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Abstract. Addition chain calculations play a critical role in determin-
ing the efficiency of cryptosystems based on isogenies on elliptic curves.
However, finding a minimal length addition chain is not easy; a general-
ized version of the problem, in which one must find a chain that simul-
taneously forms each of a sequence of values, is NP-complete. For the
special primes used in such cryptosystems, finding fast addition chains
for finite field arithmetic such as inversion and square root is also not
easy. In this paper, we investigate the shape of smooth isogeny primes
and propose new methods to calculate fast addition chains. Further, we
also provide techniques to reduce the temporary register consumption of
these large exponentials, applicable to both software and hardware im-
plementations utilizing addition chains. Lastly, we utilize our procedures
to compare multiple isogeny primes by the complexity of the addition
chains.

Keywords: Addition chains, post-quantum cryptography, isogeny-based
cryptosystems, finite field

1 Introduction

An addition chain can be thought of as a sequence of integers starting from 1
to some number n, where each number is a sum of any two previous integers
in the sequence. For finite fields, operations such as exponentiations, inversions,
or square roots can be performed efficiently by utilizing an optimal addition
chain, the smallest such addition chain sequence to reach n. In particular, fast
exponentiation and inversion are paramount to the performance of scalar point
multiplication in elliptic curve cryptography (ECC), pairings in pairing-based
cryptosystems, and computing isogenies in the quantum-resistant isogeny-based
cryptosystems [1].

There are several popular families of primes for fast computation of addition
chains used in public key cryptography including Mersenne primes [2], Crandall
primes [2], and Solinas primes [3]. Generally, these primes have a special form
with most of the prime featuring all "1’s. This speeds up most finite-field arith-
metic tremendously and also produces extremely fast addition chains through



the use of a regular chain of squaring and multiplying by 2° —1 for increasing val-
ues of s. Similarly, binary extension fields can take advantage of the Itoh-Tsujii
[4] method to compute the large exponential for inversion which also utilizes
towering values of 2° — 1, typically found in hardware implementations.

None of the above primes can be utilized for post-quantum cryptography
based on isogenies on elliptic curves, primarily because the curves generated from
these primes do not have many isogenies that are fast to compute. Therefore,
in [1], a special shape of primes called smooth isogeny primes is presented that
produce curves of smooth shape for fast isogeny computations. These are of the
form p = K‘AZ% f 1, where {4 and {p are relatively small primes, ¢ and b are
positive integers, and f is a small cofactor to make the number prime. Most
primes of this form appear in the general prime category. However, if {4 = 2,
then the second half of the prime is either all ’1’s in the case that the prime is
minus 1 or all ’0’s in the case that the prime is plus 1. The all ’0’s form is much
faster in terms of speed as it just requires squarings, but the all ’1’s pattern is
still a regular structure that can take advantage of long chains of ’1’, similar to
Solinas or Mersenne primes. If ¢ # 2, then a basic windowing technique should
be used, similar to the general primes. A majority of the known software [5,6,7,8]
and hardware [9,10] implementations do not consider calculating fast addition
chains, which can improve inversion and square root computations essentially
for free.

Motivation. Current isogeny-based cryptography requires many exponen-
tiations through the use of inversions and square roots. Many finite field inver-
sions are required as points must be recovered from scalar point multiplications
to compute isogenies between curves. Finite field square roots have also been
introduced to create a basis for key compression [7,11]. For example, in the
supersingular isogeny Diffie-Hellman key exchange protocol [6] with key com-
pression [7], approximately 844 finite field inversions and 56 finite field square
roots for 85-bit quantum security level were counted through test runs. Inter-
estingly, [8] revised the SIDH formula to only require a constant 4 finite field
inversions, making constant-time implementations feasible. Addition chains per-
form large exponentiations efficiently and in a constant set of operations. Thus,
they prove both security and speed to exponentiations used in the inversion and
square root, operations.

In this paper, we study addition chains for primes used in post-quantum cryp-
tography based on isogenies on supersingular elliptic curves. This cryptosystem
resembles ECC with its use of point multiplications, but also provides quantum
resistance by walking large degree isogeny graphs [1]. Our goal is to improve the
speed and efficiency of addition chains used in isogeny-based cryptography so
that implementation of this post-quantum scheme can be practical. Our contri-
butions can be itemized as follows:

— We analyze the shape of smooth isogeny primes, which are applicable to post-
quantum cryptography based on isogenies on supersingular elliptic curves,
and present several methods to design fast addition chains.



Table 1. Notations used in this paper

Notation Definition
Z The set of integers
Fpn A finite field of size p"
m Power of 2 to represent families of special primes
k Iterating over k bits at a time (as in k-ary method)

c Optimal power of 2 for use in Hybrid Windowing Method
I,M,S, A| Inversion, Multiplication, Squaring, and Addition in I,
I,M,S, A| Inversion, Multiplication, Squaring, and Addition in I 2

— We present a hybrid windowing method to optimize inversion for primes of
the form 29¢% f + 1.

— We present a windowing method with a subtraction to optimize computation
of square root exponentials for 2¢¢% f — 1.

— We introduce techniques to minimize the number of intermediate values that
are stored for an addition chain.

— We present empirical results of our techniques on a few smooth isogeny
primes.

2 Background of Addition Chains

In this section, we review basic concepts of addition chains, their computations,
and a metric to compare them. All notations used in this paper are summarized
in Table 1.

2.1 Addition Chains

We formally introduce addition chains with the following definitions. We point
the reader to [12] for an in-depth explanation of addition chains.

Definition 1. An addition chain is a sequence of integers (ag, a1, ...,a,) with
ap =1 and a, = n, such that a; = a; + ay, for any j,k < i.

Definition 2. An addition chain is optimal if its length is the smallest among
all possible addition chains.

We are interested in finding optimal or almost optimal addition chains. It has
not been formally proven that finding an optimal addition chain is NP-complete,
but finding the optimal addition chain sequence for multiple numbers is believed
to be NP-complete.

Essentially, addition chains can be thought of as sums of preceding values
in the sequence. This is analogous to exponentiation because multiplying two
numbers with the same base is the same as adding the two exponentials, e.g.
b x x =g,



Algorithm 1 k-ary Precomputation

Input: n, k, ¢

Output: ¢; = ¢ mod n, withi =10...2° — 1
1. Co = 1

2. for i from 1 to 2 — 1 do

3. ¢i=(ci—1 Xc)modn

4. return ¢;

5. end for

Algorithm 2 k-ary Exponentiation Method

Input: A, C; = Ci(i =0... 2k — 1), d= db_ldb_z cee dldO)Qk
Output: A?

1. for i from b — 1 downto 0 do

2. A= A%

3. A=AXx Cd;

4. end for

5. return A

Definition 3. A Brauer chain [13] is an addition chain that always uses the
previous value for the mext one. In other words, it is a sequence of integers
(ag,ai,...,a,) with ag =1 and a, = n, such that a; = a; + a;_;.

Brauer chains utilize a stipulation that forces one of the inputs to be the
previous value. This greatly reduces the number of possible combinations for
addition chains. Several algorithms produce optimal Brauer chains, but unfortu-
nately, these are typically not optimal among all addition chains. We point the
readers to [13] for more analysis of Brauer chains. The general goal of Brauer
chains is to precompute values and then use an accumulator to square and mul-
tiply these precomputed values.

2.2 Computations of Addition Chains

k-Ary Method. The binary method is among the simplest addition chains,
that iterates over bits of an exponential with the square-and-multiply technique.
However, this is part of a broader family, the k-ary method, which is also a form
of a Brauer chain. The k-ary method iterates over k bits at a time by repeatedly
performing k squarings followed by a multiplication with precomputed values.
Algorithm 1 lists the precomputation phase and Algorithm 2 lists the iterative
square-and-multiply method.

As an example, for k = 5 over a 512-bit exponential, there are approximately
511 squarings and 103 multiplications. Furthermore, at most 30 values must be



precomputed for the general case, for a grand total of 511 squarings and 133
multiplications.

Windowing Method. The sliding windowing method, presented in works
such as [14], [15], [16], and [17], optimizes the k-ary method by breaking the
exponential into specific windows up to a maximum of k bits. Efficient addition
chain sequences are generated to satisfy each of these windows using methods
such as Lucas chains, halving, approximation, and division. After that, these
windows are applied when it is its turn as the exponential is squared many times.
The main advantage of this over the standard k-ary method is that addition chain
sequences are used to generate only the necessary windows efficiently to reduce
the total number of multiplications and squarings.

2.3 Comparison of Addition Chains

For our purposes, we compare addition chains by the number of squarings and
multiplications for the exponentiation, as well as the number of temporary reg-
isters that must be stored when implemented in hardware or software. For in-
stance, it is interesting that the basic square-and-multiply, or binary method,
requires many more multiplications than the windowing method for the gen-
eral case, but only requires 2 registers. Indeed, this is among the slowest addi-
tion chains, but it is among the most space-efficient. For some implementations,
squarings are faster than multiplications. For our purposes, we will also try to
optimize for the relationship S = 0.8M.

2.4 Finite Field Inversion and Square Root

We are interested in using fast addition chains to compute the exponentiations
needed by inversion and square root in .. For any A € F,, finite field inversion
computes a value B = A~! such that A- B = 1, where B € F,. This can be
computed using Fermat’s little theorem, which holds that A~! = AP~2. Addition
chains can be used to efficiently evaluate these large powers in a constant set
of operations, to protect against timing attacks and simple power analysis at-
tacks. Conversely, the extended Euclidean algorithm could be applied to obtain
the inversion with a smaller time complexity, but at the cost of revealing some
information about the operand.

For any A € F,, finite field square root computes a value B = A'/2 such
that B - B = A where B € F),. It should be noted that —B € F), is also a square
root because —B - —B = A where —B € [,. We utilize the approach given
by [18] over even extension fields. The square root operation utilizes multiple
exponentiations, ”4;3, %, and p in the case that p = 3 mod 4 and ”4;1, ”—;1,
and p in the case that p = 1 mod 4. Notably, if p = 1 mod 4 then there is an
additional square root operation that is extremely expensive. The exponentiation
by p in F,. is special in that it can be performed using the Frobenius operator
[18], which only requires a finite field negation. This is shown in Equation 1.
Consider an element, a, in [Fj2 is represented as ag and ai, where ag,a; € I,
and a; is the most significant element.



a? = (ag,a1)? = (ap, —aq) (1)

In general, inversion requires a single exponentiation in F, and the square
root requires one or two exponentiations in F,2. We refer the reader to [18] and
the Appendix for a longer discussion of inversion and the square root in even
extension fields.

3 Supersingular Isogeny Cryptosystems

This section serves as a brief review of supersingular isogeny theory and its
application as a cryptosystem. We point the reader to [1] and [19] for a much
more in-depth look at isogeny theory.

Isogeny-based cryptography relies on the difficulty to compute isogenies be-
tween elliptic curves. An isogeny between two elliptic curves, E; and Fs, is
defined as a morphism ¢ : E; — Es such that ¢(O) = O [19]. Essentially, this
is a non-constant rational map between these two curves that preserves the null
point. We are particularly interested in supersingular curves. The endomorphism
ring of a curve is defined as as the ring of all isogenies from a curve to itself,
under point addition and functional composition. A curve is considered super-
singular if it features a endomorphism ring with Z-rank equal to 4. Supersingular
curves can be defined over Fj2 or IF,,. Therefore, a common field that includes all
isogenous curves is IF,,>. Supersingular curves have the property that for every
prime ¢ # p, there exist £+ 1 isogenies of degree £ from a base curve. An isogeny
can be computed over a kernel, , such that ¢ : E — E/(k) by using Vélu’s
formulas [20].

The supersingular isogeny Diffie-Hellman (SIDH) key exchange protocol, for
instance, operates similar to the standard Elliptic Curve Diffie-Hellman version.
In this case, Alice and Bob both have private keys to perform a double point
multiplication that spans the entire isogeny space. They compute isogenies over
the agreed upon bases with their double point multiplication result as the kernel.
They exchange these applied isogenies and perform a second set of double point
multiplications and isogeny computations, to arrive on curves with the same
J-invariant [1].

Key compression and decompression have been introduced for this key ex-
change protocol in [7]. In this revised protocol, each party deterministically cre-
ates a shared torsion basis, which is used to reconstruct some public informa-
tion that was originally intended to be exchanged over a public channel in the
standard protocol. The algorithms related to SIDH key compression were also
recently improved in both speed and compression rate in [11]. An SIDH public
key can be compressed to approximately%log p bytes [11].

How SIDH uses exponentiations. The SIDH protocol and compression
were mentioned because they both use finite field inversions and square roots.
Based on the new “projective” isogeny formulas presented in [8], 4 inversions
are required for the SIDH protocol, far fewer than the original “affine” isogeny
formulas. These inversions are necessary to recover the final curve coefficients,



Algorithm 3 Efficient Generation of Primes of the Form 293%f — 1

Output: Smooth isogeny primes of the form 2°3°f — 1
1. Define powers a and b for a balanced isogeny graph
2. Define a higher bound F on f
3. Define II = Hlepi < F, where p; is a prime greater than 2 and 3 and I is
maximized
da.eg Il =5xT7Tx11---
4. Define the generator g = (2°3°)~! mod IT
5. While looking for primes, do
6. Select some c¢o in F7; //Must be coprime to each p;
7. While (¢; # ¢o), do //Test all candidates in cyclic sub-group for iteration j
7a. Define f = g 4+ ¢ mod IT
7b. Test if p = 293°f — 1 is prime
7c. ¢j+1 = 3 X ¢; //Multiplication by 2 could also be used here
8. Return all valid primes p

basis points, and j-invariant in the SIDH algorithm. The strong compression
algorithm in [7] deterministically finds coordinates that can be used as a torsion
basis. One essential part to finding a torsion basis is ensuring that the points
have the right order, which utilizes square roots in the curve equation to recover
y-coordinates. It performs the square root at each iteration until it finds points
that have the correct order.

Isogeny-based cryptosystems use primes of the form (4¢% - f + 1 where {4
and /p are small primes, a and b are positive integers, and f is a small cofactor
to make the number prime. This prime is used to define a supersingular elliptic
curve, E(F,) where ¢ = p?. In the literature, the fastest known isogeny com-
putations are over £4 = 2 and ¢p = 3, presented in [8]. For secure primes of
this form, we want the relative size of ¢4 and ES’B to be approximately equal for
balanced isogeny graphs. Furthermore, these primes can fit nicely for software
applications by making the size of the prime as close to a multiple of 32. Lastly,
the quantum security under these schemes was shown to be approximately the
number of bits divided by 6 in [1].

Efficiently Finding Smooth Isogeny Primes. From the prime number
theorem in arithmetic progressions in [21], it can be shown that the density
of such smooth isogeny primes is sufficient. A brute force approach could be
used by testing all values of f, but we adapted the methods of [22] to greatly
reduce the number of prime candidates of smooth isogeny forms. Algorithm 3
demonstrates the approach for primes of the form 2?3% f — 1, but simple changes
to the generator in the algorithm make it applicable to other smooth isogeny
primes. The algorithm ensures that all primes that are tested are already coprime
to the product of all small primes used, II. We further note that each candidate
is coprime to 2 and 3 in our example.
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Fig. 1. Taxonomy of Addition Chains for Smooth Isogeny Prime Families

4 Fast Exponentiations for Smooth Isogeny Primes

In this section, we evaluate the structure of exponentiations for inversion and
square root for smooth isogeny primes of the form K%Z% - f £1 where ¢4 and
{p are small primes, a and b are positive integers, and f is a small cofactor to
make the number prime. We break this prime form into the following families:
244% f — 1, 2¢% f + 1, and general smooth isogeny primes. Figure 1 summarizes
our observations based on the addition chains method we found to be most
effective.

4.1 2‘125’31” — 1 - Taking advantage of the least significant half of the
prime

We introduce this family as a set of smooth isogeny primes that have the least
signficant bits all set to '1’. Notably, these primes satisfy the Montgomery
friendly property [23] to speed up Montgomery reduction [24]. Otherwise, it
is essential to note that there will be many more factors of 2 than /5 in the
shape of the prime, so primes of this form are p = 3 mod 4, equating to faster
square root, operations.

Proposition 1. Very fast addition chains can be generated for primes of the
form 2%45% f — 1 by using an adaptation of the windowing method for the most
significant half of the exponentials and precomputing a large value 2¢ — 1 for the
least significant half.

Proposition 1 is straightforward as the first half of primes of this form appear
random and the second half is all ’1’s. For inversion, we are interested in fast
addition chains for p — 2. For the square root, we want fast addition chains for
”4;3 and pT_l. Luckily, for primes of the form 2%¢% f — 1, only the last few bits of
these exponentials are different. Thus, fast addition chains are extremely similar

among these exponentiations. We present the general procedure in Algorithm 4.



Algorithm 4 Hybrid windowing method for primes of the form 2244 f — 1.

Input: Smooth Isogeny prime of form 2%¢% f — 1
Output: Fast Addition Chains for p — 2,%:3, p, and %_1
1. Split first half of prime into various max-sized windows

la. The best choice of window size varies based on the prime
2. Include an additional 2° — 1, such that ¢ makes a large window of all ’1’s
that minimizes the number of multiplication windows for the second half of the
prime as well as minimizing the number of multiplications to generate
3. Determine good addition sequences to generate the windows

3a. Add additional stored values if necessary
4. Slightly alter choice of ¢ and multiplications to finish the addition chain between
p— 2:%137 b, and %

As Algorithm 4 shows, the general procedure starts by dividing up the first
half of the prime. The size of the window depends on the shape of the first
half of the prime, but is typically more than 7 bits for primes of this family of
size 512-bits or larger. After the windows have been found, the addition chain
sequences are constructed to encapsulate each of these windows. [14] provides
one such algorithm to make addition chain sequences to generate these windows.
However, we complete the sequence by using our own pivot judging, which we
found to be very effective. This method determines which number acts as the
best pivot. We judged potential candidates based on:

— Number of newly connected elements with the inclusion of the pivot

— Cost to generate the pivot value based on existing values (doubles are scored
higher)

— Among high scoring pivots, the uniqueness of the connected elements are
valued

Based on these criteria and the abundance of windows available, relatively few
additional pivot values were added to complete the addition sequence. Our judg-
ing criteria prioritized values that could be obtained through squarings rather
than multiplications, to reduce the total complexity of the addition chain se-
quence. Since all windows were found as odd numbers, starting and ending with
a ’'l’, primarily even values were added to finalize the addition sequence.

For the second half of the prime (a long chain of '1’s), we require a high
value 2¢ — 1. Typically, this value will be a few bits larger than the large window
at the beginning of the exponential. The value 2¢ — 1 essentially acts as a very
large window for the structured second half of the prime. This value generally fits
nicely into the number of ’1’s at the end. The idea is to raise the value of ¢ so that
there are fewer windows on the second half of the prime. Indeed, larger values
of 2¢ — 1 require more intermediate squarings and perhaps multiplications, but
could reduce even more multiplications for the remaining windows. We consider



Prime: 22°%3'%!7-1

4057 43 91 123 205 47 27
(1111112011001 ] 0] [201011] [ 00 | [ 2011011 ] [000 | [ 1111011 | [000] [ 12001101 | [00] [ 202111 ][ 00] [ 22011 |
37 125 23 3 55 3 243 27
(i) ) ot 0] e ) e o [ ) o) oo o )
91 55 53 51 33 119 43 47
[2012011 ] [0000 | [110111] [0] [120101] [0] [ 120011] [ 00 ] [ 200001 ] [ 00000 | [ 1220111 ] [ 0000 | [ 102011] [0] [201111]

29 213 115 77 1 165
[0000][ 11201 ][00 |[ 12020101 ] 0] [ 1120011 ] [000] [ 2001101 | [ 00000000000 | [ ][ 000 ][ 20100101 | [00]
8191 18 windows of 8191 61

Original Addition Sequence: [1, 3,23 27, 29, 33, 37, 43, 47, 51, 53, 55, 61, 77, 91, 115, 119, 123, 125, 165, 205, 213, 243, 4057, 8191 |

it . [1.2.3.4,7,8,16, 23, 27, 29, 33, 37, 38, 40, 43, 41, 51, 53, 55, 61, 77, 91, 115, 119, 123, 125, 165, 205,
Complete Addition Sequence‘ 213, 243, 486, 972, 1944, 3888, 3892, 4057, 8114, 8191

Fig. 2. Hybrid windowing method for 2°¢%f — 1

Table 2. Breakdown of Costs for Addition Chains for 22%331617 — 3

|Operation | Cost |

Window Generation 28M + 95

Applying Windows 1st Half [28M + 2455
Applying Windows 2nd Half[20M + 2545
Total 76 M + 5085

this a “hybrid” windowing method because there are different strategies for the
first and second half of the prime.

4.2 2“£EI’3f — 1 - An Illustrative Example - 225331617 _ 1

Asg an example of a prime in this field, we point to the prime for 85-bit quantum
security presented in [1]. We want to create fast addition chains for inversion,
or 225331617 _ 3 From the above strategy, we start by taking windows of the
prime. We are looking at approximately 256 bits for this prime, so a max window
size of about 7-10 bits is sufficient. In Figure 2, we use a max window of size
8, which was found to be the fastest addition chain based on our model. It was
determined that the optimal value of ¢ was 13, or 2!3 — 1 = 8191, which required
only a single squaring and multiplication to reach and will complete the second
half of the prime in 19 windows. Larger values of ¢ would have required more
multiplications and squarings, while not reducing the number of final windows
enough to make it worth it. Table 2 illustrates the cost breakdown of various
parts of the exponentiation for inversion.

4.3 2“[%]" — 1 - Why use constant-time square roots?

Proposition 2. For a non-constant time implementation of the square root,
fast inversion algorithms such as the extended Euclidean algorithm can be used

10



to produce negative values to greatly reduce the number of multiplications in an
exponentiation.

To demonstrate Proposition 2, we point to the fact that key compression and
decompression, which require the square root, only reconstruct information that
would be transmitted over a public channel. Thus, as long as a fast inversion
produces an addition chain requiring far fewer multiplications, its use may be
justified. Typically, addition-subtraction chains are used for scalar point mul-
tiplication operations where the negative of a point is easy to obtain, such as
in [25]. But the requirement of constant time for security in compression and
decompression is not necessary and addition chains can benefit as a result.

As an example to this proposition, let us consider p = 4091 = 1111111110115.
We want to take the square root of an element, z, in )2 in a fast non-constant
time fashion, so we produce the inverse, 27!, using the Extended Euclidean Algo-
rithm (EEA). For the first exponentiation, xprd, the exponential is 1111111110, =
2102 = 100000000005 — 105. A standard binary method would require 8M +95S,
but a standard binary method with the second representation would require
17 + 1M + 11S. Thus, in the general case, if I < 7TM — 2S5, then the addition-
subtraction chain method is faster. This serves as a toy example to show a
possible way to speed up the square root exponentiations, and is also key to the
non-adjacent form method (NAF) form of exponentiation [17].The NAF method
does not necessarily mesh well with computing fast windows for addition chains
because it typically iterates over single digits at a time and diminishes positive
windows instead of growing them. However, it may provide far fewer multipli-
cations for extremely long chains of ’1’s, which are prominent in square root
exponentiations in the 2¢¢% f — 1 family.

4.4 2“[%]" — 1 - Addition-Subtraction Chains to Speed up Square
Roots

Proposition 3. Representing the exponentials used in square roots as e—1 with
a final subtraction likely produces much faster addition chains.

Proposition 3 alludes to using an addition-subtraction chain for fast expo-
nentiation. The long chain of "1’s in the least significant half of the exponentials
can be avoided by using -1, or the original value’s inverse. Let us consider ex-
ponentiating by p, for instance. This value can be rewritten as p = (p + 1) — 1.
Thus, we can assume that we are exponentiating 2¢¢% f, which has the second
half all ’0’s. After we have found that exponential, we multiply by the inverse of
the element and the exponentiation is complete.

For our example in Section 4.2, the second half of the prime required 1 extra
squaring and 22 extra multiplications to generate and apply the final windows.
We are essentially replacing this cost with a multiplication by the inverse. Thus,
this method is faster if I < S -+ 21M for this case. This may seem farfetched.
However, in practice we have seen the ratio I ~ 5M for 512-bit numbers in
ARMyv7 devices. This demonstrates that using a single subtraction at the end of

11



Algorithm 5 Windowing method with a subtraction 29¢% f — 1.

Input: Smooth Isogeny prime of form 2%¢% f — 1
Output: Fast Addition Chains for %, p, and pT_l
1. Add ’1’ to the prime to cancel out all of the second half of the prime
2. Split first half of result into various max-sized windows

2a. The best choice of window size varies based on the prime
3. Determine small addition sequences to generate the windows

3a. Add additional stored values if necessary
4. Perform a fast inversion using a method such as EEA
5. Perform a subtraction by multiplying by the inverse

p—3 p—1

6. Slightly alter final multiplications to finish the chains for #3=, p, and 5=

the addition chain saves the cost of S+ 16 in this case, most likely even more
for larger prime sizes.

4.5 2%% . f + 1 Family

The 2944 - f + 1 family features a prime shape with a long string of ’0’s. Thus,
this can take advantage of a regular shape as well. Inversions within this fam-
ily can be performed with the hybrid windowing method and the square root
exponentiations feature a second half of the prime that is all ’0’s.

Exponentiation by p— 2. The inversion exponentiation is similar to that of
the 29¢% . f — 1 family, as the final half of the exponentation is all '1’s. Thus, the
hybrid windowing method is also valid for the 2¢¢% - f + 1 family and generates
fast addition chains for these inversions.

Fast Exponentiations for Square Roots. This family has primes that
are of the form p = 1 mod 4. Thus, the exponentials ple, 172;1, and p are used
in the square root process. This means that the windowing method can be used
for the first half of these primes and the second half is simply squarings since
it is all ’0’s. This exponentiation is similar to that of the addition-subtraction
chains used in 2“6}1’3 - f — 1, but without the need to compute a fast inverse.
However, these fast square root exponentations do not make up for the fact that
an extremely expensive square root [18] in the field F), must be performed. Thus,

this family is not necessarily a good fit for key compression and decompression.

4.6 General Smooth Isogeny Family

The binary representation of digits used in today’s processors means that the
representation of other “general” smooth isogeny primes will appear pseudo-
random since there are no powers of 2. The general isogeny primes can further
be classified based on their form of their square root functions. The two classi-
fications are p = 3 mod 4 or p = 1 mod 4. Clearly, these are the two groupings
because otherwise the number would not be prime. In either case, the inversion

12



Algorithm 6 Minimizing register usage in windowing method

Input: Addition chain sequence based on the windowing method
Output: Efficient paths to perform the exponentiation with a reduced number of
registers
1. Based on the addition sequence, generate a short path from 1 to the value
of the first window
2. Remove values that are stored in registers based on the following criteria:
2a. If a register has been used and is no longer required to make a path to
other windows
2b. If a separate register contains the value of a register multiplied by 2
3. As the windows are being applied, they can be performed by multiplying
their factors directly instead of multiplying to a separate register.

and square root exponentiations can be determined efficiently by using the win-
dowing method over the entire prime. The exponentations for the square root
are slightly different in the two groupings, and the p = 3 mod 4 general prime
is clearly faster as it does not require a square root operation in I, in addition
to the exponentations.

5 Proposed Technique to Reduce Temporary Registers

In the previous sections, we have not considered the impact of storing interme-
diate addition chain windows. Here, we propose new techniques that reduce the
number of intermediate values needed, while preserving the speed of the addition
chains. In software and hardware implementations of inversion, the intermediate
storage must be accounted for. This can make a large difference in embedded
devices that are limited by the number of values that can be stored. Fast addi-
tion chains typically require many more temporary values than something like
the binary method, but careful planning can be used to minimize the impact on
a register file, for instance. We summarize our observations in Algorithm 6.

5.1 New Techniques

Proposition 4. Temporary registers can be reduced by creating a short path to
reach the first window that involves other windows. The steps along the path that
are also windows must be used as registers.

Proposition 4 leads to a few different techniques to reduce the total number
of registers:

Proposition 5. The windows used in an addition chain do not have to be gen-
erated at the start. They only need to be generated in the order that they appear
with the windowing method. Thus, after a window is used with no remaining
dependencies, its register can be replaced.
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Proposition 5 is simple to see. So long as we can create the first window
efficiently, we can recreate the other windows efficiently at a later time. The
order of the windows is relevant. In addition, any window that is used twice
must be stored as a temporary register so that the cost of generating it is not
experienced twice. For example, let us consider we have windows in the order 9,
11, 9, 6, 4, 5. The optimal addition sequence for this toy example is 1, 2, 4, 5,
6, 9, and 11. The shortest addition sequence for the first window is 1, 2, 4, 5,
and 9. In reality, we only have to store values for 2, 4, 5, 9, and an accumulator.
The other values that are not stored can be recreated from each of these. For
instance, 6 = 244 and 11 = 2+ 9. The register holding 9 can also be freed after
the second 9 window is applied. There are no more dependencies on it within the
window sequence. Likewise, the register holding 2 can be freed after applying the
window of 6, and the register holding 4 can be freed after applying the window
of 4.

Proposition 6. New windows can be recreated from pre-ezisting windows using
addition chains at no cost to the complexity of the exponentiation.

Proposition 6 shows that only the absolutely necessary windows must be
stored and that the others can be recreated from multiplications. In the toy
example above, we can recreate the windows that are not included by adding
the factors to generate the window in sequence. For instance, if we have a win-
dow of 11, we would multiply the accumulator by 9 and then multiply it by 2.
Alternatively, one could use a temporary register to hold the product of 9 and
2, and then multiply that to the accumulator. In the end, this window costs
2 multiplications to use in the addition chain. Thus, storing the window to a
temporary register wastes a register unless the window appears more than once.
In our example, 5 and 9 appear twice in the sequence of windows, so a register
must hold these values to prevent recreating the window multiple times. There is
no reason to store 6 because it is only used once and is not necessary to generate
any other windows.

5.2 An Illustrative Example - 225331617 _ 1

We demonstrate these techniques with our example in Section 4.2. Originally,
this example requires 32 registers since there are 24 windows, 7 intermediate
values necessary to complete the addition sequence, and a single register for the
accumulator. However, it is worth noting that based on the order of the windows
and above propositions, we can reduce the number of registers significantly.
One optimization that we can do is to reach our first window with as few
steps as possible. 4057 can be reached in with 21 registers by using the addition
chain sequence 1, 2, 3, 4, 7, 8, 16, 23, 27, 29, 37, 38, 40, 77, 115, 123, 125, 165,
205, 243, and an accumulator to perform the other squarings and multiplications
up to 4057. The intermediate values must be saved as they are windows that will
be used later. Unfortunately, the windows for 43 and 91 occur at the beginning of
the exponential sequence and occur multiple times, thus registers must be used
to store these as well. 43 requires one step and 91 requires 51, thus 3 additional
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Table 3. Comparison of Addition Chains for Square Root Exponentiation by p =
925331617 _ |

Method Window Size|#[~|#1\;[|#§|Time (,us)|# Registers
Binary 1 0 |380|511] 2.978 2
K-ary 2 0 224|511 2.435 4
K-ary 4 0 | 141|511 2.076 16
Standard Window 8 0| 87 [508| 1.877 20
Hybrid Window 8 0| 76 |508] 1.804 21
Window with a Subtraction 8 1| 56 [508| 1.751 21

registers are required. From there, all of the other windows can be reached within
a single step. As windows are used in the exponentiation and are not needed to
generate other values, these registers can be freed and reused for other windows.
Technically, these new windows do not necessarily need to be stored since they
can be factored to two of the existing windows, as noted in Proposition 6. Based
on data dependency within the window order, 3 additional registers are used.
Using these techniques, 5 temporary registers can be saved and 27 registers are
required in total.

One more strategy is to free the start of the sequence as their values are used.
Indeed, after 47 is obtained, 1, 7, 8, and 16 can each be removed. The rest of
the sequence is obtainable. One interesting note is that 1 is not needed since 2
can serve as its window, but after one more squaring. Another interesting use
of this technique is that 213 can be applied as a window in two multiplications,
even if 8 is not available. One cycle before the window’s turn, the factor 4 is
multiplied to the accumulator. The accumulator is squared and multiplied with
205, to achieve 213 = 4 x 2 + 205. The data dependency technique can also
remove 38 and 40 after 243 has been generated since they are not used in any
other windows. Thus, we further reduce the register count from 32 at the start
to 21, reducing the register usage by 34%.

6 Comparison of Methods

Using the above techniques, we demonstrate the reduced complexity of our
method over a standard windowing method in Table 3. We used a Jetson TK1
development board with the GNU Multiprecision (GMP) Library version 6.1.0
to test our addition chain strategies. We used Karatsuba-optimized methods for
arithmetic in F,» and GMP for arithmetic in F,,. The timing result represents
the cost of performing the exponential p = 225331617 — 1 over F,, designed for
a square root. The k-ary method is presented in Algorithms 1 and 2. Our hy-
brid windowing method reduces the total number of multiplications needed by
approximately 13% over a standard windowing method. Furthermore, our win-
dowing method with a subtraction reduces the total number of multiplications
by 36% at the cost of a fast inversion. The new methods are optimizations of the
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Table 4. Comparison of Addition Chains for Smooth Isogeny Primes psi2

.. Window Addition . Max Window

Exponentiation|#I|#M |#S Sequence Length #Registers Size c
p= 925351617 _ 1

p—2 0 [ 75 [508 31 21 8 13

22 1] 56 [505 31 21 8 -
p= 2254315871 + 1

p—2 0] 79 [514 32 19 7 14

= 0 | 58 [507 32 19 7 -
p=5"7%732+ 1

p—2 0 [ 99 505 55 28 10 -

= 0 | 99 [504 55 28 10 -
p=>5"7"102 + 1

p—2 0 [106 [508 54 24 8 -

222 0 | 106 [507 54 24 8 -

windowing strategy, applicable to special isogeny primes of the form 2444 - f +1.
These optimizations require only a single register over the standard windowing
method, but speed up the exponentiation by 3.9% for the hybrid windowing
method and 6.8% for the window with a subtraction. Interestingly, the relative
ratio of inversion over multiplication in F ., I / M, was found to be approximately
5 for the Jetson TK1. Thus, the window with a subtraction method reduced the
cost of the square root exponentiation by approximately 15 multiplications in
F,2 for 512-bit primes.

We also apply the technique to the three major families with 512 bit primes
in Table 4. These results show that the square root exponentiations are faster
with the form p = 29¢% - f + 1 because a fast inversion is not needed as the
least half of the prime is already all ’0’s. We also compare primes of the form
29¢% . f — 1 in Table 5. For these two tables, exponentiation by p — 2 is for
inversion and in F, and exponentiation by pgl is for the square root and in
F,2. Typically, the total number of registers appeared to be directly related to
the max window size and addition sequence to generate the windows. Smaller
window sizes required fewer steps to reach the first window and required fewer
numbers for the remaining steps. It is also interesting that the optimal max
window size did not necessarily scale with the prime size. Generally, windows
of size 7-10 appeared the best for our results. These window sizes fit well for
these sizes because many of the windows could be generated quickly and there
were only additional windows as the max window size got larger. In contrast,
the value of ¢ in 2¢ — 1 did appear to scale with the size of the prime. This is to
be expected as greater values of ¢ required typically an additional squaring and
multiplication, but saved many window multiplications at the end of the prime.
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Table 5. Comparison of Addition Chains for Smooth Isogeny Primes of Different Sizes

. Window Addition . Max Window
Exponentiation|#|#M| #S Sequence Length #Registers Size c
ps1a = 229331617 _q

p—2 0 [ 76 | 508 31 21 8 13

1 1] 56 | 506 31 21 8 -
pres = 23793239497 _ 1

p—2 0 [108] 770 49 26 9 16

B2 1] 84762 49 27 9 -
Prosa = 29993320107 — 1

p—2 0 13411029 52 28 8 18

= 1 | 102 {1020 52 29 8 -

7 Conclusion

Overall, this paper investigated fast and efficient addition chains for smooth
isogeny primes used in the supersingular isogeny Diffie-Hellman scheme. The
hybrid windowing method produces fast addition chains for inversion for the
2945, . f £ 1 families by taking advantage of the semi-regular structure of p — 2.
Other primes used in the scheme can use the basic windowing method, but
typically require more multiplications. Square root exponentials can also benefit
from a fast inversion for 2¢¢% - f —1 or simply from having half of the exponential
being zero for 2¢¢% - f 4+ 1. The applications of inversions and square roots for
isogeny-based cryptography necessitate the need for fast addition chains for fast
and secure exponentiations. The hybrid and subtraction windowing methods find
addition chains that feature reduced numbers of multiplications and squarings
at an insignificant cost to temporary storage, which can be valuable to both the
speed and size of ECC over prime curves.
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A Appendix

A.1 Addition chains for inversion

Finite-field inversion finds some A~! such that A- A=! = 1, where A, A=! € F,,.
This can be computed using Fermat’s little theorem, which shows that A~! =
AP~2_ Addition chains can be used to efficiently evaluate these large powers in
a constant set of operations, to protect against timing attacks and simple power
analysis attacks.

Isogeny-based cryptosystems operate in I, so the inversion in F, must be
extended as such. We use Equation 2 to perform the inversions in F,» with
irreducible modulus z? + 1 (assuming —1 is not a quadratic residue in F,). We
note that an element, a, in IF)2 is represented as ag and a1, where ag,a; € I,
and a; is the most significant element.

a”! = (ag,a1) ™" = (a0 x (ag +a})™", —ay x (ag +af) ") (2)

Fast non-constant time inversion. Inversion by Fermat’s little theorem
is accomplished in constant-time, but it is still slow compared to algorithms
such as the Extended Euclidean Algorithm (EEA) and Kaliski’s almost inverse.
In fact, EEA has a significantly lower time complexity of O(logzn) compared
to O(log®n) for Fermat’s little theorem. EEA uses a greatest common divisor
algorithm to compute the modular inverse of elements a and b with respect to
each other, az + by = ged(a, b). We present this alternative for inversion because
it makes an inversion term much quicker to compute, which can be used for the
square root exponentiations. For our sample implementation, the GMP library
incorporates EEA for fast inversion.

A.2 Fast Computation of Square Root

The finite-field square root finds some A'/2 such that AY/2. A2 = A, where
A, AY? ¢ F,. For the case that p = 3 mod 4, which is true for primes of the
form 223 f — 1, Shank’s algorithm can be used to retrieve the square root of the
quadratic residue by exponentiating the value by pT'H. However, unlike inversion,
not all elements in a prime field have a square root. Thus, there is also a check
on the result that if its square and product by the original element is —1, then
the square root does not exist.

For the case p = 1 mod 4, there is also an additional square root operation
in IF,. Typically, the method to recover the square root in this case is based on
the Tonelli-Shanks algorithm demonstrated in works such as [?]. We will not go
into the specifics of this square root operation, but the extra overhead for the
full square root is significant compared to the case p = 3 mod 4.

Square roots in IFj» are trickier than inversion. For the square root in this ex-
tension field, we refer to [18], which extends Shank’s algorithm for even extension
fields. In this work, Algorithms 9 and 10 contain the square root computation
over even extension fields when p = 3 mod 4 when p = 1 mod 4, respectively.
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