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Abstract—Data deduplication, aiming to eliminate duplicate
data, has been widely used in cloud storage to reduce the
amount of storage space and save bandwidth. Unfortunately, as
an increasing number of sensitive data are stored remotely, the
encryption, the simplest way for data privacy, is not compatible
with data deduplication. Though many research efforts have been
devoted to securing deduplication, they all are subject to perfor-
mance, security, and applicability limitations. Here, we propose
two encrypted deduplication schemes, SDedup and XDedup, both
based on Merkle puzzle. To the best of our knowledge, XDedup
is the first brute-force resilient encrypted deduplication with only
symmetrically cryptographic two-party interactions. The analysis
and numerical simulations are conducted to demonstrate the
performance and practicality of SDedup and XDedup.

I. INTRODUCTION

A. Data Deduplication
Data deduplication, aiming to avoid storing the identical file

twice, is an essential technique widely used in cloud storage
providers (CSPs) (e.g., Dropbox). The use of data deduplica-
tion may achieve up to 90% storage savings [9]. In particular,
client-side data deduplication, the form of deduplication that
takes place at the user side∗, can further achieve the same level
of network bandwidth savings. Due to the potential similarity
of popular files, public cloud storage services are in favor
of cross-user client-side deduplication, where deduplication is
carried out on the data even from distinct users. Moreover,
deduplication can also be performed at different granularities
(e.g., file-level and chunk-level). As a result, according to
the extent of the deduplication effectiveness and overhead
reduction, cross-user chunk-level client-side deduplication acts
as the most aggressive technique in eliminating the redun-
dant transmitted and stored data. Throughout the paper, data
deduplication refers to cross-user chunk-level client-side data
deduplication, unless stated otherwise.

The implementation of data deduplication is, in fact,
straightforward; for a chunk f to be uploaded, the user first
calculates and sends the hash h(f) to the cloud, where h(·)
denotes the cryptographic hash function (e.g., SHA256). Once
the cloud finds a copy of h(f) in the memory (i.e., file
existence), the user has no need to upload f again. Otherwise,
the user simply uploads f and the cloud keeps h(f) in the
memory for duplicate checks in the future.

B. Security and Privacy Concerns
Unfortunately, the benefits of data deduplication come with

the security and privacy threats. For example, the unauthorized

∗Cross-user deduplication is also called inter-user deduplication or global
deduplication in the literature. In addition, throughout the paper, the terms
user and client, and the terms cloud and server are used interchangeably.

access of the files in the cloud storage due to the system im-
plementation flaw [22] and the design nature of deduplication
[10], [13] has been found to be a potential security threat. Side
channel [13] and covert channel [12] in the cloud storage have
also proven feasible. Several solutions [10], [12], [22] have
been presented to defend against the security threats on the
deduplicated cloud storage.

In addition, since more and more sensitive data are uploaded
to the cloud storage, one may have a privacy concern that the
cloud will be benefited by looking at the user’s private data.
Encrypting the data before uploading it might be a solution
for the privacy leakage, but the encryptions of the identical file
from independent users result in different ciphertexts, losing
the storage and bandwidth advantages of data deduplication.
As a consequence, in this paper, we put the particular emphasis
on the development of a cloud storage with the reconciliation
of the encryption and data deduplication [27].

C. Related Work

In what follows, we briefly review three categories of
techniques for deduplication of encrypted data.

1) Convergent Encryption: Convergent encryption (CE)
[2], [8], [28], [32], [33] is the simplest way for tackling the pri-
vacy concern without compromising the deduplication effec-
tiveness. Examples of storage systems with CE include Farsite
[8] and Tahoe-LAFS [30]. In particular, with the hash h(f)
as convergent key, the user calculates and uploads Eh(f)(f),
where Ek(·) denotes the symmetric encryption with key k.
Since the users with f are all able to derive the same h(f)
and Eh(f)(f), the deduplication still takes place on Eh(f)(f).
From the theory point of view, CE can be generalized as
message-locked encryption (MLE) [5], which achieves the
PRV$-CDA security and remarkable speedup in the encryption
calculation. The follow-up studies [1], [4] further examine
message correlation and parameter dependency of MLE. From
the system point of view, CE is incompatible with the setting of
different user privileges in the current corporate environment.
Thus, a private cloud is introduced to manage files with
differential privileges [17]. As the number of convergent keys
is linearly increased with the number of uploaded pieces, Li et
al [16] introduce Dekey, where a quorum of key management
servers are used to manage convergent keys. CE with dynamic
data ownership is studied in [11].

2) Encrypted Deduplication with Independent Servers:
Despite their simplicity, CE and MLE suffer from the brute-
force attack, particularly in the case of low min-entropy files
(i.e., predictable files). In real world, the files usually have low
min-entropy and therefore potential predictability, because of



the prior knowledge such as document format. Since the key
space in CE is identical to the plaintext space, the low min-
entropy characteristic leads to the possibility of brute-force.
Consider an extreme case, where f has only two possibilities.
Even only with the access to Eh(f)(f), the adversary can still
easily infer f through two encryption calculations.

To counter against the brute-force attack, based on the
idea of additional randomness, Bellare and Keelveedhi present
DupLESS [3], where an additional key server KS is introduced
to assist the key generation. More specifically, as shown
in Fig. 1a, before uploading f , the user ci and KS jointly
compute a content-dependent key kf for f by using oblivious
pseudorandom function (OPRF) [23] (see Fig. 1b and will be
described in more details in Sec. III-A) with the guarantee that
no one, except for ci, can derive kf . After that, kf is used
for the calculation of the deduplicatable Ekf (f). DupLESS
has been formally proven D-IND$-CPA secure [7]. However,
though it is not the limit from the design nature, DupLESS
can only be file-level deduplication; otherwise, the OPRF
calculations lead to the dramatic performance degradation in
both users and the key server.

SecDep [36] improves the performance of DupLESS by
first performing cross-user file-level deduplication. If not suc-
ceeded, single-user chunk-level deduplication is then executed
to look for the opportunity of fine-grained deduplicability.
Similar to SecDep, a deduplication proxy sits in the middle
between users and the cloud in [21], where the proxy and
cloud perform cross-user deduplication but the user and proxy
perform single-user deduplication. ClouDedup [25] works in a
similar way. Threshold CE (tCE) [29] and PerfectDedup [26]
perform the chunk-level deduplication by taking advantage of
chunk popularity. Their idea is that the popular files will not
contain sensitive information and therefore needs less privacy
protection.

(a) DupLESS [3] (b) OPRF [23]

Fig. 1: DupLESS [3] and its cryptographic component.

3) Encrypted Deduplication without Independent Servers:
Though the key server helps generate kf for users in an
oblivious manner, DupLESS and the follow-up solutions still
find useless in the real world because the independent server
has to be run by the third party. Encrypt-with-Signature (EwS)
[7] claims to eliminate the need for a key server and retain the
security guarantee by using threshold signatures. Nonetheless,
Zheng et al. [37] argued that the dealers in EwS serve as the
similar role of the key server in DupLESS. Very recently, Liu
et al. [14] propose PAKEDedup (see Figs. 2a and 2b) based
on a client-as-a-key-server (CaS) framework to dedeuplicate

encrypted data by using password authenticated key agree-
ment (PAKE)† [6] (see Fig. 2c) and partially homomorphic
encryption (PHE) [24]. In essence, the independent server
with additional secret is still necessary in PAKEDedup for
generating kf ’s; however, all of the users in CaS framework
are potential key servers that check the chunk hash consistency
via PAKE and exchange the chunk key via PHE.

4) Encrypted Deduplication in Other Contexts: In fact, the
encrypted deduplication can apply to different contexts. For
example, the aforementioned solutions inherently assume a
single cloud, whereas CDStore [18] works in a cloud-of-clouds
environment. Attribute-based encryption (ABE) and Proxy Re-
Encryption (PRE) are considered in [31] and [35], respectively,
to offer access control. Moreover, SVCDedup, enabling the
encrypted cloud media center, is presented in [37]. In essence,
SVCDedup considers the use of DupLESS in the context of
scalable video coding (SVC) in the bounded leakage setting
[33], [37]. With the consideration of key compromise, the
rekeying issue for server-side deduplication is studied in [19].

D. Challenges in Designing Encrypted Deduplication
Many solutions have been propopsed to address the issue

of encrypted data deduplication. Unfortunately, they are all
subject to certain performance, security, and applicability
limitations. Here, the limitations are summarized as follows.

1) Brute-Force Resiliency (L1): CE, MLE, and their vari-
ants all involve the uploading of h(f) and Eh(f)(f). Never-
theless, as mentioned in Sec. I-C1, real world applications
usually generate low min-entropy contents f , making the
offline brute-force attack (see Sec. II-A2) easy to find out
sensitive information.

2) Independent Server Assumption (L2): In spite of the
differences in their functionalities, all of the solutions in Sec.
I-C2 assume the use of independent servers. Note that the
compromise of those independent servers usually will not lead
to the crash down of the system, but unfortunately the security
guarantee will degrade to the level of CE. Furthermore, the
adversary is able to launch online brute-force attack (see Sec.
II-A), aiming to recover the matching ciphertext by repeatedly
querying servers. Lastly, the most critical weakness of inde-
pendent servers is the impracticality of running independent
servers without business justification [14].

3) Complicated Computation and Architecture (L3): Some
of the current methods involve complicated arithmetics or
architectures. More specifically, with the consideration of
computationally expensive cryptographic techniques, tCE, Du-
pLESS, PAKEDedup, and SVCDedup provide the data protec-
tion at the expense of the significantly degraded computation
efficiency. The security of tCE also relies on a two-additional-
server architecture, which is difficult to be deployed prac-
tically. The above performance drawback even has adverse
impact on the deduplication granularity and effectiveness. In
fact, the fine-grained chunk-level duplicate checks will bring
too much computation burden at both user and server sides if
intensive computing tasks need to be accomplished.

†PAKE is a two-party protocol; at the end of PAKE, both parties will
agree with a common high-entropy secret if their initial low-entropy secrets
are identical, and cannot make an agreement otherwise.



(a) PAKEDedup [14] (case 1) (b) PAKEDedup [14] (case 2) (c) PAKE [6]

Fig. 2: PAKEDedup [14] and its cryptographic component.

4) Heuristic Parameter Setting (L4): For some heuristic
approaches, choosing an explicit threshold by using file pop-
ularity [26], [29], file sizes [13], and user privileges [17] to
differentiate the data sensitivity would be difficult. Moreover,
heuristic approaches also have restriction on application sce-
narios. For example, tCE has the preference on data sources
such as VM-images and email attachments for multi-recipients
[29].

5) Protocol Transparency (L5): CSPs may be reluctant
to modify the internal configuration for the support of data
privacy due to the lack of economic incentives. In this sense,
some works (e.g., DupLESS and ClouDedup) work transpar-
ently with existing CSPs, but most of existing works are still
waiting for the implementation and find little practical values
currently.

6) Additional Privacy Leakage (L6): In the CaS framework,
online user status needs to be exposed to either cloud or even
the public, depending on protocol design. However, in either
case, the privacy of user behavior is sacrificed for data privacy.

E. Contribution

We propose two encrypted data deduplication schemes,
SDedup and XDedup. To the best of our knowledge, XDedup
is the first provably-secure brute-force resilient encrypted
deduplication with only lightweight cryptography and with
only the interactions between the uploader and cloud. More-
over, XDedup also achieves perfect deduplication. In fact, our
schemes possess the following distinguishing advantages.

• SDedup and XDedup only involve the symmetrically
cryptographic operations, making our schemes computa-
tionally efficient and chunk-level deduplication feasible.

• SDedup can work transparently with any current cloud
storage, without the need of CSP’s engineering work at
the backend.

• In XDedup, only the uploader and cloud participate in the
uploading process, in contrast to the most of the current
solutions in need of the third party’s participation.

• SDedup and XDedup are formally proved secure, under
the paradigm of simulation-based security [15].

The analysis and numerical simulations are used to demon-
strate the practicality of our proposed methods.

A comparison among different schemes is shown in Table
I. Table. I will be described in more detail in Sec. V-D.

TABLE I: COMPARISONS BETWEEN DIFFERENT EN-
CRYPTED DATA DEDUPLICATION

Methods (L1) (L2) (L3) (L4) (L5) (L6)
CE [8] and MLE [5] − X X X X X

DupLESS [3] X − − X X X
ClouDedup [25] X − X X X X

tCE [29] X − − − − X
EwS [7] X − − X − X

PerfectDedup [26] X X X − − X
PAKEDedup [14] X X − X − −
SVCDedup [37] X − − X − X

SDedup (this paper) X X X X X −
XDedup (this paper) X X X X − X

II. SYSTEM MODEL

A. Storage and Threat Models

1) Storage Model: We consider a public CSP S and a num-
ber of independent users {cj}. The cloud S performs cross-
user chunk-level client-side data deduplication, attempting to
reduce the cost of storage and network bandwidth. In this
sense, all cloud users share a common disk storage. The user
ci possesses an individual key ki, which will not be shared
with anyone else. The symmetric encryption Ek(·) (e.g., AES),
cryptographic hash function h(·) (e.g., SHA512), and message
authentication code (MAC) hk(·) (e.g., HMAC-SHA256) are
ready for use.

Throughout the paper, the common setting is an uploader
ci attempting to upload a low min-entropy chunk f . This ci
has access to the full-length chunk hash h(f) and truncated
hash (also called short hash) sh(f). Short hash sh(f) can be
implemented by keeping only partial bits of h(f). Obviously,
sh(f) has high collision rate and thus the adversary cannot be
confident that it is the specific f that implies sh(f), mitigating
the brute-force threat. ci is aimed to calculate the chunk key
kf for encrypting f and to upload Ekf (f).

2) Threat Model: We consider the adversaries in the mali-
cious model, where users and the cloud can behave arbitrarily.
There could also be a collusion of users and the cloud. The
objective of adversaries is to recover the f or kf owned by
the honest user ci.

Moreover, we consider offline brute-force and online brute-
force attacks. Both share the same goal of recovering f .
In the former, the adversary eavesdrops on a deterministic
representation of low min-entropy content and then constructs
deterministic representations of all candidate chunks to see
whether a match can be found. In the latter, the adversary



recovers f by querying S or independent servers with all
candidate chunks to see whether the deduplication occurs or
a match can be found.

B. Evaluation Metrics
We consider the following four metrics to evaluate the

performance of data deduplication techniques. Throughout
our evaluation, we consider the scenario, where ci uploads
a random distinct chunk to S for evaluating the expected per-
formance. Such scenario addresses the cloud with uniformly
distributed uploading requests.

1) Deduplication Percentage: A (normalized) metric for
evaluating the effectiveness of data deduplication is dedupli-
cation percentage [9], defined as 1 − 1

πo/πi
, where πo and

πi denote the numbers of bytes input to and output from the
deduplicated storage, respectively. The perfect deduplication
will detect all duplicates and reaches the deduplication ratio
of 1− 1/n = (n− 1)/n given n identical files uploaded.

2) Memory Overhead: An important step in client-side
deduplication is hash matching. Thus, the chunk hash needs
to be kept in the memory, so that S can perform a prompt
duplicate check and sends back the matching result to users.
However, as the amount of memory is usually limited, one has
to consider the memory footprints incurred by the encrypted
data deduplication. Moreover, one should also consider the
memory/disk footprints in user devices, because of resource
scarsity in certain cases.

3) Communication Overhead: The communication over-
head is reversely proportional to deduplication percentage in
client-side deduplication. However, depending on the protocol
design, one may have subtle difference between different
implementations. Such difference may affect user experience
from the user point view and may aggregately cause perfor-
mance bottleneck from the cloud point of view.

4) Computation Overhead: Both client-side and server-side
computation overhead are our concern. The user devices could
be resource-constrained (e.g., cellphones) and cannot afford
computationally intensive tasks. On the other hand, though S is
resource-abundant, it faces a huge number of upload/download
requests from {cj}. Thus, sophisticated computation tasks in
the server-side should also be avoided in the design.

In the following, DX , MS
X (Mc

X ), TX , and CX denote
the deduplication percentage under the first (second) scenario,
server-side (user-side) memory overhead, computation over-
head, communication overhead of scheme X , respectively.

III. PROPOSED SOLUTIONS

In this section, our deduplication solutions are described.
Our study is conducted evolutionarily; first, we present a
strawman protocol (SP) in Sec. III-A. Motivated by the se-
curity flaw of SP, we present our encrypted data deduplication
with only symmetrically cryptographic operations (SDedup)
in Sec. III-B. Nevertheless, CaS-based SDedup actually gives
away the online user privacy. Hence, we present our encrypted
data deduplication with extreme efficiency (XDedup) in Sec.
III-C. Some minor implementation issues are described in Sec.
III-D. Table II summarizes the notations frequently used in this
paper.

TABLE II: Notation Table.

Notation Description
S the cloud storage.
ci the cloud user.
f the chunk to be uploaded.
ki the individual key possessed by ci.
kf the chunk key of f .
h(f) the chunk hash of f .
sh(f) the short hash of f .
`f the (encrypted) chunk size.

`k, `r, `h, `sh the number of bits representing key, random number,
hash, and short hash, respectively.

`oprf the number of bits required in OPRF interactions.
p• the probability that a specific chunk is in S.

poff the probability that a specific user is offline.
pown the probability that a user owns a specific chunk.

Ekf (f) ∈ S the encrypted chunk Ekf (f) is in the cloud storage.

A. Strawman Protocol (SP)

1) Basic Idea of SP: Our strawman protocol (SP) still bases
its security on the CaS framework [14], where each user can
assist the key generation. SP differs from PAKEDedup in that
the online user contributes to the generation of chunk key
for specific f . In addition, a large number of online users in
PAKEDedup will participate in the calculations of PAKE and
PHE. However, though still a large number of users in SP
involve in the key generation, ci can derive the chunk key by
performing only OPRF, resulting in computation reduction. In
fact, SP can be seen as a variant of DupLESS with all users
as distributed key servers.

Before describing SP, we have a brief review of OPRF
first. Oblivious pseudorandom function (OPRF) (see Fig. 1b)
is a two party protocol involving a sender cj and receiver
ci. OPRF OPRF [x, sk] aims to compute a pseudorandom
function (PRF) Fsk(x), where x is ci’s secret input and sk
is a scret key owned by cj . OPRF enforces that ci obtains
Fsk(x) but cj learns nothing during the OPRF interactions.
Basically, we inherently assume the use of RSA-OPRF built
on RSA blind signatures in SP.

2) Detailed Description of SP: The protocol description of
SP is shown in Fig. 3. Here, the communications among {cj}
are through S; i.e., {cj} do not have direct communications.
Furthermore, S maintains a publicly available online user list
U , which lists and updates all online cloud users in real
time. This can be accomplished by making sure that the
client software of cloud storage sends heartbeat messages to
S periodically. Moreover, S also maintains a lookup table L,
where each record is of the form [sh(f), ci]. The purpose of
L is to associate users with their key servers (the other users)
(explained below). Thus, there could be multiple records in L
with the same sh(f) but different ci’s.

In SP, S works like a broker who bridges ci and the other
users. In particular, if S, after receiving sh(f) from ci, cannot
find a match in L (case 1 of Fig. 3), ci randomly picks
another user (e.g., ca) from U as its key server. Then, ci with
h(f) and ca with ka jointly performs OPRF, so that ci can
calculate the chunk key ki,af = OPRF [h(f),ka]. Note that
the superscripts i, a of ki,af emphasize that this chunk key is
generated jointly by ci and ca. Afterwards, S adds a record



Offline Setting:
S maintains a lookup table L of records [sh(f), ci]
S maintains a online user list U
Online Execution:
01 C → S : sh(f)
02 if L(sh(f)) = ∅ (case 1)
03 ci randomly picks ca from U
04 ci gets ki,af = OPRF [h(f),ka]

05 ci → S : Eki,af (f) and Eki(k
i,a
f )

06 S adds a record [sh(f), ca] to lookup table L
07 else
08 if L(sh(f)) ∩ U 6= ∅ (case 2a)
09 for each ca ∈ L(sh(f)) ∩ U
10 ci gets ki,af = OPRF [h(f),ka]

11 ci → S : h(Eki,af (f))

12 if h(Eki,af (f)) indicates dedup

13 ci → S : Eki(k
i,a
f )

14 if no ca ∈ L(sh(f)) ∩ U causes dedup
15 ci randomly picks cb from U
16 ci gets ki,bf = OPRF [h(f),kb]

17 ci → S : Eki,bf (f) and Eki(k
i,b
f )

18 S adds a record [sh(f), cb] to lookup table L
19 else (case 2b)
20 ci randomly picks cb from U
21 ci gets ki,bf = OPRF [h(f),kb]

22 ci → S : Eki,bf (f) and Eki(k
i,b
f )

23 S adds a record [sh(f), cb] to lookup table L

Fig. 3: The protocol description of SP.

[sh(f), ca] to L for the association between sh(f) and ca. As
a consequence, the user with f ′ such that sh(f ′) = sh(f)
may also derive a random key from OPRF [h(f ′),ka]. The
conceptual illustration of case 1 of SP is shown in Fig. 4a.

On the other hand, if S can find at least one online user in
L(sh(f)) (case 2a of Fig. 3), where L(sh(f)) denotes a set
of cj’s, these users might ever contribute to the generation of
kf . Thus, ci performs OPRF with each ca ∈ L(sh(f))∩U and
calculates ki,af for each ca ∈ L(sh(f))∩U . Then, ci uses the
derived ki,af ’s and h(Eki,af (f))’s to perform the duplicate check
and data uploading. If all of the online users happen to have f ′

such that sh(f ′) = sh(f), ci will conduct similar procedures
in case 1 to pick a random online user and calculate kf .

The last case (case 2b of Fig. 3) that S, after receiving
sh(f), cannot find any online user in L(sh(f)) is identical to
case 1. Therefore, the operations in case 1 apply to case 2b.
The conceptual illustration of case 2b is depicted in Fig. 4b.

3) Performance Evaluation of SP: We evaluate the perfor-
mance of SP based on the metrics in Sec. II. Let p• be the
probability of a specific chunk in S. Let poff be the probability
that a user is offline. Let pown be the probability that a user
owns a particular chunk. The probabilities p•, poff , and pown,
in fact, vary with time and users; nevertheless, to simplify the

performance analysis, we abuse them slightly and assume that
they are time- and user-independent.

Deduplication Percentage DSP. Since each uploading can
be seen as an independent event, our strategy of computing
DSP is to first estimate the expected size `e of Ekf (f) for
each uploading request. After that, DSP can be calculated as
1−(1/(x`f/x`e)) = 1−(1/(`f/`e)), where `f is the number
of bits for representing the (encrypted) chunk.

The occupied spaces for different uploading behaviors are
shown in Fig. 5a. In particular, we can see from Figs. 3 and
5a that if Ekf (f) /∈ S, ci always needs to send Ekf (f) to S. In
contrast, given Ekf (f) ∈ S, whether ci needs to send Ekf (f)
again depends on if ci can find an online user who uploads
Ekf (f) previously. As a result, DSP can be formulated as

1− 1

`f/((1− p•)(`f + `k) + p•p
|L(sh(f))|
off (`f + `k))

, (1)

where `k is the bit length of the (encrypted) chunk key.
Memory overhead MSP. Since Ekf (f), Eki(kf ), chunk

hash, chunk key are necessary among all of the solutions, we
do not consider them as overhead. In this sense, MS

SP consists
of L and U . On the other hand, though users in SP serve as key
servers, users are only required to present their individual keys
in OPRF. Hence, SP does not in cur the memory overhead at
the user side; i.e., Mc

SP, is zero.
Communication overhead TSP. The numbers of bits re-

quired in the message exchanges of SP in different cases for
the uploading behaviors are shown in Fig. 5b. One can see
from Figs. 3 and 5b that if sh(f) cannot be found in L, then
OPRF interactions and the uploading of Ekf (f) and Eki(kf )
are necessary. In fact, given that sh(f) can be found in L,
unless all users in L(sh(f)) are offline, |L(sh(f))∩U| OPRF
interactions and |L(sh(f))∩U| duplicate checks are necessary.
Here, to ease the calculation, we assume that the probability
Pr[L(sh(f)) 6= ∅|f /∈ S] of L(sh(f)) 6= ∅ conditioned on
the existence of f in S is 1. With such an assumption, the
communication overhead TSP of SP can be approximated as

TSP ≈ `sh + p•(1− poff )(|L(sh(f)) ∩ U|(`oprf + `h))

+ (1− p•)(1− poff )(|L(sh(f)) ∩ U|(`oprf + `h) + `f + `k)

+ poff (`oprf + `f + `k), (2)

where `sh is the bit length of short hash and `oprf denotes the
number of bits required in the OPRF interaction.

Computation overhead CSP. Though Fig. 5b is used to
present different cases of TSP, it actually can also be used
to show the computation overhead. In particular, since the
communications are also associated with the corresponding
computing tasks, the computation overhead CSP can be, in a
form similar to TSP, approximated as

CSP ≈ Csh + p•(1− poff )(|L(sh(f)) ∩ U|(Coprf + Ch))

+ (1− p•)(1− poff )(|L(sh(f)) ∩ U|(Coprf + Ch) + Cf + Ck)

+ poff (Coprf + Cf + Ck), (3)

where Ch, Coprf , Cf , and Ck are the computation overhead
for the hash calculation, OPRF, chunk encryption, and key
encryption, respectively.



(a) SP (case 1 of Fig. 4a). (b) SP (case 2b of Fig. 4a). (c) SDedup.

Fig. 4: Our proposed XDedup solutions for data deduplication on encrypted data.
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Fig. 5: Overhead calculation in SP.

4) Protocol Transparency of SP: CSPs may be reluctant to
modify the internal configuration of the cloud for providing
stronger confidentiality, because of the engineering cost. Thus,
the solutions for the encrypted deduplication only make little
real impact. Nevertheless, with an additional software layer
between {cj} and S, one can tackle this adaptiveness and
applicability issues. Now, the difficulty in the design lies in
how to leave S unchanged but still provide the deduplication
functionality. Here, SP is inherently transparent in the sense
that, S in fact only provides the query service on L and U . As
a consequence, we can move L and U to fully decentralized
peer-to-peer (P2P) network (e.g., freenet) with the aim to have
a public space for {cj} to query L and U , achieving the
protocol transparency.

5) Design Flaws in Performance and Security of SP: SP
still suffers from the serious performance degradation, albeit
the computing tasks are simplified. The root cause for the
performance bottleneck lies in its extensive uses of OPRF.
More specifically, in case 2a of Fig. 3, ci has to perform OPRF
with |L(sh(f)∩U)| other users, causing considerable amount
of computing tasks, in addition to the reliance on heavyweight
cryptographic primitives.

Even worse, the more severe problem of SP is its secu-
rity flaw. Since any user can be a member in L, L can
be manipulated maliciously, and all of the members in L
are controlled by S (or S masquerades as users in L), ci
communicates with the fake users, dramatically degrading the
brute-force resiliency. Even if L and U are publicly available
or maintained in a P2P fashion, the security can only be
improved slightly because S can add a huge number of fake
users in L and U to increase the probability for these fake
users of being picked by ci. The security goes worse because
L is indexed by sh(f). The fake user chosen by ci actually
affects not only the subsequent users who upload f but also
all of users who upload f ′ with sh(f ′) = sh(f). In the worst
case, only 2`sh fake users are able to completely break the
security of SP.

B. SDedup

1) Basic Idea of SDedup: Here, we present SDedup, the
first brute-force resilient encrypted dedeuplication with the use
of only symmetric cryptography, to the best of our knowledge.
We make observations that PAKEDedup incurs significant
performance degradation while SP is flawed in the design that
every users ca, even without the common h(f), can participate
in the key generation OPRF [h(f),ka]. Thus, the idea behind
the design is to use Merkle puzzle [20] for checking whether
two users share the same h(f). In essence, Merkle puzzle, in
place of asymmetrically cryptographic tools such as OPRF,
PAKE and PHE, contributes to the performance speedup.

Offline Setting:
S maintains a lookup table L of records [sh(f), ci]
S maintains a online user list U
Online Execution:
01 ci → S : sh(f)
02 if L(sh(f)) = ∅ (case 1)
03 ci picks a random key kf
04 ci → S : Ekf (f) and Eki(kf )
05 S adds a record [sh(f), ci] to L
06 else
07 if L(sh(f)) ∩ U 6= ∅ (case 2a)
08 for each ca ∈ L(sh(f)) ∩ U
09 for each h(f ja) with sh(f ja) = sh(f)
10 ca picks a random number rja
11 ca → ci : Eh(fja)(r

j
a)

12 ci → ca : hh(f)(Dh(f)(Eh(fja)(r
j
a))

13 if hh(f)(rja) = hh(f)(Dh(f)(Eh(fja)(r
j
a))

14 ca → ci : Eh(f)(kf )
15 ci decrypts and derives kf
16 ci → S : Eki(kf )
17 if no ca ∈ L(sh(f)) ∩ U causes dedup
18 ci picks a random key kf
19 ci → S : Eki(kf ) and Eki(kf )
20 S adds a record [sh(f), ci] to L
21 else (case 2b)
22 ci picks a random key kf
23 ci → S : Ekf (f) and Eki(kf )
24 S adds a record [sh(f), ci] to L

Fig. 6: The protocol description of SDedup.

2) Detailed Description of SDedup: The algorithmic de-
scription of SDedup is shown in Fig. 6. SDedup and SP share



many settings; for example, users do not have direct communi-
cations. Furthermore, S maintains a publicly available online
user list U and lookup table L.

In SDedup, S still works like a broker who bridges ci and
the other users. In particular, if S receives sh(f) from ci but
cannot find a match in L (case 1 of Fig. 6), ci simply picks
a random chunk key kf to encrypt f and uses ki to encrypt
kf . Subsequently, ci uploads Ekf (f) and Eki(kf ) to S, which
then adds [sh(f), ci] to L.

Consider the case, where S can find at least one online user
ca who possesses sh(f) (case 2a of Fig. 6). There could be
cases, where ca does have sh(f), but it just happens to have
f ′ such that sh(f ′) = sh(f) due to the high collision rate of
short hash. Here, for each h(f ja) in the memory with short hash
sh(f), each ca sends Merkle challenges Eh(fja)(r

j
a)’s, where

f ja is the jth file owned by ca with sh(f ja) = sh(f) and rja
is a random number picked by ca for f ja , to ci, which then
replies the Merkle responses hh(f)(Dh(f)(Eh(fja)(r

j
a)))’s for

each Merkle challenge. Once ca finds the consistency between
the received Merkle response hh(f)(Dh(f)(Eh(fja)(r

j
a))) and

hash result hh(f)(rja) calculated by himself, ca is confident
that ci is in possession of f . If so, ca sends Eh(f)(kf ) to ci,
which then decrypts to derive kf and uploads Ekf (f) to S.
Otherwise, since no online user can assist the key generation,
this is similar to the case where no one uploads f before ci.
As a consequence, ci proceeds the same actions as in case 1.

Consider the case, where S cannot find any online user in
L(sh(f)) (case 2b of Fig. 6). This is the same as case 1.
Therefore, the procedures in case 1 also apply to case 2b. The
conceptual illustration of case 2b is depicted in Fig. 4c.

3) Security of L and U: Despite their similarity, our design
in SDedup eliminates the vulnerability of SP. The client-side
software is configured to send out heartbeat messages and
check the existence of its user ID on U periodically, preventing
it from being intentionally removed from U . On the ther hand,
though S can add fabricated users to U , this finds harmless
because, unless fake users happen to possess h(f), S and
fake users cannot know or manipulate kf used by ci. For
example, consider case 2a of Fig. 4c, where ci picks a fake
user ca without h(f). ca can always reports “duplicate found”
to ci, irrespective of the Merkle puzzles exchanged. So, ca
purposedly chooses a message z, claims z = Eh(f)(kf ) and
sends z to ci, which then performs the decryption Dh(f)(z).
From the adversary point of view, since ca is unaware of
h(f), even if z is chosen by ca, Dh(f)(z) could be a random
string for ca. Hence, we claim that the fake users in U do not
increase the adversary’s knowledge gain. The above arguments
can apply to L as well in a similar way. In short, the deletion
of records in L only damages the possibility of deduplication,
and the insertion of fake records in L has the same effect as
in the insertion of fake users in U . As a result, according to
the above arguments, we ensure the security of L and U .

4) Protocol Transparency of SDedup: Due to the similarity
to SP, SDedup is also inherently transparent in the sense that,
S in fact only provides the query service on L and U . As
mentioned in Sec. III-B3, since the adversary cannot introduce
arbitrary members in L, the security of L and U is guaranteed.

As a consequence, we can move L and U to fully decentralized
peer-to-peer (P2P) network (e.g., freenet) with the aim to have
a public space for {cj} to query L and U , achieving the
protocol transparency.

5) Performance Evaluation of SDedup: We follow the same
strategy in Sec. III-A3 for calculating the overhead.

Deduplication Percentage DSDedup. The occupied spaces in
different cases of uploading behaviors are shown in Fig. 7a.
In particular, we can see from Figs. 6 and 7a that if Ekf (f) /∈
S, ci always needs to send Ekf (f) to S. In contrast, given
Ekf (f) ∈ S, whether ci needs to send Ekf (f) again depends
on whether ci can find an online matching user who uploads
Ekf (f) previously. Hence, DSP can be formulated as

DSDedup = 1− 1

`f/(α1 + α2 + α3)
, (4)

where α1 = (1 − p•)(`f + `k), α2 = p•p
|L(sh(f))|
off (`f + `k),

and α3 = p•(1− p|L(sh(f))|off )(1− p|L(sh(f)∩U|own ).
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Fig. 7: Overhead calculation in SDedup.

Memory overhead MSDedup. MS
SDedup is also formulated as

|L| + |U|. On the other hand, users have to keep kf ’s and
h(f)’s, even after the chunk uploading. This can be attributed
to the fact that the effectiveness of SDedup replies on the
matching users performing Merkle puzzles on Eh(f)(r) and
forwarding Eh(f)(kf ). Hence, we claim that Mc

SDedup consists
of kf ’s and h(f)’s for all of f ’s uploaded by herself.

Communication overhead TSDedup. The numbers of bits
required in the message exchanges of SDedup are shown in
Fig. 7b. One can see from Figs. 6 and 7b that if sh(f) cannot
be found in L, then the uploading of Ekf (f) and Eki(kf ) is
necessary. In fact, given that sh(f) can be found in L, if all of
the matching users are offline, then the uploading of Ekf (f)
and Eki(kf ) with kf randomly picked by ci is necessary. On
the other hand, given that sh(f) can be found in L, if at
least one matching user is online, then |L(sh(f)∩U| Merkle
puzzles are exchanged. Here, we also assume Pr[L(sh(f)) 6=
∅|f /∈ S] = 1. The communication overhead TSP of SP can
be approximated as

TSP ≈ `sh + p•(1− poff )pown(|L(sh(f)) ∩ U|(`r + `h) + 2`k)

+ p•(1− poff )(1− pown)(|L(sh(f)) ∩ U|(`r + `h) + `f + `k)

+ (1− p•)(1− poff )(|L(sh(f)) ∩ U|(`r + `h) + `f + `k)

+ p•poff (`f + `k) + (1− p•)poff (`f + `k). (5)

Computation overhead CSDedup. Similarly, since the com-
puting tasks are also associated with the corresponding com-
munications, the computation overhead CSP can be, in a form



similar to TSP, approximated as

CSP ≈ Csh + p•(1− poff )pown(|L(sh(f)) ∩ U|(Cr + Ch) + 2Ck)

+ p•(1− poff )(1− pown)(|L(sh(f)) ∩ U|(Cr + Ch) + Cf + Ck)

+ (1− p•)(1− poff )(|L(sh(f)) ∩ U|(Cr + Ch) + Cf + Ck)

+ p•poff (Cf + Ck) + (1− p•)poff (Cf + Ck). (6)

C. XDedup

1) Basic Idea of XDedup: SDedup and PAKEDedup work
under the CaS framework, which is helpful in eliminating
the need of independent servers. Nevertheless, we find three
common drawbacks shared by solutions under CaS framework.
First, the online user status will be exposed due to the use
of U , reducing users’ willingness in using the cloud storage
services. Second, a tremendous amount of communications
and computation efforts are required for the uploader and
matching users to determine whether they share the same
h(f). Third, each user needs to keep h(f) and kf for each
f uploaded by herself, imposing unnecessary overhead. In
particular, the user who deletes h(f) and kf from the local
memory either may be unable to perform duplicate check (e.g.,
PAKE in PAKEDedup and Merkle puzzle in SDedup) or incurs
more communications and computations to retrieve them from
S on demand.

Aiming to tackle these problems, we propose XDedup as
the first brute-force resilient symmetrically encrypted data
deduplication involving only the uploader and cloud. In par-
ticular, XDedup goes back to the simplest scenario, where the
uploading and downloading of f rely solely on the interactions
between ci and S. Basically, the design of XDedup is similar
to SDedup, except that the operations performed by matching
users ca’s in SDedup are shifted to S.

2) Detailed Description of XDedup: The detailed descrip-
tion of XDedup is shown in Fig. 8. XDedup has its unique
setting; S is assumed to maintain an extended lookup table
L+. L+ in XDedup is similar to L, is indexed by sh(f), but
contains more information (e.g., hh(f)(r), Eh(f)(r), Eh(f)(kf ))
for duplicate checks via Merkle puzzle and key exchange.
Nevertheless, S here does not need to maintain U , keeping
the user online status private.

In XDedup, after receiving sh(f) from ci, S looks for a
match in L+ (case 1 of Fig. 8). The case of L+(sh(f)) = ∅,
where L+(sh(f)) returns a set of 3-tuples of the form
[hh(f)(r), Eh(f)(r), Eh(f)(kf )], and L+(sh(f))[i] denotes the
ith element of L+(sh(f)), implies that no Ekf (f) correspond-
ing to sh(f) has been uploaded previously. Thus, ci simply
picks a random chunk key kf to encrypt f and uses ki to
encrypt kf . Subsequently, ci uploads Ekf (f) and Eki(kf ), and
the necessary materials such as hh(f)(r), Eh(f)(r), Eh(f)(kf )
to S. Here, the former two items hh(f)(r) and Eh(f)(r) are
particularly for Merkle puzzle used to make sure whether ci
has the same f , while the last item Eh(f)(kf ) is used to make
sure ci with f can derive kf . The conceptual illustration of
case 1 of XDedup is shown in Fig. 9a.

Consider the case of L+(sh(f)) 6= ∅, where S can find
at least one match of sh(f) in L+ (case 2 of Fig. 8). S

Offline Setting:
S maintains a lookup table L+

Online Execution:
01 ci → S : sh(f)
02 if L+(sh(f)) = ∅ (case 1)
03 ci picks a random key kf and a random value r
04 ci → S : hh(f)(r), Eh(f)(r), and Eh(f)(kf )
05 L+ = L+ ∪ [sh(f), 〈hh(f)(r), Eh(f)(r), Eh(f)(kf )〉]
06 ci → S : Ekf (f) and Eki(kf )
07 else (case 2)
08 S → ci : {Eh(fj)(rj)}Eh(fj)(rj)∈L+(sh(f))[2]

09 ci → S : {hh(f)(Dh(f)(Eh(fj)(rj)))}
10 if ∃π s.t. hh(fπ)(rπ) = hh(f)(Dh(f)(Eh(fπ)(rπ)))
11 S → ci : Eh(fπ)(kπf )
12 ci obtains kf by calculating Dh(f)(Eh(fj)(kπf )))
13 ci → S : Eki(kf )
14 else
15 ci picks a random key kf and a random value r
16 ci → S : hh(f)(r), Eh(f)(r), and Eh(f)(kf )
17 L+ = L+ ∪ [sh(f), hh(f)(r), Eh(f)(r), Eh(f)(kf )]
18 ci → S : Ekf (f) and Eki(kf )

Fig. 8: The protocol description of XDedup.

(a) XDedup (negative response). (b) XDedup (positive response).

Fig. 9: Our proposed XDedup solution.

extracts and sends all of the ciphertexts Eh(fj)(rj)’s from
L+(sh(f))[2] to ci, where f j denotes the jth possibility
of f with the same sh(f) and rj is a random number for
f j . For each received Merkle challenge, ci performs the
decryption and then hash calculation, both with h(f) as the
key. After that, ci replies Merkle responses to S. Once S
finds the consistency between the received Merkle response
hh(f)(Dh(f)(Eh(fj)(rj))) and the Merkle response hh(fj)(rj)
kept in the memory, S has confidence that the deduplication
can take place on Ekf (f). If so, S sends Eh(f)(kf ) to ci,
which then decrypts to derive kf and uploads Ekf (f) to S.
Otherwise, this is equivalent to the case, where all of Ekf (f)’s
in S happen to have short hash sh(f) and no one uploads
Ekf (f) previously. Hence, ci uploads Ekf (f) as in case 1.
The conceptual illustration of case 2 of XDedup is shown
in Fig. 9b. It is worthy to note that XDedup can achieve
perfect deduplication (see Sec. II-B) because ci with f can
always receive Eh(f)(r) and the duplicate, if any, can always
be detected.

3) Performance Evaluation of XDedup: Here, we also con-
duct the same strategy in Sec. III-B to calculate the overhead.

Deduplication Percentage DXDedup. The occupied spaces in
different cases of the uploading behaviors in XDedup are



shown in Fig. 10a. In particular, we can see from Figs. 8
and 10a that if Ekf (f) /∈ S, ci needs to send Ekf (f) to S,
while if Ekf (f) ∈ S, the uploading of Ekf (f) can always be
omitted. As a result, DXDedup can be formulated as

DXDedup = 1− 1

`f/(((1− p•)(`f + `k)))
. (7)
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Fig. 10: Overhead calculation in XDedup.

Memory overhead MXDedup. Since Ekf (f) and Eki(kf ) are
necessary among all of the solutions, we do not consider them
as overhead. In this sense, MS

XDedup = |L+| only. On the other
hand, since only ci communicates with S, ci does not keep
information after finishing the uploading. Hence, we claim that
the memory overhead at the user side, Mc

SP, is zero.
Communication overhead TXDedup. The numbers of bits

required in the message exchanges of XDedup are shown
in Fig. 10b. One can see from Figs. 8 and 10b that in the
case of L(sh(f)) = ∅, ci has to spend (2`r + 2`k + `f )
bits to upload Ekf (f), Eki(kf ), and the required information
in L+. In contrast, given L(sh(f)) 6= ∅, as |L+(sh(f))[2]|
Merkle puzzles are inevitably needed, the exact number of
bits required in the communication depends on whether the
chunk is in S. Here, to ease the calculation, we still assume
Pr[L(sh(f)) 6= ∅|f /∈ S] = 1 and Pr[L(sh(f)) = ∅|f /∈
S] = 0. The communication overhead TSP of SP can be
approximated as

TXDedup = p•((`r + `r)|L+(sh(f))[2]|+ `k + `k)

+ (1− p•)((`r + `r)|L+(sh(f))[2]|+ 2`r + 2`k + `f ). (8)

Computation overhead CXDedup. Similarly, the computa-
tion overhead CSP can be approximated as

CXDedup = p•((Cr + Cr)|L+(sh(f))[2]|+ Ck + Ck)

(1− p•)((Cr + Cr)|L+(sh(f))[2]|+ 2Cr + Ck + Cf + Ck).
(9)

D. Implementation Issues

We consider two minor implementation issues in this sec-
tion. In particular, we examine the online brute-force resiliency
in Sec. III-D1 and the overhead reduction based on data
characteristics in Sec. III-D2.

1) Online Brute-Force Resiliency: The online brute-force
vulnerability is due to the nature of the deduplicated storage
in the sense that the adversary can always know the duplicate
check result and then infer the sensitive content by repeat-
edly making queries on candidate chunks. Below we adopt
two heuristic approaches to counteract the online brute-force
attack.

Rate limiting. The rate limiting approach has been used
by [3], [14] to resist online brute-force attack. In particular,
we consider per-file rate limiting [14] and adapt it to be per-
chunk rate limiting and fit in our context. The rationale behind
the design is to ensure that the uncertainty of a predictable
chunk is larger than the number of duplicate checks applied
on the potential online users. Let RLa, RLi, and RLS be
the rate limits for {ca}, ci, and S, respectively. Let m and
x be the min-entropy of f and the number of users who
potentially possess f , respectively. The above notion cab be
instantiated as the constraints 2m > 2`shx(RLi + RLa) in
SDedup and 2m > 2`sh(RLi +RLS) in XDedup. Despite its
online brute-force resiliency, such a defense actually sacrifices
the deduplication effectiveness. This can be attributed to the
fact that the uploading of a highly popular chunk may easily
exceed the rate limit, resulting in the un-deduplicatable chunk.

User Unawareness of duplicate check result. We find
that the online brute-force stems from the duplicate result
awareness of the uploader ci. Thus, once the deduplication
system is designed such that ci is unaware of duplicate
result result, one can avoid the online brute-force attack. We
also find that the side channel prevention in deduplicated
storage and our brute-force resiliency design actually share
the same objective. Thus, the existing solutions in side channel
prevention [13], where each chunk f is associated a random
deduplication threshold tf and a counter cf that indicates the
number of copies in S, can be used in SDedup and XDedup
to enhance their online brute-force resiliency. Specifically, for
the uploading request of f , a duplicate is detected if cf ≥ tf
and is undetected otherwise. The use of tf ’s, to some extent,
obfuscates the duplicate result. Nevertheless, this approach
shares similar downside with rate limiting; in the case of
cf < tf , actually this approach resist the online brute-force
by sacrificing dedeuplication effectiveness.

2) Overhead Reduction via Rate Limiting: The uploader ci
in PAKEDedup, in theory, needs to communicate with a large
number of ca’s to derive kf . Nevertheless, in practice, via
simulations, Liu et al. [14] demonstrate that only a few (e.g.,
two) PAKE runs suffice to derive kf with high probability.
Thus, rate limiting constraint can be strict. The reason behind
the surprising result is that the real world data usually follows
power law distribution (a.k.a., Zipf distribution) such that most
of the uploading requests for files that have already been
uploaded can find a matched file within the rate limit. The
performance of SDedup and XDedup can also be benefited
by taking advantage of Zipf data distribution. In particular, in
SDedup and XDedup, we inherently assume that all of Merkle
challenges are sent to ci at once. Now, ca in SDedup and S
in XDedup instead send Merkle challenges to ci based on
descending order of chunk popularity. Since chunk popularity
is Zipf distributed, sending Merkle challenges in this way
ensures that popular uploaded chunks have a much higher
likelihood of being selected and thus deduplicated, achieving
the same benefit of overhead reduction.

IV. SECURITY ANALYSIS

Inspired by [14], below we formally prove the security of
SDedup and XDedup via simulation-based approach (or say,



ideal/real paradigm) widely used in theoretical cryptography
community [15]. The general strategy of ideal/real paradigm
is to define ideal and real models, where ideal world leaks
no privacy. If one can prove that these two models are
computationally indistinguishable, then one may claim the
security of real world. In the following, we follow the above
general strategy to prove the security of SDedup and XDedup.

A. Security of SDedup

Recall that we consider malicious model. We define the
ideal functionality Fdedup[3+] of deduplicating encrypted data
in a multiparty protocol in Fig. 11. The term “3+” in
Fdedup[3+] stresses that there are three or more participants.
Three types of roles, uploader ci, cloud S, and matching users
{ca}, participate in the protocol. Here, if SDedup can imple-
ments Fdedup[3+], we claim that SDedup leaks no information
about f and kf , and only S and ci know duplicate check result.
Theorem 1 shows that SDedup can implements Fdedup[3+].

Input:
(1) The uploader ci has a chunk f ;
(2) Each online user ca has inputs fa and kfa ;
(3) S’s input is empty.

Output:
(1) ci leans chunk existence status.
ci derives a chunk key kf for f . If f = fa for
some online user ca, then kf = kfa . Otherwise,
ci generates a random kf ;
(2) Each ca knows whether f = fa;
(3) S obtains Ekf (f) if Ekf (f) /∈ S and obtains
nothing otherwise. Moreover, S learns the
chunk existence status of Ekf (f); if Ekf (f) already
has a copy Ekfj (fj) in S, S learns the index j.

Fig. 11: The ideal functionality Fdedup[3+].

Theorem 1. SDedup implements Fdedup[3+] with security
against malicious adversaries, if the encryption Ek(·) is se-
mantically secure, the hash function h(·) and MAC hk(·) are
modeled as a random oracle.

Proof: (Sketch) Our objective is to show the execution of
SDedup in the real model is computationally indistinguishable
from the execution of Fdedup[3+] in the ideal model. Our proof
strategy is to construct a simulator in the ideal model that can
obtain messages that the corrupt parties would generate or
send in the real model. Such a simulator is aimed to generate a
message transcript (IDEAL) during the ideal model execution
and ensures that it is computationally indistinguishable from
the (REAL) collected during the real model execution.

Corrupt ci: We first construct a simulator for ci given
honest S and {ca}. The simulator operates as follows. The
simulator records the calls that ci makes to hash functions
and the recorded tuples are of the form {(f, h(f), sh(f))}.
On receiving sh from ci, the simulator chooses a set of
users U = {cb1 , . . . , cb|U|} with ci /∈ U , pretending to
be chosen users to generate random numbers rb1 , . . . , rb|U|

and sending A = {Ek(rb1), . . . , Ek(rb|U|)} with a ran-
dom key k, to ci. With the knowledge of h(f) from
ci, the simulator sends B = {hh(f)(rb1), . . . , hh(f)(rb|U|)}
to {ca}. Now, the simulator invokes Fdedup[3+] with f .
From Fdedup[3+], the simulator either obtains kf and knows
“duplicated detected,” or know “no duplicate.” After that,
the simulator prepares {h(Ek(rb1)), . . . , h(Ek(rb|U|)}. More-
over, the simulator sends C = Eh(f)(kf ) to ci if “du-
plicated detected” from Fdedup[3+] and sends an empty
string as C to ci otherwise. After the above construction,
the transcript IDEALci = 〈A,B,C〉 with corrupt ci and
REALci = 〈{Eh(f)(r), hh(f)(Dh(f)(Eh(f)(r)))}, Eh(f)(kf )〉
are identically distributed.

Corrupt S: The simulator chooses a set of users
U = {cb1 , . . . , cb|U|} with ci /∈ U and pretends to be
chosen users to generate and send random numbers
A = {Ek(rb1), . . . , Ek(rb|U|)} with a random key as k
and random numbers as rbi ’s, to ci. The simulator sends
B = {h(rb1), . . . , h(rb|U|)} to {ca}. Then, the simulator
invokes Fdedup[3+] and obtains index j if f has a copy
in S and obtains Ekf (f) otherwise. Then, the simulator
sends a random string as C to ci. It sends another
random string of length `f as D to S if cj /∈ U and
sends an empty string as D if cj ∈ U . After the above
construction, IDEALS = 〈A,B,C,D〉 and REALS =
〈Eh(f)(r), hh(f)(Dh(f)(Eh(f)(r))), Eh(f)(kf ), Ekf (f)〉 are
identically distributed.

Corrupt {ca}: The simulator, on behalf of {ca}, generates
and sends random numbers A = {Ek(rb1), . . . , Ek(rb|U|)} with
k as a random key and rbi ’s are random numbers, to ci. The
simulator sends B = {h(rb1), . . . , h(rb|U|)} to {ca}. Then,
the simulator invokes Fdedup[3+] and obtains the information
that either fa = f or fa = f . If fa = f , the simulator sends
a random string as C to ci. If fa 6= f , {ca} does nothing.
After the above construction, IDEAL{ca} = 〈A,B,C〉 and
REAL{ca} = 〈Eh(f)(r), hh(f)(Dh(f)(Eh(f)(r))).Ekf (f)〉 are
identically distributed.

A Collusion of Corrupt ci and Corrupt S: The simulation
is similar to the case of a corrupt S, except that S is able to
know kf after invoking Fdedup[3+]. Therefore, the simulation
begins as the proof of a corrupt S and the simulator extracts
ci’s input f . Then it invokes Fdedup[3+] with input f . With
the knowledge of f and kf , the simulator can easily perform
the same operations as in the case of corrupt ci or S.

A Collusion of Corrupt S and Corrupt {ca}: The simula-
tion is similar to the case of a corrupted uploader, except that
S might choose a subset of {ca}.

B. Security of XDedup

Recall that we consider malicious model. We define the
ideal functionality Fdedup[2] of deduplicating encrypted data in
a multiparty protocol in Fig. 12. Two types of roles, uploader
ci and cloud S participate in the protocol. Here, if XDedup
can implements Fdedup[2], we claim that XDedup achieves the
same security as Fdedup[2].

Theorem 2. XDedup implements Fdedup[2] with security
against malicious adversaries, if the encryption Ek(·) is se-



Input:
(1) The uploader ci has a chunk f ;
(2) S’s input is empty.

Output:
(1) ci learns chunk existence status.
ci derives a chunk key kf for f . If f = fa,
then kf = kfa . Otherwise, ci generates a random kf ;
(2) S obtains Ekf (f) if Ekf (f) /∈ S.
Moreover, S learns the chunk existence status
of Ekf (f); if Ekf (f) already
has a copy Ekfj (fj) in S, S learns the index j.

Fig. 12: The ideal functionality Fdedup[2].

mantically secure, the hash function h(·) and MAC hk(·) are
modeled as a random oracle.

Proof: (Sketch) We are aimed to show the execution of
XDedup in the real model is computationally indistinguishable
from the execution of Fdedup[2] in the ideal model. Similarly,
our proof strategy is to construct a simulator in the ideal
model that can obtain messages that the corrupt parties would
generate or send in the real model. Such a simulator is
aimed to generate a message transcript (IDEAL) during the
ideal model execution and ensures that it is computationally
indistinguishable from the (REAL) collected during the real
model execution.

Corrupt ci: The simulator chooses a random number
z and sends A = {Er′1(r

′′
1 ), . . . , Er′z (r

′′
z )} to ci, where

r′i’s and r′′i , 1 ≤ i ≤ z are random numbers. The
simulator invokes Fdedup[2] with f . It either knows
“dedeuplication occurs” and obtains kf , or knows
“dedeuplication not occurs.” The simulator prepares
and sends B = {h(Er′1(r

′′
1 )), . . . , h(Er′z (r

′′
z ))} to S.

With h(f) from corrupt ci and kf from Fdedup[2], the
simulator sends C = Eh(f)(kf ) to ci if dedeuplication
occurs and sends nothing as C to ci otherwise.
Afterwards, the simulator sends D = Ekf (f) to S if
dedeuplication occurs and sends a random string as D to
S otherwise. After the above construction, the transcript
IDEALci = 〈A,B,C,D〉 with corrupt ci and REALci =
〈{Eh(f)(r), hh(f)(Dh(f)(Eh(f)(r)))}, Eh(f)(kf ), Ekf (f)〉 are
identically distributed.

Corrupt S: The simulator sends a random string of length
`sh to S. Then, the simulator chooses a random number
z and sends A = {Er′1(r

′′
1 ), . . . , Er′z (r

′′
z )} to ci, where r′i’s

and r′′i , 1 ≤ i ≤ z are random numbers. The simulator
prepares and sends B = {h(Er′1(r

′′
1 )), . . . , h(Er′z (r

′′
z ))}

to S. The simulator invokes Fdedup[2]. It either knows
“dedeuplication occurs” and an index j, or “dedeuplication
not occurs” and Ekf (f). The simulator sends a random
string of length `k as C to ci if “dedeuplication occurs”
and sends an empty string as C to ci otherwise. The
simulator sends D = Ekf (f) obtained from Fdedup[2] to S
if “dedeuplication not occurs” and an empty string as D
to S otherwise. After the above construction, the transcript
IDEALci = 〈A,B,C,D〉 with corrupt ci and REALci =

〈{Eh(f)(r), hh(f)(Dh(f)(Eh(f)(r)))}, Eh(f)(kf ), Ekf (f)〉 are
identically distributed.

V. NUMERICAL SIMULATIONS

In this section, we conducted numerical simulations to eval-
uate the performance of our proposed SDedup and XDedup
solutions, based on the deduplication percentage and commu-
nication cost described in Sec. II-B. The memory overhead
and computation overhead are skipped, because the former
is related to the protocol configuration in a straightforward
manner while the computation shares the similar pattern to
the communication.

During our numerical simulations, the number |L(sh(f))|
of matching users in L is fixed to be 4. We inherently assume
the use of AES as the only encryption in the encryption
deduplication; no public key cryptography is used. In addition,
SHA512 is used as the cryptographic hash function. As a
consequence, we set `h = 512. The length `sh of short hash is
fixed to be 32. The lengths `k and `r of the (encrypted) chunk
keys and (encrypted) random numbers are both configured to
be 512. The finite field in OPRF calculation is assumed to
be of length 1024 bits and therefore `oprf is set to be 2048
for simplicity. In what follows, we consider how parameters
`f , poff , and pown have impact on the deduplication percent-
age and communication cost of the proposed deduplication
schemes. Note that we show the communication cost in terms
of bandwidth saving; the ratios TX/`f are shown in Figs.
14, 16, and 18 to put the emphasis on the communication
reduction, compared to the case, where no deduplication is
used. In this section, the overhead reduction via rate limiting
in Sec. III-D2 is not considered.

A. Impact of `f
In Figs. 13 and 14, we consider `f from 212 to 225 bits. One

can see from Fig. 13 that lower `f has negative impact on the
deduplication percentage. This can be attributed to the fact that
all of the encrypted deduplication schemes involves storing
encrypted chunk keys and other indexes (e.g., L and L+).
Therefore, once `f is small, the additional effort for storing
encrypted chunk keys and other indexes becomes burdensome,
reducing the storage gain from deduplication.

The communication cost exhibits the similar behavior; one
can easily see from Fig. 14 that lower `f has adverse impact on
the communication cost. In addition, a closer look at Figs. 14a
and 14b reveals the different communication gains from SP
and XDedup. In Fig. 14a, where users are often online, since
SP spend less additional exchanged bits, SP’s communication
gain outperforms XDedup’s one. However, in the case where
users are not always online, though XDedup needs to add
more materials to L+, XDedup’s communication gain turns to
be superior to SP’s communication gain.

B. Impact of poff
Figs. 15 and 16 show how poff affects the deduplication

percentage and communication cost. The result is, in fact,
straightforward; since the deduplication effectiveness of SP
and SDedup heavily relies on the help from online users, less
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Fig. 13: Dedup percentage with varying `f .
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Fig. 14: Communication cost with varying `f .

online users can simply be translated to the worse dedupli-
cation percentage and communication cost. In particular, in
the extreme case of no online user (poff = 1), both Figs.
15 and 16 show that SP and SDedup degenerate to the case
of no deduplication, in both the deduplication percentage and
communication cost.
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Fig. 15: Dedup percentage with varying poff .
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Fig. 16: Communication cost with varying poff .

C. Impact of pown
Obviously, only the performance of SDedup will be influ-

enced by different pown’s. Surprisingly, we observe from Fig.

17 that the DSDedup remains seemingly stable with varying
pown’s. In fact, different pown’s has impact on DSDedup (see
α3 of Eq. 4); however, since DSDedup is dominated by α1

and α2 of Eq. 4, the differences of deduplication percentages
among different pown’s become vague here.

On the contrary, different pown’s contribute the considerable
impact to TSDedup, shown in Fig. 18. One can see from
Figs. 18a and 18b that the communication cost of SDedup
is declining with the increased pown.
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Fig. 17: Dedup percentage with varying pown.
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Fig. 18: Communication cost with varying pown.

D. Discussion

From the above numerical simulations, we find that XDedup
serves as the most stable encrypted deduplication, in terms of
both its security and performance guarantees under different
system settings. In particular, if the chunk size is more than
217 bits‡, XDedup could be the choice with first priority.
Moreover, XDedup could be the best choice when users in the
underlying deduplication system are frequently disconnected.

Nevertheless, XDedup has its weakness in offering protocol
transparency (see. Sec. I-D). As the cloud storage backend is
required to be reconfigured in XDedup, we see from Table
I that only few solutions (e.g., CE, MLE, DupLESS, and
ClouDedup) satisfy the protocol transparency requirement.
Since users can enjoy the storage gain without compromising
the data privacy in encrypted deduplication with protocol
transparency, despite its inferiority in additional privacy leak-
age and deduplication effectiveness, SDedup still proves its
value in the transient state toward the full support of encrypted
deduplication on cloud storages.

‡The chunk size in Dropbox client-side software is 4MB (225 bits).



VI. CONCLUSION

This paper proposes SDedup and XDedup schemes. Par-
ticularly, XDedup serves as the first encrypted data dedu-
plication with only symmetrically cryptographic two-party
interactions. The security has been proved rigorously via
ideal/real paradigm. We also demonstrate the great perfor-
mance of the proposed solutions via the analysis and numerical
simulations. All of the salient features prove the practicality
of our proposed SDedup and XDedup solutions.
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