
The Bitcoin Backbone Protocol with Chains of Variable Difficulty∗

Juan A. Garay†

Texas A&M University
College Station, TX, USA.

garay@cse.tamu.edu

Aggelos Kiayias∗†‡
University of Edinburgh
& IOHK, Edinburgh, UK
akiayias@inf.ed.ac.uk

Nikos Leonardos
National and Kapodistrian

University of Athens, Greece
nikos.leonardos@gmail.com

August 25, 2019

Abstract

Bitcoin’s innovative and distributedly maintained blockchain data structure hinges on the adequate
degree of difficulty of so-called “proofs of work,” which miners have to produce in order for transactions to
be inserted. Importantly, these proofs of work have to be hard enough so that miners have an opportunity
to unify their views in the presence of an adversary who interferes but has bounded computational power,
but easy enough to be solvable regularly and enable the miners to make progress. As such, as the miners’
population evolves over time, so should the difficulty of these proofs. Bitcoin provides this adjustment
mechanism, with empirical evidence of a constant block generation rate against such population changes.

In this paper we provide the first formal analysis of Bitcoin’s target (re)calculation function in the
cryptographic setting, i.e., against all possible adversaries aiming to subvert the protocol’s properties.
We extend the q-bounded synchronous model of the Bitcoin backbone protocol [Eurocrypt 2015], which
posed the basic properties of Bitcoin’s underlying blockchain data structure and shows how a robust
public transaction ledger can be built on top of them, to environments that may introduce or suspend
parties in each round.

We provide a set of necessary conditions with respect to the way the population evolves under which
the “Bitcoin backbone with chains of variable difficulty” provides a robust transaction ledger in the
presence of an actively malicious adversary controlling a fraction of the miners strictly below 50% at each
instant of the execution. Our work introduces new analysis techniques and tools to the area of blockchain
systems that may prove useful in analyzing other blockchain protocols.

1 Introduction

The Bitcoin backbone [11] extracts and analyzes the basic properties of Bitcoin’s underlying blockchain data
structure, such as “common prefix” and “chain quality,” which parties (“miners”) maintain and try to extend
by generating “proofs of work” (POW, aka “cryptographic puzzles” [8, 22, 1, 13])1. It is then formally shown
in [11] how fundamental applications including consensus [21, 16] and a robust public transaction ledger
realizing a decentralized cryptocurrency (e.g., Bitcoin [19]) can be built on top of them, assuming that the
hashing power of an adversary controlling a fraction of the parties is strictly less than 1/2.

The results in [11], however, hold for a static setting, where the protocol is executed by a fixed number of
parties (albeit not necessarily known to the participants), and therefore with POWs (and hence blockchains)
of fixed difficulty. This is in contrast to the actual deployment of the Bitcoin protocol where a “target
(re)calculation” mechanism adjusts the hardness level of POWs as the number of parties varies during the

∗An abridged version of this paper was published in Crypto 2017.
†Part of this work was done while the authors were visiting the Simons Institute for the Theory of Computing, supported

by the Simons Foundation and by the DIMACS/Simons Collaboration in Cryptography through NSF grant #CNS-1523467.
‡Research partly supported by ERC project CODAMODA, No. 259152, and Horizon 2020 project PANORAMIX, No.

653497.
1In Bitcoin, solving a proof of work essentially amounts to brute-forcing a hash inequality based on SHA-256.

1

protocol execution. In more detail, in [11] the target T that the hash function output must not exceed, is
set and hardcoded at the beginning of the protocol, and in such a way that a specific relation to the number
of parties running the protocol is satisfied, namely, that a ratio f roughly equal to qnT/2κ is small, where
q is the number of queries to the hash function that each party is allowed per round, n is the number of
parties, and κ is the length of the hash function output. Security was only proven when the number of
parties is n and the choice of target T is never recalculated, thus leaving as open question the full analysis
of the protocol in a setting where, as in the real world, parties change dynamically over time.

In this paper, we abstract for the first time the target recalculation algorithm from the Bitcoin system,
and present a generalization and analysis of the Bitcoin backbone protocol with chains of variable difficulty,
as produced by an evolving population of parties, thus answering the aforementioned open question.

In this setting, there is a parameter m which determines the length of an “epoch” in number of blocks.2

When a party prepares to compute the j-th block of a chain with j mod m = 1, it uses a target calculation
algorithm that determines the proper target value to use, based on the party’s local view about the total
number of parties that are present in the system, as reflected by the rate of blocks that have been created
so far and are part of the party’s chain. (Each block contains a timestamp of when it was created; in
our synchronous setting, timestamps will correspond to the round numbers when blocks are created—see
Section 2.) To accomodate the evolving population of parties, we extend the model of [11] to environments
that are free to introduce and suspend parties in each round. In other respects, we follow the model of [11],
where all parties have the same “hashing power,” with each one allowed to pose q queries to the hash function
that is modeled as a “random oracle” [3]. We refer to our setting as the dynamic q-bounded synchronous
setting.

In order to give an idea of the issues involved, we note that without a target calculation mechanism, in
the dynamic setting the backbone protocol is not secure even if all parties are honest and follow the protocol
faithfully. Indeed, it is easy to see that a combination of an environment that increases the number of parties
and adversarial network conditions can lead to substantial divergence (a.k.a. “forks”) in the chains of the
honest parties, leading to the violation of the agreement-type properties that are needed for the applications
of the protocol, such as maintaining a robust transaction ledger. The attack is simple: the environment
increases the number of parties constantly so that the block production rate per round increases (which
is roughly the parameter f mentioned above); then, adversarial network conditions may divide the parties
into two sets, A and B, and schedule message delivery so that parties in set A receive blocks produced by
parties in A first, and similarly for set B. According to the Bitcoin protocol, parties adopt the block they
see first, and thus the two sets will maintain two separate blockchains.

While this specific attack could in principle be thwarted by modifying the Bitcoin backbone (e.g., by
randomizing which block a party adopts when they receive in the same round two blocks of the same index in
the chain), it certainly would not cope with all possible attacks in the presence of a full-blown adversary and
target recalculation mechanism. Indeed, such an attack was shown in [2], where by mining “privately” with
timestamps in rapid succession, corrupt miners are able to induce artificially high targets in their private
chain; even though such chain may grow slower than the main chain, it will still make progress and, via
an anti-concentration argument, a sudden adversarial advance that can break agreement amongst honest
parties cannot be ruled out.

Given the above, our main goal is to show that the backbone protocol with a Bitcoin-like target recal-
culation function satisfies the common prefix and chain quality properties, as an intermediate step towards
proving that the protocol implements a robust transaction ledger. Expectedly, the class of protocols we will
analyze will not preserve its properties for arbitrary ways in which the number of parties may change over
time. In order to bound the error in the calibration of the block generation rate that the target recalculation
function attempts, we will need some bounds on the way the number of parties may vary. For γ ∈ R+ and
s ∈ N, we will call a sequence (nr)r∈N of parties (γ, s)-respecting if it holds that in a sequence of rounds
S with |S| ≤ s, maxr∈S nr ≤ γ · minr∈S nr, and will determine for what values of these parameters the

2In Bitcoin, m is set to 2016 and roughly corresponds to 2 weeks in real time—assuming the number of parties does not
change much.

2

backbone protocol is secure.
After formally describing blockchains of variable difficulty and the Bitcoin backbone protocol in this

setting, at a high level our analysis goes as follows. We first introduce the notion of goodness regarding
the approximation that is performed on f in an epoch. In more detail, we call a round r (η, θ)-good, for
some parameters η, θ ∈ R+, if the value fr computed for the actual number of parties and target used in
round r by some honest party, falls in the range [ηf, θf], where f is the initial block production rate (note
that the first round is always assumed good). Together with “goodness” we introduce the notion of typical
executions, in which, informally, for any set S of consecutive rounds the successes of the adversary and
the honest parties do not deviate too much from their expectations as well as no “bad” event concerning
the hash function occurs (such as a collision). Using a martingale bound we demonstrate that almost all
polynomially bounded (in κ) executions are typical.

Next, we proceed to show that in a typical execution any chain that an honest party adopts (1) contains
timestamps that are approximately accurate (i.e., no adversarial block has a timestamp that differs too much
from its real creation time), and (2) it has a target such that the probability of block production remains
near the fixed constant f , i.e., it is “good.” Finally, these properties allow us to demonstrate that a typical
execution enjoys the common prefix and chain quality properties, which is a stepping stone towards the
ultimate goal, that of establishing that the backbone protocol with variable difficulty implements a robust
transaction ledger. Specifically, we show the following:
Main result (Informal—see Theorems 5 and 6). The Bitcoin backbone protocol with chains of variable
difficulty, suitably parameterized, satisfies with overwhelming probability in m and κ the properties of (1)
persistence—if a transaction tx is confirmed by an honest party, no honest party will ever disagree about
the position of tx in the ledger, and (2) liveness—if a transaction tx is broadcast, it will eventually become
confirmed by all honest parties.
Remark. Regarding the actual parameterization of the Bitcoin system (that uses epochs of m = 2016
blocks), even though it is consistent with all the constraints of our theorems (cf. Remark 3 in Section 6.1),
it cannot be justified by our martingale analysis. In fact, our probabilistic analysis would require much
longer epochs to provide a sufficiently small probability of attack. Tightening the analysis or discovering
attacks for parameterizations beyond our security theorems is an interesting open question.

Finally, we note that various extensions to our model are relevant to the Bitcoin system and constitute
interesting directions for further research. Importantly, a security analysis in the “rational” setting (see, e.g.,
[9, 23, 14]), and in the “partially synchronous,” or “bounded-delay” network model [7, 20]3.

2 Model and Definitions

We describe our protocols in a model that extends the synchronous communication network model presented
in [10, 11] for the analysis of the Bitcoin backbone protocol in the static setting with a fixed number of
parties (which in turn is based on Canetti’s formulation of “real world” notion of protocol execution [4, 5, 6]
for multi-party protocols) to the dynamic setting with a varying number of parties. In this section we
provide a high-level overview of the model, highlighting the differences that are intrinsic to our dynamic
setting.

Round structure and protocol execution. As in [10], the protocol execution proceeds in rounds with
inputs provided by an environment program denoted by Z to parties that execute the protocol Π, and our
adversarial model in the network is “adaptive,” meaning that the adversary A is allowed to take control of
parties on the fly, and “rushing,” meaning that in any given round the adversary gets to see all honest players’
messages before deciding his strategy. The parties’ access to the hash function and their communication
mechanism are captured by a joint random oracle / diffusion functionality which reflects Bitcoin’s peer

3In the latest version of [10], we show that in the case of fixed difficulty, the analysis of the Bitcoin backbone in the
synchronous model extends with relative ease to partial synchrony. We leave the extension of the variable-difficulty case for
future work.

3

structure. The diffusion functionality, [10], allows the order of messages to be controlled by A, i.e., there is
no atomicity guarantees in message broadcast [12], and, furthermore, the adversary is allowed to spoof the
source information on every message (i.e., communication is not authenticated). Still, the adversary cannot
change the contents of the messages nor prevent them from being delivered. We will use Diffuse as the
message transmission command that captures this “send-to-all” functionality.

The parties that may become active in a protocol execution are encoded as part of a control program C
and come from a universe U of parties.

The protocol execution is driven by an environment program Z that interacts with other instances of
programs that it spawns at the discretion of the control program C. The pair (Z, C) forms of a system of
interactive Turing machines (ITM’s) in the sense of [5]. The execution is with respect to a program Π, an
adversary A (which is another ITM) and the universe of parties U . Assuming the control program C allows
it, the environment Z can activate a party by writing to its input tape. Note that the environment Z also
receives the parties’ outputs when they are produced in a standard subroutine-like interaction. Additionally,
the control program maintains a flag for each instance of an ITM, (abbreviated as ITI in the terminology
of [5]), that is called the ready flag and is initially set to false for all parties.

The environment Z, initially is restricted by C to spawn the adversary A. Each time the adversary is
activated, it may send one or more messages of the form (Corrupt, Pi) to C and C will mark the corresponding
party as corrupted.

Functionalities available to the protocol. The ITI’s of protocol Π will have access to a joint ideal
functionality capturing the random oracle and the diffusion mechanism which is defined in a similar way as
[10] and is explained below.

• The random oracle functionality. Given a query with a value xmarked for “calculation” for the function
H(·) from an honest party Pi and assuming x has not been queried before, the functionality returns
a value y which is selected at random from {0, 1}κ; furthermore, it stores the pair (x, y) in the table
of H(·), in case the same value x is queried in the future. Each honest party Pi is allowed to ask q
queries in each round as determined by the diffusion functionality (see below). On the other hand,
each honest party is given unlimited queries for “verification” for the function H(·). The adversary
A, on the other hand, is given a bounded number queries in each round as determined by diffusion
functionality with a bound that is initialized to 0 and determined as follows: whenever a corrupted
party is activated, the party can ask the bound to be increased by q; each time a query is asked by the
adversary the bound is decreased by 1. No verification queries are provided to A. Note that the value
q is a polynomial function of κ, the security parameter. The functionality can maintain tables for
functions other than H(·) but, by convention, the functionality will impose query quotas to function
H(·) only.

• The diffusion functionality. This functionality keeps track of rounds in the protocol execution; for this
purpose it initially sets a variable round to be 1. It also maintains a Receive() string defined for each
party Pi in U . A party that is activated is allowed to query the functionality and fetch the contents of
its personal Receive() string. Moreover, when the functionality receives a message (Diffuse,m) from
party Pi it records the message m. A party Pi can signal when it is complete for the round by sending
a special message (RoundComplete). With respect to the adversary A, the functionality allows it to
receive the contents of all contents sent in Diffuse messages for the round and specify the contents
of the Receive() string for each party Pi. The adversary has to specify when it is complete for the
current round. When all parties are complete for the current round, the functionality inspects the
contents of all Receive() strings and includes any messages m that were diffused by the parties in the
current round but not contributed by the adversary to the Receive() tapes (in this way guaranteeing
message delivery). It also flushes any old messages that were diffused in previous rounds and not
diffused again. The variable round is then incremented.

The dynamic q-bounded synchronous setting. Consider n = {nr}r∈N and t = {tr}r∈N two series of

4

natural numbers. As mentioned, the first instance that is spawned by Z is the adversary A. Subsequently
the environment may spawn (or activate if they are already spawned) parties Pi ∈ U . The control program
maintains a counter in each sequence of activations and matches it with the current round that is maintained
by the diffusion functionality. Each time an honest party diffuses a message containing the label “ready”
the control program C increases the ready counter for the round. In round r, the control program C will
enable the adversary A to complete the round, only provided that (i) exactly nr parties have transmitted
ready message, (ii) the number of (“corrupt”) parties controlled by A should match tr.

Parties, when activated, are able to read their input tape Input() and communication tape Receive()
from the diffusion functionality. Observe that parties are unaware of the set of activated parties. The
Bitcoin backbone protocol requires from parties (miners) to calculate a POW. This is modeled in [11] as
parties having access to the oracle H(·). The fact that (active) parties have limited ability to produce such
POWs, is captured as in [11] by the random oracle functionality and the fact that it paces parties to query
a limited number of queries per round. The bound, q, is a function of the security parameter κ; in this sense
the parties may be called q-bounded4. We refer to the above restrictions on the environment, the parties
and the adversary as the dynamic q-bounded synchronous setting.

The term {viewP,t,n
Π,A,Z(z)}z∈{0,1}∗ denotes the random variable ensemble describing the view of party P

after the completion of an execution running protocol Π with environment Z and adversary A, on input
z ∈ {0, 1}∗. We will only consider a “standalone” execution without any auxiliary information and we will
thus restrict ourselves to executions with z = 1κ. For this reason we will simply refer to the ensemble
by viewP,t,n

Π,A,Z . The concatenation of the view of all parties ever activated in the execution is denoted by
viewt,n

Π,A,Z .

Properties of protocols. In our theorems we will be concerned with properties of protocols Π running
in the above setting. Such properties will be defined as predicates over the random variable viewt,n

Π,A,Z by
quantifying over all possible adversaries A and environments Z. Note that all our protocols will only satisfy
properties with a small probability of error in κ as well as in a parameter k that is selected from {1, . . . , κ}
(with foresight we note that in practice would be able to choose k to be much smaller than κ, e.g., k = 6).

The protocol class that we will analyze will not be able to preserve its properties for arbitrary sequences
of parties. To restrict the way the sequence n is fluctuating we will introduce the following class of sequences.

Definition 1. For γ ∈ R+, we call a sequence (nr)r∈N (γ, s)-respecting if for any set S of at most s
consecutive rounds, maxr∈S nr ≤ γ ·minr∈S nr.

Observe that the above definition is fairly general and also can capture exponential growth; e.g., by
setting γ = 2 and s = 10, it follows that every 10 rounds the number of ready parties may double. Note
that this will not lead to an exponential running time overall since the total run time is bounded by a
polynomial in κ, (due to the fact that (Z, C) is a system of ITM’s, Z is locally polynomial bounded, C is a
polynomial-time program, and thus [5, Proposition 3] applies).

More formally, a protocol Π would satisfy a property Q for a certain class of sequences n, t, provided that
for all PPT A and locally polynomial bounded Z, it holds that Q(viewt,n

Π,A,Z) is true with overwhelming
probability of the coins of A,Z and the random oracle functionality.

In this paper, we will be interested in (γ, s)-respecting sequences n, sequences t suitably restricted by
n, and protocols Π suitably parameterized given n, t.

3 Blockchains of Variable Difficulty

We start by introducing blockchain notation; we use similar notation to [10], and expand the notion of
blockchain to explicitly include timestamps (in the form of a round indicator). Let G(·) and H(·) be

4In [11] this is referred to as the “flat-model” in terms of computational power, where all parties are assumed equal. In
practice, different parties may have different “hashing power”; note that this does not sacrifice generality since one can imagine
that real parties are simply clusters of some arbitrary number of flat-model parties.

5

cryptographic hash functions with output in {0, 1}κ. A block with target T ∈ N is a quadruple of the form
B = 〈r, st, x, ctr〉 where st ∈ {0, 1}κ, x ∈ {0, 1}∗, and r, ctr ∈ N are such that they satisfy the predicate
validblockTq (B) defined as

(H(ctr,G(r, st, x)) < T) ∧ (ctr ≤ q).

The parameter q ∈ N is a bound that in the Bitcoin implementation determines the size of the register
ctr; as in [10], in our treatment we allow q to be arbitrary, and use it to denote the maximum allowed
number of hash queries in a round (cf. Section 2). We do this for convenience and our analysis applies in a
straightforward manner to the case that ctr is restricted to the range 0 ≤ ctr < 232 and q is independent of
ctr.

A blockchain, or simply a chain is a sequence of blocks. The rightmost block is the head of the chain,
denoted head(C). Note that the empty string ε is also a chain; by convention we set head(ε) = ε. A
chain C with head(C) = 〈r, st, x, ctr〉 can be extended to a longer chain by appending a valid block B =
〈r′, st′, x′, ctr′〉 that satisfies st′ = H(ctr,G(r, st, x)) and r′ > r, where r′ is called the timestamp of block
B. In case C = ε, by convention any valid block of the form 〈r′, st′, x′, ctr′〉 may extend it. In either case
we have an extended chain Cnew = CB that satisfies head(Cnew) = B.

The length of a chain len(C) is its number of blocks. Consider a chain C of length ` and any nonnegative
integer k. We denote by Cdk the chain resulting from “pruning” the k rightmost blocks. Note that for
k ≥ len(C), Cdk = ε. If C1 is a prefix of C2 we write C1 � C2.

Given a chain C of length len(C) = `, we let xC denote the vector of ` values that is stored in C and starts
with the value of the first block. Similarly, rC is the vector that contains the timestamps of the blockchain
C.

For a chain of variable difficulty, the target T is recalculated for each block based on the round timestamps
of the previous blocks. Specifically, there is a function D : Z∗ → R which receives an arbitrary vector of
round timestamps and produces the next target. The value D(ε) is the initial target of the system. The
difficulty of each block is measured in terms of how many times the block is harder to obtain than a block of
target T0. In more detail, the difficulty of a block with target T is equal to T0/T ; without loss of generality
we will adopt the simpler expression 1/T (as T0 will be a constant across all executions). We will use diff(C)
to denote the difficulty of a chain. This is equal to the sum of the difficulties of all the blocks that comprise
the chain.

The target calculation function. Intuitively, the target calculation function D(·) aims at maintaining
the block production rate constant. It is parameterized by m ∈ N and f ∈ (0, 1); Its goal is that m blocks
will be produced every m/f rounds. We will see in Section 6 that the probability f(T, n) with which n
parties produce a new block with target T is approximated by

f(T, n) ≈ qTn

2κ
.

(Note that T/2κ is the probability that a single player produces a block in a single query.)
To achieve the above goal Bitcoin tries to keep qTn/2κ close to f . To that end, Bitcoin waits for m

blocks to be produced and based on their difficulty and how fast these blocks were computed it computes
the next target. More specifically, say the last m blocks of a chain C are for target T and were produced in
∆ rounds. Consider the case where a number of players

n(T,∆) =
2κm

qT∆

attempts to producem blocks of target T ; note that it will take them approximately ∆ rounds in expectation.
Intuitively, the number of players at the point when m blocks were produced is estimated by n(T,∆); then
the next target T ′ is set so that n(T,∆) players would need m/f rounds in expectation to produce m blocks
of target T ′. Therefore, it makes sense to set

T ′ =
∆

m/f
· T,

6

because if the number of players is indeed n(T,∆) and remains unchanged, it will take them m/f rounds
in expectation to produce m blocks. If the initial estimate of the number parties is n0, we will assume T0 is
appropriately set so that f ≈ qT0n0/2

κ and then

T ′ =
n0

n(T,∆)
· T0.

Remark 1. Recall that in the flat q-bounded setting all parties have the same hashing power (q-queries per
round). It follows that n0 represents the estimated initial hashing power while n(T,∆) the estimated hashing
power during the last m blocks of the chain C. As a result the new target is equal to the initial target T0

multiplied by the factor n0/n(T,∆), reflecting the change of hashing power in the last m blocks.

Based on the above we give the formal definition of the target (re)calculation function, which is as
follows.

Definition 2. For fixed constants κ, τ,m, n0, T0, the target calculation function D : Z∗ → R is defined as

D(ε) = T0 and D(r1, . . . , rv) =


1
τ · T if n0

n(T,∆) · T0 <
1
τ · T ;

τ · T if n0
n(T,∆) · T0 > τ · T ;

n0
n(T,∆) · T0 otherwise,

where n(T,∆) = 2κm/qT∆, with ∆ = rm′ − rm′−m, T = D(r1, . . . , rm′−1), and m′ = m · bv/mc.

In the definition, (r1, . . . , rv) corresponds to a chain of v blocks with ri the timestamp of the ith block;
m′,∆, and T correspond to the last block, duration, and target of the last completed epoch, respectively.

Remark 2. A remark is in order about the case n0
n(T,∆) · T0 /∈ [1

τ T, τT], since this aspect of the definition is
not justified by the discussion preceeding Definition 2. At first there may seem to be no reason to introduce
such a “dampening filter” in Bitcoin’s target recalculation function and one should let the parties to try
collectively to approximate the proper target. Interestingly, in the absence of such dampening, an efficient
attack is known [2] (against the common-prefix property). As we will see, this dampening is sufficient for us
to prove security against all attackers, including those considered in [2] (with foresight, we can say that the
attack still holds but it will take exponential time to mount).

4 The Bitcoin Backbone Protocol with Variable Difficulty

In this section we give a high-level description of the Bitcoin backbone protocol with chains of variable
difficulty; a more detailed description, including the pseudocode of the algorithms, is given in Appendix A.
The presentation is based on the description in [11]. We then formulate two desired properties of the
blockchain—common prefix and chain quality—for the dynamic setting.

4.1 The Protocol

As in [11], in our description of the backbone protocol we intentionally avoid specifying the type of val-
ues/content that parties try to insert in the chain, the type of chain validation they perform (beyond checking
for its structural properties with respect to the hash functions G(·), H(·)), and the way they interpret the
chain. These checks and operations are handled by the external functions V (·), I(·) and R(·) (the content
validation function, the input contribution function and the chain reading function, resp.) which are speci-
fied by the application that runs “on top” of the backbone protocol. The Bitcoin backbone protocol in the
dynamic setting comprises three algorithms.

Chain validation. The validate algorithm performs a validation of the structural properties of a given
chain C. It is given as input the value q, as well as hash functions H(·), G(·). It is parameterized by the

7

content validation predicate predicate V (·) as well as by D(·), the target calculation function (Section 3).
For each block of the chain, the algorithm checks that the proof of work is properly solved (with a target
that is suitable as determined by the target calculation function), and that the counter ctr does not exceed
q. Furthermore it collects the inputs from all blocks, xC , and tests them via the predicate V (xC). Chains
that fail these validation procedure are rejected.

Chain comparison. The objective of the second algorithm, called maxvalid, is to find the “best possible”
chain when given a set of chains. The algorithm is straightforward and is parameterized by a max(·) function
that applies some ordering to the space of blockchains. The most important aspect is the chains’ difficulty
in which case max(C1, C2) will return the most difficult of the two. In case diff(C1) = diff(C2), some other
characteristic can be used to break the tie. In our case, max(·, ·) will always return the first operand to
reflect the fact that parties adopt the first chain they obtain from the network.

Proof of work. The third algorithm, called pow, is the proof of work-finding procedure. It takes as input
a chain and attempts to extend it via solving a proof of work. This algorithm is parameterized by two hash
functions H(·), G(·) as well as the parameter q. Moreover, the algorithm calls the target calculation function
D(·) in order to determine the value T that will be used for the proof of work. The procedure, given a chain
C and a value x to be inserted in the chain, hashes these values to obtain h and initializes a counter ctr.
Subsequently, it increments ctr and checks to see whether H(ctr, h) < T ; in case a suitable ctr is found then
the algorithm succeeds in solving the POW and extends chain C by one block.

The Bitcoin backbone protocol. The core of the backbone protocol with variable difficulty is similar to
that in [11], with several important distinctions. First is the procedure to follow when the parties become
active. Parties check the ready flag they possess, which is false if and only if they have been inactive in
the previous round. In case the ready flag is false, they diffuse a special message ‘Join’ to request the
most recent version of the blockchain(s). Similarly, parties that receive the special request message in their
Receive() tape broadcast their chains. As before parties, run “indefinitely” (our security analysis will
apply when the total running time is polynomial in κ). The input contribution function I(·) and the chain
reading function R(·) are applied to the values stored in the chain. Parties check their communication tape
Receive() to see whether any necessary update of their local chain is due; then they attempt to extend it
via the POW algorithm pow. The function I(·) determines the input to be added in the chain given the
party’s state st, the current chain C, the contents of the party’s input tape Input() and communication
tape Receive(). The input tape contains two types of symbols, Read and (Insert, value); other inputs
are ignored. In case the local chain C is extended the new chain is diffused to the other parties. Finally, in
case a Read symbol is present in the communication tape, the protocol applies function R(·) to its current
chain and writes the result onto the output tape Output().

4.2 Properties of the Backbone Protocol with Variable Difficulty

Next, we define the two properties of the backbone protocol that the protocol will establish. They are close
variants of the properties in [11], suitably modified for the dynamic q-bounded synchronous setting.

The common prefix property essentially remains the same. It is parameterized by a value k ∈ N, considers
an arbitrary environment and adversary, and it holds as long as any two parties’ chains are different only
in their most recent k blocks. It is actually helpful to define the property between an honest party’s chain
and another chain that may be adversarial. The definition is as follows.

Definition 3 (Common-Prefix Property). The common-prefix property Qcp with parameter k ∈ N states that
for any pair of honest players P1, P2 adopting the chains C1, C2 at rounds r1 ≤ r2 respectively in viewt,n

Π,A,Z ,

it holds that Cdk1 � C2.

The second property, called chain quality, expresses the number of honest-party contributions that are
contained in a sufficiently long and continuous part of a party’s chain. Because we consider chains of variable
difficulty it is more convenient to think of parties’ contributions in terms of the total difficulty they add to
the chain as opposed to the number of blocks they add (as done in [11]). The property states that adversarial

8

parties are bounded in the amount of difficulty they can contribute to any sufficiently long segment of the
chain.

Definition 4 (Chain-Quality Property). The chain quality property Qcq with parameters µ ∈ R and ` ∈ N
states that for any honest party P with chain C in viewt,n

Π,A,Z , it holds that for any ` consecutive blocks of
C with total difficulty d, the honest blocks contribute difficulty at least µ · d.

4.3 Application: Robust Transaction Ledger

We now come to the (main) application the Bitcoin backbone protocol was designed to solve. A robust
transaction ledger is a protocol maintaining a ledger of transactions organized in the form of a chain C,
satisfying the following two properties.

Persistence: Parameterized by k ∈ N (the “depth” parameter), if an honest party P , maintaining a chain
C, reports that a transaction tx is in Cdk, then it holds for every other honest party P ′ maintaining a
chain C′ then C′ contains tx in exactly the same position.
Liveness: Parameterized by u, k ∈ N (the “wait time” and “depth” parameters, resp.), if a transaction tx
is provided to all honest parties for u consecutive rounds, then it holds that for any player P , maintaining
a chain C, tx will be in Cdk.

We note that, as in [11], Liveness is applicable to either “neutral” transactions (i.e., those that they are
never in “conflict” with other transactions in the ledger), or transactions that are produced by an oracle
Txgen that produces honestly generated transactions.

5 Overview of the Analysis

Our main goal is to show that the backbone protocol satisfies the properties common prefix and chain
quality (Section 4.2) in a (γ, s)-respecting environment as an intermediate step towards proving, eventually,
that the protocol implements a robust transaction ledger. In this section we present a high-level overview
of our approach; the full analysis is then presented in Section 6. To prove the aforementioned properties
we first characterize the set of typical executions. Informally, an execution is typical if for any set S of
consecutive rounds the successes of the adversary and the honest parties do not deviate too much from their
expectations and no bad event occurs with respect to the hash function (which we model as a “random
oracle”). Using the martingale bound of Theorem 7 we demonstrate that almost all polynomially bounded
executions are typical. We then proceed to show that in a typical execution any chain that an honest party
adopts (1) contains timestamps that are approximately accurate (i.e., no adversarial block has a timestamp
that differs too much by its real creation time) and (2) has a target such that the probability of block
production remains near a fixed constant f . Finally, these properties of a typical execution will bring us to
our ultimate goal: to demonstrate that a typical execution enjoys the common prefix and the chain quality
properties, and therefore one can build on the blockchain a robust transaction ledger (Section 4.3). Here we
highlight the main steps and the novel concepts that we introduce.

“Good” executions. In order to be able to talk quantitavely about typical executions, we first introduce
the notion of (η, θ)-good executions, which expresses how well the parties approximate f . Suppose at round
r exactly n parties query the oracle with target T . The probability at least one of them will succeed is

f(T, n) = 1−
(

1− T

2κ

)qn
.

For the initial target T0 and the initial estimate of the number of parties n0, we denote f0 = f(T0, n0).
Looking ahead, the objective of the target recalculation mechanism is to maintain a target T for each party
such that f(T, nr) ≈ f0 for all rounds r. (For succintness, we will drop the subscript and simply refer to it
as f .)

9

Now, at a round r of an execution E the honest parties might be querying the random oracle for various
targets. We denote by Tmin

r (E) and Tmax
r (E) the minimum and maximum over those targets. We say r is

a target-recalculation point of a valid chain C, if there is a block with timestamp r and m exactly divides
the number of blocks up to (and including) this block. Consider constants η ∈ (0, 1] and θ ∈ [1,∞) and an
execution E:

Definition 5 (Abridged). A round r is (η, θ)-good in E if ηf ≤ f(Tmin
r (E), nr) and f(Tmax

r (E), nr) ≤ θf .
An execution E is (η, θ)-good if every round of E was (η, θ)-good.

We are going to study the progress of the honest parties only when their targets lie in a reasonable range.
It will turn out that, with high probability, the honest parties always work with reasonable targets. The
following bound will be useful because it gives an estimate of the progress the honest parties have made
in an (η, θ)-good execution. We will be interested in the progress coming from uniquely successful rounds,
where exactly one honest party computed a POW. Let Qr be the random variable equal to the (maximum)
difficulty of such rounds (recall a block with target T has difficulty 1/T); 0 otherwise. We refer to Qr also
as “unique” difficulty. We are able to show the following.

Proposition 2 (Informal). If r is an (η, θ)-good round in an execution E, then E[Qr(Er−1)] ≥ (1−θf)pnr,
where Qr(Er−1) is the unique difficulty conditioned on the execution so far, and p = q

2κ .

“Per round” arguments regarding relevant random variables are not sufficient, as we need executions
with “good” behavior over a sequence of rounds—i.e., variables should be concentrated around their means.
It turns out that this is not easy to get, as the probabilities of the experiments performed per round depend
on the history (due to target recalculation). To deal with this lack of concentration/variance problem, we
introduce the following measure.

Typical executions. Intuitively, the idea that this notion captures is as follows. Note that at each round
of a given execution E the parties perform Bernoulli trials with success probabilities possibly affected by
the adversary. Given the execution, these trials are determined and we may calculate the expected progress
the parties make given the corresponding probabilities. We then compare this value to the actual progress
and if the difference is “reasonable” we declare E typical. Note, however, that considering this difference
by itself will not always suffice, because the variance of the process might be too high. Our definition, in
view of Theorem 7 (App. C), says that either the variance is high with respect to the set of rounds we are
considering, or the parties have made progress during these rounds as expected. A bit more formally, for a
given random oracle query in an execution E, the history of the execution just before the query takes place,
determines the parameters of the distribution that the outcome of this query follows as a POW (a Bernoulli
trial). For the queries performed in a set of rounds S, let V (S) denote the sum of the variances of these
trials.

Definition 8 (Abridged). An execution E is (ε, η, θ)-typical if, for any given set S of consecutive rounds
such that V (S) is appropriately bounded from above:

The average unique difficulty is lower-bounded by 1
|S|(
∑

r∈S E[Qr(Er−1)]− ε(1− θf)p
∑

r∈S nr);

the average maximum difficulty is upper-bounded by 1
|S|(1 + ε)p

∑
r∈S nr;

the adversary’s average difficulty of blocks with “easy” targets is upper-bounded by 1
|S|(1 + ε)p

∑
r∈S tr,

while the number of blocks with “hard” targets is bounded below m by a suitable constant; and
no “bad events” with respect to the hash function occur (e.g., collisions).

The following is one of the main steps in our analysis.

Proposition 4 (Informal). Almost all polynomially bounded executions (in κ) are typical. The probability
of an execution not being typical is bounded by exp(−Ω(min{m,κ}) + lnL) where L is the total run-time.

Recall (Remark 2) that the dynamic setting (specifically, the use of target recalculation functions) offers
more opportunities for adversarial attacks [2]. The following important intermediate lemma shows that if a

10

typical execution is good up to a certain point, chains that are privately mined for long periods of time by
the adversary will not be adopted by honest parties.

Lemma 2 (Informal). Let E be a typical execution in a (γ, s)-respecting environment. If Er is (η, θ)-good,
then, no honest party adopts at round r + 1 a chain that has not been extended by an honest party for at
least O(mτf) consecutive rounds.

An easy corollary of the above is that in typical executions, the honest parties’ chains cannot contain blocks
with timestamps that differ too much from the blocks’ actual creation times.

Corollary 1 (Informal). Let E be a typical execution in a (γ, s)-respecting environment. If Er−1 is
(η, θ)-good, then the timestamp of any block in Er is at most O(mτf) away from its actual creation time (cf.
the notion of accuracy in Definition 6).

Additional important results we obtain regarding (η, θ)-good executions are that their epochs last about
as much as they should (Lemma 3), as well as a “self-correcting” property, which essentially says that if every
chain adopted by an honest party is (ηγ, θγ)-good in Er−1 (cf. the notion of a good chain in Definition 5),
then Er is (η, θ)-good (Corollary 2). The above (together with several smaller intermediate steps that we
omit from this high-level overview) allow us to conclude:

Theorem 1 (Informal). A typical execution in a (γ, s)-respecting environment is O(mτf)-accurate and
(η, θ)-good.

Common prefix and chain quality. Typical executions give us the two desired low-level properties of
the blockchain:

Theorems 2 and 4 (Informal). Let E be a typical execution in a (γ, s)-respecting environment. Under
the requirements of Table 1 (Section 6.1), common prefix holds for any k ≥ θγm/8τ and chain quality holds
for ` = m/16τf and µ ≤ 1− δ/2, where for all r, tr < nr(1− δ).

Robust transaction ledger. Given the above we then prove the properties of the robust transaction
ledger:

Theorems 5 and 6 (Informal) Under the requirements of Table 1, the backbone protocol satisfies per-
sistence with parameter k = Θ(m) and liveness with wait time u = Ω(m+ k) for depth k.

We refer to Section 6 for the full analysis of the protocol.

6 Full Analysis

In this section we present the full analysis and proofs of the backbone protocol and robust transaction ledger
application with chains of variable difficulty. The analysis follows at a high level the roadmap presented in
Section 5.

6.1 Additional notation, definitions, and preliminary propositions

Our probability space is over all executions of length at most some polynomial in κ. Formally, the set of
elementary outcomes can be defined as a set of strings that encode every variable of every party during
each round of a polynomially bounded execution. We won’t delve into such formalism and leave the details
unspecified. We will denote by Pr the probability measure of this space. Define also the random variable
E taking values on this space and with distribution induced by the random coins of all entities (adversary,
environment, parties) and the random oracle.

Suppose at round r exactly n parties query the oracle with target T . The probability at least one of
them will succeed is

f(T, n) = 1−
(

1− T

2κ

)qn
.

11

For the initial target T0 and the initial estimate of the number of parties n0, we denote f0 = f(T0, n0).
Looking ahead, the objective of the target recalculation mechanism would be to maintain a target T for
each party such that f(T, nr) ≈ f0 for all rounds r. For this reason, we will drop the subscript from f0 and
simply refer to it as f ; to avoid confusion, whenever we refer to the function f(·, ·), we will specify its two
operands.

Note that f(T, n) is concave and increasing in n and T . In particular, Fact 2 applies. The following
proposition provides useful bounds on f(T, n). For convenience, define p = q/2κ.

Proposition 1. For positive integers κ, q, T, n and f(T, n) defined as above,

pTn

1 + pTn
≤ f(T, n) ≤ pTn ≤ f(T, n)

1− f(T, n)
, where p =

q

2κ
.

Proof. The bounds can be obtained using the inequalities (1 − x)α ≥ 1 − xα, valid for x ≤ 1 and α ≥ 1,
and e−x ≤ 1

1+x , valid for x ≥ 0.

At a round r of an execution E the honest parties might be querying the random oracle for various
targets. We denote by Tmin

r (E) and Tmax
r (E) the minimum and maximum over those targets. We say r is a

target-recalculation point of a valid chain C, if there is a block with timestamp r and m exactly divides the
number of blocks up to (and including) this block.

We now define two desirable properties of executions which will be crucial in the analysis. We will show
later that most executions have these properties.

Definition 5. Consider an execution E and constants η ∈ (0, 1] and θ ∈ [1,∞). A target-recalculation
point r in a chain C in E is (η, θ)-good if the new target T satisfies ηf ≤ f(T, nr) ≤ θf . A chain C
in E is (η, θ)-good if all its target-recalculation points are (η, θ)-good. A round r is (η, θ)-good in E if
ηf ≤ f(Tmin

r (E), nr) and f(Tmax
r (E), nr) ≤ θf . We say that E is (η, θ)-good if every round of E was

(η, θ)-good.

For a round r, the following set of chains is of interest. It contains, besides the chains that the honest
parties have, those chains that could potentially belong to an honest party.

Sr =

C ∈ Er
“C belongs to an honest party” or
“for some chain C′ of an honest party diff(C) > diff(C′)” or
“for some chain C′ of an honest party diff(C) = diff(C′) and

head(C) was computed no later than head(C′)”

 ,

where C ∈ Er means that C exists and is valid at round r.

Definition 6. Consider an execution E. For ε ∈ [0,∞), a block created at round r is ε-accurate if it has
a timestamp r′ such that |r′ − r| ≤ εm/f . We say that Er is ε-accurate if no chain in Sr contains a block
that is not ε-accurate. We say that E is ε-accurate if for every round r in the execution, Er is ε-accurate.

Our next step is to define the typical set of executions. To this end we define a few more quantities and
random variables.

In an actual execution E the honest parties may be split across different chains with possibly different
targets. We are going to study the progress of the honest parties only when their targets lie in a reasonable
range. It will turn out that, with high probability, the honest parties always work with reasonable targets.
For a round r, a set of consecutive rounds S, and constant η ∈ (0, 1), let

T (r,η) =
ηf

pnr
and T (S,η) = min

r∈S
T (r,η).

To expunge the mystery from the definition of T (r,η), note that in an (η, θ)-good round all honest parties
query for target at least T (r,η). We now define for each round r a real random variable Dr equal to the

12

maximum difficulty among all blocks with targets at least T (r,η) computed by honest parties at round r.
Define also Qr to equal Dr when exactly one block was computed by an honest party and 0 otherwise.

Regarding the adversary, we are going to be interested in periods of time during which he has gathered a
number of blocks in the order ofm. Given that the targets of blocks are variable themselves, it is appropriate
to consider the difficulty acquired by the adversary not in a set of consecutive rounds, but rather in a set of
consecutive adversarial queries that may span a number of rounds and are not necessarily a multiple of q.

For a set of consecutive queries indexed by a set J , we define the following value that will act as a
threshold for targets of blocks that are attempted by the adversary.

T (J) =
η(1− δ)(1− 2ε)(1− θf)

32τ3γ
· m
|J |
· 2κ.

Given the above threshold, for j ∈ J , if the adversary computed at his j-th query a block of difficulty
at most 1/T (J), then let the random variable A(J)

j be equal to the difficulty of this block; otherwise, let
A(J)
j = 0. The above definition suggests that we collect in A(J)

j the difficulty acquired by the adversary as
long as it corresponds to blocks that are not too difficult (i.e., those with targets less than T (J)). With
foresight we note that this will enable a concentration argument for random variable A(J)

j . We will usually
drop the superscript (J) from A.

Let Er−1 contain the information of the execution just before round r. In particular, a value Er−1 of
Er−1 determines the targets against which every party will query the oracle at round r, but it does not
determine Dr or Qr. If E is a fixed execution (i.e., E = E), denote by Dr(E) and Qr(E) the value of Dr

and Qr in E. If a set of consecutive queries J is considered, then, for j ∈ J , A(J)
j (E) is defined analogously.

In this case we will also write E(J)
j for the execution just before the j-th query of the adversary.

With respect to the random variables defined above, the following bound will be useful because it gives
an estimate of the progress the honest parties have made in an (η, θ)-good execution. Note that we are
interested in the progress coming from uniquely successful rounds, where exactly one honest party computed
a POW. The expected difficulty that will be computed by the nr honest parties at round r is pnr. However,
the easier the POW computation is, the smaller E[Qr|Er−1 = Er−1] will be with respect to this value. Since
the execution is (η, θ)-good, a POW is computed by the honest parties with probability at most θf . This
justifies the appearance of (1− θf) in the bound.

Proposition 2. If round r is (η, θ)-good in E, then E[Qr|Er−1 = Er−1] ≥ (1− θf)pnr.

Proof. Let us drop the subscript r for convenience. Suppose the honest parties query for targets T1, T2, . . . , Tn
respectively. We are going to provide a lower bound pretending that honest parties make all q queries (even
after a success) and summing over each query the probability that it is the only successful one. We have

E[Qr|Er−1 = Er−1] ≥
∑
i∈[n]

q · 1

Ti
· Ti

2κ

(
1− Ti

2κ

)q−1 ∏
i 6=j∈[n]

[
1− f(Tj , 1)

]
≥
∑
i∈[n]

p
∏
j∈[n]

[
1− f(Tj , 1)

]
≥
∑
i∈[n]

p
∏
j∈[n]

[
1− f(Tmax, 1)

]
=
∑
i∈[n]

p[1− f(Tmax, n)] ≥
∑
i∈[n]

p(1− θf) = (1− θf)pn,

where the third inequality holds because f(T, n) is increasing in T .

The properties we have defined will be shown to hold in a (γ, s)-respecting environment, for suitable γ
and s. The following simple fact is a consequence of the definition.

Fact 1. In a (γ, s)-respecting environment, for any set S of consecutive rounds with |S| ≤ s, any S′ ⊆ S,
and any n ∈ {nr : r ∈ S},

1

γ
· n ≤ 1

|S′|
·
∑
r∈S′

nr ≤ γ · n.

13

nr: number of honest parties mining in round r.
tr: number of activated parties that are corrupted.
δ: advantage of honest parties, ∀r(tr/nr < 1− δ)
(γ, s): determines how the number of parties fluctuates across rounds, cf.
Definition 1.
f : probability at least one honest party succeeds in a round assuming n0

parties and target T0 (the protocol’s initialization parameters).
τ : the dampening filter, see Definition 2.
(η, θ): lower and upper bound determining the goodness of an execution,
cf. Definition 5.
ε: quality of concentration of random variables in typical executions, cf.
Definition 8.
m: the length of an epoch in number of blocks.
L: the total run-time of the system.
[(R0)] ∀r : tr ≤ (1− δ)nr
[(R1)] s ≥ τm

f + m
8τf

[(R2)] δ2 ≥ 2ε+ θf
[(R3)] τ − 1/8τ > 1/(1− ε)(1− θf)η
[(R4)] 17(1 + ε)θ ≤ 8τ(γ − θf)
[(R5)] 9(1 + ε)ηγ2 ≤ 4(1− ηγf)
[(R6)] 7θ(1− ε)(1− θf) ≥ 8γ2

Table 1: System parameters and requirements on them. The parameters are as follows: positive integers
s,m,L; positive reals f, γ, δ, ε, τ, η, θ, where f, ε, δ ∈ (0, 1), and 0 < η ≤ 1 ≤ θ.

Proof. The average of several numbers is bounded by their min and max. Furthermore, the definition of
(γ, s)-respecting implies minr∈S nr ≥ 1

γ maxr∈S nr ≥ 1
γn and maxr∈S nr ≤ γminr∈S ≤ γn. Thus,

1

γ
· n ≤ min

r∈S
nr ≤ min

r∈S′
nr ≤

1

|S′|
·
∑
r∈S′

nr ≤ max
r∈S′

nr ≤ max
r∈S

nr ≤ γ · n.

Our analysis involves a number of parameters that are suitably related. Table 1 summarizes them, recalls
their definitions and lists all the constraints that they should satisfy.

Remark 3. We remark that for the actual parameterization of the parameters τ,m, f of Bitcoin5, i.e.,
τ = 4,m = 2016, f = 0.03, vis-à-vis the constraints of Table 1, they can be satisfied for δ = 0.99, η =
0.268, θ = 1.995, ε = 2.93 · 10−8, for γ = 1.281 and s = 2.71 · 105. Given that s measures the number of
rounds within which a fluctuation of γ may take place, we have that the constraints are satisfiable for a
fluctuation of up to 28% every approximately 2 months (considering a round to last 18 seconds).

6.2 Chain-Growth Lemma

We now prove the Chain-growth lemma. This lemma appears already in [11], but it refers to number of
blocks instead of difficulty. In [15] the name “chain growth” appears for the first time and the authors
explicitly state a chain-growth property.

5Note that in order to calculate f , we can consider that a round of full interaction lasts 18 seconds; if this is combined with
the fact that the target is set for a POW to be discovered approximately every 10 minutes, we have that 18/600 = 0.3 is a
good estimate for f .

14

Informally, this lemma says that honest parties will make as much progress as how many POWs they
obtain. Although simple to prove, the chain-growth lemma is very important, because it shows that no
matter what the adversary does the honest parties will advance (in terms of accumulated difficulty) by at
least the difficulty of the POWs they have acquired.

Lemma 1. Let E be any execution. Suppose that at round u an honest party has a chain of difficulty d.
Then, by round v ≥ u, every honest party will have received a chain of difficulty at least

d+
∑
u≤r<v

Dr(E).

Proof. By induction on v−u. For the basis, v = u and d+
∑v−1

r=uDr(E) = d. Observe that if at round u an
honest party has a chain C of difficulty d, then that party broadcast C at a round earlier than u. It follows
that every honest party will receive C by round u.

For the inductive step, note that by the inductive hypothesis every honest party has received a chain of
difficulty at least d′ = d +

∑v−1
r=uDr by round v. When Dv = 0 the statement follows directly, so assume

Dv > 0. Since every honest party queried the oracle with a chain of difficulty at least d′ at round v, if follows
that an honest party successful at round v broadcast a chain of difficulty at least d′+Dv = d+

∑v
r=uDr.

6.3 Typical Executions: Definition and Related Proofs

We can now define formally our notion of typical executions. Intuitively, the idea that this definition
captures is as follows. Suppose that we examine a certain execution E. Note that at each round of E
the parties perform Bernoulli trials with success probabilities possibly affected by the adversary. Given the
execution, these trials are determined and we may calculate the expected progress the parties make given
the corresponding probabilities. We then compare this value to the actual progress and if the difference is
reasonable we declare E typical. Note, however, that considering this difference by itself will not always
suffice, because the variance of the process might be too high. Our definition, in view of Theorem 7, says
that either the variance is high with respect to the set of rounds we are considering, or the parties have
made progress during these rounds as expected.

Beyond the behavior of random variables described above, a typical execution will also be characterized
by the absence of a number of bad events about the underlying hash function H(·) which is used in proofs
of work and is modeled as a random oracle. The bad events that are of concern to us are defined as follows
(recall that a block’s creation time is the round that it has been successfully produced by a query to the
random oracle either by the adversary or an honest party).

Definition 7. An insertion occurs when, given a chain C with two consecutive blocks B and B′, a block B∗

created after B′ is such that B,B∗, B′ form three consecutive blocks of a valid chain. A copy occurs if the
same block exists in two different positions. A prediction occurs when a block extends one with later creation
time.

Given the above we are now ready to specify what is a typical execution.

Definition 8 (Typical execution). An execution E is (ε, η, θ)-typical if the following hold:

(a) If, for any set S of consecutive rounds, pT (S,η)
∑

r∈S nr ≥
ηm

16τγ , then∑
r∈S

Qr(E) >
∑
r∈S

E[Qr|Er−1 = Er−1]− ε(1− θf)p
∑
r∈S

nr

and
∑
r∈S

Dr(E) < (1 + ε)p
∑
r∈S

nr.

15

(b) For any set J indexing a set of consecutive queries of the adversary we have∑
j∈J

Aj(E) < (1 + ε)2−κ|J |

and the blocks with targets less than τT (J) that the adversary acquired are less than η(1−ε)(1−θf)
32τ2γ

·m.

(c) No insertions, no copies, and no predictions occurred in E.

Remark 4. Note that if J indexes the queries of the adversary in a set S of consecutive rounds, then
|J | = q

∑
r∈S tr and the inequality in Definition 8(b) reads

∑
j∈J Aj(E) < (1 + ε)p

∑
r∈S tr.

The next proposition simplifies our applications of Definition 8(a).

Proposition 3. Assume E is a typical execution in a (γ, s)-respecting environment. For any set S of
consecutive rounds with |S| ≥ m

16τf , ∑
r∈S

Dr < (1 + ε)p
∑
r∈S

nr.

If in addition, E is (η, θ)-good, then∑
r∈S

Qr > (1− ε)(1− θf)p
∑
r∈S

nr

and any block computed by an honest party at any round r corresponds to target at least T (r,η), and so
contributes to the random variables Dr and Qr (if the r was uniquely successful).

Proof. We first partition S into several parts with size at least m
16τf and at most s. In view of Proposition 2,

for both of the inequalities, we only need to verify the ‘if’ part of Definition 8(a) for each part S′ of S.
Indeed, by the definition of T (S′,η) and Fact 1, pT (S′,η)

∑
r∈S′ nr ≥ ηf |S′|/γ ≥ ηm

16τγ . The last part, in view
of the definition of T (r,η), is equivalent to r being (η, θ)-good.

Almost all polynomially bounded executions (in κ) are typical:

Proposition 4. Assuming the ITM system (Z, C) runs for L steps, the event “E is not typical” is bounded
by exp(−Ω(min{m,κ}) + lnL). Specifically, the bound is exp

{
−ηε2(1−2δ)

64τ3γ
m− ln(2)(κ− 1) + 4 lnL+ 2 ln 2

}
.

Proof. Since the length of the execution, L, is fixed we will prove the stated bound for a fixed set of
consecutive rounds S and then apply a union bound over all such sets in the length of the execution. Let
k be the size of S and identify it, without loss of generality, with [k] = {1, 2, . . . , k}. For part (a), define a
sequence of random variables by

X0 = 0; Xr =
∑
i∈[r]

Qi −
∑
i∈[r]

E[Qi|Ei−1], r ∈ [k].

This forms a martingale with respect to the sequence E0, E1, . . . , Ek, because (recalling basic properties of
conditional expectation [17]),

E[Xr|Er−1] = E
[
Qr −E[Qr|Er−1]

∣∣Er−1

]
+ E[Xr−1|Er−1] = Xr−1.

Specifically, the above follows from linearity of conditional expectation, and the fact that Xr−1 is a deter-
ministic function of Er−1.

Now suppose the first inequality of Definition 8(a) fails. The probability of this event is equal to

Pr[Xk ≤ X0 − t], for t = ε(1− θf)p
∑
r∈S

nr.

16

For b and V defined with respect to Theorem 7, we have b ≤ 1/T (S,η) and V ≤ v, where v = p
∑

r∈S nr/T
(S,η).

To prove the bound on V , note that

var(Xr −Xr−1|Er−1) = E
[(
Qr −E[Qr|Er−1]

)2∣∣Er−1

]
= E[Q2

r |Er−1]−
(
E[Qr|Er−1]

)2
.

Thus, it suffices to show E[Q2
r |Er−1] ≤ pnr/T (r,η) ≤ pnr/T (S,η). To this end, suppose that the honest parties

at round r were split into ` chains with corresponding targets T (r,η) ≤ T1 ≤ T2 ≤ · · · ≤ T`. Let also
n̂1, n̂2, . . . , n̂`, with n̂1 + · · ·+ n̂` ≤ nr, be the corresponding number of parties with each chain. Then, for
any Er−1,

E[Q2
r |Er−1 = Er−1)] ≤

∑
i∈[`]

1

T 2
i

· f(Ti, n̂i) ·
∏
j 6=i

[
1− f(Tj , n̂j)

]
≤
∑
i∈[`]

pn̂i
Ti
≤ pnr

T (r,η)
.

We apply Theorem 7 on −X0,−X1, . . . , noting that V ≤ v always holds. Recalling Requirement (R2) and
that pT (S,η)

∑
r∈S nr ≥

ηm
16τγ , we obtain

Pr[Xk ≤ X0 − t] ≤ exp
{
−3ε2(1− θf)2ηm

32(3 + ε)τγ

}
≤ exp

{
−ε

2(1− δ)ηm
32τγ

}
.

For the bounds on
∑

r∈S Dr(E) and
∑

j∈J Aj(E) the proof follows the same lines. In particular, replace
Q by D and A (in the case of A the martingale will be indexed by J) and note that in these cases the
martingale need not be negated.

In more details, regarding the bound on D in part (a), using the same notation as above, we have that

E[Dr|Er−1 = Er−1)] =
∑
i∈[`]

1

Ti
· f(Ti, n̂i) ·

i−1∏
j=1

[
1− f(Tj , n̂j)

]
≤
∑
i∈[`]

pn̂i ≤ pnr

and so ∑
r∈S

E[Dr|Er−1] ≤ p
∑
r∈S

nr.

A similar argument provides the bound E[D2
r |Er−1 = Er−1)] ≤ pnr/T

(r,η) from which we can obtain the
bound V ≤ v = p

∑
r∈S nr/T

(S,η).
We next focus on part (b). Note first that if |J | ≤ η(1−δ)(1−2ε)(1−θf)

32τ3γ
·m, then T (J) ≥ 2κ and the inequali-

ties hold trivially. First we will show that for the martingaleX0, X1, X2, . . . with respect to E(J)
0 , E(J)

1 , E(J)
2 , . . .

that is defined as
X0 = 0; Xj =

∑
i∈[j]

Ai −
∑
i∈[j]

E[Ai|E(J)
i−1], j ∈ J,

it holds that b ≤ 1/T (J) and V ≤ v for v = 2−κ|J |/T (J), for the quantities b and V defined as in Theorem 7.
Consider an execution prefix E(J)

j−1 and the target that is selected by the adversary in its j-th query. Note
that we can associate such value to any query of the form (ctr, g) where g = G(r, st, x) by recovering
the chain that corresponds to st. If such value is below T (J), or is not defined, Aj = 0. Thus, we have
E[Aj |E(J)

j−1 = E
(J)
j−1] ≤ 2−κ and E[A2

j |E
(J)
j−1 = E

(J)
j−1] ≤ 2−κ/T (J), obtaining∑

j∈J
E[Aj |E(J)

j−1] ≤ 2−κ|J | and V ≤ v.

17

We now have the following by setting t = ε2−κ|J |.

Pr
[∑
j∈J

Aj ≥ (1 + ε)2−κ|J |
]

= Pr
[∑
j∈J

Aj ≥ t+ 2−κ|J |
]
≤ Pr

[∑
j∈J

Aj ≥ t+
∑
j∈J

E[Aj |E(J)
j−1]

]
= Pr

[∑
j∈J

(Aj −E[Aj |E(J)
j−1]) ≥ t

]
≤ exp

{
− t2

2v + 2bt/3

}
≤ exp

{
−3ε22−κ|J |T (J)

(6 + 2ε)

}
≤ exp

{
−3ηε2(1− δ)(1− θf)(1− 2ε)m

64(3 + ε)τ3γ

}
≤ exp

{
−ηε

2(1− 2δ)m

64τ3γ

}
.

To verify the inequalities in the last line, recall T (J) = η(1−δ)(1−2ε)(1−θf)
32τ3γ

· m|J | · 2
κ and Requirement (R2).

Regarding the second part of (b), in order to bound the number of blocks of target less than τT (J) the
adversary can acquire, define a Boolean random variable Zj , for each j ∈ J as follows. If the corresponding
target is less than τT (J) and the query was successful, then Zj = 1, otherwise Zj = 0. We can then define
a martingale as in part (a), by letting k = |J | and replacing Q with Z. We have b ≤ 1 and V ≤ 2−κτT (J).
Since ∑

j∈[|J |]

E[Zj |E(J)
j−1] ≤ 2−κτT (J)|J | = η(1− 2ε)(1− θf)

32τ2γ
·m

and (1 + ε)(1− 2ε) < (1− ε), for t = ε · η(1−2ε)(1−θf)
32τ2γ

·m we have (using Requirement (R2) to simplify in the
last step)

Pr

[∑
j∈[|J |]

Zj ≥
η(1− ε)(1− θf)

32τ2γ
·m
]
≤ Pr[Xk ≥ X0 + t] ≤ exp

{
− ηε2(1− δ/2)m

32τ2γ

}
.

For part (c) and i ∈ {0, 1, 2, 3}, let Bi = 〈ri, sti, xi, ctri〉 and gi = G(ri, sti, xi). If a block extends two
distinct blocks, then a collision has occurred. To see this, suppose block B3 extents two distinct blocks B1

and B2. Then st3 = H(ctr1, g1) = H(ctr2, g2); implying a collision either in H or in G, since B1 and B2 are
distinct.

The existence of an insertion or a copy implies a collision as well. Suppose the adversary inserts a block
B2 among two existing blocks B1 and B3. Then, B3 extends both B1 and B2 and since B2 extends B1,
r1 < r2 and the blocks are distinct. Similarly, if B3 is a copy of B1 (i.e., B3 = B1), then there exist two
distinct blocks B2 and B0 that are both extended by the same block. To see this, note that either B0 and
B2 are the ones that B1 and B3 extend, or if these are not distinct, then B2 is a copy of B0 and so on.
Eventually, two distinct blocks will be reached, since B1 and B3 are assumed to be on different chains. If
the total running time of the system of ITM’s is L then it holds that there are at most L queries posed to
G,H. It follows that the probability of a collision occurring is

(
L
2

)
2−κ+1 ≤ 2−κ+1+2 logL.

Finally, note that, for polynomially many rounds in κ, the probability that a guessed block occurs is
exponentially small in κ.

6.4 Typical Executions are Good and Accurate

Lemma 2. Let E be a typical execution in a (γ, s)-respecting environment. If Er is (η, θ)-good, then Sr+1

contains no chain that has not been extended by an honest party for at least m
16τf consecutive rounds.

Proof. Suppose—towards a contradiction—C ∈ Sr+1 and has not been extended by an honest party for at
least m

16τf rounds. Without loss of generality we may assume that r + 1 is the first such round.
Let r∗ ≤ r denote the greatest timestamp among the blocks of C computed by honest parties (let r∗ = 0

if none exists). Define S = {r∗ + 1, . . . , r} and note that, by our assumption for C, |S| ≥ m
16τf . Let

J = {1, . . . , q
∑

r∈S tr} be the index-set of the adversarial queries during the rounds in S. Suppose that the
blocks of C with timestamps in S span k epochs with corresponding targets T1, . . . , Tk. For i ∈ [k] let mi

be the number of blocks with target Ti and set M = m1 + · · ·+mk.

18

Our plan is to contradict the assumption that C ∈ Sr+1, by showing that the honest parties have
accumulated more difficulty than the adversary. To be precise, note that the blocks C has gained in S sum
to
∑

i∈[k]
mi
Ti

difficulty. On the other hand, by the Chain-Growth Lemma 1, all the honest parties have
advanced during the rounds in S by

∑
r∈S Dr(E) ≥

∑
r∈S Qr(E). Since |S| ≥ m

16τf , Proposition 3 implies
that

∑
r∈S Qr(E) is greater than (1− ε)(1− θf)p

∑
r∈S nr. Therefore, to obtain a contradiction, it suffices

to show that ∑
i∈[k]

mi

Ti
≤ (1− ε)(1− θf)p

∑
r∈S

nr. (1)

We proceed by considering cases on M .
First, suppose M ≥ 2M ′, where M ′ = η(1−ε)(1−θf)

32τ2γ
· m (see Definition 8(b)). Partition the part of C

with these M blocks into ` parts, so that each part has the following properties: (1) it contains at most
one target-calculation point, and (2) it contains at least M ′ blocks with the same target. Note that such
a partition exists because M ≥ 2M ′ and M ′ < m. For i ∈ [`], let ji ∈ J be the index of the query during
which the last block of the i-th part was computed. Set Ji = {ji−1 + 1, . . . , ji}, with j0 = 0. Note that
Definition 8(c) implies ji−1 < ji, and this is a partition of J . Recalling Definition 8(b), the sum of the
difficulties of all the blocks in the i-th part is at most

∑
j∈Ji Aj(E). This holds because for one of the

targets more than M ′ blocks have been computed in Ji and so is at least τT (Ji) and targets with at most
one calculation point between them can differ by a factor at most τ . Thus,∑

i∈[k]

mi

Ti
≤
∑
i∈[`]
j∈Ji

Aj(E) <
∑
i∈[`]

(1 + ε)2−κ|Ji| = (1 + ε)p
∑
r∈S

tr ≤ (1 + ε)(1− δ)p
∑
r∈S

nr,

where in the last step we used Requirement (R0). Requirement (R1) implies (1+ε)(1−δ) ≤ (1−ε)(1−θf));
thus, Equation (1) holds concluding the case M ≥ 2M ′.

Otherwise, k ≤ 2 and m1 + m2 < 2M ′. Let S′ consist of the first m
16τf rounds of S. We are going to

argue that in this case Equation (1) holds even for S′ in the place of S. Since we are in a (γ, s)-respecting
environment, by Fact 1, γ

∑
r∈S′ nr ≥ nr∗ |S′|. Furthermore, since r∗ is (η, θ)-good, T1 ≥ T (r∗,η) = ηf/pnr∗ .

Recalling also that T2 ≥ T1/τ , we have m1
T1

+ m2
T2
≤ m1+τm2

T1
, which in turn is at most

τM

T (r∗,η)
<

2τM ′pnr∗

ηf
≤

2τγM ′p
∑

r∈S′ nr

ηf |S′|
≤

32τ2γM ′p
∑

r∈S nr

ηm

and, after substituting M ′, Equation (1) holds concluding this case and the proof.

Corollary 1. Let E be a typical execution in a (γ, s)-respecting environment. If Er−1 is (η, θ)-good, then
Er is m

16τf -accurate.

Proof. Suppose—towards a contradiction—that, for some r∗ ≤ r, C ∈ Sr∗ contains a block which is not
m

16τf -accurate and let u ≤ r∗ ≤ r be the timestamp of this block and v its creation time. If u − v > m
16τf ,

then every honest party would consider C to be invalid during rounds v, v + 1, . . . , u. If v − u > m
16τf , then

in order for C to be valid it should not contain any honest block with timestamp in u, u + 1, . . . , v. (Note
that we are using Definition 8(c) here as a block could be inserted later.) In either case, C ∈ Sr∗ , but has
not been extended by an honest party for at least m

16τf rounds. Since Er∗−1 is (η, θ)-good, the statement
follows from Lemma 2.

Lemma 3. Let E be a typical execution in a (γ, s)-respecting environment and r∗ an (ηγ, θγ)-good target-
recalculation point of a valid chain C. For r > r∗ + τm

f , assume Er−1 is (η, θ)-good. Then, either the
duration ∆ of the epoch of C starting at r∗ satisfies

m

τf
≤ ∆ ≤ τm

f
,

or C /∈ Su for each u ∈ {r∗ + τm
f , . . . , r}.

19

Proof. Let T be the target of the epoch in question.
For the upper bound, assume ∆ > τm

f . We show first that in the rounds S = {r∗ + m
16τf , . . . , r

∗ + τm
f −

m
16τf } the honest parties have acquired more than m

T difficulty. Note that the rounds of S are (η, θ)-good as
they come before r. Thus, by Proposition 3, the difficulty acquired in S by the honest parties is at least

(1− ε)(1− θf)p
∑
r∈S

nr ≥ (1− ε)(1− θf)p · |S|nr
∗

γ
≥ (1− ε)(1− θf)|S|ηf

T
>
m

T
.

For the first inequality, we used Fact 1. For the second, recall that r∗ is (ηγ, θ/γ)-good and so pTnr∗ ≥
f(T, nr∗) ≥ ηγf . For the last inequality observe that |S| = m

f (τ − 1/8τ) and thus follows from Require-
ment (R3).

Next, we observe that chain C either has a block within the epoch in question that is computed by
an honest party in a round within the period [r∗, r∗ + m

16τf), or by Lemma 2, C /∈ Su for each u ∈ {r∗ +
m

16τf , . . . , r} ⊇ {r
∗ + τm

f , . . . , r}. Assuming the first happens, it follows that by round r∗ + τm
f −

m
16τf the

honest parties’ chains have advanced by an amount of difficulty which exceeds the total difficulty of the epoch
in question. This means that no honest party will extend C during the rounds {r∗+ τm

f −
m

16τf + 1, . . . ,∆}.
Since it is assumed ∆ > r∗+ τm

f , Lemma 2 can then be applied to imply that C /∈ Su for u ∈ {r∗+ τm
f , . . . , r}.

For the lower bound, we assume ∆ < m
τf and that C ∈ Su for some u ∈ {r∗ + ∆ + 1, . . . , r}, and seek a

contradiction. Clearly, the honest parties contributed only during the set of rounds S = {r∗, . . . , r∗ + ∆}.
The adversary, by Lemma 2, may have contributed only during S′ = {r∗ − m

16τf , . . . , r
∗ + ∆ + m

16τf }. Let J
be the set of queries available to the adversary during the rounds in S′. We show that in a typical execution
the honest parties together with the adversary cannot acquire difficulty m

T in the rounds in the sets S and
S′ respectively. With respect to the honest parties, Proposition 3 applies. Regarding the adversary, assume
first T ≥ T (J) (it is not hard to verify that the case T < T (J) leads to a more favorable bound). It follows
that the total difficulty contributed to the epoch is at most

(1 + ε)p

(∑
r∈S

nr +
∑
r∈S′

tr

)
≤ (1 + ε)pγnr∗(|S|+ |S′|) < (1 + ε)pγnr∗ ·

17m

8τf
.

The first inequality follows from Fact 1 using tr < (1 − δ)nr. For the second substitute the upper bounds
on the sizes of S and S′. Next, note that r∗ is an (ηγ, θ/γ)-good recalculation point and so f(T, nr∗) ≤ θf/γ.
By Proposition 1, pTnr∗ < f(T, nr∗)/(1 − f(T, nr∗)) ≤ (θf/γ)/(1 − θf/γ). It follows that the last displayed
quantity is at most 17(1+ε)θ

8τ(γ−θf) ·
m
T and recalling Requirement (R4) this less than m

T as desired.

Proposition 5. Assume E is a typical execution in a (γ, s)-respecting environment. Let r be a round such
that Er−1 is (η, θ)-good, S a set of consecutive rounds in Er with |S| ≥ m

32τ2f
, and J the set of adversarial

queries during the rounds in S. Then, the adversary during the rounds in S has contributed at most
∑

j∈J Aj
difficulty to

⋃
v≤r Sr.

Proof. Without loss of generality, we will assume in this proof that tr = (1− δ)nr for each r ∈ S. Further-
more, we assume |S| ≤ τm

f . If this is not the case, then we can partition S to parts of appropriate sizes and
apply the arguments that follow to each sum. The statement will follow upon summing over all parts.

By Lemma 2, for any block B in Sv for some v ≤ r, there is a block B′ in the same chain and computed
at most m

16τf rounds earlier than it by an honest party. Let u be the round the honest party computed
B and T its target. Note that since E is (η, θ)-good, T ≥ T (u,η) = ηf

pnu
. By Lemma 3, there is at most

one recalculation point between B and B′, and so the target of B is at least T/τ . We need to show that
T/τ ≥ T (J). This implies all difficulty contributed by the adversary is accounted for in

∑
j∈J Aj and by

Definition 8 we are done.
Using Fact 1 and the lower-bound on |S|,

2−κ|J | = (1− δ)p
∑
r∈S

nr ≥ (1− δ)p · |S|nu
γ
≥ (1− δ)p · mnu

32τ3fγ
.

20

Recalling the definition of T (J) and using this bound,

T (J) =
η(1− δ)(1− 2ε)(1− θf)

32τ3γ
· m
|J |
· 2κ ≤ ηf(1− 2ε)(1− θf)

τpnu
<
T (u,η)

τ
≤ T

τ
,

as desired.

Lemma 4. Let E be a typical execution in a (γ, s)-respecting environment and assume Er−1 is (η, θ)-good.
If C ∈ Sr, then C is (ηγ, θ/γ)-good in Er.

Proof. Note that it is our assumption that every chain is (ηγ, θ/γ)-good at the first round. Therefore, to
prove the statement, it suffices to show that if a chain is (ηγ, θ/γ)-good at a recalculation point r∗, then it
will also be (ηγ, θ/γ)-good at then next recalculation point r∗ + ∆.

Let r∗ and r∗ + ∆ ≤ r be two consecutive target-calculation points of a chain C and T the target of the
corresponding epoch. By Lemma 3 and Definition 2 of the target-recalculation function, the new target will
be

T ′ =
∆

m/f
· T,

where ∆ is the duration of the epoch.
We wish to show that

ηγf ≤ f(T ′, nr∗+∆) ≤ θf/γ.

To this end, let S = {r∗, . . . , r∗ + ∆}, S′ =
{

max{0, r∗ − m
16τf }, . . . ,min{r∗ + ∆ + m

16τf , r}
}
, and let J

index the queries available to the adversary in S′. Note that, by Corollary 1, every block in the epoch was
computed either by an honest party during a round in S or by the adversary during a round in S′.

Suppose—towards a contradiction—that f(T ′, nr∗+∆) < ηγf . Using the definition of f(T, n), this implies
qnr∗+∆ ln

(
1 − T ′

2κ

)
> ln(1 − ηγf). Applying the inequality − x

1−x < ln(1 − x) < −x, valid for x ∈ (0, 1),
substituting the expression for T ′ above and rearranging, we obtain

m

T
>

1− ηγf
ηγ

· p∆nr∗+∆.

By Propositions 3 and 5 it follows that

m

T
≤ 2(1 + ε)p

∑
r∈S′

nr ≤ 2(1 + ε)p ·
∆ + m

8τf

|S′|
·
∑
r∈S′

nr.

By Lemma 3, ∆ ≥ m
τf . Thus,

∆+ m
8τf

∆ ≤ 9
8 . Using this, Requirement (R5), and combining the inequalities on

m
T ,

γnr∗+∆ <
9(1 + ε)ηγ2

4(1− ηγf)
· 1

|S′|
∑
r∈S′

nr ≤
1

|S′|
∑
r∈S′

nr,

contradicting Fact 1.
For the upper bound, assume f(T ′, nr∗+∆) > θf/γ, which (see Proposition 1) implies

m

T
<
γ

θ
· p∆nr∗+∆.

Set S = {r∗ + m
16τf , . . . , r

∗ + ∆− m
16τf }. Since an honest party posses C at round r, it follows by Lemma 2

that there is a block computed by an honest party in C during {r∗, . . . , r∗ + m
16τf − 1} and one during

{r∗+∆− m
16τf +1, . . . , r∗+∆}. By the Chain-Growth Lemma 1, it follows that the honest parties computed

less than m
T difficulty during S. In particular,

m

T
> (1− ε)(1− θf)p

∑
r∈S

nr ≥ (1− ε)(1− θf)p ·
∆− m

8τf

|S|
·
∑
r∈S

nr.

21

By Lemma 3, ∆ ≥ m
τf . Thus,

∆− m
8τf

∆ ≥ 7
8 . Using this, Requirement (R6), and combining the inequalities on

m
T ,

nr∗+∆

γ
>

7θ

8γ2
(1− ε)(1− θf) · 1

|S|
∑
r∈S

nr ≥
1

|S|
∑
r∈S

nr,

contradicting Fact 1.

Corollary 2. Let E be a typical execution in a (γ, s)-respecting environment and Er−1 be (η, θ)-good. If
every chain in Sr−1 is (ηγ, θγ)-good, then Er is (η, θ)-good.

Proof. We use notations and definitions of Lemma 3. Let C ∈ Sr and let r∗ be its last recalculation point
in Er−1. Let T be the target after r∗ and T ′ the one at r. We need to show that f(T ′, nr) ∈ [ηf, θf]. Note
that if r is a recalculation point, this follows by Lemma 4. Otherwise, T ′ = T and ηγ ≤ f(T, nr∗) ≤ θf/γ.
Using Lemma 3, r − r∗ ≤ ∆ ≤ τm

f . Thus, 1
γnr∗ ≤ nr ≤ γnr∗ . By Fact 2 we have f(T, nr) ≤ f(T, γnr∗) ≤

γf(T, nr∗) ≤ θf and f(T, nr) ≥ f(T, 1
γnr∗) ≥

1
γ f(T, nr∗) ≥ ηf.

Corollary 3. Let E be a typical execution in a (γ, s)-respecting environment. Then every round is (η, θ)-good
in E.

Proof. For the sake of contradiction, let r be the smallest round of E that is not (η, θ)-good. This means
that there is a chain C and an honest party that possesses this chain in round r and the corresponding target
T is such that f(T, nr) 6∈ [ηf, θf]. Note that Er−1 is (η, θ)-good, and so, by Corollary 1, Er is m

16τf -accurate.
Let r∗ < r be the last (ηγ, θ/γ)-good recalculation point of C (let r∗ be 0 in case there is no such point).

First suppose that there is another recalculation point r′ ∈ (r∗, r]. By the definition of r∗, r′ is not
(ηγ, θ/γ)-good. However, the assumptions of Lemma 4 hold, implying that C is (ηγ, θ/γ)-good. We have
reached a contradiction.

We may now assume that there is no recalculation point in (r∗, r] and so the points r∗ and r correspond
to the same target T with ηγ ≤ f(T, nr∗) ≤ θf/γ. Note that since r∗ is an (ηγ, θ/γ)-good recalculation point
and Er−1 is (η, θ)-good, we have r − r∗ ≤ τm

f . This follows from Lemma 3, because C belongs to an honest
party at round r. Thus, 1

γnr∗ ≤ nr ≤ γnr∗ , and so (by Fact 2) f(T, nr) ≤ f(T, γnr∗) ≤ γf(T, nr∗) ≤ θf

and f(T, nr) ≥ f(T, 1
γnr∗) ≥

1
γ f(T, nr∗) ≥ ηf.

Theorem 1. A typical execution in a (γ, s)-respecting environment is m
16τf -accurate and (η, θ)-good.

Proof. This follows from Corollaries 3 and 1.

6.5 Common Prefix and Chain Quality

Proposition 6. Let E be a typical execution in a (γ, s)-respecting environment. Any θγm
8τ consecutive blocks

in an epoch of a chain C ∈ Sr have been computed in at least m
16τf rounds.

Proof. Suppose—towards a contradiction—that the blocks of C where computed during the rounds in S∗,
for some S∗ such that |S∗| < m

16τf . Consider an S such that S∗ ⊆ S and |S| = m
16τf and the property

that a block of target T in C was computed by an honest party in some round v ∈ S. Such an S exists by
Lemmas 2 and 3. By Propositions 3 and 5, the number of blocks of target T computed in S is at most

(1 + ε)(2− δ)pT
∑
u∈S

nu ≤ (1 + ε)(2− δ)pTγnv|S| ≤
(1 + ε)(2− δ)γ|S|θf

1− θf
≤ θγm

8τ
.

For the first inequality we used Fact 1, for the second Fact 1 and that round v is (η, θ)-good, and for the
last one Requirement (R2).

Theorem 2 (Common Prefix). In any typical execution of a (γ, s)-respecting environment, the common-
prefix property holds for k ≥ θγm

4τ .

22

Proof. Consider—towards a contradiction—honest parties P1 and P2 with adopted chains C1 and C2 at
rounds r1 ≤ r2 respectively, such that Cdk1 � C2. Define r ≥ r1 as the least round in which an honest party
P adopts a chain C such that Cdk1 � C. Consider the last block on the common prefix of C1 and C that
was computed by an honest party and let r∗ be the round on which it was computed (set r∗ = 0 if no
such block exists). Denote by C∗ the common part of C1 and C up to (and including) this block. Let also
S = {u : r∗ < u < r} and J the set of adversarial queries in S. By Proposition 6, |S| ≥ m

16τf ; it is not hard
to verify that the bounds on |J | and |S| of Definition 8 and Proposition 3 hold. We are going to argue that

(1 + ε)p
∑
u∈S

tu ≥
∑
j∈J

Aj ≥
∑
u∈S

Qu ≥ (1− ε)(1− θf)p
∑
u∈S

nu. (2)

Note that this provides a contradiction, since Requirements (R0) and (R2) imply tu < (1 − δ)nu ≤ (1 −
4ε − 2θf)nu < (1 − 2ε)(1 − θf)nu ≤ 1−ε

1+ε · (1 − θf)nu. The first and third inequalities hold in any typical
execution; we proceed to show the middle one.

We first make a simple but crucial observation. Consider any block B extending a chain C′ that was
computed by an honest party in a uniquely successful round u ∈ S. For any d ∈ R such that diff(C′) ≤ d <
diff(C′B), let us write d ∈ B. We are going to argue that if another chain of difficulty at least d exists, then
the block that “contains” the point of difficulty d was computed by the adversary. More formally, suppose
a chain C′′B′ exists such that B′ 6= B and d ∈ B′. We observe that B′ was computed by the adversary.
This is because no honest party would extend C′′ at a round later than u since diff(C′′) ≤ d < diff(C′B); on
the other hand, if an honest party computed B′ at some round u′ < u, then no honest party would have
extended C′ at round u since diff(C′) ≤ d < diff(C′′B′′); finally, note that u is also ruled out since it was
uniquely successful.

Let us now return to the proof of (2). By the Chain-Growth Lemma (Lemma 1), diff(C) ≥ diff(C∗) +∑
u∈S Qu. The observation in the previous paragraph implies that there is an injection from the set

U = {d ∈ B : B was computed in a uniquely successful round in S}

into the set
W = {d ∈ B′ : B′ was computed by the adversary in a round in S}.

To see this, note first that both sets are subsets of (diff(C∗), diff(C)). We claim that for any d ∈ U and
B such that d ∈ B, there is always a B′ 6= B that lies either on C1, or on C, or on their common prefix.
Indeed, B cannot be both on C and C′; by the definition of r∗, B cannot be on their common prefix; by the
definition of r, B cannot be on the part of C of greater difficulty than diff(C1).

Since the size of the first set is
∑

u∈S Qu and the size of the second—by Proposition 5—is at most∑
j∈J Aj , the inequality in (2) follows.

Theorem 3 (Chain Quality). In any typical execution of a (γ, s)-respecting environment, the chain-quality
property holds for ` ≥ θγm

8τ and µ = δ − 2ε− θf ≥ δ/2.

Proof. Let us denote by Bi the i-th block of C so that C = B1 . . . Blen(C) and consider L consecutive blocks
Bu, . . . , Bv. Define L′ as the least number of consecutive blocks Bu′ , . . . , Bv′ that include the L given ones
(i.e., u′ ≤ u and v ≤ v′) and have the properties (1) that the block Bu′ was computed by an honest party
or is B1 in case such block does not exist, and (2) that there exists a round at which an honest party was
trying to extend the chain ending at block Bv′ . Observe that number L′ is well defined since Blen(C) is at
the head of a chain that an honest party is trying to extend. Denote by d′ the total difficulty of these L′

blocks. Define also r1 as the round that Bu′ was created (set r1 = 0 if Bu′ is the genesis block), r2 as the
first round that an honest party attempts to extend Bv′ , and let S = {r : r1 ≤ r ≤ r2}. Note that, by
Proposition 6, |S| ≥ m

16τf .
Now let x denote the total difficulty of all the blocks from honest parties that are included in the L

blocks and—towards a contradiction—assume that

x < µd ≤ µd′. (3)

23

Suppose first that all the L′ blocks {Bj : u′ ≤ j ≤ v′} have been computed during the rounds in the set
S. We now argue the following sequence of inequalities.

(1 + ε)(1− δ)p
∑
u∈S

nu ≥ (1 + ε)p
∑
u∈S

tu >
∑
j∈J

Aj ≥ d′ − x ≥ (1− µ)d′ ≥ (1− µ)
∑
u∈S

Qu. (4)

The first inequality is due to our requirement that tu ≤ (1 − δ)nu holds for any round u. The second one
holds in any typical execution and Remark ??. The third one follows from the definition of x and d′ and
Proposition 5. The fourth one comes from the relation between x and d′ outlined in (3). To see the last
inequality, assume

∑
u∈S Qu > d′. But then, by the Chain-Growth Lemma 1, the assumption than an honest

party is on Bv′ at round r2 is contradicted as all honest parties should be at chains of greater length. We
now observe that (4) contradicts Proposition 3, since

(1− µ)
∑
u∈S

Qu > (1− µ)(1− ε)(1− θf)p
∑
u∈S

nu ≥ (1 + ε)(1− δ)p
∑
u∈S

nu,

where the last inequality follows by Requirement (R2).
To finish the proof we need to consider the case in which these L′ blocks contain blocks that the adversary

computed in rounds outside S. It is not hard to see that this case implies either a prediction or an insertion
and cannot occur in a typical execution.

6.6 Persistence and Liveness

Theorem 4. Let E be a typical execution in a (γ, s)-respecting environment. Persistence is satisfied with
depth k ≥ θγm

4τ .

Proof. If the chain C of an honest party at round r contains a transaction in Cdk, it follows by the common-
prefix property that for the chain C′ of another honest party at any round r′ ≥ r it holds Cdk � C′.

Proposition 7. Let E be a typical execution in a (γ, s)-respecting environment. Suppose an honest party
has a prefix of C at a round u and an honest party adopted a prefix of C at round v ≥ u+ m

16τf . During the
set of consecutive rounds S = {r : u ≤ r < v}, C acquired at least (1− ε)(1− θf)ηf |S|/γ blocks.

Proof. Assume first that |S| ≤ s − m
8τf . Suppose C at round u has difficulty d. By the Chain Growth

Lemma 1, C has difficulty at least d′ = d +
∑

r∈S Dr by round v. Let T be the least target among the
targets of the blocks acquired during the rounds in S. By Lemmas 2 and 3, there is an honest block on C
computed in S′ = {r : u− m

16τf ≤ r < v + m
16τf } that lies in the same epoch and so has target T . Since the

execution is good (Theorem 1), S ⊆ S′, and |S′| ≤ s, we obtain (Fact 1) pTnr ≥ ηf/γ, for any r ∈ S. It
follows that C acquired at least

T (d′ − d) = T
∑
r∈S

Dr ≥ T
∑
r∈S

Qr > (1− ε)(1− θf)
∑
r∈S

pTnr ≥ (1− ε)(1− θf)ηf |S|/γ

blocks during the rounds in S.
To avoid the upper bound on S and obtain the statement, observe that by Lemma 2 we can partition

S so that each part Si satisfies m
16τf ≤ |S| ≤ s − m

8τf , an honest party has (a prefix of) C at the beginning
of Si, and an honest party has adopted (a prefix of) C at the end of Si. Summing over each part we obtain
the general statement.

Theorem 5. Let E be a typical execution in a (γ, s)-respecting environment. Liveness is satisfied for depth
k ≥ θγm

8τ and wait-time m
16τf + γk

ηf(1−ε)(1−θf) .

Proof. Suppose a transaction tx is included in any block computed by an honest party for m
16τf consecutive

rounds and consider the chain C of an arbitrary honest party after these rounds. By Lemma 2, C contains
an honest block computed in the m

16τf rounds and this block contains tx. Denote by S the set of at least
γk/[ηf(1−ε)(1−θf)] rounds that follow the round that this honest block was computed. By Proposition ??,
on top of this block there has been accumulated at least k blocks.

24

References

[1] Back, A.: Hashcash. http://www.cypherspace.org/hashcash (1997)

[2] Bahack, L.: Theoretical bitcoin attacks with less than half of the computational power (draft). IACR
Cryptology ePrint Archive 2013, 868 (2013), http://eprint.iacr.org/2013/868

[3] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols.
In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) CCS ’93, Proceedings of the
1st ACM Conference on Computer and Communications Security, Fairfax, Virginia, USA, November
3-5, 1993. pp. 62–73. ACM (1993), http://doi.acm.org/10.1145/168588.168596

[4] Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptology 13(1),
143–202 (2000)

[5] Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. Cryptology
ePrint Archive, Report 2000/067 (2000), http://eprint.iacr.org/2000/067

[6] Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: 42nd
Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas,
Nevada, USA. pp. 136–145. IEEE Computer Society (2001), http://dx.doi.org/10.1109/SFCS.2001.
959888

[7] Dwork, C., Lynch, N.A., Stockmeyer, L.J.: Consensus in the presence of partial synchrony. J. ACM
35(2), 288–323 (1988), http://doi.acm.org/10.1145/42282.42283

[8] Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brickell, E.F. (ed.) CRYPTO.
Lecture Notes in Computer Science, vol. 740, pp. 139–147. Springer (1992)

[9] Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In: Keromytis, A.D.
(ed.) Financial Cryptography. Lecture Notes in Computer Science, vol. 7397. Springer (2014), http:
//dx.doi.org/10.1007/978-3-642-32946-3

[10] Garay, J.A., Kiayias, A., Leonardos, N.: The Bitcoin Backbone Protocol: Analysis and Applications.
IACR Cryptology ePrint Archive 2014, 765 (2014), http://eprint.iacr.org/2014/765

[11] Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis and applications. In:
Oswald, E., Fischlin, M. (eds.) Advances in Cryptology - EUROCRYPT 2015 - 34th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April
26-30, 2015, Proceedings, Part II. Lecture Notes in Computer Science, vol. 9057, pp. 281–310. Springer
(2015), http://dx.doi.org/10.1007/978-3-662-46803-6_10

[12] Hadzilacos, V., Toueg, S.: A modular approach to fault-tolerant broadcasts and related problems. Tech.
rep. (1994)

[13] Juels, A., Brainard, J.G.: Client puzzles: A cryptographic countermeasure against connection depletion
attacks. In: NDSS. The Internet Society (1999)

[14] Kiayias, A., Koutsoupias, E., Kyropoulou, M., Tselekounis, Y.: Blockchain mining games. In: Conitzer,
V., Bergemann, D., Chen, Y. (eds.) Proceedings of the 2016 ACM Conference on Economics and
Computation, EC ’16, Maastricht, The Netherlands, July 24-28, 2016. pp. 365–382. ACM (2016),
http://doi.acm.org/10.1145/2940716.2940773

[15] Kiayias, A., Panagiotakos, G.: Speed-security tradeoffs in blockchain protocols. IACR Cryptology
ePrint Archive 2015, 1019 (2015), http://eprint.iacr.org/2015/1019

25

http://eprint.iacr.org/2013/868
http://doi.acm.org/10.1145/168588.168596
http://eprint.iacr.org/2000/067
http://dx.doi.org/10.1109/SFCS.2001.959888
http://dx.doi.org/10.1109/SFCS.2001.959888
http://doi.acm.org/10.1145/42282.42283
http://dx.doi.org/10.1007/978-3-642-32946-3
http://dx.doi.org/10.1007/978-3-642-32946-3
http://eprint.iacr.org/2014/765
http://dx.doi.org/10.1007/978-3-662-46803-6_10
http://doi.acm.org/10.1145/2940716.2940773
http://eprint.iacr.org/2015/1019

[16] Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM Trans. Program.
Lang. Syst. 4(3), 382–401 (1982)

[17] McDiarmid, C.: Probabilistic Methods for Algorithmic Discrete Mathematics, chap. Concentration,
pp. 195–248. Springer Berlin Heidelberg, Berlin, Heidelberg (1998), http://dx.doi.org/10.1007/
978-3-662-12788-9_6

[18] Mitzenmacher, M., Upfal, E.: Probability and computing - randomized algorithms and probabilistic
analysis. Cambridge University Press (2005)

[19] Nakamoto, S.: Bitcoin open source implementation of p2p currency.
http://p2pfoundation.ning.com/forum/topics/bitcoin-open-source (February 2009)

[20] Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchronous networks. In:
Coron, J., Nielsen, J.B. (eds.) Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Paris, France, April 30 -
May 4, 2017, Proceedings, Part II. Lecture Notes in Computer Science, vol. 10211, pp. 643–673 (2017),
https://doi.org/10.1007/978-3-319-56614-6_22

[21] Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of faults. J. ACM 27(2),
228–234 (1980)

[22] Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto. Tech. rep., Cam-
bridge, MA, USA (1996)

[23] Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in bitcoin. CoRR
abs/1507.06183 (2015), http://arxiv.org/abs/1507.06183

A The Bitcoin Backbone Protocol with Variable Difficulty (cont’d)

In this section we give a a more detailed description of the Bitcoin backbone protocol with chains of variable
difficulty. The presentation is based on the description in [11].

A.1 The protocol

As in [11] in our description oof the backbone protocol we intentionally avoid specifying the type of val-
ues/content that parties try to insert in the chain, the type of chain validation they perform (beyond checking
for its structural properties with respect to the hash functions G(·), H(·)), and the way they interpret the
chain. These checks and operations are handled by the external functions V (·), I(·) and R(·) (the content
validation function, the input contribution function and the chain reading function, resp.) which are specified
by the application that runs “on top” of the backbone protocol.

The Bitcoin backbone protocol in the dynamic setting is specified as Algorithm 4 and depends on three
sub-procedures.

Chain validation. The validate algorithm performs a validation of the structural properties of a given
chain C. It is given as input the value q, as well as hash functions H(·), G(·). It is parameterized by the
content validation predicate predicate V (·) as well as by D(·), the target calculation function (see Section 3).
For each block of the chain, the algorithm checks that the proof of work is properly solved (with a target
that is suitable as determined by the target calculation function), and that the counter ctr does not exceed
q. Furthermore it collects the inputs from all blocks, xC , and tests them via the predicate V (xC); note that
V (ε) = true. Chains that fail these validation procedure are rejected. (Algorithm 1.)

26

http://dx.doi.org/10.1007/978-3-662-12788-9_6
http://dx.doi.org/10.1007/978-3-662-12788-9_6
https://doi.org/10.1007/978-3-319-56614-6_22
http://arxiv.org/abs/1507.06183

Algorithm 1 The chain validation predicate, parameterized by q,D, the hash functions G(·), H(·), and the
input validation predicate V (·). The input is chain C.
1: function validate(rnow, C)
2: valid← V (xC)
3: if valid = True ∧ (C 6= ε) then . C is non-empty and meaningful w.r.t. V (·)
4: r′ ← rnow
5: 〈r, st, x, ctr〉 ← head(C)
6: st′ ← H(ctr,G(r, st, x))
7: repeat
8: 〈r, st, x, ctr〉 ← head(C)
9: T ← D(rCd1) . Calculate target based on Cd1

10: if validblockTq (〈st, x, ctr〉) ∧ (H(ctr,G(r, st, x)) = st′) ∧ (r < r′) then
11: r′ ← r . Retain round timestamp
12: st′ ← st . Retain hash value
13: C ← Cd1 . Remove the head from C
14: else
15: valid← False
16: end if
17: until (C = ε) ∨ (valid = False)
18: end if
19: return valid
20: end function

Chain comparison. The objective of the second algorithm, called maxvalid, is to find the “best possible”
chain when given a set of chains. The algorithm is straightforward and is parameterized by a max(·) function
that applies some ordering in the space of chains. The most important aspect is the chains’ difficulty in
which case max(C1, C2) will return the most difficult of the two. In case diff(C1) = diff(C2), some other
characteristic can be used to break the tie. In our case, max(·, ·) will always return the first operand to
reflect the fact that parties adopt the first chain they obtain from the network. (Algorithm 2.)

Algorithm 2 The function that finds the “best” chain, parameterized by function max(·). The input is
{C1, . . . , Ck}.
1: function maxvalid(r, C1, . . . , Ck)
2: temp← ε
3: for i = 1 to k do
4: if validate(r, Ci) then
5: temp← max(C, temp)
6: end if
7: end for
8: return temp
9: end function

Proof of work. The third algorithm, called pow, is the proof of work-finding procedure. It takes as input
a chain and attempts to extend it via solving a proof of work. This algorithm is parameterized by two hash
functions H(·), G(·) as well as the parameter q. Moreover, the algorithm calls the target calculation function
D(·) om prder to determine the value T that will be used for the proof of work. The procedure, given a
chain C and a value x to be inserted in the chain, hashes these values to obtain h and initializes a counter
ctr. Subsequently, it increments ctr and checks to see whether H(ctr, h) < T ; in case a suitable ctr is found
then the algorithm succeeds in solving the POW and extends chain C by one block. (Algorithm 3.)

27

Algorithm 3 The proof of work function, parameterized by q and hash functions H(·), G(·). The input is
(x, C).
1: function pow(r, x, C)
2: if C = ε then . Determine proof of work instance.
3: st← 0
4: else
5: 〈r′, st′, x′, ctr′〉 ← head(C)
6: st← H(ctr′, G(r′, st′, x′))
7: end if
8: ctr ← 1
9: B ← ε

10: T ← D(rC) . Calculate target for next block based on timestamps.
11: h← G(r, st, x)
12: while (ctr ≤ q) do
13: if (H(ctr, h) < T) then . This H(·) invocation is subject to the q-bound.
14: B ← 〈r, st, x, ctr〉
15: break
16: end if
17: ctr ← ctr + 1
18: end while
19: C ← CB . Chain is extended
20: return C
21: end function

The backbone protocol. The core of the protocol is similar to that of [11], with several important
distinctions. First is the procedure to follow when they become active. Parties check the ready flag they
possess that is false if and only if they have been inactive in the previous round. In case the ready flag
is false, they broadcast a special message ‘Join’ to request the most recent version of the blockchain(s).
Similarly, parties that receive the special request message in their Receive() tape they broadcast their
chain. As before, parties run “indefinitely” (our security analysis will apply when the total running time
is polynomial in κ). The input contribution function I(·) and the chain reading function R(·) are applied
to the values stored in the chain. Parties check their communication tape Receive() to see whether any
necessary update of their local chain is due; then they attempt to extend it via the POW algorithm pow.
The function I(·) determines the input to be added in the chain given the party’s state st, the current chain
C, the contents of the party’s input tape Input() and communication tape Receive(). The input tape
contains two types of symbols, Read and (Insert, value); other inputs are ignored. In case the local chain
C is extended the new chain is broadcast to the other parties. Finally, in case a Read symbol is present in
the communication tape, the protocol applies function R(·) to its current chain and writes the result onto
the output tape Output(). The pseudocode of the backbone protocol is presented in Algorithm 4.

28

Algorithm 4 The Bitcoin backbone protocol in the dynamic setting at round “round” on local state (st, C)
parameterized by the input contribution function I(·) and the chain reading function R(·). The “ready” flag
is False if and only if the party was inactive in the previous round.

1: if ready = True then
2: Diffuse(Ready)
3: C̃ ← maxvalid(C, all chains C′ found in Receive())
4: if Input() contains Read then
5: write R(xC) to Output()
6: end if
7: 〈st, x〉 ← I(st, C̃, round, Input(),Receive())
8: Cnew ← pow(round, x, C̃)
9: if (C 6= Cnew) ∨ (Join ∈ Receive()) then

10: C ← Cnew
11: Diffuse(C) . chain is diffused when updated or when someone joins.
12: end if
13: Diffuse(RoundComplete)
14: else
15: ready← True
16: Diffuse(Join,RoundComplete)
17: end if

B Robust Public Transaction Ledgers

In this section we reproduce the presentation of public transaction ledgers given in [10, 11]. A public
transaction ledger is defined with respect to a set of valid ledgers L and a set of valid transactions T , each
one possessing an efficient membership test. A ledger x ∈ L is a vector of sequences of transactions tx ∈ T .
Each transaction tx may be associated with one or more accounts, denoted a1, a2, . . . etc.

The backbone protocol parties, called miners in the context of this section, process sequences of trans-
actions of the form x = tx1 . . . txe that are supposed to be incorporated into their local chain C. The input
inserted at each block of the chain C is the sequence x of transactions. Thus, a ledger is a vector of trans-
action sequences 〈x1, . . . , xm〉, and a chain C of length m contains the ledger xC = 〈x1, . . . , xm〉 if the input
of the j-th block in C is xj .

The description and properties of the ledger protocol will be expressed relative to an oracle Txgen which
will control a set of accounts by creating them and issuing transactions on their behalf. In an execution
of the backbone protocol, the environment Z as well as the miners will have access to Txgen. Specifically,
Txgen is a stateful oracle that responds to two types of queries (which we purposely only describe at a high
level):

GenAccount(1κ): It generates an account a.
IssueTrans(1κ, t̃x): It returns a transaction tx provided that t̃x is some suitably formed string, or ⊥.
We also consider a symmetric relation on T , denoted by C(·, ·), which indicates when two transactions

tx1, tx2 are conflicting. Valid ledgers x ∈ L can never contain two conflicting transactions. We call oracle
Txgen unambiguous if it holds that for all PPT A, the probability that ATxgen produces a transaction tx′

such that C(tx′, tx) = 1, for tx issued by Txgen, is negligible in κ.
Finally, a transaction tx is called neutral if C(tx, tx′) = 0 for any other transaction tx′. The presence

of neutral transactions in the ledger can be helpful for a variety of purposes, as we will see next and in the
BA protocol that we build on top of the ledger. For convenience we will assume that a single random nonce
ρ ∈ {0, 1}κ is also a valid transaction. Nonces will be neutral transactions and may be included in the ledger
for the sole purpose of ensuring independence between the POW instances solved by the honest parties.

29

Next, we determine the three functions V (·), I(·), R(·) that will turn the backbone protocol into ΠPL, a
protocol realizing a public transaction ledger. See Figure 1.

Content validation predi-
cate V (·)

V (〈x1, . . . , xm〉) is true if and only if the vector 〈x1, . . . , xm〉 is a valid ledger,
i.e., 〈x1, . . . , xm〉 ∈ L.

Chain reading function
R(·)

If V (〈x1, . . . , xm〉) = True, the value R(C) is equal to 〈x1, . . . , xm〉; unde-
fined otherwise.

Input contribution func-
tion I(·)

I(st, C, round, Input()) operates as follows: if the input tape contains
(Insert, v), it parses v as a sequence of transactions and retains the largest
subsequence x′ � v that is valid with respect to xC (and whose transactions
are not already included in xC). Finally, x = tx0x

′ where tx0 is a neutral
random nonce transaction.

Figure 1: The public transaction ledger protocol ΠPL, built on the Bitcoin backbone.

In Section 4.3 we introduced two essential properties for a protocol maintaning a public transaction
ledger: (i) Persistence and (ii) Liveness. In a nutshell, Persistence states that once an honest player reports
a transaction “deep enough” in the ledger, then all other honest players will report it indefinitely whenever
they are asked, and at exactly the same position in the ledger (essentially, this means that all honest players
agree on all the transactions that took place and in what order). In a more concrete Bitcoin-like setting,
Persistence is essential to ensure that credits are final and that they happened at a certain “time” in the
system’s timeline (which is implicitly defined by the ledger itself).

Persistence is useful but not enough to ensure that the ledger makes progress, i.e., that transactions are
eventually inserted in a chain. This is captured by the Liveness property, which states that as long as a
transaction comes from an honest account holder and is provided by the environment to all honest players,
then it will be inserted into the honest players’ ledgers, assuming the environment keeps providing it as an
input for a sufficient number of rounds.

For more details about the specification of a robust transaction ledger, in particular Bitcoin-like trans-
actions and ledger, refer to [10, 11].

C Martingale Sequences and Other Mathematical Facts

Definition 9. [18, Chapter 12] A sequence of random variables X0, X1, . . . is a martingale with respect to
the sequence Y0, Y1, . . . , if, for all n ≥ 0, (1) Xn is a function of Y0, . . . , Yn, (2) E[|Xn|] < ∞, and (3)
E[Xn+1|Y0, . . . , Yn] = Xn.

Theorem 6. [17, Theorem 3.15] Let X0, X1, . . . be a martingale with respect to the sequence Y0, Y1,
For n ≥ 0, let

V =

n∑
i=1

var(Xi −Xi−1|Y0, . . . , Yi−1) and b = max
1≤i≤n

sup(Xi −Xi−1|Y0, . . . , Yi−1),

where sup is taken over all possible assignments to Y0, . . . , Yi−1. Then, for any t, v ≥ 0,

Pr
[
(Xn ≥ X0 + t) ∧ (V ≤ v)

]
≤ exp

{
− t2

2v + 2bt/3

}
.

Fact 2. Suppose f : R≥0 → R≥0 is concave and f(0) ≥ 0. Then, for any x, y ∈ [0,∞) and λ ∈ [1,∞),
f(x/λ) ≥ f(x)/λ, f(λx) ≤ λf(x), f(x+ y) ≤ f(x) + f(y).

The following well-known inequalities may be used without reference.

Fact 3. (1) 1 + x < ex, for all x. (2) − x
1−x < ln(1 − x), for x ∈ (0, 1). (3) x

1+x/2 < ln(1 + x) < x, for
x > 0.

30

	Introduction
	Model and Definitions
	Blockchains of Variable Difficulty
	The Bitcoin Backbone Protocol with Variable Difficulty
	The Protocol
	Properties of the Backbone Protocol with Variable Difficulty
	Application: Robust Transaction Ledger

	Overview of the Analysis
	Full Analysis
	Additional notation, definitions, and preliminary propositions
	Chain-Growth Lemma
	Typical Executions: Definition and Related Proofs
	Typical Executions are Good and Accurate
	Common Prefix and Chain Quality
	Persistence and Liveness

	The Bitcoin Backbone Protocol with Variable Difficulty (cont'd)
	The protocol

	Robust Public Transaction Ledgers
	Martingale Sequences and Other Mathematical Facts

