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ABSTRACT
Some lattice-based public key cryptosystems allow one to trans-

form ciphertext from one lattice or ring representation to another

e�ciently and without knowledge of public and private keys. In

this work we explore this lattice transformation property from

cryptographic engineering viewpoint.

We apply ciphertext transformation to compress Ring-LWE ci-

phertexts and to enable e�cient decryption on an ultra-lightweight

implementation targets such as Internet of Things, Smart Cards,

and RFID applications. Signi�cantly, this can be done without mod-

ifying the original encryption procedure or its security parameters.

Such �exibility is unique to lattice-based cryptography and may

�nd additional, unique real-life applications.

Ciphertext compression can signi�cantly increase the proba-

bility of decryption errors. We show that the frequency of such

errors can be analyzed, measured and used to derive precise failure

bounds for n-bit error correction. We introduce XECC, a fast multi-

error correcting code that allows constant time implementation in

software.

We use these tools to construct and explore trunc8, a concrete

Ring-LWE encryption and authentication system. We analyze its

implementation, security, and performance. We show that our lat-

tice compression technique reduces ciphertext size by more than

40% at equivalent security level, while also enabling public key cryp-

tography on previously unreachable ultra-lightweight platforms.

The experimental public key encryption and authentication sys-

tem has been implemented on an 8-bit AVR target, where it easily

outperforms elliptic curve and RSA-based proposals at similar se-

curity level. Similar results have been obtained with a Cortex M0

implementation. The new decryption code requires only a fraction

of the software footprint of previous Ring-LWE implementations

with the same encryption parameters, and is well suited for hard-

ware implementation.
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1 INTRODUCTION
Polynomial-time Quantum algorithms for attacking cryptographic

standards based on RSA [20] and elliptic curve discrete logarithms

[16] have been known for many years [34, 38]. However, the contin-

uing progress of quantum computing has only recently prompted

the National Security Agency (NSA) to express an intention to tran-

sition to new, post-quantum algorithms [10, 30]. These algorithms

run on classical computers but are expected to be resistant to crypt-

analysis by quantum methods. U.K. CESG has also expressed their

preference for post-quantum algorithms over “quantum technolo-

gies” such as Quantum Key Distribution to counter the threat of

quantum computing [8].

We observe that the new post-quantum threat model applies

equally to smart devices known as Internet-of-Things, RFID, smart

cards, and to other common lightweight cryptography applications.

New lightweight proposals should be designed to be resistant to

quantum adversaries in addition to side channels and other imple-

mentation attacks. Current public key standards do not generally

meet these criteria.

To meet the future asymmetric requirement, National Institute

of Standards and Technology (NIST) has initiated an e�ort to stan-

dardize post-quantum cryptography (PQC) [9]. The algorithms

should be implementable on a wide range of platforms, and should

provide at least one of: signature, encryption, or key exchange /

encapsulation (KEM) [27, 29].

In this work we show how ciphertext compression and error

correcting codes can be used with the basic Lindert-Peikert Ring-

LWE algorithm [22] to build a robust, and quantum resistant public

key encryption, KEM, and authentication mechanism for Internet

of Things and other lightweight targets. Our construct uses many

of the same building blocks as previous well-studied encryption

[12, 24, 32, 33, 36], signature [13, 37], and key exchange algorithms

[2], and can be used in conjunction with them.

Structure of this paper and our contributions. We describe

the basic “Lindner-Peikert” Ring-LWE public key encryption scheme

in Section 2. A ciphertext compression technique is introduced in

Section 3. Its lightweight implementation, application to authen-

tication, and novel auxiliary algorithms such as a constant-time

error correction are described in Section 4. This is followed by

conclusions and further discussion in Section 5.

2 RING-LWE PUBLIC KEY ENCRYPTION
We use a variant of the well-established “Lindner-Peikert” Ring-

LWE encryption algorithm �rst given in [22] and in the extended

version of [26]. This algorithm has been implemented on numerous

lightweight targets in both hardware and software in recent years
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[3, 12, 17, 31, 32, 36]. Our implemented scheme – comprising of a

certain set of parameters and algorithms – is referred to as trunc8.

2.1 Notation and Conventions
Arithmetic is performed in the “anti-cyclic” ring formed of polyno-

mials modulo f (x) = xn +1 with coe�cients de�ned in the �eld Zq ,

where q is a (small) prime. Coe�cient of degree i of ring element

(polynomial) v is denoted v[i]; we have v =
∑n−1
i=0 v[i]x i . The ring

element polynomials are algorithmically handled as zero-indexed

vectors.

Let U n
be a source of uniform random polynomials in Znq and

Bn ∈ {0, 1}n a source of random polynomials with binary coe�-

cients.

LetDσ be a source of integers with discrete Gaussian distribution

de�ned by deviation parameter σ . Dn
σ is a source of polynomials

with coe�cients randomly sampled from that distribution. The

probability mass of Dσ at x ∈ Z is

fσ (x) ∝ e−
x2

2σ 2
with

∑
fσ (x) = 1. (1)

We typically have a very close approximation

fσ (x) ≈
1

σ
√
2π

e
− x2

2σ 2 . (2)

We use e0, e1, e2, e3 ← Dn
σ to denote random Gaussian noise

parameters that are newly sampled from the distribution every

time the corresponding algorithms are invoked.

2.2 Key Generation
Public key is (a,p) and the private key is the n-bit binary string

s .1 The a parameter may be “global” and shared between a large

number of public keys.

s = Bn Binary private key.
a = U n Public parameter (shared).
p = e0 − a ∗ s Public key.

2.3 Encryption
When encoding an n-bit message z ∈ {0, 1}n , we add either 0

or
q−1
2

to each vi coe�cient, depending corresponding on bit zi .
Ciphertext message consists of the pair (u,v).

m = bq/2c ∗ z Message encoding.
u = a ∗ e1 + e2 Ciphertext part 1.
v = p ∗ e1 + e3 +m Ciphertext part 2.

2.4 Decryption
Decrypting (u,v) with secret key s can be done via

m′ = u ∗ s +v . (3)

Decoding the message z can be achieved by normalizing m into

zero-centered range −q+1
2
≤ m′i ≤

q−1
2

and outputting zi = 1 if

abs(m′i ) > q
4

and zi = 0 otherwise.

1
This is equivalent to the CHES 2014 variant of Roy et al. [36] (Section 6). Some variants

sample the private key s from Dn
σ . See [7] for analysis of the binary case.

Algorithm 1 Simple ring multiplication for decryption.

Input: Ciphertext (u,v) and private key s .
1: m ← v
2: for i = 0, 1, . . .n − 1 do
3: if si = 1 then
4: for j = 0, 1, . . . ,n − i − 1 do
5: m[i + j] ←m[i + j] + u[j]
6: end for
7: for j = n − i, . . . ,n − 1 do
8: m[i + j − n] ←m[i + j − n] − u[j]
9: end for

10: end if
11: end for
Output: Undecoded plaintext vectorm.

2.5 Parameter Selection
Göttert et al. has suggested (n,q,σ ) = (512, 12289, 4.8591) as a “high-

security” Ring-LWE encryption parameter set [17]. We adopt these

parameters for our work. This parameter set has been used in many

subsequent Ring-LWE Encryption studies [12, 24, 32, 33, 36] and

therefore works as a suitable benchmark when comparing imple-

mentations. We refer to these earlier works for detailed analysis of

the given parameters. We further note recent work by Buchmann

et al. on the “binary secret” case of Ring-LWE [5, 7].

Following the methodology adopted by Alkim et al. in [2], we

can compare the security of this parameter set to other lattice-based

encryption and key exchange proposals
2
. Table 1 o�ers estimates

for the best known classical and quantum attacks against trunc8
and some other contemporary lattice-based cryptosystems. For a

recent survey of LWE hardness, see [1]. We note that our use of a

binary secret may a�ect the estimates in this table.

3 USING CIPHERTEXT COMPRESSION
Decryption operation (Equation 3) involves multiplication of u
by the secret binary vector s in the anti-cyclic ring. This is often

done using Number Theoretic Transforms (NTT), but can also be

implemented with Algorithm 1. This simpler method has a higher

(quadratic) complexity than the NTT method, but it is still very fast

as it requires no �eld multiplications, just additions and subtractions.

Theorem 3.1. Any ciphertext produced with common Ring-LWE
encryption parameters (Section 2.5) can be signi�cantly compressed
in a way that still allows correct decryption with high probability. The
compression has no e�ect on con�dentiality provided by the scheme.

Proof. The compression argument is shown by subsequent

Theorems; it works. The security argument follows from the fact

the transformation is “public” (uses no secret information) and

only removes redundancy. Therefore it cannot negatively a�ect the

con�dentiality of the message against attacks. � �

The arithmetic for decryption is performed in Zq by default,

with q = 12289 chosen in Section 2.5. We show that decryption

2
The script used in [2] for �nding optimal attack parameters: https://github.com/

tpoeppelmann/newhope/blob/master/scripts/PQsecurity.py

https://github.com/tpoeppelmann/newhope/blob/master/scripts/PQsecurity.py
https://github.com/tpoeppelmann/newhope/blob/master/scripts/PQsecurity.py


Markku-Juhani O. Saarinen Ring-LWE Ciphertext Compression and Error Correction

Table 1: Comparing the hardness of our scheme against some other recent lattice-based encryption andkey exchange proposals
using the methodology from [2]. trunc8 (and other proposals using the “high-security” parameter set from [17]) exceeds 128-
bit security against all known quantum attacks; attack improvements beyond 2

102 are not plausibly expected according to this
methdology.

Attack Parameters Known Known Plausible

type (m,b) Classical Quantum Quantum

trunc8 [this work] q = 12289, n = 512, σ = 4.859

Primal (660, 496) 144 131 102

Dual (674, 494) 144 131 102

Medium-Security LWE [17] q = 7681, n = 256, σ = 4.512

Primal (345, 222) 64 58 46

Dual (360, 222) 64 58 46

NTRU-743 [18] q = 2
12

, n = 743, σ = 0.8164

Primal (613, 603) 176 159 125

Dual (635, 600) 175 159 124

BCNS [4] q = 2
32

, n = 1024, σ = 3.192

Primal (1062, 296) 86 78 61

Dual (1055, 296) 86 78 61

NewHope [2] q = 12289, n = 1024, σ = 2.828

Primal (1100, 967) 282 256 200

Dual (1100, 962) 281 255 199

JarJar [2] q = 12289, n = 512, σ = 3.464

Primal (623, 449) 131 119 93

Dual (602, 448) 130 118 92

operations can be approximated by arithmetic in group Zp=256
which corresponds to fast byte operations.

Modulus reduction techniques have been considered in a theo-

retical setting in works such as [5]. However, our angle is simply

to analyze the rounding artifacts that occur in our concrete trunc8
proposal to guarantee that approximate decryption works with

su�cient probability.

We choose the group of integers mod p = 256 as a natural

“compressed ideal lattice” base. For q = 12289 we de�ne a rounding

truncation of 0 ≤ x < q:

T(x) =
⌊
(x mod q) + 23

48

⌋
mod 256. (4)

Theorem 3.2. Group Zq addition (x + y) for q = 12289, when
approximated mod p = 256 by byte addition � via mapping T(x) is
characterized by

T(x)� T(y) ≡


T(x + y)� 1 with P = 18877440/q2,
T(x + y) with P = 113264641/q2,

T(x + y)� 1 with P = 18877440/q2
(5)

Proof. Result was obtained via exhaustive computation of all

q2 cases. The three cases sum up to 1; the approximation is never

o� by more than one. � �

The probabilities are very close to 1/8, 3/4, and 1/8, respectively

– accurate to 8 decimal places as these are the closest fractions with

denominator q2.

Theorem 3.3. Letm′ be the output of Algorithm 1 when run in
original group Zq andm when input is truncated to (T(u), T(v)) and
byte arithmetic in mod p = 256 is used throughout. For random keys
and inputs, the distance of compressed decoding in Zp to decoding in
Zq for individual values ofm[i] − T(m′[i]) is closely approximated
by Discrete Gaussian distribution Dσ=8.

Proof. Let a = 18877440

q2
(from Equation 5) be the probability

that an o�-by-one error (in each direction) is introduced in each

addition. Combinatorial analysis of a random n = 512 - bit secret

key, of weightw , with b nonzero steps, of which c are positive gives

the total probability of error of exactly x ∈ Z steps as

f (x) =
∑

x = 2c − b,

0 ≤ c ≤b ≤ w ≤ n

ab (1 − 2a)w−b
2
n

(
n

w

) (
w

b

) (
b

c

)
. (6)

The statistical distance (total variation distance) between the exact

combinatorial f (x) of Equation 6 and the discrete Gaussian distri-

bution of Equation 1 with deviation σ = 8 is less than 0.0006. Figure

1 illustrates Equation 6. � �

Combinatorial analysis can be made for any approximation. How-

ever, one generally prefers to have an easy-to-analyze characteriza-

tion such as the one in Equation 5.
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Figure 1: Probability distribution of the approximation error
given by Equation 6. Approximation error does not have to
be 0 for successful decryption; generally |x | < q/4 still works
with our scheme.

3.1 Rough Statistical Analysis of Decryption
Expanding Equation 3 we obtain:

m′ = (a ∗ e1 + e2) ∗ s + (e0 − a ∗ s) ∗ e1 + e3 +m
= e2 ∗ s + e0 ∗ e1 + e3 +m. (7)

We see that the a ∗ s ∗ e1 term cancels out. Decryption can work

correctly only if |m′i −mi | < q/4 in the original mod q operation.

We �rst analyze this case.

Each ring multiplication x ∗ y = z evaluates n inner products

zi =
∑n−1
j=0 x jyi−j (we interpret indexes in anti-cyclic wrap-around

fashion: vi = −vi+n = −vi−n .) Recall that the variance σ 2 of inde-

pendent zero-centered variables is both additive and multiplicative:

Var(X +Y ) = Var(X )+Var(Y ) and Var(XY ) = Var(X )Var(Y ) when

E[X ] = E[Y ] = 0. Furthermore, the sum of n equal-variance in-

dependent variables approaches a Gaussian distribution when n
grows. We may therefore estimate the coe�cients of the polynomial

ring product z = x ∗ y by Gaussian Dn
σz with deviation

σz ≈
√
nσ 2xσ

2

y . (8)

In the case where both x and y in ring multiplication z = x ∗ y
come from discrete Gaussian Dn

σ with example parameters σ =
4.8591 and n = 512, the corresponding approximate Gaussian has

σz =
√
512σ 2 ≈ 534.3. The total variation distance of this Dσz ap-

proximation to the true product distribution of zi is approximately

0.0007.

We further write the binary distribution s ∈ Bn as a zero-

centered distribution with variance
1

2
. This allows us to bound

the error vectorm′ −m with Gaussian Dn
σe where

σe =

√
n

(
1

2

σ 2 + σ 4
)
+ σ 2 ≈ 539.9. (9)

To estimate the error in the truncated mod 256 case, we must

scale the “intrinsic” error σe of Zq rings to our target group and

add the approximation error of Theorem 3.3. The scaled intrinsic

error component
σe
48
≈ 11.25 dominates over the approximation

deviation 8.000, bringing the total deviation to 13.80. Scaling the

q/4 bound we obtain the condition−64 < mi−m′i < 64 for the error.

From cumulative Gaussian distribution we obtain failure probability

P = 0.000004194 for each bit and 1 − (1 − P)512 = 0.002145 for at

least one-bit failure in the n-bit vector. However, experimentally

the failure probability was found to be smaller:

Observation 1. Approximate decryption (Equation 3) in Zp=256
produces, on average, less than 10

−4 single-bit errors per decrypted
message in experiments.

Hundreds of millions of key pair generations, encryptions, and

decryptions were performed to verify Observation 1. The actual

failure probability is roughly 0.94 ∗ 10−4 per message, or 2
−22.4

per

bit. These measurements allow us to estimate failure bounds when

error correction is used, as explained in Section 4.2.

3.2 Further Ciphertext Compression
We observe that even when truncated, not all bits of ciphertext are

required for reasonably successful decryption. For example, we may

choose to transmit only four bits of v[i]; this corresponds to cipher-

text vector of 512 + 256 = 768 bytes, consisting of (u[i], bv[i]+8
16
c)

pairs. We found an average of 0.00040 bit errors per decrypted mes-

sage. However, we do not use this method in our current proposal.

4 APPLICATION TO LIGHTWEIGHT
AUTHENTICATION TOKENS

While there has been steady progress in proofs and theoretical

constructs in this �eld, long-term experience has shown us that

when cryptosystems fail, they often fail on implementation level.

Therefore, all aspects of practical, e�cient, and secure quantum-

safe implementations must receive the same – or higher – level of

attention that is the norm for more established algorithms. This

includes protocols and auxiliary algorithms such as error correcting

codes.

We designed trunc8 as a lightweight and quantum-resistant

public key authentication scheme. The system may be used to

authenticate users in physical access control systems, or as an

upper layer (TLS [35] “post-handshake”) authentication protocol to

Internet services; here the server (once authenticated) interrogates

the user’s terminal-connected token or smart card to grant access.

4.1 One-Way Authentication Protocol
One of the main advantages of a public key authentication scheme

over any symmetric scheme is that (public) key retrieval and vali-

dation can be performed using certi�cate-based Public Key Infras-

tructure (PKI) methods over untrusted channels, as is commonly

done in various Internet security protocols such as TLS. Keys can be

revoked with CLRs (Certi�cate Revocation Lists) [11, 40]. Naturally

the PKI itself must be based on post-quantum signatures if quantum

resistance is required.

For simple authentication tokens (such as smart cards and RFID

key fobs), only the private key operation (Section 2.4) needs to

be implemented. trunc8 decryption does not require non-uniform

random sampling; such heavier lifting can be performed by the

interrogator (“server”). The token must just be able to use its secret

key to decrypt a challenge message and to generate an appropriate

response. The ultra-lightweight public key authentication problem

has been previously addressed with elliptic curves in works such

as [39].
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In our basic one-way authentication protocol Alice (the token)

authenticates herself to Bob (the interrogator) by proving posses-

sion of private key K−1a . Bob must be able to derive the public key

Ka using A. The protocol itself is a one-sided variant Needham–

Schroeder [28] (Lowe’s �x is not needed in this case [25]).

Alice’s identity and nonce.
1. A→ B : A,Na

Kab is a random symmetric key.
2. B → A : {Kab , {Na }Kab }Ka

Symmetric response to challenge.
3. A→ B : {−1}Kab , {−2}Kab

Here the symmetric random “session” key chosen by Bob, Kab ,

plays the role of Bob’s nonce (“Nb ”). Message 1 may contain addi-

tional information such as a certi�cate chain for A. We encrypt the

128-bit nonce Na in step 2 to serve as an “integrity check” for the

message.

The ciphertext length for trunc8 is 1024 bytes. For symmetric

encryption AES-256 [15] is used; Kab is 256 bits, as is the step 3

response AESKab (0xF..FF) | AESKab (0xF..FE). These constants

were chosen to not overlap with CTR or AES-GCM constants [14]

in case Kab is used to protect further communication from Bob,

such as his authentication.

4.2 A Constant-time Error Correcting Code
As indicated by Observation 1, the decryption procedure can be

expected to produce an erroneous bit in one of 10000 messages.

However, the 512-bit payload has su�cient redundancy to accom-

modate an error correcting code.

Since error correction operates on con�dential payload data, it

must be constant-time to deter timing attacks. Our design focus

is to accommodate this requirement with a lightweight algorithm

that is easily implemented in both hardware and software. The

algorithm is named XECC4

32
.

Listing 1: Compute and set XECC

void xecc_compute ( u i n t 3 2 _ t v [ 1 6 ] )

{

in t i ;

u i n t 3 2 _ t r32 , r31 , r29 , r27 , t ;

r 32 = r31 = r29 = r27 = 0 ;

for ( i = 0 ; i < 8 ; i ++) {

t = v [ i ] ;

r 32 ^= t ;

r 31 ^= t ^ ( t >> 3 1 ) ;

r 31 &= 0 x7FFFFFFF ;

r 31 = ( r31 >> 1 ) | ( r 31 << 3 0 ) ;

r 29 ^= t ^ ( t >> 2 9 ) ;

r 29 &= 0 x1FFFFFFF ;

r 29 = ( r29 >> 3 ) | ( r 29 << 2 6 ) ;

r 27 ^= t ^ ( t >> 2 7 ) ;

r 27 &= 0 x07FFFFFF ;

r 27 = ( r27 >> 5 ) | ( r 27 << 2 2 ) ;

}

v [ 8 ] ^= r32 ; / / XOR cod e wi th o r i g i n a l .
v [ 9 ] ^= r31 ;

v [ 1 0 ] ^= r29 ;

v [ 1 1 ] ^= r27 ;

}

Listing 2: Correct Errors

void x e c c _ f i x e r r ( u i n t 3 2 _ t v [ 1 6 ] )

{

in t i ;

u i n t 3 2 _ t r32 , r31 , r29 , r 27 ;

xecc_compute ( v ) ; / / r e c ompu t e

r32 = v [ 8 ] ; / / g e t c o d e s
r31 = v [ 9 ] ; / / ( now " d i f f s " )
r29 = v [ 1 0 ] ;

r 27 = v [ 1 1 ] ;

for ( i = 7 ; i >= 0 ; i −−) {

r 31 &= 0 x7FFFFFFF ;

r 31 = ( r31 << 1 ) | ( r 31 >> 3 0 ) ;

r 29 &= 0 x1FFFFFFF ;

r 29 = ( r29 << 3 ) | ( r 29 >> 2 6 ) ;

r 27 &= 0 x07FFFFFF ;

r 27 = ( r27 << 5 ) | ( r 27 >> 2 2 ) ;

/ / 3−of −4 r u l e f o r c o r r e c t i n g
v [ i ] ^= ( r32 & r31 & ( r29 | r 27 ) )

| ( ( r 32 | r 31 ) & r29 & r27 ) ;

}

}

Listings 1 and 2 contain xecc_compute() and xecc_fixerr()
functions that are used to compute the error correcting code and

then to �x possible bit errors. They operate on arrays of 32-bit words

v[16], where v[0..7] contains the 256-bit payload and v[8..11]
the code itself. The last part v[12..15] is for a cryptographic in-

tegrity check in our application – see Section 4.1.

We view the payload as a binary polynomial of deg(256). It is

reduced modulo four di�erent redundancy polynomials, x32 − 1,

x31 − 1, x29 − 1, and x27 − 1. This can be done with some fast shifts

and XOR operations, as can be observed from the listings. A three-

of-four Boolean rule is used to �nd congruent positions with at

least three parity errors and to �x them in each word.

It is easy to verify that the code can correct all single- and double-

bit errors in the payload and the code itself. It can also correct all

but 718972 out of
384∗383∗382

3!
= 22238720 possible three-bit errors,

a failure rate of 0.07678 in this case.

4.3 Side-Channel Security
Like all cryptographic algorithms, lattice cryptosystems may be

breached via side-channel attacks [6]. This was the main design

criteria the for XECC4

32
code (Section 4.2). General blinding counter-

measures for NTT-based LWE implementations have been proposed

in [37], but these are not directly applicable to trunc8 due to its

di�erent multiplication strategy.

In order to achieve constant time decryption, the secret key s
(Section 2.2) is chosen so that it has exactly

n
4
= 128 ones in even

bit positions and at odd bit positions. This choice drops secret key

entropy to log
2

(
256

128

)2 ≈ 503.3 bits, but analysis of our decryption

algorithm shows guaranteed constant-time operation. An alterna-

tive would be to balance the implementations’ “zero” cases but that

would essentially make the algorithm always run at its worst-case

speed.

Another countermeasure is to store the secret key internally as

a randomly shu�ed list of 2 × 128 index bytes indicating positions

of ones (at both even and odd positions). By avoiding “scanning”
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the secret key bit-by-bit, and by operating in random order, this

greatly helps to mask emissions.

We note that these countermeasures may be insu�cient against

power analysis attacks [21] and are intended to counter only network-

based attacks against the authenticator.

4.4 Security and Failure Rate Estimates
Since the basic encryption scheme and parameters are the same

as in [12, 17, 32, 36], the proposed system should have equivalent,

or better, security than these schemes. We simply compress the

ciphertext after encryption. See Theorem 3.1 for the main security

argument.

We ignore up to four-bit errors in the 128-bit integrity check

AESKab (Na ), leading to 2
−128 ∑

4

i=1
(
128

i
)
≈ 2
−104.6

probability of

failure caused by that. The XECC4

32
code (Section 4.2) is able to

catch all single- and double bit errors in Kab and the code itself.

From Observation 1 and related discussion we know that the single-

bit failure rate is P = 2
−22.4

, leading to triple-bit failed-correction

failure rate in �rst 384 bits of roughly 0.07678 ∗ (1 − (1 − p)384)3 ≈
2
−45.1

.

We claim that this is tolerable bound for a user authentication

mechanism, especially since failures are detected and unauthorized

access is not granted upon failure. Authentication may be simply

repeated upon protocol failure as it is randomized.

4.5 Related Hardware Considerations
In CHES 2014 Roy et al. [36] published a design for a Ring-LWE

cryptoprocessor that implements essentially the same Ring-LWE

scheme as our proposal using a number of dedicated optimizations,

but without compressed decryption. The implementation of [36]

uses NTT for ring arithmetic, and therefore requires the use of

�eld multipliers, which are expensive in hardware. Our simpler

decryption scheme has the same security parameters but does not

need modular multiplication. Furthermore, it has about half of their

RAM requirement.

It is easy to see that hardware implementation of the XECC4
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parity-based error-correcting code (Section 4.2) needs only few

hundred gates. Based on these observations, we expect hardware

implementation of trunc8 to be smaller and more energy-e�cient

than NTT-based decryption cores by about an order of magnitude.

This is for future work.

4.6 Lightweight Implementation
We implemented the authenticator (and decryption) code primarily

on Atmel ATmega 328P, which is a popular and inexpensive 8-bit

microcontroller implementing the AVR instruction set. The chip

has only 2 kB of SRAM and 32 kB of Flash.
3

The platform was

chosen due to its popularity and availability of benchmark data.

Highly optimized AVR implementations of Ring-LWE encryption

schemes have been published by Liu et al. in CHES 2015 [24] and

by Pöppelmann et. al in LATINCRYPT 2015 [33]. Prior work (e.g.

[3]) has clearly inferior performance when compared to these. The

[24, 33] “high security” implementations have essentially the same

3
Atmel ATmega 328P (http://www.atmel.com/devices/atmega328p.aspx) has under

$2 unit price in 2017. We used the widely available “stock” Arduino Uno (R3) board.

https://www.arduino.cc/en/Main/ArduinoBoardUno

security parameters as trunc8, but use NTT for ring arithmetic.

The private key and ciphertext are stored in the NTT domain, and

therefore the private key multiplication of Equation 3 requires only

one NTT transform instead of three for these implementations.

Our ciphertext and implementation footprint are much smaller,

however.

Examining Table 2 we note that even their “memory e�cient”

implementations would not be able to run on our ATmega 328P

target as not enough SRAM is available. Only decryption code

was included in these �gures; the very large di�erence in imple-

mentation size between trunc8 and [24, 33] is mainly due to their

complexity and need for NTT-related tables. We further observe

that our method does not require multiplications and is therefore

e�ciently implementable on architectures (such as 8051) that do

not have a multiplier.

Cortex M0. The entire authentication mechanism was also

ported to Cortex M0 in plain C. Here the private key operation

required only 44.5 ms on LPC11U24 running at 48 MHz; about

2.13M cycles. This speed-optimized decode function required 1252

bytes of �ash, while AES-256 required 824 bytes, and XECC 175

bytes. Most of the rest of the 21kB binary were used up by stan-

dard libraries. Entire authentication protocol of Section 4.1 was

implemented and tested over a 115200 baud serial line; the entire

“handshake” required only a fraction of a second.

5 CONCLUSIONS
We have described a method for compressing Ring-LWE ciphertexts

and the related decryption algorithm. The new algorithm enables re-

alization on hardware and microcontroller targets which previously

have not allowed implementation of private key operations.

The lattice compression technique reduces ciphertext size to

about half (one kilobyte) when compared to previous implementa-

tions. Since neither the encryption process or the plaintext payload

size needs to be changed, the compressed scheme has the same, or

better, con�dentiality properties as numerous previous Ring-LWE

public key implementations with the same security parameters.

We have also proposed a full padding method that incorporates a

fast, constant-time error correcting code, which allows us to tolerate

increased decryption errors.

We view smart cards and RFID tags as an ideal application area

for the compression method. For this purpose, we have proposed a

concrete authenticator algorithm and protocol, trunc8. It is intended

for both physical access control and network user authentication. In

addition to an error correction code, the proposed message format

also has a cryptographic integrity check, which we assume to be

requirements for any future real-life Ring-LWE padding schemes.

The new scheme has been implemented on an 8-bit AVR mi-

crocontroller target, and shows comparable decryption speed to

previous highly optimized implementations that use the Number

Theoretic Transform. However, our implementation is much sim-

pler and requires only a fraction of their implementation footprint.

We have also discussed how to make the private key operation itself

run in constant time by slightly reducing key space, and how to

mask other key-dependent emissions.

http://www.atmel.com/devices/atmega328p.aspx
https://www.arduino.cc/en/Main/ArduinoBoardUno
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Table 2: Comparison of trunc8 AVR private key operation.We are not aware of RSA implementations beyond 1024-bit modulus
size for AVR. For elliptic curves we use the Curve25519 scalar multiplication from AVR NaCl [19] for comparison. Two Ring-
LWE implementations with comparable security parameters were reported in [24]; one optimized for high speed (HS-512)
and another for memory e�ciency (ME-512). We assume that Zq elements are transmitted as 16-bit words and that shared
parameter a is used for RLWE encryption; otherwise the public key would be two times longer. Plaintext payload is n = 512

bits in all RLWE cases.

Scheme / Implementation Cipher-

text

Public

Key

Work

RAM

Flash

ROM

Processor

Cycles

RSA-1024 [23] 128 128 N/A N/A 75,680,000

Curve25519 HS [19] 32+32 32 681 N/A 22,954,657

RLWEenc [33] 2,048 1,024 2,144 9,258 600,351

RLWE n = 512 HS [24] 2,048 1,024 3,121 7,506 700,099

RLWE n = 512 ME [24] 2,048 1,024 2,737 8,500 1,450,713

trunc8 [this work] 1,024 1,024 1,088 282 1,387,824

Our work demonstrates that the ciphertext transformation prop-

erty of lattice-based cryptosystems may have signi�cant applica-

tions in cryptographic engineering. When faced with an application

that has severe performance or bandwidth constraints, one can ex-

amine whether ciphertext transformation can help to overcome

those limitations.
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