys for TK19[0 : 7], TK1s[2
,06].

(b) Access Hy and compute TKig[0,4] such that TKis(0,4] = y15[0,4] &
218[0,4]. Therefore, we have 232t4=36 possible tweakeys for TKjg[0 :
7],TK5[0,2,4,6].

(¢) Access Hs and compute TKjs[3,7] such that TKig[3,7] = y1s[3,7] @
218[3, 7). Therefore, we have 236+4=40 possible tweakeys for TKjg[0 :
7], TK15[0,2,3,4,6,7].

(d) Access H* fori = 17,j = 1 and compute TK;g[1, 5] such that TK;5[1,5] =
y13[1,5] @ z18[1,5]. Therefore, we have 240+8=48 pogssible tweakeys for
TKlg[O : 7],TK18[0 : 7]

4. Determine the number of possible values of TKj7[0 : 6] that satisfy the
eighteenth round by performing the following steps for all the message pairs
and remaining tweakeys that satisfy the path until now:

(a) Access Hy and compute TK;7[0,4] such that TK;7[0,4] = y17[0,4] ®
217[0, 4]. Therefore, we have 248 possible tweakeys for TK19[0 : 7], TK;g[0 :
7], TK17(0, 4].

(b) Access Hs and compute TK17[2, 3, 6] such that TK17[2, 3,6] = y17[2, 3,6]®
217[2,3, 6]. Therefore, we have 2%® possible tweakeys for TKig[0 : 7],
TKlg[O : 7], TK17[0, 2, 3, 4, 6]

(¢) Access Hg and compute TKir[1,5] such that TK;7[1,5] = yi7[1,5] @
217[1, 5]. Therefore, we have 24874=52 possible tweakeys for TKio[0 : 7],
TKlg[O : 7], TK17[O : 6]

1 TK19[07 4] = y19[074] &) ,2“19[07 4] means that TKlg[O] = ylg[O] &) 219[0]7 TK19[4] =
Y1o[4] @ z10[4].
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5. Determine the number of possible values of TKj4[0,2] that satisfy the sev-
enteenth round by performing the following steps for all the message pairs
and remaining tweakeys that satisfy the path until now:

(a) Access H; and compute TKi6[0] such that TKi6[0] = y16[0] & 216[0].
Therefore, we have 2°2 possible tweakeys for TKigl0 : 7], TKis[0 :
7], TK17[O : 6], TKlg[O]

(b) Access Hg and compute TKig[2] such that TKi[2] = y16[2] ® 216[2].
Therefore, we have 2°2 possible tweakeys for TKigl0 : 7], TKig[0 :
7], TK17[O : 6], TKlg[O, 2]2

6. The knowledge of TKj9[6] and TK;7[4] enables us to deduce TK;5[2] (see
Appendix A). Hence, we determine the number of possible tweakey values
that satisfy the sixteenth round by performing the following steps for all the
message pairs and remaining tweakeys that satisfy the path until now:

(a) Access Hog; and we will find 27% possible values in each row, i.e., we
have 4-bit filter on the remaining tweakeys. Therefore, we have 252—4=48
possible tweakeys for TKig[0 : 7], TKig[0 : 7], TK17[0 : 6], TKi6[0, 2]
TKy5[2].

7. The knowledge of TKjg[2,4] and TK;[0, 2] enables us to deduce ETK;[4,6,
14] ® (see Appendix A). Hence, we determine the number of possible values
for ETK;(3,9,11] that satisfy the second round by performing the following
steps for all the message pairs and remaining tweakeys that satisfy the path
until now:

(a) Access Hyo and compute ETK, [11] such that ETK:[11] = y;[11] @ [11];
we will find 27 possible values in each row, i.e., we have 4-bit filter on the
remaining tweakeys. Therefore, we have 24874=44 possible tweakeys for
TK1o[0 : 7], TKis[0 : 7], TK17[0 : 6], TK16[0,2], TKy5[2], ETK1[4,6, 11,
14].

(b) Access Hy; and compute ETK[3,9] such that ETK:[3,9] = 4;[3,9] &
713, 9]. Therefore, we have 244 possible tweakeys for TK19[0 : 7], TK;5][0 :
7], TK17[0 : 6], TK16[0, 2], TK15[2], ETK:[3,4,6,9,11,14].

8. Determine the number of possible values for T K14[1] that satisfy the seven-
teenth round by performing the following steps for all the message pairs and
remaining tweakeys that satisfy the path until now:

(a) Access Hyo and compute TKjg[l] such that TKis = yis[l] & z16[1].
Therefore, we have 24474=48 possible tweakeys for TKig[0 : 7], TKig[0 :
7), TK17[0 : 6] , TK16[0, 1,2], TK15[2], ETK:[3,4,6,9,11,14].

9. The knowledge of TK;5[0] and TKi6[1] enables us to deduce ETK1[1, 53 (see
Appendix A). Hence, we determine the number of possible tweakey values
that satisfy the second round by performing the following steps for all the
message pairs and remaining tweakeys that satisfy the path until now:

(a) Access Hiz and we will find 1 possible value in each row. Therefore,
we have 2%® possible tweakeys for TK19[0 : 7], TK1g[0 : 7], TK17[0 : 6]
, TK15[0,1,2], TK15[2], ETK:[1,3,4,5,6,9,11,14],.

2 Note that instead of having T'K16[6] that lead to the impossible differential distin-
guisher, we have z16[6] that result in the same impossible differential distinguisher.
3 Note that ETK,[6] = ETK1[14] and ETK;[1] = ETK; 5]
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10. The knowledge of TK19[0, 3, 7] and TK;7[1, 3, 5] enables us to deduce ETK3[7,
10, 13] (see Appendix A). Hence, we determine the number of possible tweakey
values that satisfy the third round by performing the following steps for all
the message pairs and remaining tweakeys that satisfy the path until now:
(a) Access Hi4 and we will find 274 possible values in each row. Therefore, we

have 248=4=4 pogsible tweakeys for TKio[0 : 7], TK13[0 : 7], TK17[0 : 6]
, TK16[0,1,2], TK15(2], ETK:[1,3,4,5,6,9,11,14], ETK,[7,10,13].

Attack Complexity. As depicted in Fig. 4, we have 38 tweakey nibbles that are
involved in the analysis rounds. Thanks to the tweakey schedule, these 38 nibbles
take only 2!16 possible values (see Appendix A). For each of the 255 message
pairs, we remove, on average, 24 out of 216 possible values of these tweakey
nibbles. Therefore, the probability that a wrong tweakey is not discarded with
one pair is 1 —2447116 — 1 _2-72 Hence, after processing all the 255 pairs, we
have 2116(1 — 2772)277% x5 9116 5 (¢=1)2" 7777 & 9116 5 9—1.4x2™ ! yeraining
candidates for 116-bit of the tweakey. In order to determine the optimal value
of m that leads to the best computational complexity, we evaluate the compu-
tational complexity of the attack as a function of m, as illustrated in Table 4.
Similar to AES [6], the SKINNY round function can be implemented using 16
table lookups. As seen from Table 4, steps 5(a), 5(b) and 6(a) dominate the
time complexity of the attack, and hence in order to optimize the time complex-
ity of the attack we choose m = 19.69. Consequently, we have 2'°7 remaining
tweakey candidates for the 116-bit of the tweakey. Therefore, the tweakey can
be recovered by exhaustively searching the 2'97 remaining tweakey candidates
with 2'2 remaining tweakey bits, that are not involved in the attack, using 2
plaintext/ciphertext pairs. Therefore, the total time complexity of the attack is
2 x 2107 5 212 4 9120.15 — 9121.08 aperyptions. The data complexity of the attack
can be determined from step 1 in which we generate 2™=19-69 structures. Hence,
the data complexity of the attack is 219-69428=4769 chosen plaintexts. The mem-
ory complexity of the attack is dominated by the memory that is required to
store 2 T59=T469 pairg to exclude the wrong tweakeys, hence, it is 27469,

4.2 Impossible Differential Key-recovery Attack on
SKINNY-128-256

The only difference between SKINNY-64-128 and SKINNY-128-256 is the tweak-
ey schedule, more precisely, the LFSR operation. The above attack on SKINNY-
64-128 can be applied on SKINNY-128-256 while only considering that the cell
size s = 8. Therefore, one structure can generate 2''! pairs with 2°¢ chosen
plaintexts. According to the tweakey schedule, the 38 bytes involved in the at-
tack have 2232 possible values (see Appendix B). In this attack, we exclude,
on overage, 288 out of 2232 possible values of the involved tweakey bytes for
every message pair. Hence, the probability that one wrong tweakey is not dis-

carded is 1 — 2887232 — 1 — 927144 Therefore, we have 2232 x (1 — 271442771

o m+111—-144 o m—33 .. . .
2232 x (e71)? ~ 2232 g l4Ax2 remaining candidates for 232-bit of
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Table 4. Time complexity of the different steps of the attack on 20-round
SKINNY-64-128, where NT denotes the number of tweakeys to be excluded.

Step Time Complexity (in 20-round NT m = 19.69
encryptions)
1 gm+28 _ 947.69
2(a) gm+55 o 1 ~ M +46.68 98 966.37
16 x 20
2(b) QmABS o8 o 1 ~ om+54.68 916 974.37
16 x 20
2(c) 9m+55 916 1 ~ QM+62.68 924 982.37
16 x 20
2(d) QmABS 924 o 1 ~ om+70.68 932 990.37
16 x 20
3(a) Qm+55 932 1 ~ QM+78.68 932 998.37
16 x 20
3(b) QmAB5 932 o 1 ~ om+T8.68 936 998.37
16 x 20
3(c) 9m+55 936 1 ~ QM+82.68 940 9102.37
16 x 20
3(d) QmABE5 940 o 1 ~ om+86.68 948 2106.37
16 x 20
4(a) QmA55 948 1 o QM+94.68 948 9114.37
16 x 20
4(b) QmABS 948 o 2 ~ om+95.68 948 9115.37
16 x 20
4(c) QmA55 948 1 o QM +94.68 952 9114.37
16 x 20
5(a) QM55 952 o 1 ~ om+08.68 952 9118.37
16 x 20
5(b) QmABS 952 o 1 ~ om+98.68 952 9118.37
16 x 20
6(a) Qm+55 952 1 ~ M+98.68 948 9118.37
16 x 20
7(a) QmABS 948 o 1 ~ om+94.68 944 9114.37
16 x 20
7(b) QmA55 944 1 ~ M+90.68 g44 9110.37
16 x 20
8(a) QmABS o4l o 1 ~ om+90.68 948 2110.37
16 x 20
9(a) QmA55 948 1 ~ QM +94.68 948 9114.37
16 x 20
10(a) QmABS 948 1 ~ om+94.68 944 9114.37
16 x 20
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the tweakey bytes, after processing all the message pairs. In order to optimize
the time complexity of the attack, we choose m = 36.1. Consequently, we have
2220 remaining candidates for 232-bit of the tweakey, and hence the tweakey can
be recovered by exhaustively searching the remaining candidates with 22* pos-
sible values, for the 24 bits of the tweakey that are not involved in the attack,
using 2 plaintext/ciphertext pairs. Therefore, the total time complexity of the

attack is 2 x 2220 X 224 4 236.1+111 X 2104 X ﬁélz 2245 + 2244.36 — 2245.72' The

data complexity of the attack is 2 T°6=92:1 chosen plaintexts; and the memory
complexity is dominated by storing 27 T111=147-1 message pairs.

5 Impossible Differential Key-recovery Attack on
18-round SKINNY-n-n (n = 64 or 128)

The only difference between SKINNY-64-64 and SKINNY-128-128 is the cell size
s, where s =4 (resp. s = 8) in case of SKINNY-64-64 (resp. SKINNY-128-128).
Therefore, we present the steps of the two attacks concurrently as a function
of s. This attack is applicable to the first 18 rounds of the 20-round attack on
SKINNY-n-2n, i.e., the ciphertext ¢ = x15. Therefore, we use the same steps
used in the previous attack from step 4 to the end and the same precomputation
tables from H, to the end with the following modifications:

— Each structure can generate 27%% x 27xs=1 = 214xs=1 ijth 27X chosen
plaintexts. Then, to apply the attack we take 2™ structures to generate
2m+14xs=1 pairs, but we have 4 s-bit filter in the transition over MC™!
from the ciphertext to wy7. Therefore, we have 2mT14xs—1-4xs=m+10xs—1
remaining pairs to launch the attack.

— The number of rows and entries in each table will be represented as a function
of s. For example, Hg has 2°%° rows; and in each row, we have 2° entries.

— The modifications of the number of tweakeys to be excluded from step 4 to
the end are presented in Table 5.

— The relation of the tweakey cells can be found in Appendix C.

Attack Complexity. We have 22 tweakey cells that are involved in the anal-
ysis rounds where these 22 tweakey cells have only 2'3%¢ possible values (see
Appendix C). The probability that one wrong tweakey is not discarded with one
pair is 1 — 275713Xs — 1 — 2=1Xs_Hence, after processing all the 2m+10xs—1

. = mA10xs—1 C om+10xs—1—14xs
pairs, we have 213%s(1 — 2714xs)2 ~ 213X i (e71)? ~
m—4xs—1
213><s X 2—1.4><2

remaining candidates for 13 x s-bit of the tweakey. Steps
5(a), 5(b) and 6(a) dominate the time complexity of the attack, as seen from Ta-
ble 5, and hence in order to optimize the time complexity of the attack we choose
m = 19.52 (resp. m = 36.42) in case of SKINNY-64-64 (resp. SKINNY-128-128).
Consequently, we have 244 (resp. 2%%) remaining tweakey candidates for the 52-
bit (resp. 104-bit) of the tweakey. Therefore, the tweakey can be recovered by

4 The second term is computed from step 5(a), 5(b) and 6(a).
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exhaustively searching the 244 (resp. 2%9) remaining tweakey candidates with 22
(resp. 224) for the other tweakey bits, that are not involved in the attack, using
1 plaintext/ciphertext pair. Therefore, the total time complexity of the attack is
244 % 212 4 956-14 — 9571 (regp, 289 x 224 4 211684 — 9116.94) opcyyptions in case
of SKINNY-64-64 (resp. SKINNY-128-128). The data complexity of the attack
can be determined from step 1 in which we generate 2m=19-52 (resp. 2m=36-12)
structures. Hence, the data complexity of the attack is 219-52+28=47:52 (yegp,
236-42456=92.42) chogen plaintexts in case of SKINNY-64-64 (resp. SKINNY-128-
128). The memory complexity is dominated by the memory required to store the
258:52 (resp. 2115-42) pairs after the ciphertext filtration and is estimated to be
25852 (vegp. 2119+12) in case of SKINNY-64-64 (resp. SKINNY-128-128).

6 Impossible Differential Key-recovery Attack on
22-round SKINNY-n-3n (n = 64 or 128)

SKINNY-64-192 differs from SKINNY-128-384 in the cell size s and the tweakey
schedule. As the tweakey schedule does not influence the attack procedure, we
present the two attacks as a function of s. The 20-round attack on SKINNY-n-2n
(n = 64 or 128) can be extended to 22-round attack on SKINNY-n-3n (n = 64 or
128) by appending 2 rounds, i.e., the ciphertext ¢ = woo. Therefore, we can use
the same attack procedures of SKINNY-n-2n (n = 64 or 128) to attack SKINNY-
n-3n (n = 64 or 128) by repeating step 2 three times to extract the tweakey cells
TK19[0 : 7], TK30[0 : 7], TK21[0 : 7]. The details of the tweakey schedule can be
found in Appendix D. Moreover, as in the previous attack on 18-round SKINNY-
n-n (n = 64 or 128), each structure can generate 27*% x 27<s~1 = 214xs—1 with
27%5 chosen plaintexts. Then, we take 2 structures to generate 2™ 14Xs~1 pairs
using 2™+7%¢ chosen plaintexts.

Attack Complexity. The 54 tweakey cells that are involved in the analysis
rounds have only 2%°%* possible values. The probability that a wrong tweakey
is not discarded with one pair is 1 — 227Xs=45%s — 1 _ 2718Xs Hence, af-
ter processing all the 2m14%5=1 pairg we have 245%5(] — 27 18xs)2" T
45X s 5 (=12 o 9dBxs ¢ 9-14x2™ T Loaining candidates for
45 x s-bit of the tweakey. In order to optimize the time complexity of the
attack, we choose m = 19.84 (resp. m = 36.22) in case of SKINNY-64-192
(resp. SKINNY-128-384). Consequently, we have 27 (resp. 2347) remaining
tweakey candidates for the 180-bit (resp. 360-bit) of the tweakey. Therefore,
the tweakey can be recovered by exhaustively searching the 2170 (resp. 2347) re-
maining tweakey candidates with 2'2 (resp. 224) for the other tweakey bits, that
are not involved in the attack, using 3 (calculated from the unicity distance)
plaintext/ciphertext pairs. Therefore, the total time complexity of the attack is
3 x 2170 5 912 4 9183.97 _ 918479 (rogpy 3 2347 x 924 4 937235 — 9373.48) qpepyp-
tions in case of SKINNY-64-192 (resp. SKINNY-128-384). The data complexity
of the attack is 219-84+28=47-84 (yogp 236.22456=92.22) chogen plaintexts in case of
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SKINNY-64-192 (resp. SKINNY-128-384). The memory complexity of the attack
is 27484 (resp. 214722) in case of SKINNY-64-64 (resp. SKINNY-128-384).

Table 5. Time complexity of the different steps of the attack on 18-
round SKINNY-64-64 and SKINNY-128-128, where NT denotes the number of
tweakeys to be excluded.

Step | Time Complexity (in 18-round encryptions) | NT | s =4,m = 19.52 | s = 8, m = 36.42
1 gm+Txs _ 947.52 992.42
4(a) gm+10xs—1 1 ~ 9m+10X5—-9.17 1 950.35 9107.25
16 x 18
4(b) ogm+10xs—1 o 2 o omH10Xs—8.17 1 951.35 9108.25
16 x 18
4(c) gm+10xs—1 1 ~ 9m+10X5—-9.17 98 950.35 9107.25
16 x 18
5(a) om+10xs—1 o 95 o 1 n omH1lXs—9.17| os 954.35 9115.25
16 x 18
5(b) 2m+10><371 X 23 X 1 ~ 27n+11><579.17 25 254.35 2115.25
16 x 18
6(a) om+10xs—1 o 95 o 1 n omA1llxs—9.17| 4 954.35 9115.25
16 x 18
7(a) gm+10xs—1 1 ~ gm+10X5—-9.17 9—s 950.35 9107.25
16 x 18
7(b) omF10xs—1 y g—s o 1 o omHIX5—9.17| 9—s 946.35 999.25
16 x 18
8(&) 2m+10><371 X 275 1 ~ 27n+9><579.17 1 246.35 299.25
16 x 18
9(a) om+10xs—1 o 1 ~ omH10X5-9.17 1 950.35 9107.25
16 x 18
10(a) gmA+10xs—1 o 1 ~ gmH10x5-9.17 9=s 5 950.35 9107.25
16 x 18

7 Conclusion

In this work, we presented impossible differential attacks against reduced-round
versions of all the 6 SKINNY’s variants. All of these attacks use the same impos-
sible differential distinguisher that covers 11-round. We extended this 11-round
distinguisher by 7, 9 and 11 rounds to attack 18, 20 and 22 rounds of SKINNY-
n-n, SKINNY-n-2n and SKINNY-n-3n (n = 64 or 128), respectively, exploiting
the properties of the MixColumns operation, the simple tweakey schedule and
the fact that the tweakey is only added to the first two rows of the state. The pre-
sented attacks are currently the best known ones on all the variants of SKINNY
in the single-tweakey model.

5 After this step, we have 27° tweakeys to be excluded for each message pair, i.e., we
exclude 1 tweakey after processing 2° pairs.
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A  SKINNY-64-128 Key schedule relations

Tables 6, 7 illustrate the tweakey and equivalent tweakey relations that are con-
sidered in the analysis rounds. We have 28 tweakey nibbles and 10 equivalent
tweakey nibbles that are used in the analysis rounds. In this section, by uti-
lizing the properties of the tweakey schedule, we show that these tweakey and

equivalent tweakey nibbles have only

2116 possible values.
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For the tweakey nibbles TKj7[t] and TKig[f], the following relations hold:

[0] = TK1[l)[0] & TK2[1]{0,1, 3}

TK,7[t][0] = TK1[1][0 [

1] = TK1[l[1] ® TK2[1]{0,1,2,3}
[
[

[t] [0] ® TK2[l]{0,1,2,3} TKig
TKi7[t][1] = TK1[]][1

(t] [

[t] [

® TK2[1{0, 1,2} TKig
® TK2[l{1,2,3} TKig
® TK2[1]{0,2} TKio

TK17[t][2] = TK1[l][2
TKi7[t [3] = TKZ[Z] 3

[2] = TK1[l][2] ® TK2[]{0, 1, 2}
[8] = TK1[l)[3] & TK2[l]{1,2,3},

]
]
]
]

ey

for t = 0,1,2,3,4,5,6, f = 2,0,4,7,6,3,5 and | = 9,15,8,13,10, 14,12, re-
spectively. From the above relations we can deduce TK1[l], TK2[l]. Therefore,
we have 22X7x4=56 pogssible values for these 14 nibbles. Moreover, the knowl-
edge of TKle], TK2[e], where e = 13,14, 15 allows us to deduce the values of
ETK>[7,10,13], and the knowledge of of TK1[10], TK2[10] allows us to deduce
the value of TKj5[2]. In addition, we have 2% possible values for the nibble
TKi9[1]. Therefore, we have 2°674=60 possible values for the 19 tweakey nibbles
that are involved in rounds 2, 15, 17, 19.

For the tweakey nibbles TKi6[t] and TKig|f], the following relations hold:

TK16[t][0] = TK1[l][0] & TK2[1]{0, 1,2} TKis[f][0] = TK1[][0] & TK2[1]{0,1,2,3}
TKy6[t][1] = TK1[I][1] & TK2[1]{1,2,3} TKys[f][1] = TK1[][1] & TK2[1]{0,1,2}
TKy6[t][2] = TK1[][2] ® TK2[1]{0,2} TKys[f][2] = TK1[l][2] & TK2[I]{1,2,3}
TKy6[t][3] = TK1[I][3] ® TK2[]{1,3} TKis[f][3] = TK1[l][3] & TK2[]{0,2},

wheret =0,1,2, f =2,0,4and [ =0, 1, 2, respectively. From the above relations
we can deduce TK1[l], TK2[l]. Therefore, we have 22*3%4=24 possible values for
these 6 nibbles. Moreover, the knowledge of TK1[l], TK2[l] allows us to deduce
the values of ETK;[1,4,5,6,14]. Hence, we have 224 possible values for the 10
tweakey nibbles that are involved in rounds 1, 16, 18.

For the tweakey nibbles ETK;[t] and TKs[f] , the following relations hold:

ETK: [#][0] = TK1[1][0] & TK2[1]{0} TKis[f][0] = TK1[l][0] & TK2[1]{0,1,2,3}
ETK, [t][1] = TK1[l][1] & TK2[]{1} TKys[f][1] = TK1[][1] & TK2[1){0,1,2}
ETK,[t][2] = TK1[l][2] ® TK2[1]{2} TKis[f][2] = TK1[l])[2] & TK2[1){1,2,3}
ETK:[#][3] = TK1[][3] & TK2[1]{3} TKis[f][3] = TK1[l][3] & TK2[]{0, 2},

where t = 3,9,11, f = 7,6,5 and [ = 3,4, 6, respectively. From the above rela-
tions we can deduce TK1[l], TK2[l]. Moreover, the knowledge of TK1[6], TK2[6]
allows us to deduce the values of TKj6[6] Therefore, we have 22*3%4=24 pogsible
values for these 7 nibbles. In addition, we have 2% possible values of TKig[1,3].
Hence, we have 22478=32 possible values for the 9 tweakey nibbles that are in-
volved in rounds 1, 16, 18.

B SKINNY-128-256 Key schedule relations

Tables 8, 9 illustrate the tweakey and equivalent tweakey relations, respectively.
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Table 6. SKINNY-64-128 tweakey relations for round i = 15,16, ---,19 (L} =
PR LY = (LFSRo Pr)h).

Round i = 15, TK;[j,j = 0: 7] =L§(TK1[l]) @ L§(TK2[1]), | = 8,9,10,11,12,13, 14, 15
and Round i = 16, TK;[j,j = 0: 7] :L?(TKJ[Z]) ® L§(TK2[L]), 1=0,1,2,3,4,5,6,7

TK;[510] | TK;[5][1] | TK;[5]2] | TK;[5113]

TK1[1][0] ® TK2[1]{0, 1, 2} | TK1[1][1]) & TK2[1]{1, 2,3} | TK1[1][2] ® TK2[1]{0, 2} | TK1[1)[3] ® TK2[1]{1, 3}

Round i = 17, TK;[j,j = 0 : 7] =LY (TK1[l]) & LY(TK2[]), | = 9,15,8,13, 10, 14, 12, 11
and Round i = 18, TK;[j,j = 0: 7] =L{(TK1[l]) & LY(TK2(1]), L = 1,7,0,5,2,6,4,3

TK; [5[0] | TK; 1] | TK; [4]12] | TK; [5]3)

TK1[1][0] ® TK2[1]{0, 1, 2, 3}| TKI[][1] & TK2[1]{0, 1, 2} |TK1[l][2] ® TK2[1]{1, 2, 3}| TK1[1][3] & TK2[1]{0, 2}

Round i = 19, TK;[j,j = 0: 7] =L10(rK1[1]) @ L0 (TK2[1)), 1 = 15, 11,9, 14, 8,12,10, 13

TK;[5110] | TK;[5][1] | TK;[5]2] | TK;[5113]

TK1[1][0] ® TK2[1]{0, 1, 3} |TK1[Z][1] @ TK2(1]{0, 1, 2,3} | TK1[1][2]) & TK2[1]{0, 1, 2}|TK1[Z][3] ® TK2[1]{1, 2, 3}

Table 7. SKINNY-64-128 equivlant tweakey relations for round i = 1,2 (L} =
Pl Lh = (LFSRo Pr)h).

Round ¢ = 1, ETK;[j,j = 0 : 15] =TK1[l] @ TK2[l],l = 0,1,2,3,0,1,2,3,7,4,5,6,0,1,2,3

BTE; [4][0) | BT ][] | BTK;[][2) | BTK; (]3]
TK1[1][0] & TK2[1][0] | TK1[1][1] @ TK2[1][1] | TK1[1][2] @ TK2[1][2] | TK1[1][3] ® TK2[1][3]
Round i = 2, ETK;[j,j = 0 : 15] =L (TK1[l]) @ Lo(TK2[l]), | = 9,15,8,13,9,15,8,13,11, 10, 14, 12,9, 15, 8,13
ETK; [5](0] | ETK; [5][1] | ETK; [5][2] | ETK; [5][3]
TK1[1][0] & TK2[1]{2, 3} | TK1[1][1] @ TK2[1][0] | TK1[1][2] @ TK2[][1] | TK1[1][3] ® TK2[1][2]

C SKINNY-64-64 and SKINNY-128-128 Key schedule
relations

Tables 10, 11 illustrate the tweakey and equivalent tweakey relations, respec-
tively.

D SKINNY-64-192 and SKINNY-128-384 Key schedule
relations

Tables 12, 13 (resp. 14, 15) illustrate the tweakey and equivalent tweakey rela-
tions of SKINNY-64-192 (resp. SKINNY-128-384).
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Table 8. SKINNY-128-256 tweakey relations for round i = 15,16, ---,19 (L} =
Ph LY = (LFSRo Pr)h).

Round i = 15, TK;[j,j = 0 : 7] =L§(TK1[l]) & L§(TK2[1]), I = 8,9,10,11, 12, 13,14, 15
and Round i = 16, TK;[j,j = 0: 7] :L?(TKJ[Z]) ® L§(TK2[L]), 1=0,1,2,3,4,5,6,7

TK;[5]10] | TK; 511 | TK;[5]12] | TK;[5](3]

TK1[1][0] ® TK2[1]{0,4, 6} | TK1[1][1] & TK2[1]{1,5, 7}| TK1[1][2] & TK2[1]{0, 2} | TK1[1][3] ® TK2[1]{1, 3}

TK;[5][4] | TK;[5115] | TK;[5]16] | TK;[5]17]

TK1[1][4]) & TK2[1]{2, 4} | TK1[1][5]) & TK2[1]{3,5} | TKI1[1][6] & TK2[l]{4, 6} | TK1[1)[7) ® TK2[1]{5,7}

Round i = 17, TK;[j,j = 0: 7] =LY (TK1[l]) ® L3(TK2[l]), l = 9,15, 8,13, 10, 14, 12, 11
and Round i = 18, TK;[j,j = 0: 7] :L?(TKJ[Z]) ® Lg(TKQ[l]), 1=1,7,0,5,2,6,4,3

TK; [4][0] | TE; [ | TK;[][2) | TK; [5]13]

TK1[1][0] ® TK2[1]{3, 7} |TK1[Z][1] @ TK2[1]{0, 4, 6} | TK1[1][2] ® TK2[1]{1, 5, 7}| TK1[1][3] ® TK2[1]{0, 2}

TK;[5][4] | TK;[5115] | TK;[5]16] | TK;[5](7]

TK1[1][4] ® TK2[1]{1, 3} | TK1[1][5]) & TK2[1]{2,4} | TKI1[1][6] & TK2[1]{3, 5} | TK1[1)[7) ® TK2[l]{4,6}

Round i = 19, TK;[j,j = 0: 7] =L10(TKk1[1])) ® L3O (TK2[1]), 1 = 15,11,9,14,8,12, 10,13

TK; [4][0] | TK; [ | TE;[][2) | TK; [5]13]

TK1[1][0] & TK2[1]{2, 6} | TKI[][1] & TK2[1]{3, 7} |TK1[l][2] @ TK2[1]{0, 4, 6} | TK1[1][3] & TK2[1]{1,5, 7}

TK; [5]14] | TK; [5]5) | TK;[5][6] | TK; [4]17]

TK1[1][4] & TK2[1]{0, 2} | TK1[1][5] @ TK2[1]{1, 3} | TK1[][6] @ TK2[1]{2, 4} | TK1[1][7] & TK2[1]{3,5}

Table 9. SKINNY-128-256 equivlant tweakey relations for round i = 1,2 (L} =
PR LY = (LFSRo Pr)h).

Round i = 1, ETK;[j,j = 0 : 15] =TK1[l] & TK2[l],l =0,1,2,3,0,1,2,3,7,4,5,6,0,1,2,3

ETK; [5](0] | ETK;[5][1] | ETK;[4][2] | ETK;[4](3]
TK1[1][0] ® TK2[1][0] | TK1[1][1] ® TK2[1][1] | TK1[1][2] & TK2[1][2] | TK1[1][3] ® TK2[][3]
ETK; [5][4] | ETK;[5](5] | ETK;[4][6] | ETK; [41[7]
TK1[1][4] ® TK2[1][4] | TK1[1][5] ® TK2[1][5] | TK1[1][6] & TK2[1][6] | TK1[][7] ® TK2[1][7]

Round i = 2, ETK;[j,j = 0 : 15] =L (TK1[l]) ® Lo(TK2[l]), | = 9,15,8,13,9,15,8, 13,11, 10, 14, 12,9, 15, 8, 13

TK1[1][4]) & TK2[1][3] TKI1[1][5] ® TK2[l][4] TKI1[1][6] & TK2[l][5] TK1[1][7) & TK2[1][6)

ETK; [4](0] | ETK; [5](1] | ETK; [5][2] | ETK; [5][3]
TKI1[1][0] & TK2[1]{5, 7} | TKI1[1][1] & TK2[][0] TK1[1][2] & TK2[1][1] | TK1[1][3] & TK2[l][2]
ETK; [5][4] | | ETK; [5][7]

|
BT ) | BTH; 6]
|

Table 10. SKINNY-64-64 and SKINNY-128-128 tweakey relations for round
i =15,16,17.

Round i = 15|TK;[j,j = 0: 7] =TKI[l], | = 8,9,10,11, 12,13, 14, 15

Round i = 16|TK;[j,j = 0:7] =TKI[l], | = 0,1,2,3,4,5,6,7

Round i = 17|TK;[j,j = 0 : 7] =TKI[l], | = 9,15, 8,13, 10, 14, 12, 11
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Table 11. SKINNY-64-64 and SKINNY-128-128 equivlant tweakey relations for

round ¢ = 1, 2.

Round i =1

ETK;[j,j =0:

15] =TKi[l],1 =0,1,2,3,0,1,2,3,7,4,5,6,0,1,2,3

Round i = 2

ETK;[j,j =0:

15] =TKi[l],1 = 9,15,8,13,9, 15,8, 13,11, 10, 14, 12, 9, 15, 8, 13

Table 12. SKINNY-64-192 tweakey relations for round i = 15,16, ---,21 (L} =
Ph LY = (LFSRo Pr)h).

Round i = 15, TK;[j,j =0 : 7] :L%(TKJ[Z]) &3] L§(TK2[Z]) 2] Lg(TKA?[L]), 1 =8,9,10,11,12,13,14,15
and Round i = 16, TK;[j,j = 0: 7] =L§(TK1[1]) & L§(TK2[1]) @ L§(TK3(1]), 1 = 0,1,2,3,4,5,6,7

T K ;[5]10]

TK;[511]

TK;[5]2]

TK;[]13]

TK1[1][0] & TK2[1]{0, 1, 2}
@ TK3[1]{1, 2, 3}

TKI[I][1] & TK2[1]{1,2, 3}
BTK3[1]{0, 2}

TK1[1][2] @ TK2[1]{0, 2}
STKS[1]{1, 3}

TK1[1][3] ® TK2[1]{1, 3}
®TK3[1]{0, 2, 3}

Round i = 17, TK;[j,j =0 : 7] :L?(TKJ[Z]) &3] Lg(TK2[l]> 2] LS(TK@[L]), 1=09,15,8,13,10, 14,12, 11
and Round i = 18, TK;[j,j = 0 : 7] =L{(TKI[l]) & LY(TK2[1]) & LY(TK3[1]), L = 1,7,0,5,2,6,4,3

TK,;[5][0]

TK;[][1]

TK;[5](2]

TK,;[5][3]

TK1[1][0] ® TK2[1]{0, 1, 2, 3}
@ TK3[1]{0, 2}

TKI1[l][1] @ TK2[1]{0, 1, 2}
@ TK3[l]{1, 3}

TK1[1][2) & TK2[1]{1, 2,3}
@ TK3[1]1{0, 2, 3}

TK1[1](3] ® TK2[1]{0, 2}
@ TKS3[1]{0, 1}

Round i = 19, TK;[j,j = 0: 7] =L10(rKk1[1)) @ L3O (TKe]) @ LAO(TKs0]), 1 = 15,11, 9,14, 8,12, 10,13
and Round i = 20, TK;[j,j = 0: 7] =L19(Tk1[1]) ® L3O (TK2[1)) @ L1O(TK3[1]), 1 = 7,3,1,6,0,4,2,5

T K;[5]10]

TK;[511]

TK;[5]2]

TK;[4]13]

TK1[1][0] & TK2[1]{0, 1, 3}
@TK3[1]{1, 3}

TK1[l][1] & TK2[1]{0, 1, 2, 3}
@ TK3[l]{0, 2,3}

TKI1[1][2] & TK2[1]{0, 1, 2}
@TK3[1]{0, 1}

TK1[1][3] & TK2[1]{1,2, 3}
@TK3[1]{1, 2}

Round i = 21, TK;[j,j = 0: 7] =Li (TK1[1])) @ L3 (TK2]) @ LAY (TK30]), 1 = 11,13, 15,12, 9,10, 8, 14

TK;[4]10]

TK; 511

TK;[5]2]

TK;[5]13]

TK1[1][0] ® TK2[1]{0, 3}
@ TKS3[1]{0, 2, 3}

TKI1[l][1] @ TK2[1]{0, 1, 3}
®TKS[1]1{0, 1}

TK1[1][2] ® TK2(1]{0, 1, 2, 3}
@ TKS[1]{1, 2}

TK1[1][3]) ® TK2[1]{0, 1, 2}
®TKS[1]{2, 3}

Table 13. SKINNY-64-192 equivlant tweakey relations for round i = 1,2 (L} =
Ph Lh = (LFSRo Pr)h).

Round ¢ = 1, ETK;[j,j = 0 : 15] =TK1[l] & TK2[l] & TK3[l],l = 0,1,2,3,0,1,2,3,7,4,5,6,0,1,2,3

ETK; [4](0]

ETK;[5](1]

ETK,; [5](2]

ETK; [5](3]

TK1[1][0] & TK2[1][0]
@ TK3[1][0]

TKI[I][1] & TK2[][1]
®TK3[1][1]

TK1[1][2] & TK2[][2]
@ TKS[1][2]

TK1[1][3] & TK2[1][3]
@ TKS3[1][3]

Round i = 2, ETK;[j,j = 0: 15] =L (TK1[l]) ® Lo(TK2[l]) ® Lo(TK3[l]), | = 9,15,8,13,9,15,8, 13,

11,10, 14,12,

9,15,8,13

ETK;[4110]

BTK;[41[1]

BTK;[4][2]

BTK;[4](3]

TK1[1][0] & TK2[1]{2,3}
®TKs[1]{1}

TK1[1][1] & TK2[][0]
@ TK3[1]{2}

TK1[1][2] ® TK2[][1]
@ TK31{3}

TK1[1][3] & TK2[1][2]
B TK3[1]{0, 3}
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Table 14. SKINNY-128-384 tweakey relations for round ¢ = 15,16, ---, 2

PR LY = (LFSRo Pr)h).

Round i = 15, TK;[j,j =0 : 7] :L%(TKJ[Z]) &3] L§(TK2[Z]) 2] Lg(TKA?[L]), 1 =28,9,10,11,12,13,14, 15
and Round i = 16, TK;[j,j = 0: 7] =L§(TK1[1]) & L§(TK2[1]) & L§(TK3(1]), 1 = 0,1,2,3,4,5,6,7

TK;[5]10]

| TK; ][1]

| TK; [4]12]

| TR 1)

TK1[1][0] ® TK2[1]{0,4, 6} | TK1[l][1] ® TK2[1]{1,5,7}| TK1[i][2] ® TK2[1]{0,2} | TKIi[l][3] ® TK2[l]{1,3}
TK3[1]{0, 6} TK3[1){1, 7} TK3[1]{0, 2, 6} TK3[1]{1,3, 7}
TK;[4][4] | TK;[4]15] | TK;[5][6] | TK;[4][7]

TK1[1][4] ® TK2[1]{2, 4}
TK3[1]{0, 2, 4, 6}

TK1[1][5] @ TK2[1]{3, 5}
TK3[11{1, 3,5, 7}

TKI1[1][6] & TK2[l]{4, 6}
TK3[1]{0, 2,4}

TK1[1][7] & TK2[1]{5, 7}
TK3[1]{1,3,5}

Round ¢ = 17, TK;[j,j = 0 : 7] 7L1(TK1[ ) @ LY (TK2[1]) & LY(TK3[1]), L = 9,15, 8,13, 10, 14,12, 11
and Round ¢ = 18, TK;[j,j = 0: 7] *Ll(TKI[ De LQ(TKZ[ ]) ® LQ(TKJ[L]) 1=1,7,0,5,2,6,4,3

TK;[4]10]

TK;[][1]

| TE;[][2)

| TK;[3]13]

TK1[1][0] & TK2[1]{3, 7}
TK3[1]{1, 7}

TKI1[1][1] ® TK2[1]{0,4, 6}

TKS[1]{0, 2, 6}

TK1[1][2]) ® TK2[1]{1, 5,
TK3[1]1{1, 3, 7}

7}

TK1[1][3] @& TK2[1]{0, 2}
TK3[1]1{0, 2, 4, 6}

TK;[5][4]

TK;[5115]

| TK; [4116]

| TR [17)

TK1[1][4] @ TK2[L]{1 3}
TKS[1]{1,3,5, 7}

TK1[1][5] & TK2[1]{2,4}
TK3[1]{0, 2, 4}

TKI1[1][6] & TK2[1]{3, 5}
TK3[1]{1, 3,5}

TK1[1)[7) ® TK2[l]{4,6}
TK3[1]{2, 4, 6}

Round i = 19, TK;[j,j = 0: 7] =L10(rK111)) @ L3O (TK2]) @ LAO(TKs0]), 1 = 15,11, 9, 14,8, 12, 10,13
and Round i = 20, TK;[j,j = 0: 7] =L10(TK1[1]) @ L%O(TKZ[Z]) ® L30(TK3[1)), 1 =7,3,1,6,0,4,2,

TK;[4][0]

TK;[j][1]

| TK;[][2)

| TK; [5]13]

TK1[1][0] & TK2[1]{2, 6}
TK3[1]4{0, 2, 6}

TK1[][1] & TK2[1]{3, 7}
TK3[1]{1,3, 7}

TK1[1][2] & TK2[1]{0, 4, 6}
TK3[1]{0, 2, 4, 6}

TK1[1][3] & TK2[1]{1,5, 7}
TK3[1]{1,3,5, 7}

TK;[5]4]

TK;[5][5]

| TK;[5][6]

| TK; [4]17]

TK1[1][4] & TK2[1]{0, 2}
TK3[1]{0, 2, 4}

TK1[1][5] @ TK2[1]{1, 3}
TK3[1]{1,3,5}

TK1[][6] & TK2[1]{2, 4}
TK3[1]{2, 4, 6}

TK1[1][7] & TK2[1]{3,5}
TK3[1]{3,5, 7}

Round i = 21, TK;[j,j = 0: 7] =Lil(TK1[1]) @ L3t

(TK2[1]) @ L3 (TK30)), 1

= 11,13,15,12,9,10, 8, 14

TK;[5]10]

TK; 511

TK;[5]12]

| TR ]3]

TK1[1][0] ® TK2[1]{1,5}
TK3[1]{1,3,7}

TK1[l][1] @ TK2[1]{2,6}
TK3[1]{0,2,4,6}

TK1[1][2] ® TKZ[Z]{? 7}
TK3[1]{1,3,5, 7}

TK1[1][3] & TK2[1]{0,4, 6}
TK3[1]{0, 2, 4}

TK;[5][4]

TK;[5115]

TK;[5]16]

| TR 1)

TK1[l][4] ® TK2[1]{1,5,7}
TK3[1]{1,3,5}

TK1[1][5] & TK2[1]{0, 2}
TK3[1]{2, 4, 6}

TKI)[6] @ TK2[1{1, 3}
TK3[1]{3,5, 7}

TK1[1)[7) ® TK2[1]{2, 4}
TKS[1]{0, 4}
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Table 15. SKINNY-128-384 equivlant tweakey relations for round i = 1,2 (L} =

Ph Lh = (LFSRo Pp)h).

Round ¢ = 1, ETK;[j,j =0 :

15] =TKI1[l] ® TK2[l] @ TK3[l],l =0,1,2,3,0,1

ETK; [4](0]

ETK;[5](1]

ETK; [5](2]

TK1[1][0] & TK2[1][0]
@ TK3[1][0]

TKI[I][1] & TK2[][1]
®TK3[1][1]

TK1[1][2] & TK2[][2]
@ TKS[1][2]

TK1[1][3] & TK2[1][3]
@ TKS3[1][3]

ETK; [5](4]

ETK; [4](5)

ETK; [5]6]

ETK; [5](7]

TK1[1][4] & TK2[1][4]
@ TK3[1][4]

TK1[1][5] & TK2[1][5]
@ TK3[1][5]

TK1[1][6] & TK2[1][6]
@ TK3[1][6]

TK1[1][7]) & TK2[][7]
@ TK3[1][7]

Round i = 2, ETK;[j,j = 0: 15] =L (TK1[l]) ® Lo(TK2[l]) & Lo(TK3[l]), | =9,15,8,13,9,15,8,13,
11, 10, 14, 12,9, 15, 8, 13

ETK; [4](0]

ETK;[5](1]

ETK; [5](2]

ETK; [5](3]

TK1[1][0] & TK2[1]{5, 7}
@ TK3[1][1]

TK1[1][1] & TK2[][0]
®TK3[1][2]

TK1[1][2] & TK2[][1]
@ TK3[1][3]

TK1[1][3] & TK2[1][2]
@ TKS[1][4]

ETK; [5](4]

ETK;[5](5]

ETK; [5](6]

ETK; [5](7]

TK1[1][4] & TK2[1][3]
® TK3[1][5]

TK1[1][5] & TK2[][4]
® TK3[1][6]

TK1[1][6] & TK2[][5]
@ TKS[1][7]

TK1[1][7] & TK2[1][6]
®TK3[1){0, 6}
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