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Abstract. ZHFE, proposed by Porras at el. at PQCrypto’14, is one of
the very few existing multivariate encryption schemes and a very promis-
ing candidate for post-quantum cryptosystems. The only one drawback
is its slow key generation. At PQCrypto’16, Baena et al. proposed an
algorithm to construct the private ZHFE keys, which is much faster
than the original algorithm, but still inefficient for practical parameters.
Recently, Zhang and Tan proposed another private key generation al-
gorithm, which is very fast but not necessarily able to generate all the
private ZHFE keys. In this paper we propose a new efficient algorithm
for the private key generation of the ZHFE scheme. Our algorithm re-
duces the complexity from O(n2ω+1) by Baena et al. to O(nω+3), where
n is the number of variables and 2 < ω < 3 is a linear algebra constant.
We also estimate the number of possible keys generated by all existing
private key generation algorithms for ZHFE. Our algorithm generates as
many private ZHFE keys as the original and Baena et al.’s ones. This
makes our algorithm is the best appropriate for the ZHFE scheme.

Keywords: Post Quantum Cryptography, Multivariate Cryptography, Encryp-
tion Schemes, ZHFE

1 Introduction

In 1997, P. Shor [21] gave polynomial time quantum algorithms to factor large
integers and to solve discrete logarithms. Thus, as soon as large-scale quantum
computer are built, almost all public key cryptosystems currently used in practice
such as RSA, DSA and ECC will become insecure. Post-Quantum Cryptography
(PQC) stands for the study of cryptosystems that have the potential to resist
such quantum computer attacks [1].

Recently, PQC has taken a lot of attention and become more and more impor-
tant in the cryptographic research community, including also some authorities
such as the American National Security Agency (NSA), who recommended gov-
ernmental organizations to switch their security infrastructures from schemes
such as RSA and ECC [9] to post quantum cryptosystems, and the National
Institute of Standards and Technology (NIST), which is preparing to develop



Table 1. Complexity of key generation algorithms for ZHFE scheme. Here n is
the number of variables, D is the degree chosen for efficient decryption.

Algorithm Complexity q = 2 q = 3 q = 5 q = 7

Original [20] O(n3ω) 100% 100% 100% 100%
Baena et al. [2] O(n2ω+1) 99.9% 99.9% 99.9% 99.9%

Ours O(nω+3) 99.5% 99.9% 99.9% 99.9%
Zhang-Tan [24] O(logq D) 28.9% 56.0% 76.0% 83.7%

standards for these schemes [14]. Among all possible candidates for PQC, multi-
variate public key cryptography (MPKC) [7] is one of the main candidates for the
standardization. Multivariate schemes are in general very fast and require only
modest computational resources, which makes them attractive for the use on
low cost devices like smart cards and RFID chips [3,5]. In the area of digital sig-
natures, there exists a large number of practical multivariate schemes [8,11,18].
The great difficulty for MPKC is encryption.

The C∗ scheme introduced by Matsumoto and Imai [13], hence the name
MI scheme, was considered to be the first encryption scheme. After MI was
broken by Patarin [15], many encryption schemes have been proposed but then
efficiently broken. Notably, Paratin invented the Hidden Field Equation cryp-
tosystem (HFE) [16] which replaces the central map of the MI scheme by a low
degree univariate polynomial. However, using low degree polynomials in the cen-
tral map makes HFE be broken [12,6]. In order to thwart the attack, Porras et
al. [19,20] cleverly proposed at PQCrypto’14 an interesting encryption scheme
called ZHFE, which uses two high degree HFE polynomials in the central map,
but a chosen low degree D polynomial for efficient decryption; see Section 2.2
for more details.

The ZHFE scheme [19,20] is one of the few existing multivariate encryption
schemes at the moment, among ABC [22], SRP [25] and EFC [23]. However,
what makes ZHFE important and attractive is its efficiency and thorough secu-
rity analysis, see [20,17]. One drawback of ZHFE is its super slow key generation
process, which involves solving large linear systems; the original method [20] for
generating the private key needs to solve a linear system of about n3 variables,
resulting in a complexity of O(n3ω), where 2 < ω < 3 is a linear algebra con-
stant. At PQCrypto’16, Baena et al. [2] proposed an improved algorithm which
reduces the complexity of this step to O(n2ω+1). Their idea is to use a well rep-
resentation of HFE polynomials. As a result, the matrix associated to the large
linear system forms a shape close to a block diagonal matrix. For practical pa-
rameters, this algorithm is much faster than the original one but still inefficient.
Recently, Zhang and Tan [24] proposed an algorithm which requires very little
computation; their algorithm reduces the complexity to O(logq D) which makes
their algorithm very fast; here D is the degree of the secret polynomial (see Sec-
tion 2.2 for more details). However, their algorithm is based on the invertibility
condition of some linear map, which is not necessarily fulfilled, and this prevents



their algorithm from generating all the private ZHFE keys; see Section 2.3 for
more details. Therefore, their structured key generation algorithm may possibly
weaken the security of the scheme.

Our contribution. In this paper, we propose a new private key generation
algorithm of the ZHFE scheme. The complexity of our algorithm is O(nω+3)
which improves the one by Baena et al. [2]; for example, for 96-bit security pa-
rameters (q = 7, D = 105, n = 55) and 111-bit security parameters (q = 17, D =
595, n = 55), our algorithm is around 15 and 256 times faster than that of Banea
et al. [2] respectively (see our implementation results in Table 3). Moreover, our
algorithm generates as many private ZHFE keys as that of Baena et al. [2]. Our
method is as follows: we first analyze again the algebraic structure of the central
map in ZHFE scheme, following the route of Banea et al. [2]. At some stage,
instead of working in the base field, we lift our problem to the extension field
and use the properties of the extension field to construct an algorithm which is
simpler and more efficient than that of Banea et al. [2]; see Section 3 for more
details.

We also estimate the number of private ZHFE keys that all existing algo-
rithms generate in Table 2. Zhang and Tan’s algorithm [24] generates only those
private ZHFE keys, for which the corank of a given linear map L is 0. As Table
2 shows, this condition is, in the case of q = 2, fulfilled by only 28.9 % of all
possible keys, which means that the algorithm of [24] generates only a small
part of the keys. In contrast to this, our algorithm generates nearly 100% of
the keys, since it can deal with linear maps L of corank < 3. This, together
with its efficiency, makes our algorithm to be the most appropriate private key
generation algorithm of the ZHFE scheme.

Organization. Our paper is organized as follows: we briefly recall the ZHFE
scheme and the various private key generation of Porras et al. [20], Baena et al. [2]
and Zhang and Tan [24] in Section 2. Our algorithm is explicitly introduced and
analyzed in Section 3. In Section 4 we present a MAGMA implementation of our
algorithm and compare it with Baena’s algorithm with respect to running time
and memory consumption. Finally, we conclude our paper in Section 5.

2 The ZHFE Scheme and its Key Generation Algorithms

In this section, we briefly recall the basic concepts of multivariate encryption
schemes and the ZHFE scheme [20]. We also recall the key generation process in
the ZHFE scheme and the improved algorithms by Baena et al. [2] and Zhang
and Tan [24].

2.1 Multivariate Public Key Cryptography

The basic objects of multivariate public key cryptography are systems of multi-
variate quadratic polynomials over a finite field F. The security of multivariate



schemes is based on the MQ-Problem which asks for a solution of a given sys-
tem of multivariate quadratic polynomials over the field F. The MQ-Problem is
proven to be NP-Hard even for quadratic polynomials over the field GF(2) [10].
To build a public key cryptosystem on the basis of the MQ-Problem, one starts
with an easily invertible quadratic map F : Fn → Fm (central map). To hide the
structure of F in the public key, one composes it with two invertible affine (or
linear) maps T : Fm → Fm and S : Fn → Fn. The public key is therefore given
by P = T ◦ F ◦ S. The private key consists of T ,F and S. In this paper we
consider multivariate encryption schemes. For these schemes, we require n ≤ m.

Encryption: to encrypt a message x ∈ Fn, one simply computes w = P(x) from
the public key.

Decryption: to decrypt a given ciphertext w ∈ Fm, one computes recursively
z = T −1(w),y = F−1(z) and x = S−1(y). Here y is the preimage of z under
the easy to invert central map F . The condition n ≤ m guarantees that this pre
image and therefore the recovered plaintext will be unique.

Figure 1 shows a graphical illustration of the encryption and decryption
process of multivariate schemes.

Decryption

w ∈ Km - z ∈ Fm - y ∈ Fn - x ∈ Fn

6

P

T −1 F−1 S−1

Encryption

Fig. 1. General workflow of multivariate encryption schemes

2.2 The ZHFE Encryption Scheme

Let F be a finite field with q elements and K a degree n extension of F. Let
ϕ : K → Fn be the canonical isomorphism between K and the vector space Fn.
Consider two HFE polynomials F1 and F2:

F1 =
∑

ai,jX
qi+qj +

∑
a′iX

qi +a′′, F2 =
∑

bi,jX
qi+qj +

∑
b′iX

qi + b′′, (1)



whose the coefficients are undetermined. Next randomly choose 4n scalars α1, ..., α2n,
β1, ..., β2n of K. Define four linear polynomials:

L00(X) =
n∑

i=1

αiX
qi−1

, L01(X) =
n∑

i=1

αn+iX
qi−1

,

L10(X) =

n∑
i=1

βiX
qi−1

, L11(X) =

n∑
i=1

βn+iX
qi−1

. (2)

We construct the following polynomial with q-Hamming weight three:

Ψ(X) := X (L00(F1) + L01(F2)) +Xq (L10(F1) + L11(F2)) . (3)

Fix a positive integer D. This D must be chosen such that each univariate
polynomial equation over K of degree less than or equal to D can be solved
efficiently by Berlekamp’s algorithm. In order to generate a ZHFE key, we have
to determine the coefficients of F1, F2 such that

degΨ(X) ≤ D.

In this paper, we propose an efficient algorithm to choose such coefficients of
F1, F2; cf. Section 3. Once such coefficients are given, the ZHFE scheme [19,20]
is constructed as follows. Randomly choose invertible affine transformations S
and T on Fn (resp. F2n). Then the public key P : Fn → F2n is given by

P = T ◦ (ϕ× ϕ) ◦ (F1, F2) ◦ ϕ−1 ◦ S.

This is a 2n-tuple of quadratic polynomials over F in n variables.

Public Key: The field F and the map P.

Private Key: α1, ..., α2n, β1, ..., β2n, F1, F2, Ψ , S and T .

Encryption: For a plaintext message x ∈ Fn with redundant information, the
ciphertext is w = P(x) ∈ F2n.

Decryption: For a given ciphertext w ∈ F2n, we first compute (W0,W1) = (ϕ−1×
ϕ−1)(T −1(w)) ∈ K×K. Next we consider the equation of degree max{D, q}:

Ψ(X)−X(L00(W0) + L01(W1))−Xq(L10(W0) + L11(W1)) = 0.

We can solve this equation efficiently by our choice of D. For each solution X0

of this equation, we compute x0 = S−1 ◦ ϕ(X0). Then we can find the plaintext
among the resulting x0 thanks to the added redundant information.

2.3 Algorithms for the Private Key Generation of ZHFE scheme

As seen above, the central part of the private key generation of ZHFE scheme
is the computation of suitable coefficients of F1 and F2 and of Ψ for given
α1, ..., α2n, β1, ..., β2n. In this section we introduce the known algorithms for this
step.



Table 2. Ratio of linear map L in equation (4) over all possible linear maps
M2n(F) with respect to the corank of L

q n corank L = 0 corank L ≤ 1 corank L ≤ 2 corank L ≤ 3

q = 2 n ≥ 35 28.9% 86.6% 99.5% 99.9%

q = 3 n ≥ 35 56.0% 98.0% 99.9% 99.9%

q = 5 n ≥ 35 76.0% 99.8% 99.9% 99.9%

q = 7 n ≥ 35 83.7% 99.9% 99.9% 99.9%

The original algorithm In the original papers [19],[20], F1 and F2 were com-
puted by solving a large linear system over the small field F obtained from
vanishing coefficients of Ψ . The size of this linear system is about n3. Thus
the complexity of this private key generation is O(n3ω), where 2 < ω < 3 is
a linear algebra constant. In fact, this algorithm is very inefficient for practical
parameters (See [2, Table 3, Old method]).

Baena et al.’s algorithm At PQCrypto’16, Baena et al. [2] proposed a new
improved algorithm for the private key generation of ZHFE scheme. Their idea
is to use a well representation of HFE polynomials. As a result, the matrix
associated to the large linear system forms a shape close to a block diagonal
matrix. Then the complexity of this algorithm is O(n2ω+1). This algorithm is
much faster than the original one, but still inefficient for practical parameters. We
obtain our algorithm by improving this one. Thus we will explain this algorithm
in our language in Section 3.1.

Zhang and Tan’s algorithm Recently, Zhang and Tan proposed [24] the algo-
rithm that constructs the central map (F1, F2) and Ψ so that Ψ := XF1 +XqF2

has degree D at most. Thus the algorithm requires only very little computation.
In fact, the complexity is O(logq D). But this algorithm do not necessarily give
all private ZHFE keys. Strictly speaking, if we define a linear map L over F on
K2 by

L : K2 ∋ (X,Y ) 7→ (L00(X) + L01(Y ), L10(X) + L11(Y )) ∈ K2, (4)

then this algorithm can generate all private keys with L nonsingular. L can be
represented as a matrix in M2n(F) due to K = Fn. We stress that the corank of
L is crucial for the efficient construction of private ZHFE keys, where the corank
of L is 2n−Rank L. In particular, if L is singular (corank of L ≥ 1), the private
keys can not necessarily generate by this algorithm. To be more precise, assume
that we have found polynomials F1, F2 such that Ψ = XF1 +XqF2 is of degree
less than or equal to D. In order to find another α′1, · · · , α′2n, β′1, · · · , β′2n ∈ K
such that the corresponding polynomial

Ψ ′ = X (L′00(F1) + L′01(F2)) +Xq (L′10(F1) + L′11(F2))



is of degree less than or equal to given D, then one needs to solve about n2

equations in 4n variables α′1, · · · , α′2n, β′1, · · · , β′2n. For recommended parameters
(q = 7, D = 105, n = 55) one has a system of 3016 equations in 220 variables,
which has at most one solution. Hence the linear map L′ corresponding to the
later private keys has corank 0. Hence, Zhang and Tan’s algorithm does not work
for corank L ≥ 1. The ratio of L with respect to the corank of L is given by
Table 2 if the linear map L is randomly distributed in M2n(F) and n is enough
large, for example n ≥ 35.

3 Our new Key Generation Algorithm for ZHFE

In this section, we propose our new private key generation algorithm of ZHFE
scheme. Here, we assume that n is odd, say n = 2l + 1, and q > 2. The reason
why we assume n odd will be explained in Remark 1.

3.1 Baena et al.’s Algorithm

Since our new algorithm is obtained by improving Baena et al.’s one [2], we
explain it here in our language.

Let F be an HFE polynomial. If F is a linear combination of Xqi−1+qj−1

,
(1 ≤ i, j ≤ n) over K, then it is called a quadratic HFE polynomial. For 1 ≤ d ≤
l + 1 and 1 ≤ i ≤ n, set Xd,i := Xqi−1+qi−1+d−1

.

Proposition 1 ([2, Section 3.1]). Every quadratic HFE polynomial F can be
uniquely written as

F =
∑

1≤d≤l+1

∑
1≤i≤n

ad,iXd,i, (ad,i ∈ K).

In Proposition 1, we call ad,i the (d, i)-coefficient of F , and write Fd,i = ad,i.
We represent the two quadratic HFE polynomials F1, F2 of equation (1)

according to Proposition 1 as follows:

F1 =
∑

1≤d≤l+1

∑
1≤i≤n

ad,iXd,i, F2 =
∑

1≤d≤l+1

∑
1≤i≤n

bd,iXd,i. (5)

Here the coefficients are to be determined. Randomly choose 4n scalars α1, ..., α2n,
β1, ..., β2n of K and set

F̄1 := L00(F1) + L01(F2), F̄2 := L10(F1) + L11(F2), (6)

where the Lij is defined as in equation (2). Thus

Ψ = XF̄1 +XqF̄2. (7)

Our goal is to determine the coefficients ad,i, bd,i of equation (5) such that
degΨ ≤ D.



First we compute the (d, i)-coefficients F̄1,d,i, F̄2,d,i of the two quadratic HFE
polynomials F̄1, F̄2. For n scalars z1, z2, ..., zn ∈ K, we define an n×n matrix by

L1(z1, z2, ..., zn) := (zq
i−1

j−i+1)i,j =


z1 z2 z3 · · · zn
zqn zq1 zq2 · · · zqn−1

zq
2

n−1 zq
2

n zq
2

1 · · · zq
2

n−2
...

...
...

. . .
...

zq
n−1

2 zq
n−1

3 zq
n−1

4 · · · zq
n−1

1

 . (8)

Here j − i+ 1 is calculated modulo n. By using this notation, we can represent
the n-tuple (F̄i,d,1, F̄i,d,2, ..., F̄i,d,n) as follows:

Lemma 1 ([2, Corollary 1]). (i) For any d, we have

(F̄1,d,1, F̄1,d,2, ..., F̄1,d,n) = (α1, ..., αn)·L1(ad,1, ..., ad,n)+(αn+1, ..., α2n)·L1(bd,1, ..., bd,n).
(9)

(ii) For any d, we have

(F̄2,d,1, F̄2,d,2, ..., F̄2,d,n) = (β1, ..., βn)·L1(ad,1, ..., ad,n)+(βn+1, ..., β2n)·L1(bd,1, ..., bd,n).
(10)

Lemma 2 ([2, Lemma 1]).

X ·Xd,i = Xq ·Xd′,i′ ⇐⇒


d = d′ = l + 1, i = 2, i′ = l + 2,

d′ = d− 1, i = i′ = n+ 3− d, (2 ≤ d ≤ l + 1),

d′ = d+ 1, i = 2, i′ = 1, (1 ≤ d ≤ l).

(11)

If X ·Xd,i = Xq ·Xd′,i′ then we write (d, i)⇝ (d′, i′). By this lemma, we can
describe the conditions for F1, F2 so that degΨ ≤ D.

Corollary 1. If the coefficients ad,i, bd,i of F1, F2 satisfy the following three con-
ditions, then we have degΨ ≤ D.

(i) F̄1,d,i = −F̄2,d′,i′ for any (d, i)⇝ (d′, i′) such that degX ·Xd,i > D.

(ii) F̄1,d,i = 0 if (d, i) is not in Lemma 2 and satisfies degX ·Xd,i > D.

(iii) F̄2,d′,i′ = 0 if (d′, i′) is not in Lemma 2 and satisfies degXq ·Xd′,i′ > D.

Proof. By Lemmas 1 and 2, it is easy to compute the coefficients of degree > D
in Ψ . Then the conditions of F1, F2 so that degΨ ≤ D are equivalent to (i),(ii)
and (iii).

Note that deg(X ·Xd,i) = 1 + qi−1 + q(i−1+d−1 mod n). Also deg(Xq ·Xd′,i′) =

q + qi
′−1 + q(i

′−1+d′−1 mod n).
Finally, it follows from Lemma 1 and Corollary 1 that:



Theorem 1. Randomly choose 4n scalars α1, ..., β2n of K. Also we take any
scalars cj,d,i ∈ K, (1 ≤ j ≤ 2, 1 ≤ d ≤ l + 1, 1 ≤ i ≤ n) with the assumptions
(i),(ii),(iii) in Corollary 1. If ad,i and bd,i are solutions of equations

(c1,d,1, c1,d,2, ..., c1,d,n) = (α1, ..., αn) · L1(ad,1, ..., ad,n)

+ (αn+1, ..., α2n) · L1(bd,1, ..., bd,n) (Ad),

(c2,d,1, c2,d,2, ..., c2,d,n) = (β1, ..., βn) · L1(ad,1, ..., ad,n)

+ (βn+1, ..., β2n) · L1(bd,1, ..., bd,n) (Bd),

for any 1 ≤ d ≤ l + 1, then F1, F2 satisfy that degΨ ≤ D. Also we have

Ψ =
∑

1≤d≤l+1

 ∑
1≤i≤n

c1,d,iX ·Xd,i +
∑

1≤i≤n

c2,d,iX
q ·Xd,i

 .

The equations (Ad), (Bd) in Theorem 1 are not linear systems in ad,i, bd,i.
They can be reduced to linear systems over the small field F. Baena et al. [2]
obtained F1, F2 and Ψ by solving such linear systems over the small field F.
Our strategy in obtaining F1, F2 and Ψ is to lift equations (Ad), (Bd) to linear
systems over the big field K; cf. Section 3.2.

3.2 Main Idea

Here we explain the main idea of the proposed algorithm for efficient private key
generation of ZHFE scheme.

For any 1 ≤ d ≤ l + 1, set

xd,i := aq
i−1

d,n+2−i, yd,i := bq
i−1

d,n+2−i.

Then

ad,i = xqi−1

d,n+2−i, bd,i = yq
i−1

d,n+2−i.

Also we have

L1(ad,1, ad,2, ..., ad,n) =



xd,1 xq
d,n xq2

d,n−1 · · · x
qn−1

d,2

xd,2 xq
d,1 xq2

d,n · · · x
qn−1

d,3

xd,3 xq
d,2 xq2

d,1 · · · x
qn−1

d,4
...

...
...

. . .
...

xd,n xq
d,n−1 xq2

d,n−2 · · · x
qn−1

d,1


.



By using these, the equation (Ad) is equivalent to the following (A′d):

(c1,d,1, c1,d,2, ..., c1,d,n) = (α1, ..., αn, αn+1, ..., α2n)



xd,1 xq
d,n · · · x

qn−1

d,2

xd,2 xq
d,1 · · · x

qn−1

d,3
...

...
. . .

...
xd,n xq

d,n−1 · · · x
qn−1

d,1

yd,1 yqd,n · · · yq
n−1

d,2

yd,2 yqd,1 · · · y
qn−1

d,3
...

...
. . .

...
yd,n yqd,n−1 · · · y

qn−1

d,1


,

which is equivalent to the following equation (A′′d):

(c1,d,1, c
qn−1

1,d,2 , ..., c
q
1,d,n) = (xd,1, ..., xd,n, yd,1, ..., yd,n)



α1 αqn−1

2 · · · αq
n

α2 αqn−1

3 · · · αq
1

α3 αqn−1

4 · · · αq
2

...
...

. . .
...

αn αqn−1

1 · · · αq
n−1

αn+1 αqn−1

n+2 · · · αq
2n

αn+2 αqn−1

n+3 · · · αq
n+1

...
...

. . .
...

α2n αqn−1

n+1 · · · α
q
2n−1



.

Remark 1. If we assume that n is even, then we can not obtain a linear system
as above. In fact, if n is even, then in the case d = n/2 + 1, xqj−1

d,i and xqj−1+n/2

d,i

appear on each j-column in the matrix in (A′d). Thus we can not have a linear
system as the linear system (A′′n/2+1). That is the reason why we consider n odd
in this paper.

Similarly, the equation (Bd) is equivalent to the following equation (B′′d ):

(c2,d,1, c
qn−1

2,d,2 , ..., c
q
2,d,n) = (xd,1, ..., xd,n, yd,1, ..., yd,n)



β1 βqn−1

2 · · · βq
n

β2 βqn−1

3 · · · βq
1

β3 βqn−1

4 · · · βq
2

...
...

. . .
...

βn βqn−1

n+1 · · · βq
n−1

βn+1 βqn−1

n+2 · · · βq
2n

βn+2 βqn−1

n+3 · · · βq
n+1

...
...

. . .
...

β2n βqn−1

n+1 · · · β
q
2n−1



.



For n scalars z1, z2, ..., zn of K, define an n× n matrix by

L2


z1
z2
...
zn

 := (zq
n−j+1

i )i,j =



z1 zq
n−1

2 zq
n−2

3 · · · zqn
z2 zq

n−1

3 zq
n−2

4 · · · zq1
z3 zq

n−1

4 zq
n−2

5 · · · zq2
...

...
...

. . .
...

zn zq
n−1

1 zq
n−2

2 · · · zqn−1


.

By using this notation, set

L :=



L2


α1

α2

...
αn

 L2


β1

β2

...
βn



L2


αn+1

αn+2

...
α2n

 L2


βn+1

βn+2

...
β2n




∈M2n(K). (12)

Remark 2. It is easy to prove that RankL = RankL, where L is defined in
Section 2.3.

Now we can restate Theorem 1 by using this L as follows:

Theorem 2. Randomly choose 4n scalars α1, ..., β2n of K. Also we take any
scalars cj,d,i ∈ K (1 ≤ j ≤ 2, 1 ≤ d ≤ l + 1, 1 ≤ i ≤ n) with the assumptions
(i),(ii),(iii) in Corollary 1. Let xd,i and yd,i be solutions of the linear system

(c1,d,1, c
qn−1

1,d,2 , ..., c
q
1,d,n, c2,d,1, c

qn−1

2,d,2 , ..., c
q
2,d,n) = (xd,1, ..., xd,n, yd,1, ..., yd,n)·L (⋆)

for any 1 ≤ d ≤ l + 1. If we set

F1 =
∑

1≤d≤l+1

∑
1≤i≤n

xqi−1

d,n+2−iXd,i, F2 =
∑

1≤d≤l+1

∑
1≤i≤n

yq
i−1

d,n+2−iXd,i,

then F1, F2 satisfy degΨ ≤ D. Also we have

Ψ =
∑

1≤d≤l+1

 ∑
1≤i≤n

c1,d,iX ·Xd,i +
∑

1≤i≤n

c2,d,iX
q ·Xd,i

 .

Proof. Solving (Ad) is equivalent to solving (A′′d). Similarly, solving (Bd) is equiv-
alent to solving (B′′d ). Also solving (A′′d) and (B′′d ) is equivalent to solving (⋆).
Thus we have the theorem.

Thus we can reduce the equations (Ad), (Bd) in Theorem 1 to the linear
system (⋆) over the big field K.



3.3 Our Proposed Algorithm

Here, we explain an algorithm to solve the linear systems in Theorem 2. This is
the our new algorithm to generate F1, F2 and Ψ ; see Algorithm 2 in Appendix A
for overview of our algorithm in this section.

Set
cd,i := c1,d,i, cd,n+i := c2,d,i for d, i.

Take a sequence 1 ≤ i1 < i2 < · · · < im−1 < im ≤ 2n, where 1 ≤ m ≤ 2n.
We denote by L[i1, i2, ..., im] the 2n×m matrix that is obtained by leaving each
ij-column of L. Similarly, we define

(c1, c2, ..., cn, cn+1, cn+2, ..., c2n)[i1, i2, ..., im] := (ci1 , ci2 , , ..., cim).

Now, we explain our algorithm that gives solutions of the linear systems (⋆)
for well chosen scalars cd,i.

d = l + 1

S′l+1 := {i | 1 ≤ i ≤ n, degX·Xl+1,i ≤ D}∪{n+i′ | 1 ≤ i′ ≤ n, degXq·Xl+1,i′ ≤ D},

Sl+1 := {1, ..., 2n}∖ (S′l+1 ∪ {l + 3, n+ 1}).

Randomly choose a scalar z in K. For any i ∈ Sl+1, set

cl+1,i :=


z if i = 2 and 2 ∈ Sl+1,

−z if i = n+ l + 2 and 2 ∈ Sl+1,

0 otherwise.

Then we consider the following linear system:

(cl+1,1, c
qn−1

l+1,2, ..., c
q
l+1,n, cl+1,n+1, c

qn−1

l+1,n+2, ..., c
q
l+1,2n)[Sl+1]

= (xl+1,1, ..., xl+1,n, yl+1,1, ..., yl+1,n) · L[Sl+1].

Note that since the scalars cl+1,i (i /∈ Sl+1) do not occur in this system, this
system is well-defined. After we find a solution (xl+1,1, ..., xl+1,n, yl+1,1, ..., yl+1,n)
of this system, the other scalars cl+1,i, (i /∈ Sl+1) are given by the formula

(cl+1,1, c
qn−1

l+1,2, ..., c
q
l+1,n, cl+1,n+1, c

qn−1

l+1,n+2, ..., c
q
l+1,2n)

= (xl+1,1, ..., xl+1,n, yl+1,1, ..., yl+1,n) · L.

1 < d < l + 1

S′d := {i | 1 ≤ i ≤ n, degX ·Xd,i ≤ D}∪{n+i′ | 1 ≤ i′ ≤ n, degXq ·Xd,i′ ≤ D},

Sd := {1, ..., 2n}∖ (S′d ∪ {(n+ 2− d mod n) + 1, n+ 1}).



For any i ∈ Sd, we set

cd,i :=


−cd+1,n+1 if i = 2 and 2 ∈ Sd,

−cd+1,n+2−d if i = 2n+ 2− d and 2n+ 2− d ∈ Sd,

0 otherwise.

Then we consider the following linear system:

(cd,1, c
qn−1

d,2 , ..., cqd,n, cd,n+1, c
qn−1

d,n+2, ..., c
q
d,2n)[Sd]

= (xd,1, ..., xd,n, yd,1, ..., yd,n) · L[Sd].

After we find a solution (xd,1, ..., xd,n, yd,1, ..., yd,n) of this system, the other
scalars cd,i, (i /∈ Sd) are given by the formula

(cd,1, c
qn−1

d,2 , ..., cqd,n, cd,n+1, c
qn−1

d,n+2, ..., c
q
d,2n)

= (xd,1, ..., xd,n, yd,1, ..., yd,n) · L.

d = 1

S′1 := {i | 1 ≤ i ≤ n, degX ·X1,i ≤ D}∪{n+i′ | 1 ≤ i′ ≤ n, degXq ·X1,i′ ≤ D},

S1 := {1, ..., 2n}∖ S′1.

For any i ∈ S1, we set

c1,i :=


−c2,n+1 if i = 2 and 2 ∈ S1,

−c2,1 if i = n+ 1 and n+ 1 ∈ S1,

0 otherwise.

Then we consider the following linear system:

(c1,1, c
qn−1

1,2 , ..., cq1,n, c1,n+1, c
qn−1

1,n+2, ..., c
q
1,2n)[S1]

= (x1,1, ..., x1,n, y1,1, ..., y1,n) · L[S1].

After we find a solution (x1,1, ..., x1,n, y1,1, ..., y1,n) of this system, the other
scalars c1,i, (i /∈ S1) are given by the formula

(c1,1, c
qn−1

1,2 , ..., cq1,n, c1,n+1, c
qn−1

1,n+2, ..., c
q
1,2n)

= (x1,1, ..., x1,n, y1,1, ..., y1,n) · L.

Finally, we have two quadratic HFE polynomials F1, F2 and Ψ such that
degΨ ≤ D:

F1 =
∑

1≤d≤l+1

∑
1≤i≤n

xqi−1

d,n+2−iXd,i, F2 =
∑

1≤d≤l+1

∑
1≤i≤n

yq
i−1

d,n+2−iXd,i,

Ψ =
∑

1≤d≤l+1

 ∑
i∈S′

d,i≤n

cd,iX ·Xd,i +
∑

i∈S′
d,i>n

cd,iX
q ·Xd,i−n

 .



Algorithm 1: Generating Matrix L of Corank r (Section 4.2)
input : a fielf F with q elements, integers n and r, K the extension field of

degree n over F, an F-basis (θ1, ..., θn) of K
output: α1, ..., α2n, β1, ..., β2n, L with corank r (See (12) for L)

M ← (θq
j−1

i )1≤i,j≤n;
A,B ← Random(GL2n(F));

L′ ←
(
M−1

M−1

)
·A ·

(
12n−r

0r

)
·B ·

(
M

M

)
, 2n× 2n matrix;

αi ← L′
i,1 : the (i, 1)-entry of L′, (1 ≤ i ≤ 2n);

βi ← L′
i,n+1 (1 ≤ i ≤ 2n);

L← (L′
1, L

′
n, L

′
n−1, ..., L

′
2, L

′
n+1, L

′
2n, L

′
2n−1, ..., L

′
n+2);

where L′
i is the i-th column of L′

Remark 3. If corank L ≤ 2, then each L[Sd] has the full rank. Thus all the above
linear systems have solutions. Therefore, if corank L ≤ 2, then our algorithm
terminates. Also if corank L ≥ 3, then our algorithm failed in our experiments.
But Table 2 implies that the class of L with corank ≥ 3 is very small in total.
Thus we may take L to be corank L ≤ 2. Notice that Baena et al.’s algorithm [2]
succeeds for corank L ≤ 5. For L with higher corank, their algorithm also works,
but produces Ψ = 0 making the corresponding ZHFE scheme insure under lin-
earization attack. However, it suffices to only consider linear maps L of corank
less than 3 for their majority, cf. Table 2.

4 Complexity and Implementation Results

In this section, we give the complexity and implementation results for our private
key generation algorithm of ZHFE scheme.

4.1 The Complexity of the Proposed Algorithm

We can easily prove the complexity of our proposed algorithm (Algorithm 2)
discussed in Section 3.3 in the following theorem.

Theorem 3. The complexity of our algorithm in Section 3.3 is given by O(nω+3).

Proof. In our algorithm proposed in Section 3.3, we obtain a private ZHFE key
by solving l+ 1 linear systems over the big field K. Here each linear system has
at most 2n varibles and at most 2n equations. Thus the complexity is

(l+1)×(2n)ω×(log qn)2 = O(nω+3). ⊓⊔

Thus our algorithm improves the original algorithm of O(n3ω) and Baena et al.’s
algorithm of O(n2ω+1) (See Table 1).



Table 3. The comparison of timings between Baena et al.’s algorithm [2] and
our algorithm.

Our algorithm Baena et al.’s
q D n CPU time [s] Max Memory [MB] CPU time [s] Max Memory [MB]
7 105 15 0.09 10 0.59 11
7 105 31 3.47 11 22.27 43
7 105 55 39.19 18 607.06 338
17 105 15 0.13 9 3.06 14
17 105 31 3.91 11 348.57 81
17 595 55 62.91 22 15350.79 683

4.2 Our Experiments

In order to perform the experiments of generating the private ZHFE keys, we
need to decide the matrix L ∈M2n(K) in equation (12), where L is generated by
α1, ..., α2n, β1, ..., β2n in equation (2). Note that our proposed algorithm works
only for matrices L with corank 0, 1 and 2 (cf. Remark 3), and thus we have
to investigate how to generate such a matrix. In the following we describe an
algorithm for generating the matrix L of any corank 0 ≤ r ≤ 2n. For the ma-

trix
(
12n−r

0r

)
in M2n(K) of corank r, we multiply random invertible matrices

A,B ∈ GL2n(F) and matrices
(
M−1

M−1

)
,

(
M

M

)
from both sides. The

resulting matrix of corank r implies α1, ..., α2n, β1, ..., β2n used for the private
ZHFE keys. The explicit algorithm is described in Algorithm 1.

On the other hand, as can be seen in Table 2, in most cases the corank L is
0 or 1 for randomly chosen α1, ..., α2n, β1, ..., β2n. Note that the corank of L is
equal to the corank L in equation (4) (cf. Remark 2). Therefore if we generate the
matrix L by Algorithm 1 with r ≤ 2, then we can generate almost all instances
L for the key generation algorithms of ZHFE scheme.

4.3 Comparison of Timings

The implementation results and the comparison between our algorithm and
Baena et al.’s algorithm [2] are presented in Table 3. All the experiments in
this section were performed using Magma V2.20-10 [4] with a processor Intel(R)
Core(TM) i5-4300U CPU @ 1.90GHz, running Windows 7 Professional SP1.

Notice that according to the estimation of Zhang and Tan [24], the parameters
(q = 7, n = 55, D = 105), which is recommended in the original paper [20], and
(q = 17, n = 55, D = 595) are for 96-bit and 111-bit security level respectively.
In Table 3 we present the timings of our experiments using these parameters
and in addition we run experiments under other parameters n = 15, 31.

Our algorithm in Table 3 presents timing to generate a private ZHFE key,
that is, α1, ..., α2n, β1, ..., β2n, L, F1, F2 and Ψ . Here, we used Algorithm 1 to



generate α1, ..., α2n, β1, ..., β2n and L with corank L ≤ 2. For example, for the
recommended parameters (q = 7, D = 105, n = 55) at 96-bit security, our algo-
rithm takes 39.19 seconds and the max memory is 18 mega bytes.3 For compar-
ison, we also present timing to generate such a private ZHFE key by Baena et
al.’s algorithm. For the recommended parameters (q = 7, D = 105, n = 55), our
algorithm is around 15 times faster than that of Baena et al. [2].

5 Conclusion

In this paper, we proposed a new efficient algorithm for generating private keys of
the ZHFE scheme [20]. Our algorithm has complexity O(nω+3) which improves
the original [19] and Baena’s [2] algorithm whose complexities are O(n3) and
O(n2ω+1) respectively. Here n is the number of variables and 2 < ω < 3 is
a linear algebra constant. Our algorithm is in practice very fast compared to
that of Baena et al.: for recommended parameter (q = 7, n = 55, D = 105) at
96-bit security, our algorithm is around 15 times faster than that of Baena et
al.; cf. Table 3. Moreover, in contrast to Zhang and Tan’s algorithm [24], our
algorithm generates as many private ZHFE keys as the previous ones [20,2],
as estimated in Table 2. Although our algorithm works for linear maps L with
corank L ≤ 2 (cf. Remark 3), it already generates around 99% private keys in
total (cf. Table 2). This makes our algorithm to be the most appropriate for
generating private ZHFE keys.
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A Our algorithm in Section 3.3

The expression f
R←−W denotes that f is an element chosen uniformly at random

from the set W .

Algorithm 2: Our Proposed Algorithm (Section 3.3)
input : F: field with q elements, n = 2l + 1: odd integer, K: extension field of degree n,

L: the 2n× 2n matrix chosen by Algorithm 1, D: interger
output: F1, F2, Ψ : private key
cd ← (0, 0, ..., 0), length 2n, 1 ≤ d ≤ l + 1;
if 2 ∈ Sl+1 then

cl+1,2 ← Random(K);
cl+1,n+l+2 ← −cl+1,2;

c′l+1 ← (cl+1,1, c
qn−1

l+1,2 , c
qn−2

l+1,3 , ..., c
q
l+1,n, cl+1,n+1, c

qn−1

l+1,n+2, ..., c
q
l+1,2n);

f
R←− W := {f ∈ K2n | f · L[Sl+1] = c′l+1[Sl+1]};

g ← f · L;

cl+1 ← (g1, g
q
2 , ..., g

qn−1

n , gn+1, g
q
n+2, ..., g

qn−1

2n );
xl+1 ← (f1, ..., fn), yl+1 ← (fn+1, ..., f2n);
d← l;
while d > 1 do

if 2 ∈ Sd then
cd,2 ← −cd+1,n+1;

if 2n + 2− d ∈ Sd then
cd,2n+2−d ← −cd+1,n+2−d;

c′d ← (cd,1, c
qn−1

d,2 , cq
n−2

d,3 , ..., cqd,n, cd,n+1, c
qn−1

d,n+2..., c
q
d,2n);

f
R←− W := {f ∈ K2n | f · L[Sd] = c′d[Sd]};

g ← f · L;

cd ← (g1, g
q
2 , ..., g

qn−1

n , gn+1, g
q
n+2, ..., g

qn−1

2n );
xd ← (f1, ..., fn), yd ← (fn+1, ..., f2n);
d← d− 1;

if 2 ∈ S1 then
c1,2 ← −c2,n+1;

if n + 1 ∈ S1 then
c1,n+1 ← −c2,1;

c′1 ← (c1,1, c
qn−1

1,2 , cq
n−2

1,3 , ..., cq1,n, c1,n+1, c
qn−1

1,n+2..., c
q
1,2n);

f
R←− W := {f ∈ K2n | f · L[S1] = c′1[S1]};

g ← f · L;

c1 ← (g1, g
q
2 , ..., g

qn−1

n , gn+1, g
q
n+2, ..., g

qn−1

2n );
x1 ← (f1, ..., fn), y1 ← (fn+1, ..., f2n);

F1 ←
∑

1≤d≤l+1

∑
1≤i≤n xqi−1

d,n+2−iXd,i;

F2 ←
∑

1≤d≤l+1

∑
1≤i≤n yqi−1

d,n+2−iXd,i;

Ψ ←
∑

1≤d≤l+1

(∑
i∈S′

d
,i≤n cd,iX ·Xd,i +

∑
i∈S′

d
,i>n cd,iX

q ·Xd,i−n

)
;


