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ALEXANDRE GÉLIN, THORSTEN KLEINJUNG, AND ARJEN K. LENSTRA

Abstract. We provide a new family of elliptic curves that results in a one to

two percent performance improvement of the elliptic curve integer factoriza-

tion method. The speedup is confirmed by extensive tests for factors ranging
from 15 to 63 bits.

1. Introduction

The elliptic curve method (ECM) for integer factorization was introduced by
H.W. Lenstra in 1985 and published two years later in [9]. It is the asymptotically
fastest method that has been published for finding relatively small factors of large
composites. Although the number field sieve [8] is the most efficient general al-
gorithm for integer factorization, there are two common use cases for ECM: it is
widely used in attempts to find factors of large composites for which no information
is available about the sizes of the prime factors (R. Propper found the largest ECM
factor so far, a 274-bit factor of 7337 + 1) and it is used for the so-called cofactoring
step of the number field sieve (where many relatively small composites have to be
factored).

Given an odd composite integer N to be factored, ECM performs arithmetic
operations on elliptic curves considered to be defined over the finite field Fp of
cardinality p, for an unknown prime divisor p of N . It may find p if the cardinality
of at least one of these curves over Fp is smooth. For this reason, curves are used
that are known to have favorable smoothness properties, such as a large torsion
group over Q or a cardinality that is divisible by a fixed factor. Constructions
of ECM-friendly curves were published by Suyama [11] (with a slight improve-
ment by Montgomery in [10, Section 10.3.2]), Atkin-Morain [1], and generalized by
Bernstein et al. in [4].

Originally formulated in [9] using Weierstrass curves, until around 2008 imple-
mentations of ECM mostly used Montgomery’s approach from [10]. With the intro-
duction of Edwards curves [6], a number of follow-up papers by Bernstein et al. [3, 5]
ultimately led to “a =−1 twisted Edwards” curves by Hisil et al. [7] with torsion
group isomorphic to Z/2Z×Z/4Z as one of the current most efficient ways to imple-
ment ECM, as shown by Bernstein et al. in [4]. For these curves, Barbulescu et al.
in [2] identify three families that all have the same larger smoothness probability
and an even better fourth family. In [2] a parametrization is provided for one of
the three equivalent families; the others are only illustrated by — a finite set of —
small values found by enumeration. In particular a parametrization of the fourth
and best family, which could lead to a better choice of curves for ECM, has so far
not been published. By parametrization we mean that an elliptic curve along with
a non-torsion point is determined as a function of some parameter: in this paper
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the parameter may be a point on some other elliptic curve or a rational number,
thus giving rise to elliptic and rational parametrizations.

After a brief history in Section 2 on the use of Edwards curves in ECM, we
present in Section 3 parametrizations for all families from [2] that remained to
be parameterized. In Section 4 we compare our new curves to the ones used so
far, observing that the curves derived from a same parametrization have similar
behavior and that the fourth and best family indeed seems to lead to the best
performance known for ECM. The resulting speed up is modest but worthwhile:
given how much computing time is invested in ECM, the resulting practical savings
could be considerable.

2. Edwards curves and elliptic curve method

Twisted Edwards curves. Let K be a field of characteristic different from 2.
Edwards curves are defined in [6] by equations of the form x2 + y2 = 1 + dx2y2,
for d ∈ K with d(d − 1) 6= 0. To enlarge the set of curves, the equation was
generalized in [3] to twisted Edwards curves ax2 + y2 = 1 + dx2y2 for a, d ∈ K
with ad(a − d) 6= 0. Because of the favorable properties of the arithmetic in the
curve group (speed and no exception for doubling) twisted Edwards curves gained
interest in applications.

Torsion group. For each curve, stage 1 of ECM attempts to compute a scalar
multiple of some initial point on the curve, for a scalar equal to the product of all
prime powers up to some bound and where the computation is done modulo N . If
the order of the initial point happens to be smooth modulo at least one but not all
prime factors of N , an inversion failure modulo N reveals a factor of N . Because
the torsion group Etors of the curve over Q injects in the curve modulo each prime
that has good reduction, in ECM it helps to choose curves that have a large Etors.
The largest gain that can be obtained in this manner is modest, because according
to Mazur’s theorem Etors is isomorphic to

Z/nZ with 1 ≤ n ≤ 10 or n = 12, or Z/2Z× Z/2nZ with 1 ≤ n ≤ 4.

The two most profitable possibilities, Z/12Z and Z/2Z × Z/8Z, are characterized
for families of Edwards curves in [5, Section 6]. On the other hand, the fastest
scalar multiplication is obtained in [7] for a=−1 twisted Edward curves; as shown
in [5], however, this limits the possibilities for interesting torsion groups (i.e., with
cardinality greater than four) to

Z/6Z, Z/8Z or Z/2Z× Z/4Z,

thereby in particular excluding the two most profitable ones. For ECM the issue
was settled in [4] where a =−1 twisted Edwards curves were compared to curves
with Etors isomorphic to Z/12Z and Z/2Z × Z/8Z: it was found that the disad-
vantage of the formers’ smaller torsion groups is outweighed by their faster scalar
multiplication.

Curves with on average higher torsion modulo p. Barbulescu et al. in [2]
further develop a = −1 twisted Edwards curves with torsion group isomorphic
to Z/2Z × Z/4Z. In [4] these are shown to be the curves −x2 + y2 = 1 − e4x2y2

with e /∈ {0,±1}. Compared to generic e-values and averaging over the primes p
of good reduction, [2] uses Galois properties to identify four families of e-values
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with increased average exponent of the prime 2 in the torsion group of the curve
modulo p: for families

(2.1) (i) : e = g2; (ii) : e =
g2

2
, and (iii) : e =

2g2 + 2g + 1

2g + 1

the average exponent of the prime 2 increases by 1
6 from 14

3 to 29
6 and for family

(2.2) (iv) : e =
g − 1

g

2

it increases by 2
3 from 14

3 to 16
3 .

As an example, although the cardinality of the torsion group over Q equals
eight, it is shown in [2] that for the best case (family (iv)) the cardinality of the
torsion group of the curve modulo p is divisible by 16, and by 32 if p ≡ 1 mod 4
and g(g − 1)(g + 1) is a quadratic residue modulo p.

Usage of these curves in ECM requires an easy way to generate them, along with
an appropriate initial point on each curve. Earlier and new ways to do this are
discussed in the next section.

3. Parametrizations for curves with higher torsion modulo p

In this section we are exclusively interested in the generation of a=−1 twisted
Edwards curves with torsion group isomorphic to Z/2Z × Z/4Z. The first known
parametrization for the general case of such curves is the elliptic parametrization
from [4, Theorem 3.3]; it generates a target curve (and a point of infinite order on
it) as a function of a point on another elliptic curve of positive rank. Our goal is
to find elliptic parametrizations for all four families (i)-(iv) in (2.1) and (2.2).

For family (i) this has already been done in [2]. First a new rational parametriza-
tion for the general case was derived, i.e., a function from Q — with finitely many
exceptions — to a = −1 twisted Edwards curves with torsion group isomorphic
to Z/2Z × Z/4Z, along with a point of infinite order on each curve. It was then
checked if a special choice of the rational parameters leads to curves with e-values
as in (2.1) or (2.2). That turned out to work for family (i), but due to limitations
imposed by the rational parametrization it failed for families (ii)-(iv).

In this section we review the approach from [2], and we present the results of
a search that we conducted for new rational parametrizations for the general case.
The newly found rational parametrizations turn out to suffice for our purpose:
following the approach from [2] it is shown that special choices of the rational
parameters lead to elliptic parametrizations for all four families (i)-(iv).

General conditions. From the equation −x2 + y2 = 1− e4x2y2 with e /∈ {0,±1}
for the general case, it follows that e and −e lead to the same curve. Considering
the variable change (x, y) 7−→ (xe2, 1

y ), the curves for e and 1
e are birationally

equivalent. Thus, only one element of {±e,± 1
e} is of interest and we fix e > 1.

Furthermore, as we require points of infinite order, the curves must have positive
rank and easily identifiable torsion points in order to be able to avoid them. The
latter can be done, because

• (0, 1) is the neutral element,
• (0,−1) and

(
∞,± 1

e2

)
are the three 2-torsion points, and

• (± 1
e ,±

1
e ) are the four 4-torsion points.
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A point (x, y) on the curve is therefore a non-torsion point if and only if x /∈ {0,∞}
and xe 6= ±1.

Earlier parametrizations. As mentioned above, the first parametrization for the
general case, from [4, Theorem 3.3], works by selecting a particular elliptic curve
over Q of positive rank and by showing how a rational point on it provides an a=−1
twisted Edwards curve with torsion group isomorphic to Z/2Z×Z/4Z, along with
a non-torsion point. The first rational parametrization generalizes this approach.
It is [2, Theorem 3.7]:

Theorem 3.1. For nonzero t ∈ Q \ {±1,±3±1} let

e1 =
3(t2 − 1)

8t
, x1 =

1

4e3
1 + 3e1

=
128t3

27t6 + 63t4 − 63t2 − 27
and y1 =

9t4 − 2t2 + 9

9t4 − 9
.

Then (x1, y1) is a non-torsion point on the a=−1 twisted Edwards curve −x2+y2 =
1− e4

1x
2y2 with torsion group isomorphic to Z/2Z× Z/4Z.

Proof. The excluded t-values imply that e /∈ {0,±1} and that x1 and y1 are well-
defined. The point (x1, y1) can be seen to be on the curve and it is a non-torsion
point because x1 /∈ {0,∞} and x1e1 6= ±1. �

Compared to the parametrization from [4, Theorem 3.3], the above rational
parametrization reduces the computation required for curve generation, and the
simple formula for e facilitates the search for t-values that lead to an e-value that
satisfies (2.1) or (2.2). It is easy to check if a rational e-value belongs to family (i)
or (ii). Families (iii) and (iv) look more cumbersome, but can easily be dealt with
using the following alternative characterizations.

• Because e = 2g2+2g+1
2g+1 if and only if 2g2 + 2(1 − e)g + (1 − e) = 0 and

because a rational g satisfying the latter polynomial exists if and only if
the discriminant 4(e2 − 1) is a rational square, it follows that

e =
2g2 + 2g + 1

2g + 1
⇐⇒ e2 − 1 is a square.

• Arguing identically (which results in discriminant 4(e2 + 1)) it follows that

e =
g − 1

g

2
⇐⇒ e2 + 1 is a square.

Corollary 3.2. (This is [2, Corollary 3.8].) Consider the elliptic curve y2 =
x3−36x of rank one, with the point (−3, 9) generating a non-torsion subgroup. For
any point (x, y) on this curve and

t =
x + 6

x− 6

the a=−1 twisted Edwards curve with torsion group isomorphic to Z/2Z × Z/4Z
defined as in Theorem 3.1 belongs to family (i) and has positive rank over Q.

Proof. This follows from

e1 =
3(t2 − 1)

8t
=

9x

x2 − 36
=

(
3x

y

)2

and the fact that (x1, y1) is a non-torsion point. �
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Remark 3.3. Corollary 3.2 provides an elliptic parametrization for family (i). At-
tempting this approach for the other three families gives rise to curves of rank zero,
and thus not the infinite families desired.

New rational parametrizations. To find new infinite families of curves, we
rewrite the general case equation −x2 + y2 = 1− e4x2y2 as

(3.1) y2 =
1 + x2

1 + e4x2
.

The resulting condition that the right hand side is a square is equivalent to requiring
that (1 + x2)(1 + e4x2) = e4x4 + (1 + e4)x2 + 1 is a square. With x = u

v we get
the equivalent condition that for the chosen values of e, u, and v the polynomial
e4u4 + (1 + e4)u2v2 + v4 must evaluate to a square.

Choosing u and v as polynomials in e, we are interested in the square-free part of
the resulting polynomial in e and in e-values for which the square-free part evaluates
to a rational square. A square-free part of degree higher than four corresponds to a
hyperelliptic curve that is known to have a finite number of rational points; because
we are interested in infinite families of curves, this case is of no interest to us.

The following search was conducted (using PARI/GP [12] for the polynomial
factorizations):

• x = u±1 for all integer polynomials u of degree at most two and coefficients
absolutely bounded by 100, and of degree at most four and coefficients
absolutely bounded by ten;
• x = u

v for all integer polynomials u, v of degree at most three and coefficients
absolutely bounded by ten.

The only square-free part of degree two thus found leads to the rational parametriza-
tion from Theorem 3.1. All other square-free parts have degree equal to four, and
thus each corresponds to an elliptic curve. Each one that has positive rank then
leads to an elliptic parametrization (i.e., curves as functions of points on some other
elliptic curve), but as we set out to find rational parametrizations (i.e., curves as
functions of rational numbers) this is not what we are interested in.

To address this we “manually” searched through the polynomials attempting
to find commonalities among the relevant square-free parts, which ultimately re-
sulted in parameterized infinite families of curves. Given such an infinite curve
parametrization (parameterized by k in the example below), it suffices to param-
eterize a finite number of points per curve. Our approach essentially consists in
identifying these families from the derived small values and check if they lead to
good subfamilies.

Example 3.4. To illustrate this strategy, substituting e+k
ke−1 for x in Equation (3.1),

it is found that k2+1
e4+2ke3+(k2−1)e2−2ke+1 must be a square. With the fixed point e = 3

4k

the denominator becomes ( 4k2+9
16k2 )2 so that for each k for which k2 + 1 is a square,

we have a point (x, y) satisfying the curve equation −x2 + y2 = 1−
(

3
4k

)4
x2y2 for

the general case. This results in infinitely many such curves.

Using several families of degree four polynomials (and, for some, different points
on the same curve), this resulted in the six additional new rational parametrizations
in Theorem (3.5), the proof of which is identical to the proof of Theorem 3.1. For
completeness the earlier result from Theorem 3.1 is included.
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Theorem 3.5. For 1 ≤ j ≤ 7 and for each nonzero t ∈ Q \ Sj the point (xj , yj)
is a non-torsion point on the a=−1 twisted Edwards curve −x2 + y2 = 1− e4

jx
2y2

with torsion group isomorphic to Z/2Z× Z/4Z:

j Sj ej xj yj

1 {±1,±3±1} 3(t2−1)
8t

128t3

27t6+63t4−63t2−27
9t4−2t2+9

9t4−9

2 {−2,−1,±4} t2+2t+4
2t+2

2t3+2t2−8t−8
t4+6t3+12t2+16t

2t5+14t4+40t3+44t2+32t+16
t6+4t5+10t4+20t3+40t2+64t+64

3 {±2} t2+4
3t

12t2−24
t4−4t2−32

3t6−12t4+120t2

5t6+12t4+128

4 {−2,−1,±4} t2+4t
t2−4

2t3+2t2−8t−8
t4+6t3+12t2+16t

t6+6t5+10t4−16t3−48t2−32t−32
t6+6t5+10t4+16t3+48t2+64t

5 {±4,±8} 4t4−1024
t5+512t

96t6+49152t2

t8−1280t4+262144
t12+3840t8+1966080t4+134217728
t12−768t8+786432t4−167772160

6 {±1,±2,±4} t3+8t
4t2+8

12t2+24
t4+4t2−32

4t6+24t4+192t2+320
5t6+48t4+96t2+256

7 {±2} t3−8t
4t2−8

12t2−24
t4−4t2−32

4t6−24t4+192t2−320
5t6−48t4+96t2−256

Imposing the aforementioned conditions to obtain all four families (i)-(iv) (as
mentioned above, it suffices to test if {e, 2e, e2 ± 1} contains a square) leads to the
corollary below. For completeness it includes the result of Corollary 3.2.

Corollary 3.6. For 1 ≤ j ≤ 4 let (ej , xj , yj) be functions of t as in Theorem 3.1.
For each case below the elliptic curve E has rank one, torsion group consisting
of the set T adjoined with the neutral element, and non-torsion point Q, and for
each point (x, y) on E the pair (xj , yj) is a non-torsion point on the a=−1 twisted
Edwards curve −x2+y2 = 1−e4

jx
2y2 with torsion group isomorphic to Z/2Z×Z/4Z

of positive rank and of the family listed. The last two columns list the ej-value of
the first curve constructed along with the non-torsion point.

family j E T Q t
curve generated by Q:
ej non-torsion point

(i) 1 y2 = x3 − 36x {(0, 0), (±6, 0)} (−3, 9) x+6
x−6

16
9

(
12
91 ,

27
29

)
(ii) 2 y2 = x3 + 3x {(0, 0)} (1, 2) x− 1 49

8

(
440
1911 ,

15688
132937

)
(ii) 3 y2 = x3 + 9x {(0, 0)} (4, 10) 2x

3
25
18

(
48
575 ,

15579
15725

)
(iii) 3 y2 = x3 − x2 − 64x + 64 {(1, 0), (±8, 0)} (−6, 14) 8x−8

y
5
3

(
21
20 ,

87
185

)
(iii) 4 y2 = x3 − 12x {(0, 0)} (−2, 4) x−2

2
65
56

(
252
3965 ,

444976
445705

)
(iv) 4 y2 = x3 − x2 − 9x + 9 {(1, 0), (±3, 0)} (5, 8) 4x+4

y−4
15
8

(
28
195 ,

3152
3495

)

Proof. With the proof of Corollary 3.2 and the characterizations given before it,
the verifications in the table below suffice. �

family j

(ii) 2: e2 = t2+2t+4
2t+2 = x2+3

2x = 1
2

(
y
x

)2

(ii) 3: e3 = t2+4
3t = 2x2+18

9x = 1
2

(
2y
3x

)2

(iii) 3: e2
3 − 1 = x4−4x3+132x2−256x+4096

36y2 =
(

x2−2x+64
6y

)2

(iii) 4: e2
4 − 1 = 16x3−192x

x4−8x3−8x2+96x+144 =
(

4y2

x2−4x−12

)2

(iv) 4: e2
4 + 1 =

(
x4+4x3+14x2−108x+153

x4−4x3−18x2−16xy+12x+48y+9

)2
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Remark 3.7. Two of the curves in the ej-column of the table in Corollary 3.6 already
appeared in [4, Table 3.1], namely those in the first and fourth row (though for the
latter [4] used the different non-torsion point

(
27
11 ,

5
13

)
).

The search that led to Corollary 3.6 did not identify any elliptic curve of positive
rank for j > 4, and no other elliptic curve of positive rank for j ≤ 4 either.

4. Effectiveness of the new curves

In this section we consider the effectiveness of our new curves when used in ECM
and compare them to the curves proposed for ECM in [4]. To facilitate the com-
parison we conduct the same tests as in [4] and borrow some of their notation.

Earlier work. In [4] the effectiveness of Edwards curves for ECM was investigated.
For each of the five torsion groups (isomorphic to Z/6Z, Z/8Z, Z/12Z, Z/2Z ×
Z/4Z, and Z/2Z × Z/8Z) a set of a thousand Edwards curves was generated as
described in [4], with a = −1 when possible (i.e., for the three smallest torsion
groups). For each of the 5000 resulting curves the EECM software from [5] was
applied to all b-bit primes for 15 ≤ b ≤ 26 (with ECM bounds depending on the
targeted b-bit prime as in [5]). For each curve and each b the number of b-bit primes
found (the “yield”) was tallied, with the resulting counts extensively detailed in
five very informative tables. Here a prime p is said to be “found” by a curve if the
cardinality of the curve over Fp is smooth with respect to the ECM bounds used.

On average the curves with torsion group isomorphic to Z/6Z performed best,
because of the relatively large number of primes found and because a=−1 allows
fast scalar multiplication. Among these, a particularly good curve is −x2 + y2 =
1 − 13312

18225x
2y2, identified by the non-torsion point

(
825
2752 ,

1521
1504

)
in the #1-column

(for b = 21 and b ≥ 24) and #2-column (for b = 19, 22) of [4, Table 5.1]. We
re-derived its tallies for the C6-column of Table 1 (six figures of which thus already
appeared in [4, Table 5.1]). Another interesting result was that among the curves
with torsion group isomorphic to Z/2Z×Z/4Z four curves appeared to stand out.
Indeed, these four curves happened to belong to the families with favorable Galois
properties that were identified in [2]: two of family (i) and one each of families (iii)
and (iv) and in [4, Table 3.1] identified by the non-torsion points

(
12
91 ,

27
29

)
,
(

3
14 ,

1
17

)
,(

27
11 ,

5
13

)
, and

(
12
343 ,

1404
1421

)
, respectively. The latter one “easily outperforms” the

other 999 curves for b ≥ 19, the reason of which is not identified in [2] and which
we now know to be due to the fact that it is of family (iv)1: in [4, Table 3.1] it
is “best” for b = 17 and b ≥ 19 and “second best” for b = 16, 18. This curve has

equation −x2 + y2 = 1−
(

77
36

)4
x2y2 and does not appear in our parametrization of

curves of family (iv). Its re-derived tallies are listed in the C2×4-column of Table 1
(all figures of which except for b = 15 thus already appeared in the #1 or #2-column
of [4, Table 3.1]).

Comparison to earlier work. For one hundred curves of family (iv) as param-
eterized in the last row of the table in Corollary 3.6 we ran the same tests as in [4]
with the same EECM software and parameters. The curves we used are denoted
by C[m] for 1 ≤ m ≤ 100, where C[m] is constructed from the point (x, y) = mQ

with Q = (5, 8) on the curve y2 = x3 − x2 − 9x + 9. The #1 and #100-column
in Table 1 list the largest and smallest, respectively, number of primes found per

1This was recognized by Peter L. Montgomery.
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curve, with the average-column averaging the counts over all one hundred curves.
Results of the tests for families (i)-(iii) are less interesting and not reported.

Per b-value the ratio of the best yield over C[1], C[2], . . . , C[100] and the yield of

the single best performing earlier curve C6 is given in the #1/C6 -column of Table 1,
but no single new curve has been identified that actually realizes the small gain
suggested (but see Table 2 below). Indeed, the outcome of the same performance
comparison between the average of the C[m]-curves and C6 is more variable and
with 65 of the one hundred C[m]-curves having a higher average yield than C6, the
performance is close. The curve with the best average ratio (of 1.0064) compared
to C6 is C[93], and curves C[22] and C[86] are the only two curves that have higher
yield than C6 (and thus than C2×4) for all but three b-values; there are ten C[m]

curves for which the yield is lower than for C6 for four b-values. As can be seen in
Table 1, for b = 23 all C[m]-curves considered have higher yield than C6. Unlike [4],
we do not specify which of C[1], C[2], . . . , C[100] has the best yield because with no
curve appearing more than twice among the “top three” this information is useless.
This is illustrated, in the #1/#100-column, by the ratio of the yields of the best and
worst performing C[m] per b-value: with small ratios all C[m]-curves tested can be
seen to behave similarly. The figures in the ratio-columns of the tables in [4] are
much larger — with one thousand curves per table they not only cast their net
much wider, but they also allow a greater variation (of Galois properties) of curves
per batch.

Table 1. Yields for C6 and the family (iv) curves C2×4, C[1], C[2], . . . , C[100].

b C6 C2×4
#1 average #100 #1/C6

#1/#100(among C[1], C[2], . . . , C[100])

15 1127 1049 1202 1155.36 1103 1.0665 1.0897
16 1693 1564 1806 1737.32 1664 1.0667 1.0853
17 3299 2985 3324 3197.86 3077 1.0075 1.0802
18 6150 5529 6168 6020.01 5921 1.0029 1.0417
19 10802 10200 10881 10723.75 10500 1.0073 1.0362
20 16148 15486 16396 16197.71 15955 1.0153 1.0276
21 24160 22681 24312 24003.34 23655 1.0062 1.0277
22 48378 46150 48894 48515.60 48114 1.0106 1.0162
23 83339 82743 85525 84839.98 84254 1.0262 1.0150
24 193069 187596 193558 192825.73 191961 1.0025 1.0083
25 318865 311864 320498 319154.79 317304 1.0051 1.0100
26 493470 480006 495082 493556.42 492364 1.0032 1.0055

All our parameterized curves have higher yields than the curve C2×4, even though
they are all family (iv) curves. This is due to our choice of the non-torsion
point (xj , yj) which implies that the group of the curve modulo about half of the
primes contains a point P such that (xj , yj) = 2P , thereby for those primes effec-
tively adding a doubling in the scalar multiplication in ECM. The effect diminishes
with larger b-values (see also the last column of Table 2).
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Additional tests. On the EECM website2 the yields of ECM using a fixed Ed-
wards curve are given when applied to batches of 220 b-bit primes, for b up to 63.
We used the same EECM software and parameters (but our own sets of 220 b-bit
primes) to conduct the same experiment for the following four Edwards curves:

• the curve C[1] : −x2+y2 = 1−
(

15
8

)4
x2y2, the first curve of our parametriza-

tion of family (iv) curves;
• the above curve C6, i.e., the best performing curve from [4];
• the curve C12 : x2 + y2 = 1 − 24167

25 x2y2 from the EECM website, with

torsion group of order twelve and a non-torsion point
(

5
23 ,
−1
7

)
with very

small coordinates;
• the above curve C2×4 from [4] belonging to family (iv), but not appearing

in our parametrization of family (iv) curves.

As can be seen in Table 2 the yields are very close. The average yield-ratios of
curve C[1] compared to the three other curves (in the last row of Table 2) suggest that
the new curve C[1] overall performs best. Note too that the three other curves were
chosen as the best among large batches of previously known curves, whereas C[1] is
just the first one of our newly parameterized family (iv) curves. Based on the final
column of Table 1, we expect that all these new curves behave similarly.

The non-monotone yield decrease, consistent among the four curves tested, can
be attributed to the choice of parameters in the EECM software.

5. Conclusion

In [2] favorable properties of the Galois group structures of a = −1 twisted
Edwards curves with torsion group isomorphic to Z/2Z×Z/4Z were identified. This
gave rise to four families of curves that looked promising for application in ECM. A
new rational parametrization of a=−1 twisted Edwards curves with torsion group
isomorphic to Z/2Z × Z/4Z then led to an elliptic parametrization for the curves
in one family, but not the most promising one.

In this paper we extended the constructions from [2] by developing six further
rational parametrizations, and use three of them to formulate five new elliptic
parametrizations that enable fast generation of curves for all families of curves
from [2]. We conducted the same tests as described in [4] for the family of curves
that are, based on their Galois properties, most promising for ECM. With respect
to the criteria from [4] usage of this family of curves leads to slightly better perfor-
mance of ECM than reported before, with no significant fluctuations across curves
from this same family. The newly parameterized curves may prove to be most use-
ful for ECM-based cofactoring in the number field sieve. We do not claim that our
results are complete: other parametrizations than the ones presented in this paper
may exist.

All potential new savings identified in this paper rely on the properties of the
curves used, not on the way arithmetic on the curve is performed. Indeed, we rely
on the same improvement from [7] that is exploited in [4] and use the same software
that was used in [4].

2http://eecm.cr.yp.to/performance.html
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Table 2. Yield comparisons for C[1] versus C6, C12 and C2×4.

b C[1] C6 C[1]/C6 C12
C[1]/C12 C2×4

C[1]/C2×4

27 263563 260933 1.0100 257558 1.0233 259377 1.0161
28 212253 209813 1.0116 206965 1.0255 208819 1.0164
29 179190 176620 1.0145 174302 1.0280 176699 1.0140
30 141182 139827 1.0096 137953 1.0234 138984 1.0158
31 197013 195906 1.0056 193954 1.0157 195365 1.0084
32 161111 159685 1.0089 158323 1.0176 159552 1.0097
33 129949 128477 1.0114 127719 1.0174 128326 1.0126
34 131982 131397 1.0044 130116 1.0143 130511 1.0112
35 131837 130694 1.0087 129699 1.0164 131161 1.0051
36 114826 113772 1.0092 112689 1.0189 113775 1.0092
37 103744 102681 1.0103 102515 1.0119 103173 1.0055
38 85135 83839 1.0154 83778 1.0161 84120 1.0120
39 73526 73069 1.0062 72897 1.0086 73376 1.0020
40 59619 59265 1.0059 58970 1.0110 59955 0.9943
41 83967 83694 1.0032 83295 1.0080 83323 1.0077
42 73730 73739 0.9998 73653 1.0010 73249 1.0065
43 60978 60573 1.0066 60611 1.0060 60695 1.0046
44 50238 49714 1.0105 49509 1.0147 50077 1.0032
45 44354 43706 1.0148 43825 1.0120 44259 1.0021
46 40133 39754 1.0095 39385 1.0189 39873 1.0065
47 46291 46167 1.0026 45951 1.0073 46240 1.0011
48 40969 40569 1.0098 40683 1.0070 40703 1.0065
49 37956 37428 1.0141 37099 1.0231 37555 1.0106
50 35096 34963 1.0038 35421 0.9908 35202 0.9969
51 29503 29105 1.0136 29023 1.0165 29209 1.0100
52 29780 29191 1.0201 29342 1.0149 29666 1.0038
53 27430 27153 1.0102 27069 1.0133 27594 0.9940
54 23996 23667 1.0139 23896 1.0041 23649 1.0146
55 25316 25064 1.0100 24883 1.0174 25023 1.0117
56 22471 22255 1.0097 21828 1.0294 22411 1.0026
57 20449 20169 1.0138 20253 1.0096 20276 1.0085
58 20826 20313 1.0252 20303 1.0257 20578 1.0120
59 18527 18231 1.0162 18029 1.0276 18340 1.0101
60 16287 16016 1.0169 16021 1.0166 16306 0.9988
61 13638 13482 1.0115 13488 1.0111 13462 1.0130
62 18056 18083 0.9985 18071 0.9991 18351 0.9839
63 15657 15651 1.0003 15613 1.0028 15747 0.9942

averages C[1]/C6 : 1.0099 C[1]/C12 : 1.0142 C[1]/C2×4
: 1.0063
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