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Abstract. We revisit the problem of estimating Renyi Entropy from
samples, focusing on the important case of collision entropy.

With n samples we approximate the collision entropy of X within an

additive factor of O
(

22∆ log
1
2 (1/ε)

)
with probability 1− ε, where ∆ is a

known (a priori) upper bound on the difference between Renyi entropies
of X of order 2 and 3 respectively.

In particular, we simplify and improve the previous result on estimat-
ing collision entropy due to Acharya et al. (SODA’15) up to a factor
exponential in the entropy gap.

We also discuss applications of our bound in anomaly analysis, namely
(a) detection of attacks against stateless sources in TRNGs, and (b)
detection of DDoS attacks at network firewalls.
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1 Introduction

1.1 Collision Entropy and its Applications

Renyi Entropy is a useful measure of randomness which appears in many
applications where the use of Shannon Entropy is insufficient. Particu-
larly important is the case of Renyi entropy of order two, called collision
entropy because it bounds the collision probability of the distribution.
Applications include measuring the quality of random number genera-
tors [OW99,Knu98], determining the number of unbiased bits extractable
from physical sources [BBCM95,IZ89], testing closeness of discrete distri-
butions [BFR+13,CDVV14], testing graph expansion [GR11], complexity
of reconstructing DNA sequences [MBT12] and anomaly detections in
context of network security [XLZ11] or financial markets [JKS12].



1.2 Estimating Collision Entropy

Because of these applications, it is important to have a method of ef-
ficiently estimating collision entropy from available data samples. The
problem reads informally as follows

Efficient entropy estimating: Find an algorithm which pro-
vides an approximation to the collision entropy of unknown dis-
crete distribution X, based on independent samples X1, . . . , Xn,
with possibly small sample size, space and number of public coins.

Techniques for estimating collision entropy A naive way (which can be
applied to any entropy notion) is to approximate the probability mass
function based on empirical frequencies which yields the complexity of
O(|X |) samples where X is the set of outcomes of X (referred to as the
alphabet), with memory usage O(|X |). For collision entropy we can do
slightly better, namely estimate the collision probability by counting col-
lisions between consecutive samples. This method, referred to as collision
counting, needs also O(|X |) samples but use constant memory [Skó16].
However for applications involving real-time data analysis optimizing run-
ning time is more important.

The state of the art regarding fast Renyi entropy estimators has been
recently established by the work [AOST15] where it is shown that in
particular the complexity of estimating collision entropy is actually only
O(|X |

1
2 ) with O(|X |) memory1 Interestingly, in [CKOS15] it is further

shown that even allowing queries to the probability mass function doesn’t
help to decrease this complexity.

For completeness, we present the algorithm in pseudocode (see Algo-
rithm 1). Note that the sample size in the algorithm has to be sufficiently
big (bounds discussed below) in order to obtain a desired approximation.

The algorithm explanation The algorithm splits the input sequence into
blocks, and for each block the collision probability of the source distribu-
tion is estimated as in Line 1.7. Next, the median of block estimates is
computed in Line 1.8, in order to amplify previous estimates. The result
entropy estimate is computed as the negative logarithm of the estimated
collision probability in Line 1.9.

1 The hidden constant grows with approximation accuracy, for the sake of simplicity
we omit the exact formula here.



Algorithm 1: Collision Entropy Estimator
Input : source alphabet X

number of independent samples n,
samples x1, . . . , xn from an unknown distribution X on X ,
accuracy parameter δ
maximal statistical error ε

Internal: an array [n(x)]x∈X for storing frequencies

Output : A number Ĥ which approximates the collision entropy H2(X)

1.1 N ← dc · 2
1
2
Mδ−2e /* Set the block length */

1.2 `← bn/Nc /* Set the number of blocks */

1.3 for j = 1, . . . , n/N do
1.4 I ← [(j − 1)N + 1 . . . (j − 1)N ] /* get the next block */

1.5 foreach i ∈ I do
1.6 n(xi+1) = n(xi) + 1 /* update frequencies */

1.7 q̂j ← 1
m(m−1)

(∑
x∈X n(x)2 −m

)
/* block estimate */

1.8 q̂ ← FindMedian(q̂1, . . . , q̂`) // amplify block estimates

1.9 return − log q̂

1.3 Our Contribution

In this paper we provide a simpler analysis of the original algorithm from
[AOST15], obtaining better bounds for settings where a non-trivial bound
on the entropy is known. Thus, our improvement is twofold:

(a) We present a more elementary analysis of the algorithm, using only
the Chebyszev and Chernoff-Hoeffding Inequalities. In particular we
get rid of the reduction to Poisson Sampling, used in the original
work [AOST15]

(b) We obtain a quantitative improvement for the necessary sample size.
This applies to settings where entropy is a-priori bounded (in turn
the work [AOST15] is focused on completely unknown distributions
and couldn’t optimize its result further). Our improvement is up to
a factor exponential in the alphabet size.

In order to formulate our result, we need a notion of (δ, ε) approxi-
mation, which with respect to an approximation algorithm states that it
provides an estimation within an additive error δ and fails with probabil-
ity at most ε (see Section 2 for a formal definition).

Theorem 1. There exists a universal constant c such that Algorithm 1
provides a (δ, ε)-approximation to collision entropy with the necessary



number of samples

n = O
(

22(H2(X)−H3(X))δ−2 log(1/ε)
)

and memory O (|X |), where H2 and H3 are Renyi entropies of X of order
2 and 3, respectively.

This statement is actually much stronger than we need in our appli-
cations, which exploit the following corollary

Corollary 1 (Better Complexity with Bounded Entropy). Sup-
pose that H2(X) 6 M , then the necessary number of samples is n =

O
(

2
1
2
Mδ−2 log(1/ε)

)
.

Remark 1 (Concluding the previous bound). To see that our result im-

proves [AOST15] note that H2(X) 6 log |X | and thus 2
1
2
H2(X) 6 |X |

1
2 .

A comprehensive comparison of our result with respect to other tech-
niques is given in Table 1.

authors number of samples memory technique

folklore (see [VSH11]) O(|X |) O(|X |) naive plug-in estimator

folklore (see [Skó16]) O(|X |) O(1) collisions counting

[AOST15] O(|X |
1
2 ) O(|X |) Algorithm 1

this work O
(

2
1
2
M
)
, H2(X) 6M O(|X |) Algorithm 1

Table 1: Different techniques of estimating collision entropy, for a distri-
bution X over an alphabet X . For simplicity, constant approximation and
probability errors are assumed.

1.4 Related works

Acharya at al. [AOST15] The current state of the art with respect to
complexity of entropy estimators is summarized in the work [AOST15],
where the authors construct estimators for Renyi entropy of arbitrary
order and show that they are generally optimal in terms of complex-

ity. Basically, they show that O
(
|X |1−

1
α

)
samples are sufficient for fixed

accuracy and error parameters2. Their proof involves Poisson Sampling
techniques, used to calculate higher moments of the estimator.

2 Where the hidden constant equals δ−2 log(1/ε)



Online Shannon Entropy Estimators [LPR11] Lauradoux at al., having
cryptographic applications in mind, propose an estimator for Shannon
Entropy, which operates in constant memory for a given accuracy param-
eter. Unfortunately Shannon Entropy is much weaker than other Renyi
Entropies, and in particular is insufficient for cryptographic applications
like evaluating random number generators or extracting randomness.

Relations to streaming algorithms. Since Renyi entropy is defined in terms
of moments of a probability distribution (high collision probabilities),
the problem of estimating entropy from samples looks related to a well-
studied problem of estimating frequency moments in a stream. Unfor-
tunately streaming algorithms estimate the frequency moments of input
data whereas in our case input is only a sample of the actual data, which
adds an extra bias. Moreover, without biased-correction techniques the
resulting entropy estimate is negatively-biased 3, which is a serious issue
for security applications, where entropy cannot be underestimated.

1.5 Applications

We describe two applications, both in settings when collision entropy
needs to be measured in real time on the basis of data samples, and every
substantial decrease in entropy needs to be quickly detected and reported.
The one is the so called testable design of random number generators, and
the second one is discovering DDoS attacks by packet filtering. Details
are discussed in Section 4.

1.6 Organization

Necessary notions and auxiliary results are explained and stated in Sec-
tion 2. The proof of Theorem 1 appears in Section 3. Applications to
random number generators and DDoS detection systems are discussed in
Section 4. We end with conclusions in Section 5.

2 Preliminaries

In this section we explain necessary notations and conventions. All log-
arithms are taken at base 2. For any two integers k1, k2 by [k1, k2] we

3 If we calculate exactly frequencies p̂(x) = 1
n

∑
i 1{Xi=x}, and plug them into the

entropy pα =
∑
x p(x)α for α > 1, we obtain a biased estimator, more precisely

Ep̂α >
∑
x p(x)α by the Jensen inequality. For the Renyi entropy of order α defined

as Hα = − log pα the inequality is reversed, yielding a negative bias.



understand the sett of all integers between k1 and k2, endpoints included.
Less standard notions are defined below

Definition 1 (Moments). The alpha-th moment of a non-negative dis-
crete function f is defined as fα =

∑
x f(x)α.

Below we define the notion of Renyi entropy for any order α > 1.

Definition 2 (Renyi Entropy). The Renyi entropy of order α of a
discrete probability distribution p(·) is defined as

Hα(p) =
∑
x

p(x)α.

For a discrete random variable X we define Hα(X) = Hα(pX) where pX
is the distribution of X.

We also refer to p2 as the collision probability of p, and H2(p) = − log p2
as the collision entropy of p.

Definition 3 (Entropy Estimator). Let X be a fixed finite alphabet.
We say that an algorithm A, which receives n symbols on input and out-
puts a real number, provides a (δ, ε)-approximation to collision entropy,
if for any random variable X we have

Pr
x1,...,xn←X

[A(x1, . . . , xn) > H2(X)− δ] > 1− ε

where samples x1, . . . , xn are drawn from X uniformly and independently.

Lemma 1. We have H3(X) > 3
4H2(X) for any X.

Proof. By the well-known inequality for lp-norms we have(∑
x

p(x)2

) 1
2

>

(∑
x

p(x)3

) 1
3

which rewritten in terms of entropies is precisely what is claimed.

3 Main Result

We first given an overview of the proof and state key lemmas. The proof
of lemmas below are given at the end of this section.

We start by showing that the estimates Line 1.7 approximate collision
probability p2 with a relative error δ and the error probability at most 1

3
with O

(
p3p
−2
2 δ−2

)
samples.



Lemma 2 (Block Estimator Accuracy). There exists a constant c1
such that for ` = c1 · p3p−22 δ−2 (defined as in Algorithm 1) The numbers
q̂j in Line 1.7 of Algorithm 1 satisfy

|q̂j − p2| 6 δ · p2

with probability 2
3 over the choice of samples x1, . . . , xn.

The previous lemma guarantees that we have good estimates (the
error being smaller than δ) for each j-th block where j = 1, . . . , N/n,
each time with probability at least 2

3 . Now we show that the median of
these estimates amplifies the error probability.

Lemma 3 (Median Amplifies Block Estimators). There exists a
constant c2 such that if n/N < c2 log(1/ε) then the number q̂ in Line 1.8
of Algorithm 1 satisfies

|q̂ − p2| 6 δ · p2

with probability 1− ε over the choice of samples x1, . . . , xn.

Proof (Proof of Lemma 3). We repeat the argument given in [AOST15].
By the Chernoff Bound, it follows that for O(log(1/ε)) blocks more that
one half of the numbers are good with probability 1 − ε. If so, so their
median. Note that the median can be computed in linear time, so it
doesn’t affect the final complexity.

Having proved these lemmas, we easily conclude the result claimed in
Theorem 1. Namely, it follows that the number q̂ is an approximation to
p2 with a relative error δ provided that we have n = c ·p3p−22 δ−2 log(1/ε).
It remains to observe that a relative error δ in approximating p2 trans-
lates to an additive error O(δ) in the collision entropy estimate, because
the (true) entropy equals − log q̂ = − log (p(1 +O(δ))) = − log p+ O(δ).
Here we use the Taylor formula log(1 + O(u)) = O(δ) valid for all suf-
ficiently small δ (for other values of δ it suffices to decrease δ at most
by a constant factor (which translates to a constant factor in n and
prove the result for a smaller value of δ). This argument gives the bound
n = O

(
·p3p−22 δ−2 log(1/ε)

)
which is the claimed bound if we express mo-

ments in terms of entropies p3p
−2
2 = 22H2(X)−2H3(x) (see Definition 2).

Proof (Proof of Lemma 2). Let X1, . . . , Xn be iid over an alphabet X ,
with the probability mass function p(x). Let n(x) =

∑n
i=1 1{Xi=x} be the

empirical frequency of the element x (according to samples X1, . . . , Xn ),



and let pk =
∑

x(p(x))k be the k-th moment of the probability function
p(x). Consider the estimator

p̂ =

∑
x n(x)2 − n
n(n− 1)

(1)

which corresponds to Line 1.7 in Algorithm 1. The factor n(n− 1) in the
denominator is just for scaling, whereas the purpose of subtracting the
term n is to obtained an unbiased estimator. To apply the second moment
technique we will need the following fact

Claim (Frequency moments and mixed moments). For every x and every
y 6= x, we have the following identities

E
[
n(x)2

]
= n(n− 1)p(x)2 + np(x) (2)

E [n(x)n(y)] = n(n− 1)p(x)p(y) (3)

E
[
n(x)4

]
= n(n− 1)(n− 2)(n− 3)p(x)4+

+O(n3)p(x)3 +O(n2)p(x)2 + np(x) (4)

E
[
n(x)2n(y2

]
= n(n− 1)(n− 2)(n− 3)p(x)2p(y)2 + n2(n− 1)p(x)2p(y)+

+ n2(n− 1)p(x)p(y)2 (5)

The derivation is by elementary algebraic calculations and is omitted. In
particular, the claim implies

E

(∑
x

n(x)2

)2

=
∑
x

En(x)4 +
∑
x 6=y

En(x)2n(y)2 =

= n(n− 1)(n− 2)(n− 3)p4 +O(n3p3) +O(n2p2) + n

+ n(n− 1)(n− 2)(n− 3)
∑
x

p(x)2(p2 − p(x)2)+

+ 2n2(n− 1)(p2 − p3)
= n(n− 1)(n− 2)(n− 3)p22 + (2n3 +O(n2))p2 +O(n3)p3

(where both terms with p4 cancel) and therefore

Var

(∑
x

n(x)2

)
=
∑
x 6=y

E
[
n(x)2n(y)2

]
+
∑
x

E
[
n(x)4

]
− (n(n− 1)p2 + n)2

= (n(n− 1)p2)
2 + n2 − n2p2 +O(n3p3) +O(n2p2)− (n(n− 1)p2 + n)2

= O(n3p3) (6)



From the Chebyszev inequality, we conclude that

Pr [|p̂− p2| > δp2] = O
(
n−1p3p

−2
2 δ−2

)
Note that the relative error δ for p2 corresponds to an additive error O(δ)
for the entropy. This can be amplified by independent repetitions.

Remark 2. Note that we have p3 6 |X |
1
4 (p4)

3
4 < |X |

1
4 (p2)

3
2 6 |X |

1
2 (p2)

2

and thus

4 Applications to Low Entropy Regimes

4.1 Low Entropy Detection for True Random Number
Generators

Bucci and Luzzi in [BL05] introduced the concept of testable random bit
generators, where the entropy source X is assumed to be stateless (that
is, consecutive outputs X1, X2, . . . are independent and identically dis-
tributed) and is coupled with an online entropy estimator which is used
to detect changes in the entropy rate. Estimating entropy in the source in
real time allows for adjusting the postprocessing algorithm (which needs
more raw data in case of a decrease in randomness quality) or take other
actions for significant entropy decreases (consider this an adversarial at-
tack and rise an alarm [BL05]). Note that there are real-world sources
that are stateless or can be modified to be stateless [BL05,BL07].

Define the entropy rate as r = H2(X)
log |X | where X is the set of possible

outcomes of the source X. The initial value for this number can be eval-
uated during laboratory tests (as recommended by standards [TBK+]).

When a device operates in a production environment, the estimator
is being run in background and applied to consecutive source outputs
X1, X2, . . . Xn to see if the entropy per sample doesn’t fall below r.

Our bound implies that the time for discovering that entropy decreases
by a constant amount equals

Tdetect = O (|X |r)

whereas previously known bounds imply O
(
|X |

1
2

)
. Thus our bound is

better whenever r < 1
2 . In fact, entropy rates for real-world sources are

often below 1
2 [LPR11,VSH11]. For the sake of the completeness we also

mention that the use of collision entropy here is justified by the fact that
postprocessing functions used in practice are based on universal hashing
[BST03, VSH11] and the right measure of randomness in that case is
precisely collision entropy.



4.2 Faster and More Reliable DDoS Detection

In [LZYD09, XLZ11] it was shown that the collision entropy (and more
generally: Renyi entropy) of the distribution of source IP addresses can
be used to detect a DDoS attack at a packet filter (more specifically: IP
spoofing attacks). In this scenario an attacker manages a pool of spoof IP
addresses and sends a flow of TCP SYN packets against a victim host.
There is a ”pick” in the distribution during an attack, due to heavy packet
traffic originated from a fraction of all addresses owned by the adversary;
this pick can be seen as the difference between the entropy of addresses
during the flooding attack4 and the ”normal” flows.

Note that while the attack-free traffic is observed over a long time
period and well-approximated (typically computed off-line), an attack
traffic needs to be discovered quickly in real time. With our bound we
can detect5 a δ-decrease in the entropy at confidence 1− ε in time

T ≈ 2
1
2
Mδ−2 log(1/ε),

where M is the entropy of the normal traffic. The previous bound implies
only

T ≈ 2
1
2
Mmaxδ−2 log(1/ε),

where Mmax is the entropy assuming uniform distribution of all IP ad-
dresses, which is substantially bigger than M .

For sample empirical data used in [LZYD09, XLZ11] and [XLZ11]
we save a factor of 4 comparing to the bound [AOST15], which means
that we can detect DDoS attacks 4 times faster. Alternatively, within the
same sample size we get accuracy better by a factor of 42 = 16 or an
error probability better by a factor 24 = 16 which means a more reliable
detection scheme (less false alarms).

5 Conclusion

In this section we improve the complexity of estimating collision entropy,
provided that an upper bound is known a priori. We show same examples
of real world applications where this assumption is fulfilled and our bound
can be used to obtain quantitative improvements.

4 In automatic DDoS detection systems the entropy is being updated periodically in
a sliding time-window, so that every sufficiently long attack can be caught.

5 An assumption is made that the entropy only decreases from the default bound,
which is realistic for DDoS scenarios.
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