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Abstract

We describe a defense against zeroizing attacks on indistinguishability obfuscation (iO) over
the CLT13 multilinear map construction that only causes an additive blowup in the size of the
branching program. This defense even applies to the most recent extension of the attack by
Coron et al. (ePrint 2016), under which a much larger class of branching programs is vulnerable.
To accomplish this, we describe an attack model for the current attacks on iO over CLT13 by
distilling an essential common component of all previous attacks.

This leads to the notion of a function being input partionable, meaning that the bits of
the function’s input can be partitioned into somewhat independent subsets. We find a way to
thwart these attacks by requiring a “stamp” to be added to the input of every function. The
stamp is a function of the original input and eliminates the possibility of finding the independent
subsets of the input necessary for a zeroizing attack. We give three different constructions of
such “stamping functions” and prove formally that they each prevent any input partition.

We also give details on how to instantiate one of the three functions efficiently in order to
secure any branching program against this type of attack. The technique presented alters any
branching program obfuscated over CLT13 to be secure against zeroizing attacks with only an
additive blowup of the size of the branching program that is linear in the input size and security
parameter.

We can also apply our defense to a recent extension of annihilation attacks by Chen et al.
(ePrint 2016) on obfuscation over the GGH13 multilinear map construction.
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1 Introduction

Indistinguishability obfuscation (iO) has so far relied on multilinear maps for instantiation (e.g.
[GGH+13b]) and viable candidates for such are sparse. On top of that, the few that exist [GGH13a,
CLT13, GGH15] have all been shown to suffer from significant vulnerabilities. However, not all
attacks against these multilinear maps can be applied to iO. The very particular structure that most
iO candidates induce puts numerous constraints on the way the encoded values can be combined,
thus often not allowing the flexible treatment needed to mount an attack. Attacks on iO schemes
have nonetheless been found for obfuscation of increasingly general families of functions.

In this paper we focus on the Coron-Lepoint-Tibouchi (CLT13) multilinear maps [CLT13]. The
known attacks over CLT13 are called zeroizing attacks [CHL+15, CGH+15, CLLT17]. To be carried
out, they require multiple zero encodings that are the result of multiplications of elements that
satisfy a certain structure. Since obfuscations of matrix branching programs only produce zeroes
when evaluated in a very specific manner, setting up such a zeroizing attack on an obfuscated
branching program is rather non-trivial.

Because of this, the first paper applying zeroizing attacks over CLT13 to iO only showed how
to apply the attack to very simple branching programs [CGH+15], and attacking more realistic
targets seemed out of reach of this technique. However a very recent work by Coron et al. [CLLT17]
introduced a simple method that can transform a much larger class of branching programs into ones
that have this very specific structure. As such, zeroizing attacks appear much more threatening to
the security of iO over CLT13 than previously thought.

1.1 The Story so Far: Branching Programs and Zeroizing Attacks

This section will serve as a light introduction to the terminology and concepts at work in this paper.

Branching Programs. The “traditional” method of obfuscation works with matrix branching
programs that encode boolean functions. A (single input) matrix branching program BP is specified
by the following information. It has a length `, input size n, input function inp : [`]→ [n], square
matrices {Ai,b}i∈[`],b∈{0,1}, and bookend vectors A0 and A`+1. An evaluation of the branching
program BP on input x ∈ {0, 1}n is carried out by computing

A0 ×
∏̀
i=1

Ai,xinp(i)
×A`+1.

If the product is zero then BP(x) = 0 and otherwise, BP(x) = 1.

Multilinear Maps and Obfuscating Branching Programs. Current instantiations of iO are
based on graded multilinear maps [GGH+13b, BGK+14]. This primitive allows values {ai} to be
encoded to {[ai]} in such a manner that they are hidden. The multilinear map allows evaluation of
a very restricted class of polynomials over these encoded values. Moreover, evaluating a polynomial,
p, over the encodings in this way should only yield one bit of information: whether or not the result,
p({ai}), is zero.

To obfuscate a branching program, we first randomize the matrices and then encode the
entries of the matrix using a multilinear map. (See for example [BGK+14] for details on how
the matrices are randomized.) The hope is that the multilinear map will allow evaluations of the
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branching program but will not allow other malicious polynomials over the encodings that would
violate indistinguishability. In fact, Barak et al. [BGK+14] show that if zero testing the result of
evaluations over the multilinear map truly only reveals whether or not the evaluation is zero and
does not leak anything else then this scheme is provably secure.

Zeroizing Attacks on Obfuscated Branching Programs. Unfortunately, the assumption
that zero-testing does not leak any information is unrealistic. In particular, the zeroizing attacks
over the CLT13 multilinear map work by exploiting the information leaked during successful zero
tests to obtain the secret parameters.

Before discussing the zeroizing attacks on iO, we first consider how the attacks work over raw
encodings. (This version of the attack was first presented in [CHL+15]) Each of the known zeroizing
attacks require sets of encodings that satisfy a certain structure. Namely, to attack a CLT instance
of dimension n, an adversary needs three sets of encodings {Bi}i∈[n], {C0, C1}, and {Dj}j∈[n] such
that for every i, j ∈ [n] and σ ∈ {0, 1}, BiCσDj is a top-level encoding of zero. In other words,
we must be able to vary the choice of encoding in each set independently of the other choices and
always produce an encoding of zero. If an adversary is able to obtain such sets, then the adversary
is able to factor the modulus of the ciphertext ring, completely breaking the CLT instance. (We
give more details about the attack in Section 2.)

In the case of applying zeroizing attacks to iO constructions over CLT13, the above requirement
leads to an interesting constraint on the behavior of the function being obfuscated. Obfuscation
schemes are designed so that the only way to achieve an encoding of zero is by performing an honest
evaluation of the obfuscated program. In fact, [BGK+14] prove that their obfuscation scheme has (a
more formal version of) this property. The result of this is that the only way to obtain the products
of the three sets of encodings described above is to vary the inputs to the obfuscated function. So for
the obfuscation of a function to be vulnerable to zeroizing attacks over CLT13, the input bit indices
of the function must be divisible into three sets, corresponding to the three sets of encodings above.

Input Partitioning. We describe a generalization of this condition on the input here. Let
f : {0, 1}n → {0, 1} be a function to be obfuscated. In order to deploy a zeroizing attack on the
obfuscation of f over CLT13, it is required that the function allows an input partitioning. We say
that there is an input partitioning of f if there exist sets A ⊆ {0, 1}k, B ⊆ {0, 1}l, k + l = n and a
permutation π ∈ Sn such that |A| , |B| > 1 and for every a ∈ A and b ∈ B, f(π(a || b)) = 0, where π
acts on the bit-string a || b by permuting its bits. In words, the function f can be input partitioned
if the indices of the input can be partitioned into two sets such that varying the bits of the partitions
independently within certain configurations will always yield zero as the output. As mentioned
above, all known attacks on obfuscation over CLT13 require this partition to exist. In fact, the
current attacks need a partition into three parts to succeed, but since any input partition into three
parts can be viewed as an input partition into two parts, we treat that more general case instead.

It is worth noting that zeroizing attacks in fact require a stronger condition on the branching
program in order to succeed; the matrices of the obfuscated branching program must be organized
in a specific way in relation to the three sets of inputs. But preventing an input partition necessarily
prevents this stronger condition. Since all known attacks require an input partition, this constitutes
an “attack model” of sorts for obfuscation over CLT13. Previous authors [CGH+15, CLLT17] have
considered the stronger condition as a requirement for their attacks, but we are the first to consider
the input partition of a boolean function as the basis of a formal attack model. We will define this
model formally in Section 3.2.
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1.2 Our Contributions

Our aim in this paper is to provide a robust defense against the known classes of zeroizing attacks
for iO over CLT13 and against potential future extensions of these attacks. Further, we want the
defense to have a minimal impact on the efficiency of the obfuscated program. In this section we
describe how we achieve such a defense that only incurs an additive linear blowup.

More specifically, the goal of the paper is to construct a procedure which takes an input
partitionable function f : {0, 1}n → {0, 1} and produces a function g with the same functionality,
but on which no input partitions exist. The existence of an input partition depends on which inputs
cause g to output zero; note that a branching program is defined to output zero if the result of the
multiplications of the matrices is zero and one if the result is any other value. So we will think of g
as being a function {0, 1}n′ → {0,⊥}.

Input Stamping. The idea behind such a procedure, is to append a “stamp” to the end of the
input of the function f . The stamp is designed to not allow the input as a whole to be input
partitioned. More specifically, we will construct a function h : {0, 1}n → {0, 1}m such that given any
f : {0, 1}n → {0, 1} we can construct a new program g : {0, 1}n+m → {0,⊥} from f such that g(s)
outputs 0 if and only if the input is of the form s = x || h(x) and f(x) = 0 and otherwise outputs ⊥.
Note that the original {0, 1}-output of f is recoverable from g as long as the evaluation took place
with the correct stamp appended to the input.

Our main theoretical result is to find a necessary and sufficient condition on h such that g cannot
be input partitioned. If this is the case then we say h secures f . We state a sufficient condition below
as Theorem 1. In Section 3.4 we restate Theorem 1 with both necessary and sufficient conditions
after introducing some preliminaries which are required for the stronger version of the theorem.

Theorem 1 (Weakened). Let h : {0, 1}n → {0, 1}m. Let x1,1, x1,2, x2,1, x2,2 ∈ {0, 1}n be treated as
integers. If whenever

x1,1 − x1,2 = x2,1 − x2,2
h(x1,1)− h(x1,2) = h(x2,1)− h(x2,2)

it is the case that x1,1 = x1,2 or x1,1 = x2,1, then h secures all functions f : {0, 1}n → {0, 1}.

With this theorem, two questions arise: whether is is feasible to construct such an h, and how
efficiently we can construct the modified g to be. The second question is relevant with respect to
the work in [AGIS14, BISW17] on improving the efficiency of obfuscation of branching programs.
It is especially relevant to [BISW17] since this paper uses CLT13 to achieve a significant speedup
factor from previous constructions. Thus, establishing the security of obfuscation over CLT13 with
minimal overhead is pertinent.

With regards to efficiency, the size of the image of h becomes important. Using an h that has an
output size m which is large relative to n will necessarily affect the efficiency of the resulting g. In
Section 3.5 we explore the minimum value of m necessary in order for h to be secure. We show that
m must be at least linear in terms of n.

Constructions. The first two instantiations we present for h address the question of the feasibility
of constructing such a function. They are both number-theoretic and follow from the fact that
Theorem 1 can be interpreted as a sort of nonlinearity property. We show that squaring and
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exponentiation modulo a large enough prime satisfy this property and thus secure any function
f . We stress that we do not rely on any number-theoretic assumptions in the proofs that these
functions satisfy Theorem 1.

The third instantiation is a combinatorial function and is motivated by the desire for efficiency.
To that end, instead of defining a single function which is guaranteed to have the property specified
above, we define a family of very simple functions where the probability of a random choice from
this family is very likely to have the property.

We define h as follows. Let k and t be parameters set beforehand. For each i ∈ [t] and j ∈ [n],
choose πi,j,0 and πi,j,1 at random from the set of permutations acting on k elements. For an input
x ∈ {0, 1}n, define

hi(x) = (πi,1,x1
◦ πi,2,x2

◦ · · · ◦ πi,n,xn)(1).

Then h(x) = h1(x) || h2(x) || · · · || ht(x).
We give a combinatorial probabilistic argument that with k = O(1) and t = O(n+ λ) the choice

of h secures all functions f : {0, 1}n → {0, 1} with overwhelming probability as a function of λ.

Parallel Initialization. Since this construction for h is defined in terms of permutations and
processes the input in the same way that a branching program does, constructing a branching
program that computes such an h and subsequently modifying a branching program for f to create
a branching program for the corresponding g is fairly straightforward. While this is already vastly
more efficient than implementing the first two instantiations of h using a matrix branching program,
running the functions hi in sequence would cause a linear blowup in the size of the branching
program. We do much better than this and achieve a constant blowup factor with the following
trick. Unlike the GGH13 multilinear map construction, CLT13 allows for a composite ring size. We
use this fact to evaluate all the hi in parallel. This achieves a constant factor overhead.1 (This
technique was used, for example, in [AS17, GLSW15], albeit for different purposes.)

Perspectives. We remark that the attacks in [CLLT17] still do not apply to obfuscations of all
branching programs. Specifically, if the branching program is too long compared to the input size
then there is a blowup associated with the transformation in [CLLT17] which becomes infeasible.
Also, it is not yet known how to apply the attack to dual-input branching programs, due to a similar
blowup in complexity. Although this is the case, it is definitely possible that future work will extend
zeroizing attacks to longer branching programs and dual-input branching programs. Our defense
hedges against these possible future attacks, because it defends against any attack which requires
an input partition.

It is noteworthy to contrast this line of work with the recent attacks on iO over the GGH13
[GGH13a] multilinear maps construction. In [MSZ16] Miles et al. implement the first known such
attacks, which they call annihilating attacks. A follow-up paper [GMM+16] gives a weakened
multilinear map model and an obfuscation construction in this model which is safe against all
annihilating attacks. We stress that the attacks over CLT13 are not related to these annihilating
attacks, which are not known to work over CLT13. However, a recent paper attacking obfuscation
over GGH13 [CGH17], in which the authors extend annihilating attacks to the original GGHRSW
construction of iO, does use an input partition as part of their attack. They do this as a first step in

1In fact our actual overhead is additive and linear in terms of the input size of f , not the size of its branching
program. See Section 4.3 for details.
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order order to recover a basis for the ideal which defines the plaintext space. Our defense applies to
this step of their attack.

As a final note, our defense does not operate in a weak multilinear map model, in contrast to
the one defined in [GMM+16]. We leave it as an important open question to develop such a weak
multilinear map model for CLT13.

Organization. In Section 2 we discuss the attacks on obfuscation over CLT13 in more detail. In
Section 3 we define formally what it means for a function to be input partitionable, and give a
necessary and sufficient condition for any h to secure a function. We also give our lower bound
on the size of the image of h. Finally, in Section 4 we define and prove the correctness of our
instantiations of h.

2 Recent attacks on CLT13

In this section we give a high-level overview of the new attack by Coron, Lee, Lepoint and Tibouchi
[CLLT17]. We start by reviewing the older attacks in [CHL+15, CGH+15] which this attack is
based on.

The basic idea behind all the zeroizing attacks over CLT13 is to exploit the specific structure of
the zero-test of CLT13, which differs from the other multilinear map constructions. CLT13 works
over a ring Zx0

∼=
⊕k

i=1 Zpi , and zero-testing an element successfully results in a sum
∑k
i=1 riρi

where ri is the component of the element modulo pi and ρi is specific to the particular CLT13
instantiation. All of the attacks follow the same basic outline: construct a matrix A where every
Ai,j is the result of a successful zero-test such that A is similar to another matrix that contains
information about the secret parameters of the CLT13 instantiation. In order to do this, they start
with three sets of encodings {Bi}i∈[n], {C0, C1}, and {Dj}j∈[n] such that for every i, j ∈ [n] and
σ ∈ {0, 1}, BiCσDj is a top-level encoding of zero. In the simplest version of the attack, putting
these encodings into a matrix A′ and taking A = A′A′−1 results in a matrix that is similar to a
diagonal matrix with eigenvalues c0i /c

1
i , where cσi is the i-th component of Cσ. These eigenvalues

can be used to factor x0.
All known attacks on obfuscation over CLT13 have proceeded in a very similar manner to the

method just described: since the evaluation of a branching program is a product of matrices over
encodings in a multilinear map, they divide the steps of the branching program into three parts
corresponding to the sets of encodings above such that these three parts can be varied independently
of the others.

To see what we mean by this, let

M(x) = M̂0 ×
r∏
i=1

M̂i,xinp(i)
× M̂r+1, x ∈ {0, 1}t

be an obfuscation of a matrix branching program. We try to find Bx = M̂0 ×
∏a
i=1 M̂i,xinp(i)

,

Cx =
∏b
i=a+1 M̂i,xinp(i)

, and Dx =
∏r
i=b+1 M̂i,xinp(i)

×Mi,r+1 such that we can partition the input
bits as B ·∪ C ·∪ D = [t] and the value of Bx, Cx, and Dx rely only on B, C, and D, respectively.
Write M(bcd) to mean the evaluation of M where b specifies the bits with positions in B, and with
c, d likewise with C,D. We further try to find sets of bit strings B,C ,D where B,D are large and
C is at least of size two and for all b ∈ B, c ∈ C , d ∈ D , M(bcd) = 0. If we can do all this, then the
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corresponding products of matrices form products of zero which decompose in a similar manner
to the products of encodings used for the previous attack, and can similarly be used to mount an
attack on the CLT13 instance used.

The problem with using this attack directly is that only the very simplest of branching programs
can be decomposed in this way. In particular, attacks on any branching program that makes several
passes over its input are ruled out.

The modified attack in [CLLT17] overcomes this limitation with a matrix identity which allows
a rearranging of the matrix product corresponding to a branching program execution. The identity
is as follows:

vec(A ·B · C) = (CT ⊗A) · vec(B).

Using this identity, [CLLT17] shows how to attack a branching program with input function
inp(i) = min(i, 2t+ 1− i) for 1 ≤ i ≤ 2t+ 1. Note that any branching program with this function
does not satisfy the property above which was required for the earlier CLT13 attacks, since every
input bit except for the t-th bit controls two nonconsecutive positions in the branching program.
We can write such a program evalution as

A(x) = B(x)C(x)D(x)C ′(x)B′(x)× pzt (mod x0)

whereB(x) andB′(x) are both controlled by the same inputs, and likewise for C(x) and C ′(x). [CLLT17]
show that this can be rewritten as

(B′(x)T ⊗B(x))× (C ′(x)T ⊗ C(x))× vec(D(x))× pzt (mod x0)

where now the three sets of inputs control consecutive pieces of the product. They then show how
to use a modification of the original attack on this product, factoring x0.

3 Securing Functions against Partition Attacks

3.1 Notation

We first introduce some notation for our exposition.

Definition 1. For any positive integer k ∈ N we denote by Zk the set Z/kZ.

Definition 2. Let n ∈ N be a positive integer and ~v ∈ Nn a vector. We will denote by Z~v the set

Zv1 × Zv2 × · · · × Zvn .

In this and following sections we will consider functions f that we want to secure and input
stamping functions h. We will consider such functions as having domains and/or codomains of the
form Z~v. Note that if we define ~v = (2, 2, . . . , 2), then Z~v = {0, 1}n, so this is a a generalization
of binary functions. We do this because in the instantiations section we will define an h which
needs this generalized input format. Thus we state all theorems using this more general format to
accommodate such instantiations.

Definition 3. For a positive integer n ∈ N we denote by [n] the set {1, 2, . . . , n}.

Definition 4. For a positive integer t ∈ N, we denote by St the set of permutations of the set [t].

Definition 5. For two vectors or strings a and b let a || b denote their concatenation.
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3.2 Input Partition Attacks

In this section we define formally the notion of an input partition attack. We also define what
it means for a function to be hard or impossible to partition. Since in this section we only are
concerned with whether a function outputs zero or not, we consider functions with codomain {0,⊥},
where ⊥ represents any nonzero branching program output.

Definition 6 (Input Partition). Let ~v ∈ Nt be a vector and f : Z~v → {0,⊥} be a function. An
input partition for f of degree k is a tuple

Ikf =
(
σ ∈ St, {ai}i∈[k] ⊆ Z~u1

, {cj}j∈[k] ⊆ Z~u2

)
satisfying ai 6= aj and ci 6= cj for all i, j ∈ [k] with i 6= j and σ(~u1 || ~u2) = ~v such that for all
i, j ∈ [k],

f(σ(aicj)) = 0.

Definition 7 (Input Partition Attack). For each t ∈ N let ~vt ∈ Nt be a vector, Ft be a family of
functions f : Z~vt → {0,⊥}, and let F = {Ft}t∈N. We say that a PPT adversary A performs an
input partition attack of degree k on F if for a non-negligable function ε,

Pr
w,f←Ft

[
A(f) = Ikf is an input partition of f of degree k

]
> ε(t),

where the probability is taken over the randomness w of A and the choice of f .

Turning the above definition around, we can ensure security against input partition attacks if
the function we obfuscate satisfies the following.

Definition 8 (Input Partition Resistance). For each t ∈ N let ~vt ∈ Nt be a vector, Ft be a family
of functions f : Z~vt → {0,⊥}, and let F = {Ft}t∈N. We say that F is input partition resistant for
degree k if no PPT adversary successfully performs an independent input attack on f of degree k.

A stronger version of this is for a function to simply not admit any input partitions which would
clearly make attacks requiring a partition of the input impossible.

Definition 9 (Input Unpartitionable Function). Let ~v ∈ Nt be a vector and f : Z~v → {0,⊥} be a
function. We say that f is input unpartitionable for degree k if it does not admit an input partition
of degree k. If f is input unpartitionable for degree 2, we simply say that it is input unpartitionable.

3.3 Securing Functions

Now that we have defined the type of attack we aim to defend against, we introduce the input
“stamping” function h and define what it means for h to secure a function f .

Definition 10 (Securing a Function). Let ~v1 ∈ Nt1 , ~v2 ∈ Nt2 be vectors and write ~v = ~v1 || ~v2. Let
f : Z~v1 → {0, 1} and h : Z~v1 → Z~v2 be functions and construct a function g : Z~v → {0,⊥} as follows:

g(ab) =

{
f(a), h(a) = b

⊥, h(a) 6= b.

We say that h completely secures f if g is input unpartitionable.
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A slightly less strict definition is the following which defines what it means for a function family
to statistically secure a function.

Definition 11 (Statistically Securing a Function). Let ~v ∈ Nt be a vector, f be a function f : Z~v →
{0, 1}, and H be a collection H = {Hλ}λ∈N of function families such that Hλ is a family of functions
h : Z~v → Z~uλ for some ~uλ ∈ Nkλ . We say that H statistically secures f if for some negligible
function ε and for all λ ∈ N,

Pr
h

$←Hλ
[h completely secures f ] > 1− ε(λ),

where h is sampled uniformly from Hλ.

3.4 Necessary and Sufficient Conditions

In this section we present and prove the necessary and sufficient condition on a function h in order
for it to secure every function f . First we give some useful definitions.

Definition 12. Let k ∈ N be a positive integer and define the equivalence relation ∼ on Zk × Zk as
follows. Two elements (a, b), (c, d) ∈ Zk×Zk are equivalent under ∼ if and only if either (a, b) = (c, d)
or a = b and c = d. We denote by Zk the set

Zk = Zk × Zk/ ∼ .

For a vector ~v ∈ Nt we write Z~v for the set Zv1 ×Zv2 × · · · × Zvt .

Definition 13. Let ~v ∈ Nt be a vector. Define an operation ∗ : Z~v × Z~v → Z~v as follows. For two
elements (a1, . . . , at), (b1, . . . , bt) ∈ Z~v,

(a1, . . . , at) ∗ (b1, . . . , bt) = ((a1, b1), . . . , (at, bt)) ∈ Z~v.

The operation ∗ is essentially a projection of two vectors ~a,~b ∈ Z~v into Z~v.
We now give the characterization.

Definition 14 (Safe Function). Let ~v1 ∈ Nt1 , ~v2 ∈ Nt2 be vectors. A function h : Z~v1 → Z~v2 is safe
if for every x1,1, x1,2, x2,1, x2,2 ∈ Zv1 it is the case that if both of the following hold:

x1,1 ∗ x1,2 = x2,1 ∗ x2,2
h(x1,1) ∗ h(x1,2) = h(x2,1) ∗ h(x2,2),

then x1,1 = x1,2 or x1,1 = x2,1.

Theorem 1. Let ~v1 ∈ Nt1 , ~v2 ∈ Nt2 be vectors. The function h : Z~v1 → Z~v2 completely secures every
function f : Z~v1 → {0, 1} if and only if it is safe.

In order to prove Theorem 1 we first state and prove two lemmas.

Lemma 1. Let ~v1 ∈ Nt1 and ~v2 ∈ Nt2 be vectors and σ ∈ St1+t2 . Let a1, a2 ∈ Z~v1 , c1, c2 ∈ Z~v2 , and

{r1, . . . , rk} = T ⊆ [t1 + t2], r1 < r2 < · · · < rk.

Finally, define a function pT such that for x ∈ Z~v1||~v2 , pT (x) = xr1xr2 . . . xrk . Then

pT (σ(a1c1)) ∗ pT (σ(a2c1)) = pT (σ(a1c2)) ∗ pT (σ(a2c2))
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Proof. First, note that this lemma holds in general if and only if it holds for T = [t1 + t2]. So we
will simply show that

σ(a1c1) ∗ σ(a2c1) = σ(a1c2) ∗ σ(a2c2)

which is equivalent to showing that

a1c1 ∗ a2c1 = a1c2 ∗ a2c2.

However, this is trivial from the definition of the operation ∗ and the conclusion follows.

Lemma 2. Let ~v ∈ Nt be a vector and let x1,1, x1,2, x2,1, x2,2 ∈ Z~v be given satisfying x1,1 6= x1,2
and x1,1 6= x2,1 and

x1,1 ∗ x1,2 = x2,1 ∗ x2,2.

Then there exist

σ ∈ St, a1, a2 ∈ Z~v1 , c1, c2 ∈ Z~v2

with a1 6= a2, c1 6= c2, and σ(~v1 || ~v2) = ~v such that for every i, j ∈ {1, 2},

σ(aibj) = xi,j

Proof. Let S be the set of indices j ∈ [t] such that xj1,1 = xj1,2 and let D be the set of indices

j ∈ [t] such that xj1,1 6= xj1,2. It is clear that S and D partition the set of indices [t]. Since
x1,1 ∗ x1,2 = x2,1 ∗ x2,2, we must have the following relations:

∀j ∈ S : xj1,1 = xj1,2 and xj2,1 = xj2,2 (1)

∀j ∈ D : xj1,1 = xj2,1 6= xj1,2 = xj2,2 (2)

Note that because x1,1 6= x2,1, S and D must be non-empty and there must exist an index r ∈ S
such that xr1,1 = xr1,2 6= xr2,1 = xr2,2.

Now, enumerating S and D as S = {m1, . . . ,mk} and D = {n1, . . . , nl} with k + l = t, we set

ai = xm1
i,1 x

m2
i,1 . . . x

mk
i,1 = xm1

i,2 x
m2
i,2 . . . x

mk
i,2

cj = xn1
1,jx

n2
1,j . . . x

nk
1,j = xn1

2,jx
n2
2,j . . . x

nk
2,j ,

for i, j ∈ {1, 2} where the equalities to the right follow from (1) and (2), a1 6= a2 because of the
existence of r as above, and c1 6= c2 from the definition of D.

Letting σ ∈ St be the permutation such that

σ(m1m2 . . . mk n1 n2 . . . nl) = 1 2 . . . t,

we find that σ(aicj) = xi,j for every i, j ∈ {1, 2} and we are done.
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Proof of Theorem 1. First, suppose that h completely secures every function f and assume for
contradiction that there exists x1,1, x1,2, x2,1, x2,2 ∈ Z~v1 with x1,1 6= x1,2 and x1,1 6= x2,1 such that

x1,1 ∗ x1,2 = x2,1 ∗ x2,2
h(x1,1) ∗ h(x1,2) = h(x2,1) ∗ h(x2,2).

Let f be the function satisfying f(x) = 0 for every x ∈ Z~v1 and consider the function

g(ab) =

{
f(a), h(a) = b

⊥, h(a) 6= b.

We clearly have

(x1,1 || h(x1,1)) ∗ (x1,2 || h(x1,2)) = (x2,1 || h(x2,1)) ∗ (x2,2 || h(x2,2))

and thus, by Lemma 2 there exist

σ ∈ St1+t2 , a1, a2 ∈ Z~u1
c1, c2 ∈ Z~u2

with a1 6= a2, c1 6= c2, and σ(~u1 || ~u2) = ~v1 || ~v2 such that for every i, j ∈ {1, 2},

σ(aicj) = xi,jh(xi,j).

However, then g(σ(aicj)) = 0 for every i, j ∈ {1, 2} which is a contradiction since g would be input
unpartitionable if h completely secured the function f .

Second, suppose that h is safe and let f : Z~v1 → {0, 1} be arbitrary. Define

g(ab) =

{
f(a), h(a) = b

⊥, h(a) 6= b.

and assume for contradiction that there exists an input partition for g of degree two,

I2g =
(
σ ∈ St1+t2 , {ai}i∈[k] ⊆ Z~u1

, {cj}j∈[k] ⊆ Z~u2

)
.

For each i, j ∈ {1, 2}, write σ(aicj) = xi,jyi,j with xi,j ∈ Z~v1 and yi,j ∈ Zv2 and observe that then
h(xi,j) = yi,j . Furthermore, we have

x1,1 ∗ x1,2 = x2,1 ∗ x2,2
y1,1 ∗ y1,2 = y2,1 ∗ y2,2.

by Lemma 1. Since h(xi,j) = yi,j it follows directly from the condition on h that either x1,1 = x1,2
or x1,1 = x2,1. The two cases are symmetric, so assume without loss of generality that x1,1 = x1,2.
Then y1,1 = y1,2 and we get σ(a1c1) = σ(a1c2). A contradiction as we required c1 6= c2.
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3.5 Lower Bound on the Output Size of Safe Functions

An implementation of a safe function h to secure a functions f by constructing the function g of
Definition 10 results in an increase in the input size of f and further this extra input must be
checked against the output of h. In the context of matrix branching programs, the check of the extra
input requires a pass over the input, adding more matrices, which when initialized over multilinear
maps is rather costly. Thus, knowledge about the minimal output size of a safe function is helpful
in determining the costs of securing a function. In this section we show that this output size is at
least linear in the input size of f .

Theorem 2. Let ~v1 = (v11 , v
2
1 , . . . , v

t1
1 ) ∈ Nt1 and ~v2 = (v12 , v

2
2 , . . . , v

t2
2 ) ∈ Nt2 be vectors and let

h : Z~v1 → Z~v2 be a safe function. If vk1 = min1≤i≤t1(vi1) then

t1∏
1≤i≤t1
i 6=k

vi1 ≤
t2∏
i=1

(vi2(vi2 − 1) + 1).

Proof. Assume without loss of generality that k = 1. Recall that the elements of Z~vi1 are (a, b), a 6= b
for a, b ∈ Zvi1 together with the single element consisting of the ∼-equivalence class {(b, b) | b ∈ Z~vi1}
that we denote by (a, a). Now, consider the vector

y = ((b, c), (a, a), (a, a), . . . , (a, a)) ∈ Z~v1

and let T = {(x1, x2) ∈ (Z~v1)2 | x1 ∗ x2 = y}. We have |T | =
∏t1
i=2 vi since for the first index there

is only the choice x11 = b and x22 = c and for index i > 1 there are vi1 choices for xi1 = xi2. Now,
define the function t : T → Z~v2 by t(x1, x2) = h(x1) ∗ h(x2). By the definition of a safe function, t
must be injective. It follows that

t1∏
i=2

vi = |T | ≤ |Z~v2 | =
t2∏
i=1

(vi2(vi2 − 1) + 1).

Corollary 1. Let h : {0, 1}t1 → [k]t2 be a safe function. Then

t1 − 1

log(k(k − 1) + 1)
≤ t2.

Proof. By Theorem 2, we have

2t1−1 ≤ (k(k − 1) + 1)t2 .

Taking the logarithm on both sides of the equation yields the conclusion.

We will see in the instantiations of safe functions that while we do not achieve an optimal
construction, all our constructions have output size linear in the input size of the original function
and with fairly small coefficients, so they are asymptotically optimal.
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4 Instantiations

We now present three instantations for h. We first give two number theoretic functions which secure
any function f , and then we give a combinatorial function that statistically secures any function f .

4.1 Number Theoretical Functions

By the necessary and sufficient condition of Theorem 1 and the definition of a safe function, it seems
that a function will secure every other function if it is somewhat non-linear everywhere. This is
captured in the following corollary, letting us work with functions over the integers.

Corollary 2. Let h : {0, 1}n → {0, 1}m be a function satisfying that for all x1,1, x1,2, x2,1, x2,2 ∈
{0, 1}n satisfying the equations

x1,1 − x1,2 = x2,1 − x2,2
h(x1,1)− h(x1,2) = h(x2,1)− h(x2,2).

when viewed as positive integers either x1,1 = x1,2 or x1,1 = x2,1. Then h completely secures every
function f : {0, 1}n → {0,⊥}.

Proof. This follows immediately from Theorem 1 since x1,1 ∗ x1,2 = x2,1 ∗ x2,2 implies x1,1 − x1,2 =
x2,1 − x2,2 as integers.

Intuitively, many functions we know and love would satisfy this as long as they have sufficient
non-linearity. Here we list two examples. In terms of output size, note that these functions both
produce n+ 1 bits of output, where the minimum possible by Corollary 1 is n−1

log 3 . So the output size
of these two functions is close to optimal.

Proposition 1. Let p be a prime satisfying 2n < p < 2n+1. The function h : {0, 1}n → {0, 1}n+1

given by h(x) = [x2]p completely secures every function f : {0, 1}n → {0,⊥}.

Proof. Let x1,1, xx1,2, x2,1, x2,2 ∈ {0, 1}n be given satisfying x1,1 − x2,1 = x1,2 − x2,2 and h(x1,1)−
h(x2,1) = h(x1,2)− h(x2,2). We will show that x1,1 = x1,2 or x1,1 = x2,1, concluding the proof by
Corollary 2.

Directly from the conditions on the xi,j , we get

(x1,1 + x2,1)(x1,1 − x2,1) ≡ h(x1,1)− h(x2,1)

= h(x1,2)− h(x2,2)

≡ (x1,2 + x2,2)(x1,2 − x2,2) (mod p).

This yields two cases. If x1,1 − x2,1 = x1,2 − x2,2 = 0 then x1,1 = x2,1 and we are done. Otherwise
x1,1 − x2,1 = x1,2 − x2,2 is invertible modulo p since p > 2n and we get

x1,1 + x2,1 ≡ x1,2 + x2,2 (mod p).

Adding x1,1 − x2,1 = x1,2 − x2,2 to both sides yields 2x1,1 ≡ 2x1,2 (mod p) which is equivalent to
x1,1 ≡ x1,2 (mod p). Hence, x1,1 = x1,2 since p > 2n and we are done.
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Proposition 2. Let p be a prime satisfying 2n < p < 2n+1 with primitive root r. The function
h : {0, 1}n → {0, 1}n+1 given by h(x) = [rx]p completely secures every function f : {0, 1}n → {0, 1}.

Proof. Let x1,1, xx1,2, x2,1, x2,2 ∈ {0, 1}n be given satisfying x1,1 − x2,1 = x1,2 − x2,2 and h(x1,1)−
h(x2,1) = h(x1,2)− h(x2,2). We will show that x1,1 = x1,2 or x1,1 = x2,1, concluding the proof by
Corollary 2.

Directly from the conditions on the xi,j , we get

rx1,1(1− rx2,1−x1,1) ≡ h(x1,1)− h(x2,1)

= h(x1,2)− h(x2,2)

≡ rx1,2(1− rx2,2−x1,2) (mod p).

Now we have two cases. First, if 1 − rx2,1−x1,1 = 1 − rx2,2−x1,2 is invertible modulo p then
rx1,1 ≡ rx1,2 (mod p), yielding x1,1 = x1,2 since r has order p − 1 ≥ 2n modulo p. Second, if
1− rx2,1−x1,1 = 1− rx2,2−x1,2 is not invertible modulo p then clearly 1− rx2,1−x1,1 ≡ 0 (mod p) and
thus, x2,1 − x1,1 = 0 since the order of r is ≥ 2n. It follows that either x1,1 = x1,2 or x1,1 = x2,1.

4.2 Permutation Hash Functions

We now discuss an instantiation which statistically secures functions f , as opposed to the functions
in the previous section which completely secure f . Number theoretical functions like the ones in
the previous section are difficult and expensive to implement in the setting of matrix branching
programs since these do not generally support operations over a fixed field Zp. However, matrix
branching programs naturally implement operations on the group of permutations, Sk. The function
we define in this section are defined in terms of randomly chosen permutations, and turns out to be
a much more practical alternative.

Definition 15. A k-Permutation Hash Function of input size n is a function h : {0, 1}n → [k]

randomly drawn as follows as follows. Select permutations {πi,b}i∈[n],b∈{0,1}
$←− S2n

k uniformly at
random. For an input x ∈ {0, 1}n let

σx =

n∏
i=1

πi,xi .

Then h(x) = σx(1).

Lemma 3. Let x1,1, x1,2, x2,1, x2,2 ∈ {0, 1}n be given such that

x1,1 ∗ x1,2 = x2,1 ∗ x2,2,

x1,1 6= x1,2, and x1,1 6= x2,1. Then

Pr
h

$←S2n
k

[h(x1,1) ∗ h(x1,2) = h(x2,1) ∗ h(x2,2)] ≤ k

(k − 1)2
.

Proof. Write u = x1,1 ∗ x1,2 = x2,1 ∗ x2,2 and denote by xia,b the ith bit of xb,c and by ui the ith
entry of u. Let Sd ⊂ [n], d ∈ Z2 be the set of indices i ∈ [n] such that ui = d, where we recall
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that the elements of Z2 are the equivalence classes (0, 1), (1, 0), (0, 0) ∼ (1, 1). We will denote the
equivalence class containing (0, 0) and (1, 1) by (a, a). Thus, the set of indices [n] is partitioned into
[n] = S(0,1) ·∪ S(1,0) ·∪ S(a,a).

Now, it must be the case that there is a j ∈ S(a,a) such that xj1,1 = xj1,2 6= xj2,1 = xj2,2. To see
this, note that x1,1 and x2,1 are identical at the indices of S(0,1) and S(1,0) and if x1,1 and x2,1
also are identical at the indices of S(a, a) then x1,1 = x2,1 contrary to assumption. Choose j to be
maximal. We can assume without loss of generality that there is an l ∈ S(0,1) ∪ S(1,0) such that
l > j as follows. Suppose that this is not the case. Then xi1,1 = xi1,2 = xi2,1 = xi2,2 for every i > j
since j was maximal and we must have i ∈ S(a,a) whenever i > j. Now, consider the equation
u′ = x1,1 ∗ x2,1 = x1,2 ∗ x2,2 where we simply swap x1,2 and x2,1 from our original expression. Let
S′d ⊂ [n], d ∈ Z2 be the set of indices i ∈ [n] such that u′i = d. In this dual situation, j ∈ [n] \ S′(a,a)
and still xi1,1 = xi1,2 = xi2,1 = xi2,2 for every i > j. Further, we can find a new maximal j′ ∈ S′(a,a)
with j′ < j such that xj

′

1,1 6= xj
′

1,2. Thus, in the dual situation j is the l that we were seeking in the
original case. From this it follows that we without loss of generality can choose l > j as above.
Define the following permutations, noting that xi1,1 = xi2,1 and xi1,2 = xi2,2 for i > j.

τ =

n∏
i=j+1

πi,xi1,1

σ =

n∏
i=j+1

πi,xi1,2

γb,c =

j−1∏
i=1

πi,xib,c , b, c ∈ {1, 2}.

Then letting b = xj1,1 = xj1,2 we get

h(x1,1) = γ1,1 ◦ πj,b ◦ τ(1), h(x2,1) = γ2,1 ◦ πj,1−b ◦ τ(1)

h(x1,2) = γ1,2 ◦ πj,b ◦ σ(1), h(x2,2) = γ2,2 ◦ πj,1−b ◦ σ(1).

Now, since xl1,1 = xl2,1 6= xl1,2 = xl2,2, the permutations πl,xl1,1 = πl,xl2,1 and πl,xl1,2 = πl,xl2,2 are

chosen independently of each other. Thus, it follows from l > j that over the choice of {πi,b}
the permutation τ and the permutation σ are independently and uniformly distributed. Writing
(a, b) = (τ(1), σ(1)) ∈ Zk × Zk, this means that (a, b) will be uniformly distributed in Zk × Zk over
the choice of {πi,b}. Thus, with probability k−1

k we have a 6= b. We will assume that from now on.
The above equations now become

h(x1,1) = γ1,1 ◦ πi,b(a), h(x2,1) = γ2,1 ◦ πi,1−b(a)

(x1,2) = γ1,2 ◦ πi,b(b), h(x2,2) = γ2,2 ◦ πi,1−b(b).

Noting that πi,b and πi,1−b are chosen independently we get that for some (q, r), (s, t) ∈ T for
T = Zk × Zk \ {(a, a) | a ∈ Zk} which are independent of each other and each uniformly distributed
over T over the choice of {πi,b}, we have

h(x1,1) = γ1,1(q), h(x2,1) = γ2,1(s)

(x1,2) = γ1,2(r), h(x2,2) = γ2,2(t).
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The γs are chosen independently of the other permutations, so even conditional on the particular
choice of the γs the distribution of (q, r) and (s, t) are independent and uniformly distributed across
T . This means that the pairs (h(x1,1), h(x1,2)) and (h(x2,1, h(x2,2)) are independent of each other
and are uniformly distributed over subsets U1, U2 ⊂ [k]× [k], respectively, of size |T | = k(k − 1).

Now, taking into account the case we disregarded in the beginning where a = b which has
probability 1

k , we can write

Pr
h

$←S2n
k

[h(x1,1) ∗ h(x1,2) = h(x2,1) ∗ h(x2,2)] ≤ 1

k
+ Pr

(α,β)
$←U1

(γ,δ)
$←U2

[(α, β) ∼ (γ, δ)]

=
1

k
+

1

k(k − 1)

∑
(α,β)∈U1

Pr
(γ,δ)

$←U2

[(α, β) ∼ (γ, δ)]

=
1

k
+

R

k(k − 1)

Splitting in the case when α = β and α 6= β, where we know that the former happens in at most k
cases, we can calculate

R =
∑

(α,β)∈U1

Pr
(γ,δ)

$←U2

[(α, β) ∼ (γ, δ)]

≤
∑

(α,β)∈U1
α=β

Pr
(γ,δ)

$←U2

[γ = δ] +
∑

(α,β)∈U1
α 6=β

Pr
(γ,δ)

$←U2

[α = γ and β = δ)]

≤ k · 1

k − 1
+ k(k − 1) · 1

k(k − 1)
=

2k − 1

k − 1
.

It follows that

Pr
{πi,b}

[h(x2,1 ∗ h(x2,2) = h(x1,1) ∗ h(x1,2)] ≤ 1

k
+

2k − 1

k(k − 1)2
=

k

(k − 1)2
.

Lemma 4. Draw k-permutation hash functions on n input bits, h1, . . . , ht independently at random.
Then the probability that there exists {xb,c}b,c∈{1,2} ⊆ {0, 1}n with x1,1 6= x1,2, x1,1 6= x2,1, x1,1 ∗
x1,2 = x2,1 ∗ x2,2, and hi(x1,1) ∗ hi(x1,2) = hi(x2,1) ∗ hi(x2,2) for every i ∈ [t] is strictly less than
kt·6n

(k−1)2t .

Proof. Let u ∈ (Z2)n be given and let s be the number of entries of u that are (a, a), denoting
the equivalence classes of Z2 as before by (0, 1), (1, 0), and (a, a). The number of choices for
{xb,c}b,c∈{1,2} ⊆ {0, 1}n such that u = x1,1 ∗x1,2 = ∗x2,1 ∗x2,2 is 22s since for all entries i ∈ [n] such
that ui = (0, 1) or ui = (1, 0), xi1,1 = xi2,1 and xi1,2 = xi2,2 are fixed and for all entries i ∈ [n] such

that ui = (a, a) we have xi1,1 = xi2,1 and xi1,2 = xi2,2, but they are not fixed. Now, note that the

number of u ∈ (Z2)n with exactly s (a, a)-entries is 2n−s
(
n
s

)
. Summing over all possible u we get

the total number of choices {xb,c}b,c∈{1,2} ⊆ {0, 1}n with x1,1 ∗ x1,2 = x2,1 ∗ x2,2 to be

n∑
s=0

2n−s
(
n

s

)
22s = 2n

n∑
s=0

2s
(
n

s

)
= 6n.

16



By Lemma 3 the probability that any single choice of {xb,c}b,c∈{1,2} ⊆ {0, 1}n such that x1,1 6= x1,2,
x1,1 6= x2,1 and x1,1 ∗ x1,2 = x2,1 ∗ x2,2 satisfies hi(x1,1) ∗ hi(x1,2) = hi(x2,1) ∗ hi(x2,2) for all i ∈ [t]

is strictly less than
(

k
(k−1)2

)t
. Thus, our conclusion follows immediately by the union bound.

For the next theorem we define a function that combines several permutation hash functions
into one. Choose k-permutation hash functions h1, . . . , ht as discussed above, and define the main
hash function h(x) = h1(x) || h2(x) || · · · || ht(x).

Theorem 3. If t ≥ (1+log2(3))n+λ
2 log2(k−1)−log2(k)

then the function h as defined above statistically secures every

function f : {0, 1}n → {0, 1}.

Proof. Fix k and n. By Lemma 4, h statistically secures every function if

kt · 6n

(k − 1)2t
≤ 2−λ.

Taking logarithms on both sides, this is equivalent to

log2(k)t+ (1 + log2(3))n− 2t log2(k − 1) ≤ −λ.

Rearranging, this yields that h statistically secures every function for

t ≥ (1 + log2(3))n+ λ

2 log2(k − 1)− log2(k)
.

4.3 Implementing Permutation Hash Functions over CLT13

We now describe how to efficiently secure a branching program over CLT using permutation hash
functions. We first describe how to construct a branching program that takes an input u||v and
checks whether v = hi(u) for a single hash function hi from the previous section. We then describe a
technique that allows evaluating branching programs in parallel as long as they have the same input
function. Finally, we use this technique to efficiently add a securing permutation hash function to
any matrix branching program over CLT13.

Implementing One Permutation Hash Function Check. Assume we are given a k-permutation
hash function h = hi of input size n as in the previous section, with the corresponding permutations
{πi,b}i,b. We construct a branching program BPh over some R ∼= Zp that works over inputs in Z~v,
where ~v = [2, . . . , 2, k] ∈ Zn+1. This branching program will compute h over the first n bits in the
input and then check if the result matches the final piece of input.

In the following sections we denote a branching program of length l that works over inputs in Z~v
by the tuple (mat,M1,M2, inp), where mat(i) is an indexed family {Mi,c}c∈Zvi for all i ∈ [l]. M0

and Ml+1 are “bookend” vectors. This branching program is evaluated over an input x ∈ Z~v by
computing the following product:

M0 ×
n∏
i=1

Mi,xinp(i)
×Ml+1.
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For a k-permutation hash function h, let

BPh = (math,Mh
0 ,M

h
n+2, inp

h).

The components of BPh are defined as follows:

1. math(1) = {Mh
1,c}c∈Zk , where Mh

1,c ∈Mk(R) is the permutation matrix corresponding to the
transposition (1 c).

2. math(i) = {Mh
i,b}b∈{0,1} for 2 ≤ i ≤ n + 1, where Mh

i,b ∈ Mk(R) is the permutation matrix
corresponding to πi−1,b.

3. Mh
0 = [1, 0, . . . , 0] ∈ Rk.

4. Mh
n+2 = [0, 1, . . . , 1]T ∈ Rk.

5. inph(i) =

{
n+ 1 i = 1

i− 1 2 ≤ i ≤ n+ 1

Consider an evaluation of the branching program BPh over an input u||v, where u ∈ {0, 1}n and
v ∈ Zk. The result is of the form

Mh
0 ×Mh

1,v ×
n+1∏
i=2

Mh
i,ui−1

×Mh
n+2. (3)

The product
∏n+1
i=2 M

h
i,ui−1

×Mh
n+2 results in a column vector with a 0 at position h(u) and 1s in

every other position. The product of this result with Mh
1,v produces [0, 1, . . . , 1]T if and only if

h(u) = v and otherwise produces a vector with a 0 in a position other than the first and 1s everywhere
else. Multiplying by Mh

0 thus produces 0 if and only if h(u) = v. In conclusion, evaluating BPh on
input u || v outputs 0 if and only if h(u) = v.

Parallel Branching Programs. The CLT13 multilinear map uses a ring of composite order,
which allows for a certain type of parallel branching program computation. Namely, we can construct
a branching program where each step in actuality encodes steps for several branching programs,
and the parent branching program evaluates to zero if and only if all of its underlying branching
programs do. In this section we describe how to construct such a parallel computation.

Let n be the dimension of the CLT13 instantiation we are using, defined to be the number of
prime factors of the ring order. (We assume it is squarefree.) Let BP1,BP2, . . . ,BPn be the set of
branching programs we want to evaluate in parallel. We make several assumptions restricting the
types of branching programs that we can execute in parallel. First, assume they are all of the same
length l and all take inputs from Z~v. Second, recall that the plaintext ring for a CLT13 instantiation
is of the form Zg ∼=

⊕n
i=1 Zgi for primes gi. Assume the matrices of BPi are defined over the field

Zgi for all i. We also assume the matrices of all the BPi are of the same size, which is without loss
of generality since we can pad them with identity matrices. Finally, assume every BPi has the same
input function inp.

Let BPi = (mati,Mi,0,Mi,l+1, inp), where mati(j) = {Mi,j,c}c∈Zvj . We construct a new branch-

ing program BP′ = (mat′,M ′0,M
′
l+1, inp) over the ring Zg, where mat′(j) = {M ′j,c}c∈Zvj with
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M ′j,c ≡ Mi,j,c (mod gi) for all i ∈ [n], j ∈ [l], and c ∈ Zvj , and additionally M ′0 ≡ Mi,0 (mod gi)

and M ′l+1 ≡Mi,l+1 (mod gi) for all i ∈ [n]. If we evaluate the branching program BP′ on x ∈ Z~v as
the product

M ′0 ×
l∏

j=1

M ′j,xinp(j)
×M ′l+1 (mod g),

the result, BP′(x), is zero if and only if

Mi,0 ×
l∏

j=1

Mi,j,xinp(j)
×Mi,l+1 ≡ 0 (mod gi)

for all i ∈ [n].

Securing an Arbitrary Branching Program. Assume we have a branching program BP =
(mat,M0,Ml+1, inp), mat(j) = {Mj,b}b∈{0,1} over {0, 1}n which we would like to secure. We need
to construct a new branching program BP′ which computes BP but also requires an additional
section of input which should be a hash of the first part. BP′ must check whether the hash is valid
and must always return a nonzero value if it is not.

More formally, let u be an input to BP. Let h1, . . . , ht be k-permutation hash functions on |u|
bits. BP′ takes input u||v and checks whether vi = hi(u) for all i ∈ [t]. If so BP′ returns BP(u), and
if not BP′ returns some nonzero value.

Let hi be implemented by the branching program

BPhi = (mathi ,Mhi
b1
,Mhi

b2
, inphi),

where mathi(1) = {Mhi
1,c}c∈Zk and mathi(j) = {Mhi

j,b}b∈{0,1} for 2 ≤ i ≤ n+ 1. We need to modify
this branching program so that instead of taking an input u||v ∈ Z[2,...,2,k] of length n+ 1, it takes
an input u||v ∈ Z[2,...,2,k,...,k] of length n + t and checks whether vi = hi(u). We can do this by

altering the input function inphi to set inphi(1) = n + i, but this would result in the branching
programs BPhi having different input functions for different values of i, which is not compatible
with parallel branching program evaluation. So instead we pad the branching program so that the
first t entries are all the identity matrix except for the i’th entry which is {Mhi

1,c}c∈Zk . Then the

input function can be set to be the same for all i. Specifically, we redefine mathi as follows:

• mathi(i) = {Mhi
1,c}c∈Zk

• mathi(j) = {Ik}c∈Zk for all 1 ≤ j ≤ t, j 6= i

• mathi(j) = {Mhi
j−t+1,b}b∈{0,1} for all t+ 1 ≤ j ≤ t+ n

and we redefine inphi as follows:

inphi(j) = inph(j) =

{
n+ j 1 ≤ j ≤ t
j − t t+ 1 ≤ j ≤ t+ n.
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We are now ready to use parallel branching program evaluation to combine the hash function
checks with the original branching program functionality. We use t+ 1 branching programs, one of
which is a modified version of BP and the others are modified versions of the BPhi . Every modified
branching program will have length t + l and will share the same input function inp′, so as to
facilitate parallel evaluation.

We first define the new input function:

inp′(j) =

{
n+ j 1 ≤ j ≤ t
inp(j − t) t+ 1 ≤ j ≤ t+ n

The reasoning for this definition will become clear shortly. We modify BP = (mat,M0,Ml+1, inp) by
padding the branching program with identity matrices at the beginning while leaving the rest of the
program unchanged. So mat(j) = I for 1 ≤ i ≤ t, and mat(j) = {Mj−t,b}b∈{0,1} for t+ 1 ≤ j ≤ t+ l.
Note that BP should now be evaluated using the input function inp′.

Finally we describe how we modify BPhi to work with the input function inp′. The problem
with the definition of BPhi given above is that the input function during the latter part of the
branching program, where j > t, does not match the input function of BP. We could fix this by
padding BP with more identity matrices so that the computation of the hi and the computation
of BP would happen sequentially, but this would add to the total length of the resulting parallel
branching program. Instead we make an observation about the computation of hi which allows for
some flexibility in how we define the input function to the program. We will use these observations
to rearrange BPhi so that it matches inp′ exactly.

We observe that changing the order in which we read the input does not affect whether h =
h1 || · · · || ht secures a function or not since this is equivalent to for each hi to permute the order of
composition of the permutations of hi. Since each of the permutations of hi are chosen uniformly at
random, this does not affect the distribution of hi.

Given this observation, we can redefine mathi as follows without changing its functionality. Let
fj be the smallest r such that inp(r) = j (we assume that BP reads all of its input at some point
such that this is well-defined). Then we set

• mathi(t+ fj) = {Mhi
j+1,b}b∈{0,1} for all 1 ≤ j ≤ n.

• mathi(t+ r) = {I}b∈{0,1} for all r ∈ [l] \ {fj}j∈[n].

• mathi(i) = {Mhi
1,c}c∈Zk .

• mathi(j) = {Ik}c∈Zk for all 1 ≤ j ≤ t, j 6= i

Thus we have t+ 1 branching programs which now share the same input function, and evaluating
the branching programs in parallel as described above achieves the functionality of BP′ as desired.
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