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Abstract

For encryption schemes, key dependent message (KDM) security requires that ciphertexts
preserve secrecy even when the messages to be encrypted depend on the secret keys. While
KDM security has been extensively studied for public-key encryption (PKE), it receives
much less attention in the setting of identity-based encryption (IBE). In this work, we focus
on the KDM security for IBE. Our results are threefold.

We first propose a generic approach to transfer the KDM security results (both pos-
itive and negative) from PKE to IBE. At the heart of our approach is a neat structure-
mirroring PKE-to-IBE transformation based on indistinguishability obfuscation and punc-
turable PRFs, which establishes a connection between PKE and IBE in general. However,
the obtained results are restricted to selective-identity sense. We then concentrate on results
in adaptive-identity sense.

On the positive side, we present two constructions that achieve KDM security in the
adaptive-identity sense for the first time. One is built from identity-based hash proof system
(IB-HPS) with homomorphic property, which indicates that the IBE schemes of Gentry
(Eurocrypt 2006), Coron (DCC 2009), Chow et al. (CCS 2010) are actually KDM-secure
in the single-key setting. The other is built from indistinguishability obfuscation and a new
notion named puncturable unique signature, which is bounded KDM-secure in the single-key
setting.

On the negative side, we separate CPA/CCA security from n-circular security (which is
a prototypical case of KDM security) for IBE by giving a counterexample based on differing-
inputs obfuscation and a new notion named puncturable IBE. We further propose a gen-
eral framework for generating n-circular security counterexamples in identity-based setting,
which might be of independent interest.
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1 Introduction
Secure encryption is arguably the most central subject in cryptography. Starting with semantic
(or CPA) security [GM84], secure encryption has developed a series of successively stronger
security notions providing secrecy in increasingly adversarial scenarios. Nevertheless, standard
security notions (including semantic security and its successive stronger notions) have to assume
that the encrypted messages do not directly depend on the secret key, since as observed by
the seminal work of Goldwasser and Micali [GM84] semantic security may compromise if the
adversary gets to see encryptions of the secret key. As a result, for a long time encrypting
key-dependent messages was considered as a dangerous abuse of an encryption scheme.

Recent research has revealed great importance of secure key-dependent encryption. On the
practical side, it admits natural implementation of encrypted storage systems (e.g., BitLocker
in Windows operating systems [BHHO08]). On the theoretical side, it has surprising connec-
tions with other fundamental notions such as obfuscation and encryption with weakly random
keys. It also plays a crucial role for designing some high-level cryptographic protocols, such as
discouraging delegation of credentials in anonymous credential system [CL01], enabling “boot-
strapping” technique in fully homomorphic encryption [Gen09], and realizing symbolic protocols
with the framework of axiomatic security [ABHS05]. (See [MTY11b] for more motivations and
applications.)

1.1 Related Work
The formal study of key-dependent message (KDM) security dates back to more than a decade
ago. Camenisch and Lysyanskaya [CL01] considered n-circular security, which stipulates that
semantic security remains in the presence of an encrypted “key circle”, where n secret keys are
organized in a cycle and each secret key is encrypted under the public key of its left neighbor.
Black et al. [BRS02] suggested generalized KDM security, which stipulates that semantic se-
curity still holds even when the adversary can ask for encryptions of key-dependent messages
m← f(sk1, . . . , skn) under pki, where (pki, ski)1≤i≤n are n public/secret key pairs and f is an
arbitrary function from permissible dependent function family F . However, the circular-secure
and KDM-secure PKE schemes proposed in [CL01, BRS02] are only provably secure in the
random oracle model. Since then, a challenging problem is to achieve KDM security without
relying on random oracle heuristic.

Several years later, Boneh et al. [BHHO08] made a breakthrough by giving an elegant
KDM-secure PKE scheme w.r.t. affine functions in the standard model under the decisional
Diffie-Hellman assumption. Inspired by this work, a large body of works have emerged, both
on the positive and negative side.

On the positive side, there are three main lines of research. The first direction focuses
on broadening F from a weak family of functions to a larger one via generic amplification
techniques, including [BHHI10, BGK11, App11]. The second direction aims to achieve bet-
ter efficiency by adopting block-wise encryption, including [ACPS09, MTY11a]. The third
direction considers KDM security under more powerful attacks, including chosen-ciphertext at-
tack [BDU08, CCS09, Hof13, QLH13, LLJ15, HLL16], key leakage attack [BG10, HKS16], selec-
tive opening attack [HLM+17, CSZ+11], and related-key attack [BDH14]. Besides, a new trend
is seeking constructions of KDM-secure PKE from general assumptions or systems. Wee [Wee16]
presented a framework of KDM-secure PKE schemes via hash proof system with homomorphic
property. This elegant framework yields a conceptually simple and unified treatment of the
works of Boneh et al. [BHHO08], Brakerski and Goldwasser [BG10] and Brakerski et al. [BGK11]
in the single-key setting. Very recently, two non-black-box constructions of KDM-secure PKE
emerged. Marcedone et al. [MPS16] proposed an ingenious PKE scheme with bounded KDM
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security from one-way functions and indistinguishability obfuscation (iO). Döttling [DGHM18]
et al. showed how to compile KDM-secure SKE to KDM-secure IBE via garbled circuits.

On the negative side, there are two lines of research. The first direction studies on the
complexity of KDM security. Haitner and Holenstein [HH09] showed that there is no black-box
construction of KDM-secure PKE w.r.t. all (unbounded size) circuits. Barak et al. [BHHI10]
extended this impossibility result by showing that it is impossible to prove KDM security w.r.t.
F that contains exponentially hard pseudorandom functions, using only black-box access to the
query function and the adversary. Hajiabadi and Kapron [HK17] gave fine-grained black-box
separations between CPA and circular security. The second direction seeks for the separations
between standard notions like CPA/CCA security and n-circular security. For n = 1, the
counterexample is trivial via folklore argument, but when n ≥ 2 the question turns out to be
much more challenging. For n = 2, Acar et al. [ABBC10] and Cash et al. [CGH12] respectively
gave the counterexamples that are CPA secure but 2-circular insecure, based on the SXDH
assumption over asymmetric bilinear groups. Later, Bishop et al. [BHW15] obtained more
counterexamples for n = 2, based on the decision linear assumption and learning with errors
(LWE) assumptions. For the more general case of arbitrary n, Koppula et al. [KRW15] derived a
counterexample based on the assumption that iO for arbitrary polynomial sized circuits exists.
Concurrently and independently, Marcedone and Orlandi [MO14] gave a similar result under on
a stronger assumption of virtual black-box (VBB) obfuscation exists for a certain functionality.1
Recently, Koppula and Waters [KW16] and Alamati and Peikert [AP16] contrived the coun-
terexamples based on the plain LWE and ring-LWE assumptions, respectively. Additionally,
Goyal et al. [GKW17] separated CPA security from 1-circular security for symmetric-key bit
encryption using the LWE assumption.

1.2 Motivation
Most existing works on KDM security dealt with the symmetric or public-key settings. Com-
pared to PKE, IBE is generally more difficult to construct due to its richer functionality. To
date, there are only two works addressed KDM security in the identity-based setting. Alperin-
Sheriff and Peikert [AP12] initiated the study of KDM security for IBE. They considered user-
level KDM security, which captures the scenario that the encrypted messages might be functions
of users secret keys. They also proposed a KDM-secure IBE scheme w.r.t. affine functions under
the LWE assumption. Galindo et al. [GHV12] considered system-level KDM security for IBE,
which captures the scenario that the encrypted messages might be functions of the master secret
key. They constructed such an IBE scheme w.r.t. affine functions under the rank assumption
in bilinear groups, but only provides security against a bounded number of encryption queries.

Prior constructions of [AP12, GHV12] have a common downside: they are only provably
secure in the selective-identity sense (the adversary must declare the target identities before
seeing the master public key), which is a weak model for IBE. While KDM security in the
selective-identity sense might be sufficient in some restricted situations, KDM security in the
adaptive-identity sense is more natural and covers many real world attacks. Thereby, con-
structing KDM-secure IBE in the adaptive-identity sense is an important open problem (as
noted in [GHV12]). On the other hand, to justify the dedicated pursuing of KDM security for
IBE, a fundamental problem is whether the standard security notions like CPA/CCA security
already imply KDM security in the identity-based setting. To date, no such negative results are
known.

In summary, as opposite to the extensive study in the PKE setting, the research of KDM
security for IBE is largely open, both on the positive and negative sides. We are thus motivated

1Later, the authors of [MO14] refined their counterexample to rely only on iO following [KRW15].
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to consider the following intriguing questions:

Can we transfer the KDM security results for PKE to IBE in a general manner? How to
construct KDM-secure IBE schemes in the adaptive-identity sense? Do standard security
notions like CPA/CCA security imply KDM security in the realm of IBE?

2 Our Contributions
Our focus. The fact that there are two types of secret keys in IBE gives rise to two levels
of KDM security in the identity-based setting, depending on whether the adversary gets to see
encryptions of functions of the master secret keys or users secret keys. Following the choice
of [AP12], we focus on user-level KDM security in this work out of the following reasons. The
first reason is that it is a mirror image of KDM security for PKE in the IBE setting, which
captures real attacks2 and allows us to carry out comparative study. The third reason is that it
enables some important applications such as “bootstrapping” technique for identity-based fully
homomorphic encryption [GSW13]. Last but not least, it is crucial for the management of IBE
systems (e.g. key revocation, updating and retrieve), as elaborated in [AP12].

Our contributions of this work are threefold. We first give a simple PKE-to-IBE trans-
formation based on iO and puncturable PRFs, which provides a generic complier to transfer
the KDM security results (including both positive constructions and negative counterexamples)
from PKE to IBE. The downside is that the obtained results are restricted to selective-identity
sense. We then seek for results in adaptive-identity sense. On the positive side, we propose two
constructions. One is generically built from identity-based hash proof system with homomor-
phic property, which is KDM-secure w.r.t. F defined by the corresponding projective hash. The
other is built from iO and a new notion named puncturable unique signature, which is KDM-
secure w.r.t. circuits of a priori bounded size. To the best of our knowledge, they are the first
two IBE schemes that achieve KDM security in the adaptive-identity sense. We compare our
two constructions with prior work [AP12] in Table 2. On the negative side, we show that in the
identity-based setting the CPA/CCA security does not imply n-circular security by contriving
a counterexample based on differing-inputs obfuscation and a new notion called puncturable
IBE. Finally, we believe the our new puncturable notions (puncturable unique signature and
puncturable IBE) as well as the technique to work with differing-input obfuscation will be useful
in other places. In what follows, we give an overview of our results.

Table 1: Comparisons of Our Constructions with Prior Work
ABO-LTF/(R)LF security model function class assumption generic

Alperin-Peikert ([AP12]) selective-id affine LWE no
Ours (Sec. 5) adaptive-id affine IB-HPS yes
Ours (Sec. 6) adaptive-id poly-size circuits PUS+iO yes

PUS denotes punctuable unique signature.

2.1 Transfer KDM Security Results for PKE to IBE
Given fruitful results on KDM security in the public-key setting, a promising idea for construct-
ing KDM-secure IBE is to make a KDM-secure PKE identity-based. To do so, we need an

2We note that the master secret key dependent scenario is rare, because master secret key is unknown to
normal users and thus unlikely appears as an encryption under a normal user identity.
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efficient public “id-to-pk hash” to map identities to well-formed public keys together with an
associated master trapdoor to enable the Private Key Generator (PKG) to extract secret keys
for any identities. More importantly, the master trapdoor should be “puncturable” to admit a
reduction to the starting PKE.

We observe that the construction by Alperin-Sheriff and Peikert [AP12] is a good exempli-
fication of this idea. Roughly, they first constructed a KDM-secure PKE from lattices. This
PKE is of “dual”-style and thus admits an efficient id-to-pk hash. They then transformed it
to an IBE by embedding a puncturable master trapdoor via a so called “all-but-d” trapdoor
functions. Nevertheless, it seems difficult to generalize their construction since its “id-to-pk
hash” and all-but-d trapdoor functions both heavily rely on the specific algebra of lattices.

The above analysis indicates that the primary technical hurdles to implement the promising
idea in a general manner lie in the “id-to-pk hash” is not always obvious especially when the
well-formed public keys are exponentially sparse (as noted in [GPV08], e.g. the Regev’s PKE),
and the existence of a puncturable master trapdoor is unclear.

Structure-mirroring PKE-to-IBE transformation. We circumvent the hurdles by giving
a generic PKE-to-IBE transformation. Starting from any PKE = (KeyGen,Encrypt,Decrypt),
the transformation proceeds as below: choose a puncturable PRF whose domain is the desired
identity space and pick a random PRF key as the master secret key msk; build the master
public key mpk as an obfuscation of a circuit that first computes the PRF value of the input
identity, then uses the PRF value as the random coins to invoke PKE.KeyGen to obtain a
key pair, and finally discards the secret key and only outputs the public key; to extract a
secret key for an identity id, the PKG first computes its PRF value at point id using msk,
then invokes PKE.KeyGen to recover the corresponding key pair and outputs the secret key;
to encrypt a message under an identity id, the sender first derives the corresponding public
key by executing mpk on id (note that mpk is essentially an obfuscated circuit), then runs
PKE.Encrypt; the decryption algorithm is same as that of the underlying PKE. We highlight
that the heart of our transformation is using a puncturable PRF key as msk and invoking
PKE.KeyGen with PPRF(msk, id) as the random coins to obtain the corresponding key pair
for id. This key mechanism provides us a universal “id-to-pk hash” as well as an all purpose
puncturable master trapdoor, which allow us to derive an IBE from any PKE. Note that PKE in
turn can be constructed from trapdoor permutations in a black-box manner, our transformation
acturally bypasses the known impossibility result [BPR+08] by making a non-black-box use of
the underlying PKE schemes.

A salient feature of the above transformation is structure-mirroring, which means the struc-
tures of secret keys and ciphertexts of the resulting IBE are identical to those of the starting
PKE. This feature enables us to translate the KDM security results (including positive construc-
tions and negative counterexamples) for PKE to IBE in a neat manner: If the starting PKE is
KDM-secure (w.r.t. F under CPA/CCA attacks), then the resulting IBE is also KDM-secure
in the same setting. If the starting PKE is n-circular insecure, so is the resulting IBE.

Somewhat surprisingly, this transformation admits much broader applications beyond KDM
security: it immediately lifts a bunch of security results (e.g., CCA security, leakage/tampering
resilience) from PKE to IBE. More generally, it is able to transfer all cryptographic schemes in
public-key infrastructure (e.g., digital signature, key exchange) to the identity-based setting.

The shortcoming of this transformation is that it only yields security in the selective-identity
sense. This seems unavoidable due to the use of punctured programs technique [SW14]: the
reduction has to program the target identities to the target public keys when publishing mpk.
We can attain adaptive security by either relying on standard complexity leveraging or using
extremely lossy functions [Zha16]� However, both approaches require exponential hardness. We
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leave the generic structure-mirroring PKE-to-IBE (or more generally PKC-to-IBC) transforma-
tion ensuring adaptive security based on standard hardness assumption as an open problem.

We note that in an independent work, Hofheinz et al. [HJK+16] also presented a structure-
mirroring PKE-to-IBE transformation. Their transformation is based on a universal sampler
scheme and a PKE scheme with weakened CCA security. Compared to their work, our trans-
formation is much simpler and more efficient.

2.2 KDM-secure IBE from Identity-Based Hash Proof System
Recently, Wee [Wee16] presented an elegant framework for building KDM-secure PKE from hash
proof system (HPS) [CS02] with homomorphic property. Inspired by this result, a tempting idea
is to construct KDM-secure IBE from identity-based hash proof system (IB-HPS) [ADN+10].

Next, we briefly review the generalized notion of IB-HPS, then sketch how to build KDM-
secure IBE from IB-HPS satisfying homomorphic property.

Generalized IB-HPS. Let L ⊂ X be a collection of languages indexed by the identity set I.
An IB-HPS for L ⊂ X consists of four polynomial-time algorithms: (Setup, Extract, Priv, Pub).
The Setup algorithm outputs a master key pair (mpk,msk); the Extract algorithm outputs a
secret key skid for id using msk; the Priv algorithm defines a hash Λ : SK×X → Π where SK is
the secret key space and Π is the proof space; the Pub algorithm admits public evaluation of Λ
on L. We say that Λskid is smooth if its output distributes uniformly over Π when x

R←− X\Lid,
and say it is projective if its output is completely determined by id for x ∈ Lid. We also require
the identity-based subset membership problem (IBSMP) is hard: for arbitrarily chosen id∗ ∈ I,
the two distributions of x R←− Lid∗ and x

R←− X\Lid∗ are computationally indistinguishable, even
when a PPT distinguisher knows a secret key for any identities (including id∗).

KDM security from IB-HPS. Starting with a smooth IB-HPS, we can build a CPA secure
IBE scheme as below. Let Π be a group under operation “+” and the message space M =
Π.3 The Setup and Extract algorithms are exactly the same as that of IB-HPS. To encrypt a
message m under an identity id, the sender randomly picks x← Lid with witness w, computes
π ← Λskid(x) publicly via Pub with w, and sets c = (x, y = π+m) as the ciphertext. To decrypt
a ciphertext c = (x, y), the receiver computes π ← Λskid(x) privately via Priv with skid, then
outputs m = (y − π). The correctness of this construction follows from the projective property
of Λ, while the CPA security follows from a simple hybrid. Let id∗ be the target identity
and m0,m1 be the target messages chosen by the adversary and (x∗, y∗ = Λskid∗ (x

∗) + mβ)
be the challenge ciphertext generated by the challenger. We first switch the distribution of x∗
from ULid∗ to UX\Lid∗ (this change is computationally indistinguishable based to the hardness
of IBSMP), then apply the smoothness of Λskid∗ to hide the message mβ in an information-
theoretical way.

Akin to the public-key setting, a primary difficulty of attaining KDM security for IBE
is that the simulator typically has to answer KDM encryption queries without knowing the
corresponding secret keys. Observe that the simulator in the reduction from IBE to IB-HPS
always possesses secret keys for any identity, thus it seems that one can easily bypass the above
difficulty to achieve KDM security w.r.t. any computable functions, namely, no PPT adversary
can tell a real KDM encryption oracle apart from a zero encryption oracle given only black-box
access. However, the intuition is problematic in that the responses to real KDM encryption
oracle, i.e., encryptions of key dependent messages f(skid∗) may leak the information of skid∗ in
an uncontrollable way, and thus we are unable to directly apply the smooth property of Λskid∗

to argue their indistinguiability to zero encryption.
3Generally, one can always assume there exists an efficient invertible encoding ϕ : M → Π.
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We tackle this problem following the high-level idea outlined in [MTY11a]: find a way to
simulate KDM encryptions without knowledge of the secret keys, yet ensure that the simulated
KDM encryptions are indistinguishable to the real KDM encryptions as well as the zero en-
cryptions. Naturally, to make such simulation possible, we have to restrict F to a function
family tied to the structure of Λ. Concretely, we implement this idea by extending the tech-
niques due to [Wee16]. Assume Λ additionally satisfies homomorphism, i.e., Λskid(x1 · x2) =
Λskid(x1)+Λskid(x2) for any id ∈ I and any x1, x2 ∈ X, we show that the above IBE construction
from IB-HPS is actually KDM-secure w.r.t. F = {fu,v : sk → Λsk(u) + v}u∈X,v∈Π.

The KDM security is established in two steps, as depicted in Figure 4 and 5. Let id∗ be the
target identity chosen by the adversary. We first exploit the homomorphism of Λskid∗ (coupled
with the projective property) and the group structure of X (coupled with the identity-based
subset membership problem) to show that real KDM encryptions are indistinguishable from
simulated encryptions without using skid∗ . Then we are safe to apply smoothness of Λskid∗

(coupled with the projective property and the group structures of X and Π) to show simulated
encryptions are indistinguishable from zero encryptions. The formal proof is done via a sequence
of hybrids that changes query by query. This proves the KDM security in the single-key setting.

Note that the homomorphic requirement on Λ is met by most known realizations of IB-HPS,4
therefore this result immediately indicates that the IBE schemes in [Gen06, Cor09, CDRW10]
are actually KDM-secure in the single-key setting. Moreover, when F induced by Λ consists of
affine function family (possibly in the exponent as in [BG10]), we can amplify F to the class of
circuits of a-priori bounded size [BHHI10, App11].
Achieving leakage-resilience simultaneously. Note that IB-HPS is also a powerful tool
in constructing leakage-resilient IBE schemes in the bounded-retrieval model. The leakage-
resilient IBE from IB-HPS [ADN+10] is almost identical to the CPA construction except that
a randomness extractor is applied to the hash proof before using it. More precisely, let ext :
Π × S → K be an average-case strong randomness extractor, and the message space M = K.
To encrypt m under id, the sender randomly picks x

R←− Lid with witness w and a random seed
s ∈ S, computes π ← Λskid(x) publicly via Pub and w, then sets c = (x, s, y = exts(π) + m)
as ciphertext. It is not hard to see that if exts is homomorphic on Π, then exts ◦ Λskid is
homomorphic on X. Thereby, this construction simultaneously achieves KDM security w.r.t.
F ′ = {f ′

u,v,s : sk → exts(Λsk(u) + v))}u∈X,v∈Π,s∈S . Note that as an explicit construction of
average-case strong extractor [DORS08], universal hash family usually admits simple algebra
structure, and thus naturally satisfies the homomorphic requirement on Π. Particularly, as
noted in [Wee16], when Λskid itself serves as a good extractor, the leakage-resilient construction
is already KDM-secure without any modification. This could be viewed as a special case of our
generalized explanation by setting exts as identity function.
Comparison with [AP12]. Their scheme is KDM-secure w.r.t. affine functions based on the
LWE assumption. However, it only offers security in the selective-identity sense.

Our scheme is a generic construction based on IB-HPS, which achieves KDM-security w.r.t.
affine-like functions5 in the adaptive-identity sense. Existing instantiations of homomorphic
IB-HPS imply our construction can be based on a variety of number-theoretic assumptions, in-
cluding the decisional augmented bilinear Diffie-Hellman (BDH) exponent, the decisional square
BDH and the decisional BDH assumptions. Last but not least, by applying appropriate ran-
domness extractor, our construction achieves leakage-resilience simultaneously.

4It is still unclear whether the projective hash in IB-HPS instantiations due to Boneh et al. [BGH07] and
Gentry et al. [GPV08] satisfy homomorphic property.

5Since our construction is generic, the exact form of F is decided by the concrete instantiation of IB-HPS.
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2.3 KDM-secure IBE from Puncturable Unique Signature and iO

KDM security grows stronger when F is larger. The largest possible F is the family of cir-
cuits of a-priori bounded size, and the corresponding security is refereed to as bounded KDM
security [BHHI10].6 Though we can attain bounded KDM security by applying amplification
technique [BHHI10, App11] to our generic construction based on IB-HPS, it is still instructive
to seek direct constructions.

Very recently, Marcedone et al. [MPS16] proposed an ingenious bounded KDM-secure PKE
scheme from one-way functions (OWF) and iO, which are qualitatively different7 to the specific
assumptions (LWE, DDH, QR or DCR) previously used to achieve bounded KDM security. We
refer to their construction as the MPS scheme, and choose it as the starting point of our IBE
construction.

Starting point: the MPS scheme. We first briefly review the MPS scheme (in the single-
key case), then show how to adapt it into an IBE scheme. Let F : X → Y be a family of
injective OWFs. The secret key is just a random x ∈ X, while the public key consists of g R←− F
and y ← g(x). To encrypt a message m, the ciphertext is an obfuscation of a circuit Enc that
hardwires pk = (g, y) and m as constants, and on input sk returns m if g(sk) = y and ⊥
otherwise. To decrypt a ciphertext, one just runs the ciphertext (which is an obfuscated circuit
in nature) on input the secret key.

The proof for KDM security follows the triple mode proof framework [MTY11a]. More pre-
cisely, it proceeds via three games. Game 0 and Game 2 correspond to real KDM encryption
and zero encryption respectively, while Game 1 corresponds to the simulated KDM encryption.
An important requirement is that the simulation should be done without the knowledge of
secret key and the simulated KDM encryption must be indistinguishable from the real KDM
encryption in Game 0 and zero encryption in Game 2.

The authors of [MPS16] achieved this by obfuscating a circuit Sim that hardwires pk = (g, y)
and a function f as constants, and on input sk outputs f(sk) if y = g(sk) and ⊥ otherwise. Since
Encpk,m=f(sk) and Simpk,f are functionally equivalent, one can reduce the indistinguishability
between Game 0 and Game 1 to the security of iO. Proving Game 1 ≈c Game 2 is more involved,
because Simpk,f and Encpk,0|m| may have differing inputs. Here, a stronger form of obfuscation
– differing-input obfuscation (diO) [BGI+12, ABG+13, BCP14] is required. Before applying
diO, one has to show that no PPT adversary can find a differing input of Simpk,f and Encpk,0|m| .
Since the entire simulations of Game 1 and Game 2 do not require the secret key, this can be
easily argued based on the one-wayness of g. In addition, by requiring the underlying OWF to
be injective, the above two circuits have at most one differing input. According to [BCP14],
diO for such circuit family is implied by standard iO.

Basic idea for adaption. A straightforward approach to make the MPS scheme identity-based
is using our structure-mirroring PKE-to-IBE transformation. However, the resulting IBE only
achieves bounded KDM security in the selective-identity sense. A useful observation is that, un-
like most encryption schemes, the ciphertext in the MPS scheme is simply an obfuscated circuit
which outputs m if its input is a valid secret key corresponding to the public key and outputs
⊥ otherwise. Such distinguished feature makes the encryption and decryption insensitive to the
concrete algebra structures of the secret key and public key. This gives us more flexibility for

6[BHHI10] also introduces a slightly stronger notion named length-dependent security, in which the circuit
size could grow polynomially in the length of their inputs and outputs. In this work, we stick to bounded KDM
security for simplicity of exposition.

7It is known that black-box construction of collision-resistant hash functions (CRHFs) from OWF and iO is
impossible, and as a result, they are separated from those assumptions that imply the existence of CRHFs.
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adaption, and possibly admits dedicated approach rather than the general-purpose PKE-to-IBE
transformation.

The crux of the adaption is to introduce a master trapdoor for the MPS scheme. A tempting
idea is to replace injective OWFs with injective adaptive trapdoor functions (ATDFs) [KMO10].
More precisely, the master public key is an ATDF g, while the master secret key is its trapdoor
td. The identity space is the range Y of g, and a secret key for id ∈ Y is simply its preimage
under g, which is efficiently computable with td. Unfortunately, ATDF does not suffice for the
adaption. This is because the security of IBE implies that no PPT adversary is able to find
a secret key for any adversarially chosen identity even given access to a secret key extraction
oracle, while with ATDF it only guarantees that no PPT adversary is able to find a preimage
for a uniformly chosen image (corresponds to identity) even given access to an inversion oracle.
Intuitively, we need a stronger version of ATDFs whose adaptive one-wayness holds for any
adversarially chosen image.

We observe that unique signature [GO92, Lys02] can be somewhat viewed as such a “strong”
injective ATDF. This leads to the following bounded KDM-secure IBE adapted from the MPS
scheme: the PKG generates a key pair for unique signature, output the verification key as mpk
and the singing key as msk; a secret key for an identity id is its unique signature signed by
msk; to encrypt a message m under an identity id, one outputs an obfuscation of a circuit Enc
that hardwires mpk, id and m as constants, and on input sk returns m if sk is valid signature
of id and ⊥ otherwise; to decrypt a ciphertext, one just runs the ciphertext on input the secret
key.

Superficially, the security proof can be easily adapted from that for the MPS scheme. In
more details, it also proceeds via three games. In Game 0 and Game 2 the simulator answers
the encryption queries with real KDM encryption and zero encryption respectively, while in
Game 1 the simulator answers the encryption queries with an obfuscation of circuit Sim, which
hardwires mpk, id and a function f as constants, and on input sk outputs f(sk) if sk is a valid
signature of id and ⊥ otherwise.
Puncturable unique signature. The devil is in the details. Akin to the proof for the MPS
scheme, we have to rely on the security of diO to prove Game 1 ≈c Game 2, in that the
two circuits Simmpk,id,f and Encmpk,id,0|m| may have differing inputs. The tricky part is in our
context the auxiliary information aux (typically derived from the random coins used to sample
the challenging circuits) plays a crucial role when applying diO, which is different from the
situation in the MPS scheme. On one hand, aux might not contain the entire random coins
used for sampling the two differing-input circuits, since otherwise an adversary may easily find
the differing-input. On the other hand, in some applications aux must contain proper secret
random coins to admit a reduction from a distinguishing adversary to an algorithm against the
security of diO.

We illustrate this subtlety in the context of our basic construction. Let id∗ be the target
identity. If aux = msk, then a PPT adversary can easily find a differing-input of Simmpk,id∗,f

and Encmpk,id∗,0|m| by computing skid∗ ← Sign(msk, id∗) with msk. From one extreme to the
other, if aux contains nothing, there is no way to reduce the indistinguishability of Game 1 and
Game 2 to the security of diO, because the simulator is unable to handle the extraction queries
made by the distinguishing adversary. We remark that the same issue does not occur in the
MPS scheme, because in their setting the adversary does not make queries related to the secret
key and thus the simulation for Game 1 and Game 2 could be done without the secret key (in
other words, aux could be empty).

We tackle this dilemma by introducing a new notion called puncturable unique signature
(PUS). Roughly speaking, a PUS is a unique signature scheme with an additional algorithm
Puncture that on input a signing key sk and a message m∗ outputs a succinct punctured signing
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key sk({m∗}), where sk({m∗}) can be used to sign any messages other than m∗. Moreover, the
signature scheme is still unforgeable on m∗ even given this punctured key.

By exploring PUS instead of normal unique signature, we are able to split the secret coins
(a.k.a. msk) surgically, i.e., setting aux = msk({id∗}). On one hand, given msk({id∗}) no PPT
adversary can find a differing input of Simmpk,id∗,f and Encmpk,id∗,0|m| based on the unforgeability
of PUS. On the other hand, the indistinguishability of Game 1 and Game 2 can be reduced to
the security of diO because with msk({id∗}) the reduction is able to handle all legal extraction
queries correctly. By the unique property of PUS, the two circuits have at most one differing
input. According to [BCP14], diO for such circuits is implied by iO. Besides, we note that PUS
is implied by injective OWF and iO. This allows us to achieve the bounded KDM security of
our IBE scheme based on solely OWF and iO.

The above construction somewhat indicates that when using diO to build cryptographic
schemes with adaptive security, the underlying primitives should be puncturable. This trick is
also crucial for our counterexample construction from diO as shown below, and we believe it
will find more applications elsewhere.

2.4 Counterexample of n-Circular Security
One fundamental question is whether KDM security is implied by standard security notions
such as CPA (or CCA) in the identity-based setting. If this were true, we would get it for free
without considering such notion specifically.

A cursory examination of the problem reveals that the answer is no. As we will sketch in
Section 7, one can derive a simple counterexample for 1-circular security. However, akin to
the situation in the public-key setting, contriving counterexamples for n ≥ 2 based on well-
studied assumptions becomes significantly more challenging. The primary difficulty somewhat
resembles to that identified in [BHW15]: when n identities are thrown into a mix, we need a
magic mechanism to enable the identities and ciphertexts to communicate with each other in
a way that admits cycle detection but does not compromise semantic security. In public-key
setting, prior counterexamples [ABBC10, CGH12, BHW15, KW16, AP16] based on pairing or
lattice realize this magic mechanism by introducing extra structures (tie to the algebra of the
underlying assumptions) over public keys and ciphertexts.

One may be tempted to extend this line of works to the IBE setting. Unfortunately, two
technical hurdles rule out this possibility. Firstly, in IBE identities are self contained and thus
it seems impossible to expose extra structures on them.8 Secondly, in IBE the target identities
are adaptively chosen by the adversary. This stands in sharp contrast to the PKE setting where
the target public keys are chosen by the challenger, and thus intuitively requires the magic
mechanism could be executed “on the fly”.

We then turn our attention to iO, which had demonstrated its power in deriving counterex-
amples in public-key setting.

Review of counterexamples from iO in the PKE setting. Koppula et al. [KRW15] and
Marcedone and Orlandi [MO14] gave two counterexamples for arbitrary n using iO. In a nut-
shell, their idea is to publish an obfuscation of a circuit called CycleTest along with each normal
CPA-secure encryption, which hardwires the message m as the secret key, takes as inputs public
keys (pk1, . . . , pkn) and ciphertexts (c1, . . . , cn), and detects if they form an encryption circle of
length n. To prove the modified encryption is still CPA secure, the crux is to argue the circuit
CycleTest does not compromise the CPA security. For this purpose, another circuit CycleReject

8Though arguably we can do this indirectly via our structure-mirroring PKE-to-IBE transformation, it only
yields results in the selective-identity sense.
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which always outputs ⊥ is introduced. Clearly, CycleReject does not leak any information,
and thus the desired CPA security follows provided that iO(CycleTest) and iO(CycleReject)
are computationally indistinguishable. In combination with iO, their key idea is to introduce
valid/invalid public keys such that the two types public keys are computationally indistinguish-
able on themselves, but are discernible given the associated secret keys. Accordingly, the circuit
CycleTest will check whether its input public keys are valid and output ⊥ if not.

The overall security is established by the following three hybrids: Hyb1 uses valid public keys
and attaches iO(CycleTest) along with each encryption; Hyb2 switches to invalid public keys and
the rest are same to Hyb1; Hyb3 replaces iO(CycleTest) with iO(CycleReject). Eventually, Hyb1
and Hyb2 are indistinguishable based on the indistinguishability of valid and invalid public keys,
while Hyb2 and Hyb3 are indistinguishable based on the security of iO. Thereby, the modified
encryption scheme is still CPA secure but n-circular insecure.

Initial attempts. As noted in [MO14, KRW15], the valid/invalid public keys switching mech-
anism lies at the heart of their counterexamples. One might be tempted to adapt their coun-
terexamples to the identity-based setting. However, it does not work due to the fundamental
difference between PKE and IBE, as we elaborate below.

The first attempt is to introduce valid/invalid identity in an analogous manner. But, this
is impossible because identities are always self-recognizable in identity-based setting and thus
there is no concept of validity for identities.

The second attempt is to introduce valid/invalid master public keys. To establish CPA
security in combination with iO, on one hand we need to stipulate invalid master public keys
are discernible given secret keys for any identity, whereas on the other hand the hybrid using
valid master public key and another hybrid using invalid one must be indistinguishable. This
is also impossible since an adversary against IBE can obtain secret keys for any identity other
than the target one and thus can easily tell these two hybrids apart.

The above analysis indicates that we have to find a new way to work with obfuscation,
without relying on valid/invalid switching technique.
Our approach. We choose an arbitrary CPA-secure IBE scheme which satisfies a mild property
named checkable secret key (which we will formally define in Definition A.5) as the starting point
of our counterexample. Our basic idea is still to publish an obfuscation of a circuit CycleTest
along with each encryption of a message m under some identity id. CycleTest hardwires m and
id as constants, takes as inputs identities (id1, . . . , idn) and ciphertexts (c1, . . . , cn), sets m as
the secret key for id2 and then attempts to decrypt circularly.

As opposed to the design of checking validity of public key in [MO14, KRW15], during
decryption process CycleTest checks whether each intermediate result is a valid secret key for
the corresponding identity as defined. Finally, it outputs “1” if all intermediate results pass
the check and “⊥” otherwise. To show the modified encryption scheme remains CPA secure,
we also introduce a circuit CycleReject which always returns ⊥, and wish to show the original
game (using obfuscation of CycleTest) and the final game (using obfuscation of CycleReject)
are computationally indistinguishable. However, as we analyzed before, valid/invalid switching
technique does not extend to identity-based setting. As a consequence, it is unlikely to create an
intermediate game in which CycleTest always returns ⊥, and thus iO does not suffice to ensure
the original game and the final game are computationally indistinguishable since CycleTest and
CycleReject are not functionally equivalent.
Differing-Input obfuscation. To overcome this problem, we have to resort to diO. In our
context, a prerequisite to utilize diO is to show that no PPT adversary can find a differing
input of CycleTest and CycleReject. To this end, we further modify CycleTest, making it output
the secret key for id1 rather than a single bit “1” when inputs indeed form an encryption

10



circle. It is easy to see that with this design, if a PPT adversary can find a differing input,
the reduction immediately obtains a secret key of id1, and thus completely breaks the assumed
security of the starting IBE scheme. Now we are able to show the obfuscations of CycleTest and
CycleReject are computationally indistinguishable based on the security of diO, and thus the
desired CPA security follows since CycleReject reveals nothing. We highlight that here we use
diO in a novel way: prior works [ABG+13, BCP14, BST14] directly use the differing inputs to
yield contradiction, while we use the output of differing-inputs.
Puncturable IBE. Similar to the status in our second positive construction, here we need
to manipulate aux carefully when employing diO. Let id∗ be the target identity. If we
set aux = msk, then a PPT adversary can easily find a differing-input of CycleTest and
CycleReject by generating an encryption circle (c1, . . . , cn) with respect to (id∗, id2, . . . , idn),
where id2, . . . , idn could be arbitrary distinct identities. If aux contains nothing, there is no
way to reduce the indistinguishability of the original game using diO(CycleTest) and the final
game using diO(CycleReject) to the security of diO, because the simulator is unable to handle
the extraction queries made by the distinguishing adversary.

We resolve this problem by introducing a new notion of puncturable IBE (PIBE). Roughly
speaking, a PIBE is an IBE with an additional algorithm Puncture that on input msk and
an identity id∗ outputs a succinct punctured master secret key msk({id∗}), where msk({id∗})
can be used to extract secret keys for any identities other than id∗. We show that PIBE can
be generically constructed from hierarchical IBE. By choosing a PIBE as the starting point of
our counterexample, we are able to split the secret coins (a.k.a. msk) surgically, i.e., setting
aux = msk({id∗}). This allows us finally to prove the CPA security of our counterexample
based on the security of diO.

In addition, we extend the framework for counterexamples [BHW15] to the IBE setting.
Via this framework, we can easily augment the above counterexample to separate CCA security
from n-circular security.

Remark 2.1. Garg et al. [GGHW14] showed that existence of diO w.r.t. general auxiliary
inputs is in contradiction with a certain “special purpose” obfuscation conjecture. However, this
conjecture is not implied by diO. Bellare et al. [BSW16] showed that if sub-exponentially secure
OWF exists, then sub-exponentially secure diO for TMs with unbounded inputs does not exist.
Given the results [ABG+13, BCP14] that diO for circuits and SNARKs [BCCT12, BCC+14]
imply diO for TMs with unbounded inputs, if SNARKs exist then their negative result extends
to diO for circuits. However, their primary negative result only rules out sub-exponentially
secure diO for TMs with unbounded inputs, based on sub-exponential hardness assumption.
Besides, Gentry and Wichs [GW11] showed that SNARGs (and thus also SNARKs) cannot be
reduced to any falsifiable cryptographic assumptions [Nao03] in a black-box manner. So far, the
existence of polynomially-secure diO for polynomial sized circuits (which we used in this work)
does not contradict to any standard assumption.

We are also aware of that two variants of diO evade the aforementioned implausible results.
One is diO for circuits that differ on only polynomially-many inputs proposed by Boyle et
al. [BCP14], which is implied by iO. The other one is public-coin diO proposed by Ishai
et al. [IPS15], which stipulates that only public coins can be used to sample the challenging
circuits. However, we cannot use them in the place of diO in our counterexample sketched
as above. Firstly, the fact that CycleTestid∗,m and CycleReject have super-polynomial differing-
inputs excludes the first choice. Secondly, with public-coin diO it is impossible to reduce the
hardness of finding differing-inputs to the security of IBE, which is a secret-coin notion.

Interpreting our result. We view our result as a first step toward showing that standard
security notions for IBE do not imply circular security. Although one may complain that the
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evidence is not strong due to the use of diO, it does give us some elementary understanding
of circular security and its challenges in the IBE setting. We left the counterexamples from
well-studied assumptions as a challenging open problem.

3 Preliminaries
3.1 Basic Notations
For a set X, we use x

R←− X to denote the operation of sampling x uniformly at random from
X, and use |X| to denote its size. We use UX to denote the uniform distribution over X.
For a positive integer d, we use [d] to denote the set {1, . . . , d}. We denote λ ∈ N as the
security parameter. We say that a quantity is negligible, written negl(λ), if it vanishes faster
than the inverse of any polynomial in λ. A probabilistic polynomial time (PPT) algorithm is
a randomized algorithm that runs in time poly(λ). If A is a randomized algorithm, we write
z ← A(x1, . . . , xn; r) to indicate that A outputs z on inputs (x1, . . . , xn) and random coins r.
For notational clarity we usually omit r and write z ← A(x1, . . . , xn).

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N denote two ensembles of random variables indexed by
λ. We say that X and Y are statistically indistinguishable, written X ≈s Y , if the statistical
distance between Xλ and Yλ is negligible in λ. We say that X and Y are computationally
indistinguishable, written X ≈c Y , if the advantage of any PPT algorithm in distinguishing Xλ

and Yλ is negl(λ).
Due to the space limit, we defer the review of standard cryptographic notions including

obfuscation, puncturable PRFs and identity-based encryption to Appendix A.

3.2 Key-Dependent Message Security for IBE
The following definition is adapted from [AP12]. We use slightly different but actually equivalent
notation, however.

Let F ⊂ {f : SKd≤n →M}, where SK is the secret key space and M is the message space
and n is the maximum number of users in a clique. We use |m| to represent the length of each
message in M . We define KDM security w.r.t. F (F-KDM security for short) for IBE as below.

KDM Security. Let A be an adversary against F-KDM security for IBE and define its
advantage as:

AdvA(λ) = Pr

β = β′ :

(mpk,msk)← Setup(λ);

β
R←− {0, 1};

β′ ← AOext(·),Oβ
enc(·,·)(mpk);

− 1

2
.

Let id be a list of target identities which is initially empty. During the game, A can adaptively
add identities to id and access Oext(·) and Oβ

enc(·, ·). Here Oext(·) is an extraction oracle that
on input an identity id ∈ I returns a secret key skid ← Extract(msk, id). Note that Oext(·)
returns the same skid for repeated extraction queries on the same id. In order to make the
definition meaningful, A is not allowed to query Oext(·) for any identities in id. Oβ

enc(·, ·) is
an encryption oracle depending on a hidden bit β chosen by CH, which on input i ∈ [n] and
f : SKd → M ∈ F (here d could be any integer less than the current number of identities
in id), returns a key-dependent encryption Encrypt(mpk, id∗i , f(sk

∗
1, . . . , sk

∗
d)) where sk∗i is the

secret key for id∗i if β = 0 and returns a zero encryption Encrypt(mpk, id∗i , 0
|m|) if β = 1. An

IBE scheme is said to be F-KDM secure if for any PPT adversary A, its advantage defined as
above is negligible in λ. The selective-identity F-KDM security for IBE can be defined similarly
by requiring the adversary A to commit id before seeing mpk.
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In this work, we mainly consider two KDM function families for IBE.

Bounded size circuits. Let Fbound be the set of all functions f : SKd≤n → M that can
be encoded as circuits of size bounded by a a-priori polynomial p(λ). Such F is the largest
ensemble for which it is feasible to achieve KDM security, and the corresponding KDM security
is referred to as bounded KDM security [BHHI10].
Affine functions. We assume for simplicity SK ⊆ M . If M is a ring, we can define affine
class Faff = {a1sk1 + · · · + anskn + c | ai, c ∈ M}. The set of all constant functions Fconst =
{fc(sk1, . . . , skn) = c}c∈M and the set of all selector functions Fselec = {fj(sk1, . . . , skn) =
skj}j∈[n] are two important subsets of Faff . As observed in [BHHO08], KDM security w.r.t.
Fconst is equivalent to semantic security, whereas KDM security w.r.t. Fselec implies (and is
actually stronger than) circular security.

Single-key vs. multiple-keys. Note that F is parameterized by an integer n, which indicates
that the message might be dependent of n secret keys for n distinct identities. When n = 1, the
corresponding notion is KDM security in the single-key setting. When n > 1, the corresponding
notion is KDM security in the multi-key setting. Though it is desirable to attain KDM security
in the multi-key setting, as pointed out by Wee [Wee16], considering KDM security in the single-
key setting is still of great importance out of the following reasons: (1) it suffices for some natural
applications; (2) it already captures much of the technical difficulty in attaining KDM security;
(3) it could serve as a basis for the bootstrapping to KDM-security to the multi-key setting.

4 KDM-secure IBE from KDM-secure PKE and iO
As mentioned before, in contrast to few KDM results for IBE, there are fruitful KDM results
for PKE. Thus, a promising idea is to translate the results of PKE to IBE. Observe that IBE
can be viewed as an extension of PKE in which identity plays the role of public key and secret
keys can be extracted from a master secret key, and thus the KDM security w.r.t. users secret
key in identity-based setting is a mirror image of that in public-key setting. If there exists a
structure-mirroring transformation from PKE to IBE (i.e., mapping an identity id to a public
key pk, using secret key sk for pk as that for id, inheriting the same encryption/decryption
algorithms of PKE), then we can compile any KDM-secure PKE into a KDM-secure IBE.

Recall that a PKE scheme consists of three polynomial time algorithms (KeyGen, Encrypt,
Decrypt), while an IBE scheme consists of four polynomial time algorithms (Setup, Extract,
Encrypt, Decrypt). The key idea of the transformation is to map an identity to random coins,
then invoke PKE.KeyGen with the obtained random coins to generate its corresponding public
key. Such “id-to-pk” procedure must be done publicly without revealing the corresponding
secret key, whereas with master secret key one can recover the random coins associated with
any identity and then extracts the secret key. The encryption and decryption algorithms are
essentially the same as that of the starting PKE. We implement the above idea by employing
iO and puncturable PRF.

Let R be the randomness space of PKE.KeyGen, I be the desired identity space and PPRF
be a puncturable PRF that maps I to R, and n be the maximum number of users in a clique.
The transformation works as follows:

• Setup(λ): run k ← PPRF.KeyGen(λ), then create an obfuscation of circuit id-to-pk hash
depicted in Figure 1. Finally, output the obfuscated circuit as mpk and k as msk.

• Extract(msk, id): on input msk and id ∈ I, compute r ← PPRF.Eval(msk, id), (pk, sk)←
PKE.KeyGen(λ; r), output sk as skid for id.
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• Encrypt(mpk, id,m): run the obfuscated circuit mpk on input id to obtain its correspond-
ing public key pk (write as pk = mpk(id)), then output c← PKE.Encrypt(pk,m).

• Decrypt(skid, c): output m← PKE.Decrypt(skid, c).

id-to-pk hash

Constants: PPRF key k

Input: id

1. Compute r ← PPRF.Eval(k, id), (pk, sk)← PKE.KeyGen(r), and output pk.

Figure 1: id-to-pk hash takes as input id, and has constant a PPRF key k hardwired. The size
of this circuit is padded to be the maximum of itself and id-to-pk hash∗ as described in Figure 2.

id-to-pk hash∗

Constants: punctured PPRF key k({id∗1, . . . , id∗n}), id∗1, . . . , id∗n, pk∗1, . . . , pk∗n
Input: id

1. If id = id∗i for some i ∈ [n], output pk∗i .
2. Else compute r ← PPRF.PuncEval(k({id∗1, . . . , id∗n}), id) and generate (pk, sk) ←

PKE.KeyGen(r), output pk.

Figure 2: id-to-pk hash∗ takes as input id, and has constants a punctured PPRF key
k({id∗1, . . . , id∗n}) and identities (id∗1, . . . , id

∗
n) and public keys (pk∗1, . . . , pk

∗
n) hardwired.

The correctness of the above IBE construction follows immediately from that of the starting
PKE. For the security, we have the following theorem.

Theorem 4.1. If the PKE is F-KDM secure, the PPRF is selective pseudorandom and the iO
is secure, then the above IBE is selective-identity F-KDM secure.

Proof. The proof proceeds via a sequence of games as below.

Game 0. This is the real selective-identity KDM security game in the single-key setting. CH
interacts with A as below.

1. A commits the set of target identities id = (id∗1, . . . , id
∗
n) at the very beginning.

2. CH picks a fresh PPRF key k as msk, creates an obfuscation of circuit id-to-pk hash
as mpk, and sends mpk to A. CH computes r∗i ← PPRF.Eval(k, id∗i ) and (pk∗i , sk

∗
i ) ←

PKE.KeyGen(λ; r∗i ), sets skid∗i = sk∗i for each i ∈ [n], and picks a random bit β ∈ {0, 1}.
3. A then can make extraction and encryption queries, in the order of its choice.

• Extraction query ⟨id⟩: for any id /∈ id, CH responds with msk.
• Encryption query ⟨i, f⟩: depending on the bit β chosen at Step 2, CH responds with

c ← PKE.Encrypt(pk∗i , f(skid∗1 , . . . , skid∗n)) if β = 0 or c ← PKE.Encrypt(pk∗i , 0|m|) if
β = 1.

4. Finally, A outputs a guess β′ for β and wins if β′ = β.

Game 1. The same as Game 0 except that CH creates an obfuscation of circuit id-to-pk hash∗

as mpk.
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2. CH picks a fresh PPRF key k as msk, computes r∗i ← PPRF.Eval(k, id∗i ) and (pk∗i , sk
∗
i )←

PKE.KeyGen(λ; r∗i ), and sets sk∗idi = sk∗i for each i ∈ [n], then derives k({id∗1, . . . , id∗n})←
PPRF.Puncture(k, {id∗1, . . . , id∗n}), creates an obfuscation of circuit id-to-pk hash∗ as mpk.
CH sends mpk to A and picks a random bit β ∈ {0, 1}.

Game 2. The same as Game 1 except that CH picks r∗i randomly from R.

2. for each i ∈ [n] CH sets r∗i
R←− R rather than r∗i ← PPRF.Eval(k, id∗i ).

Lemma 4.2. The advantages of any PPT adversary in Game 0 and Game 1 are negligibly close
in λ, given the security of iO.

Proof. We prove this lemma by giving a reduction to the security of iO. Suppose there is a
PPT adversary A whose advantages in Game 0 and Game 1 are not negligibly close, then we
can build an algorithm B = (S,D) against the security of iO by interacting with A as follows.
S(λ) behaves as follows: It invokes A to obtain the set of target identities id = (id∗1, . . . , id

∗
n),

picks k ← PPRF.KeyGen(λ), computes r∗i ← PPRF.Eval(k, id∗i ), (pk∗i , sk∗i )← PKE.KeyGen(λ; r∗i ),
sets skid∗i = sk∗i for each i ∈ [n], derives k({id∗1, . . . , id∗n})← PPRF.Puncture(k, {id∗1, . . . , id∗n}).
S sets the auxilary input aux = (k, id∗1, . . . , id

∗
n, skid∗1 , . . . , skid∗n , pk

∗
1, . . . , pk

∗
n, k({id∗1, . . . , id∗n})),

then builds C0 as the circuit id-to-pk hash and C1 as the circuit id-to-pk hash∗. S submits C0

and C1 to the iO challenger and receives back iO(Cb), then invokes B with (aux, iO(Cb)) to
continue the simulation for A.

Before describing D, we observe that by construction, the circuits C0 and C1 always behave
identically on every input by the correctness of PPRF. With suitable padding, both C0 and C1

have the same size. Thus, S satisfies the conditions needed for invoking the indistinguishability
property of iO.

Now, we can describe the algorithm D. Given aux and iO(Cb) as the challenge, D continues
to interact with A with the aim to determine b. To do so, D sets mpk = iO(Cb) and msk = k,
picks a random bit β ∈ {0, 1} and sends mpk to A. When A makes extraction queries ⟨id⟩,
D responds normally with msk. When A makes encryption queries ⟨i, f⟩, D responds with
c∗ ← PKE.Encrypt(pk∗i , f(skid∗1 , . . . , skid∗n)) if β = 0 and c∗ ← PKE.Encrypt(pk∗i , 0|m|) otherwise.
Finally, A outputs a guess β′ for β and wins if β′ = β. If A wins, D outputs 1.

By construction, if D receives iO(C0) (resp. iO(C1)), then the probability that D outputs
1 is exactly the probability of A winning in Game 0 (resp. Game 1). The lemma follows.

Lemma 4.3. The advantages of any PPT adversary in Game 1 and Game 2 are negligibly
close, given the selective pseudorandomness of puncturable PRF.

Proof. We prove this lemma by giving a reduction to selective pseudorandomness of PPRF.
Suppose there is a PPT adversary A whose advantages in Game 1 and Game 2 are not negligibly
close, then we can build an algorithm B that breaks the selective pseudorandomness of PPRF
by interacting with A as follows.
B invokes A to obtain the set of target identities id = (id∗1, . . . , id

∗
n), then submits id

to its own PPRF challenger and receives back a punctured key k({id∗1, . . . , id∗n}) as well as
(r∗1, . . . , r

∗
n), where r∗i is either the real PPRF value at id∗i or a uniformly random string over

R. B then computes (pk∗i , sk
∗
i )← PKE.KeyGen(r∗i ) and sets skid∗i ← sk∗i for each i ∈ [n], builds

an obfuscation of the circuit id-to-pk hash∗ from (k({id∗1, . . . , id∗n}), id∗1, . . . , id∗n, pk∗1, . . . , pk∗n)
as mpk. B sends mpk to A and picks β ∈ {0, 1}. When A makes extraction queries ⟨id⟩ where
id /∈ id, B responds with k({id∗1, . . . , id∗n}). When A makes encryption queries ⟨i, f⟩, B responds
with c∗ ← PKE.Encrypt(pk∗i , f(skid∗1 , . . . , skid∗n)) if β = 0 and c∗ ← PKE.Encrypt(pk∗i , 0|m|)
otherwise. Finally, A outputs a guess β′ for β and wins if β′ = β. If A wins, B outputs 1.
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By the definitions of Game 1 and Game 2 and the correctness of PPRF, if B receives real
PRF values for id∗1, . . . , id

∗
n (resp. random values over R), then the probability that B outputs

1 is exactly the probability of A winning in Game 1 (resp. Game 2). The lemma follows.

Lemma 4.4. The advantage of any PPT adversary in Game 2 is negligible, given the assumed
KDM security of starting PKE.

Proof. We prove this lemma by giving a reduction to the assumed KDM security of PKE. If
there is a PPT adversary A that wins in Game 2 with non-negligible advantage, we can build
an algorithm B against the KDM security of PKE with the same advantage.
B receives (pk∗1, . . . , pk

∗
n) from its PKE challenger, where pk∗i is honestly generated by

PKE.KeyGen under real random coins r∗i
R←− R. B invokes A to obtain the set target iden-

tities id = {id∗1, . . . , id∗n}, then picks k ← PPRF.KeyGen(λ) and computes k({id∗1, . . . , id∗n}) ←
PPRF.Puncture(k, {id∗1, . . . , id∗n}). B builds the circuit id-to-pk hash∗ from k({id∗1, . . . , id∗n}),
id∗1, . . . , id

∗
n, pk∗1, . . . , pk∗n, then computes its obfuscation as mpk. B sends mpk to A. Clearly, B

can handle all extraction queries for id /∈ id with msk = k. When A makes encryption queries
⟨i, f⟩, B submits ⟨i, f⟩ to its own challenger and forwards the reply to A. Finally, when A
outputs its guess β′ for β, B outputs β′ to its PKE challenger.

By construction, a PKE encryption under pk∗ is also an IBE encryption under id∗ for the
same underlying message, and thus B perfectly simulates Game 2. The lemma follows.

Putting all the above together, the theorem follows immediately.

Theorem 4.5. If the starting PKE is n-circular insecure, then the above IBE is also n-circular
insecure in the selective-identity sense.

Proof. The proof is similar to that for Theorem 4.1. We sketch the rough idea as follows: the
distribution of crooked public keys (generated using PRF values of identities) are computation-
ally indistinguishable to that of real public keys (generated using true random coins). Therefore,
the advantages of a PPT Test algorithm in these two cases are negligibly close. We omit the
details here.

Getting adaptive security. A downside of this transformation lies in it only yields security
results in the selective-identity sense, which seems intrinsic due to the use of punctured programs
technique [SW14]. One could use the usual complexity leveraging arguments to claim adaptive
security. However, this involves exponential security loss. Alternatively, one could use the newly
emerged primitive called extremely lossy function (ELF) [Zha16] to hash the identity with an
ELF before using it. To date, the only known construction of ELFs relies on exponential
hardness.

5 KDM-secure IBE from Homomorphic Identity-Based Hash
Proof System

Now, we present a generic construction of KDM-secure IBE from homomorphic IB-HPS.

5.1 Identity-Based Hash Proof System
We adapt the notion of identity-based hash proof system (IB-HPS) from [ADN+10] in the
context of group-theoretic languages. Our definition is of uttermost generality in that the
language depends not only on security parameter λ but may also on the identity id.

16



Definition 5.1 (Identity-Based Hash Proof System). An IB-HPS for L ⊂ X consists of the
following algorithms:

• Setup(λ): on input a security parameter λ, output a master public key mpk and a master
secret key msk. We assume that mpk specifies a multiplicative group X, an identity space
I, a collection of languages L = {Lid}id∈I defined over X, as well as an additive group
Π. We require that X (resp. Lid and X\Lid for each id ∈ I) are efficiently samplable
(w.l.o.g. obey uniform distribution) given mpk (resp. mpk and id), and denote the asso-
ciate sampling algorithms by SampAll, SampYes and SampNo respectively. Particularly,
SampYes outputs a random x ∈ Lid together with a witness w.

• Extract(msk, id): on input msk and an identity id ∈ I, output a secret key skid.
• Priv(skid, x): on input a secret key skid and an element x ∈ X, output π ∈ Π. This

algorithm defines a family of hash functions Λ = {Λskid : X → Π} indexed by the set of
secret keys for id.

• Pub(id, x, w): on input an identity id ∈ I and an element x ∈ Lid together with a witness
w, output π ∈ Π.

Identity-Based subset membership assumption. Let X be a group fixed by mpk, and L =
{Lid}id∈I be a collection of languages defined over X. The identity-based subset membership
assumption roughly states that for any id ∈ I the uniform distributions over Lid and X\Lid are
computationally indistinguishable. We now formally define it via the following experiment.

AdvA(λ) = Pr


β = β′ :

(mpk,msk)← Setup(λ);

(state, id∗)← AOext(·)
1 (mpk);

β
R←− {0, 1};

x∗0 ← SampYes(mpk, id∗);
x∗1 ← SampNo(mpk, id∗);

β′ ← AOext(·)(state, x∗β);


− 1

2
.

Here Oext(·) is an oracle that on input id ∈ I returns a secret key skid ← Extract(msk, id). We
require that Oext(·) returns the same secret key for repeated extraction queries on the same
identity id.9 Identity-based subset membership assumption holds if for any PPT adversary, its
advantage defined as above (shorthand as ϵibsmp) is negligible in λ. We stress that A is allowed
to query Oext(·) with any id ∈ I (include id∗). This strengthening is crucial for attaining KDM
security, as we will see shortly.

Remark 5.1. The standard identity-based subset membership assumption requires that ULid
≈c

UX\Lid
for any id ∈ I. In some scenarios, it is useful to consider an alternative assumption,

which requires that ULid
≈c UX for any id ∈ I. Let ρid = |Lid|/|X| be the density of Lid. It is

easy to see that when ρid is negligible for any id ∈ I, the two assumptions are equivalent due
to fact that UX and UX\Lid

are statistically close.
In what follows, we define three properties of Λ.

Projection. Λ is projective if the action of Λskid on Lid is determined by id, that is, for all
id ∈ I and all skid ← Extract(msk, id), and for all x ∈ Lid with witness w, we have:

Λskid(x) = Pub(id, x, w)

9This restriction is natural yet necessary. If an adversary obtains multiple secret keys for the same identity,
according to projective and smooth properties of Λ, it can break the identity-based subset membership problem
with high probability by checking if the hash values evaluated under these different secret keys are same.
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Homomorphic. Λ is homomorphic if for all id ∈ I and all skid the function Λskid is a group
homomorphism from X to Π, i.e., for all x1, x2 ∈ X, we have:

Λskid(x1 · x2) = Λskid(x1) + Λskid(x2)

Smoothness. Λ is smooth if for all id ∈ I, we have:

(mpk,msk, x,Λskid(x)) ≈s (mpk,msk, x, π)

where (mpk,msk) ← Setup(λ), skid ← Extract(msk, id), x
R←− X\Lid, and π

R←− Π. The
statistical distance is at most ϵsmooth, which is negligible in λ.

Remark 5.2. When ρid is negligible for any id ∈ I, the smoothness also holds w.r.t. x
R←− X.

5.2 KDM Secure IBE from Homomorphic IB-HPS
Construction. Starting from an IB-HPS whose projective hashing Λ : X → Π is smooth and
homomorphic, we can derive a KDM-secure IBE scheme with the same identity set and message
space M = Π. The construction is as below.

• The Setup and Extract algorithms are identical to that of the starting IB-HPS.
• Encrypt(mpk, id,m): on input mpk, an identity id and a message m, run (x,w) ←

SampYes(mpk, id), compute π ← Pub(id, x, w), y ← π +m, output c = (x, y).
• Decrypt(skid, c): on input skid and a ciphertext c, parse c = (x, y), compute π ←

Priv(skid, x), output m = y − π.

The correctness of the above construction follows readily from the projective property of Λ.
For the security, we have the following theorem.

Theorem 5.1. The above construction is KDM-secure w.r.t. F = {fu,v : sk → Λsk(u) +
v}u∈X,v∈Π in the single-key setting based on the identity-based subset membership assumption.

Proof. For technical convenience, we will rely on the second-type identity-based subset mem-
bership assumption, i.e., ULid

and UX are computationally indistinguishable for any id ∈ I.
We prove the above theorem via a sequence of games. An overview of the security proof is
depicted in Figure 3. In what follows, let id∗ be the target identity chosen by the adversary
and Osim(·) be an oracle that on input f indexed by (u, v) (i.e., fu,v(sk) = Λsk(u) + v) returns
(x∗ · u−1,Pub(id∗, x∗, w∗) + v), where x∗ is randomly chosen from Lid∗ with witness w∗.

Game 0. This game corresponds to the KDM security game that for each extraction query
⟨id⟩, CH responds normally with Extract(msk, id); for each encryption query ⟨f⟩, CH always
responds with real KDM encryption, namely Encrypt(mpk, id∗, f(skid∗))← O0

enc(f).
Game 1. The same as Game 1 except that for each encryption query ⟨f⟩, CH always responds
with simulated encryption, namely (x∗ · u−1,Pub(id∗, x∗, w∗) + v)← Osim(f).
Game 2. The same as Game 2 except that for each encryption query ⟨f⟩, CH always responds
with zero encryption, namely Encrypt(mpk, id∗, 0|m|)← O1

enc(f).

To establish the desired KDM security, it suffices to show that Game 0 and Game 2 are
computationally indistinguishable. To this end, we show both Game 0 and Game 2 are com-
putationally indistinguishable from the intermediate Game 1. Without loss of generality, we
assume the maximum number of encryption queries made by the adversary is upper bounded
by a polynomial q in λ.
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Game 0: answer all encryption queries with O0
enc(·)

Hyb0

≡

Hybi−1

Hybi

Hybq

≡

≡ Expi,0

≡ Expi,6

Game 1: answer all encryption queries with Osim(·)

Hyb0
≡

Hybi−1

Hybi

Hybq

≡
≡ Expi,0

≡ Expi,8

Game 2: answer all encryption queries with O1
enc(·)

Figure 3: An overview of the security proof.

Lemma 5.2. Game 0 and Game 1 are computationally indistinguishable based on the identity-
based subset membership assumption.

Proof. We introduce q + 1 hybrids indexed by 0 ≤ i ≤ q between Game 0 and Game 1, where
in Hybi the first i encryption queries are answered with Osim(·) and the rest encryption queries
are answered with O0

enc(·). Clearly, Hyb0 is exactly Game 0 and Hybq is exactly Game 1.
In what follows, we show that for each 1 ≤ i ≤ q, Hybi−1 and Hybi are computationally
indistinguishable. Note that these two successive hybrids only differ at the response to the i-th
encryption query ⟨fi⟩, the crux is to show that:

O0
enc(fi) ≈c Osim(fi)

To this end, we further introduce seven experiments (from Expi,0 to Expi,6) between each
successive Hybi−1 and Hybi to zoom in their differences. In all the seven intermediate experi-
ments, the first i−1 encryption queries are answered with Osim(·), and the last q− i encryption
queries are answered with O0

enc(·). They only differ at the response to the i-th encryption query
⟨fi = fui,vi⟩ as highlighted below.

As depicted in Figure 4, we need to show Expi,2 ≈c Expi,3 and Expi,4 ≈c Expi,5 based on
the identity-based subset membership assumption. Recall that a reduction algorithm to the
IBSMP knows exactly one secret key for any id ∈ I even including the target identity. This
allows us to carry out hybrid arguments between Expi,2,Expi,3 and Expi,4,Expi,5.

Expi,0 (identical to Hybi−1): CH interacts with A as follows.

1. Run Setup(λ) to generate (mpk,msk), send mpk to A.
2. On extraction query ⟨id⟩, return skid ← Extract(msk, id).
3. A chooses id∗ as the target identity. CH computes skid∗ ← Extract(msk, id∗).
4. On the i-th encryption query ⟨fi⟩, CH runs (x∗, w∗) ← SampYes(mpk, id∗), computes

y∗ ← Pub(id∗, x∗, w∗) + Λskid∗ (ui) + vi, returns c∗ = (x∗, y∗). Besides, the first i − 1
encryption queries are answered with Osim(·), while the last q − i encryption queries are
answered with O0

enc(·).
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O0
enc(fi)

≡ (x∗,Pub(id∗, x∗, w∗) + Λskid∗ (ui) + vi) Expi,0 : x
∗ R←− Lid∗

≡ (x∗,Λskid∗ (x
∗) + Λskid∗ (ui) + vi) Expi,1 : x

∗ R←− Lid∗ , via projective property
≡ (x∗,Λskid∗ (x

∗ · ui) + vi) Expi,2 : x
∗ R←− Lid∗ , via homomorphism

≈c (x∗,Λskid∗ (x
∗ · ui) + vi) Expi,3 : x

∗ R←− X, via IBSMP
≡ (x∗ · u−1

i ,Λskid∗ (x
∗) + vi) Expi,4 : x

∗ R←− X,X is a group
≈c (x∗ · u−1

i ,Λskid∗ (x
∗) + vi) Expi,5 : x

∗ R←− Lid∗ , via IBSMP
≡ (x∗ · u−1

i ,Pub(id∗, x∗, w∗) + vi) Expi,6 : x
∗ R←− Lid∗ , via projective property

Osim(fi)

Figure 4: Transitions between O0
enc(fi) and Osim(fi)

5. On extraction query ⟨id⟩ where id ̸= id∗, CH responds the same way as in Phase 1.

Expi,1 (compute Λskid∗ (x
∗) privately): Expi,1 is identical to Expi,0 except that CH computes

Λskid∗ (x
∗) privately in step 4.

4. On the i-th encryption query ⟨fi⟩, CH runs (x∗, w∗) ← SampYes(mpk, id∗), computes
y∗ ← Λskid∗ (x

∗) + Λskid∗ (ui) + vi, returns c∗ = (x∗, y∗).

Expi,2 (compute y∗ via homomorphism): Expi,2 is identical to Expi,1 except that CH computes
y∗ via homomorphism in step 4.

4. On the i-th encryption query ⟨fi⟩, CH runs (x∗, w∗) ← SampYes(mpk, id∗), computes
y∗ ← Λskid∗ (x

∗ · ui) + vi, returns c∗ = (x∗, y∗).

Expi,3 (sample x∗ from X): Expi,3 is identical to Expi,2 except that CH samples x∗
R←− X.

4. On the i-th encryption query ⟨fi⟩, CH picks x∗ ← SampAll(mpk), then computes y∗ ←
Λskid∗ (x

∗ · ui) + vi, returns c∗ = (x∗, y∗).

Expi,4 (replace x∗ with x∗ · u−1
i ): Expi,4 is identical to Expi,3 except that CH replaces x∗ with

x∗ · u−1
i in the ciphertext.

4. On the i-th encryption query ⟨fi⟩, CH first picks x∗ ← SampAll(mpk), then computes
y∗ ← Λskid∗ (x

∗) + vi, returns c∗ = (x∗ · u−1
i , y∗).

Expi,5 (sample x∗ from Lid∗): Expi,5 is identical to Expi,4 except that CH samples x∗ from Lid∗

instead of X.

4. On the i-th encryption query ⟨fi⟩, CH runs (x∗, w∗)← SampYes(mpk, id∗), computes y∗ ←
Λskid∗ (x

∗) + vi, returns c∗ = (x∗ · u−1
i , y∗).

Expi,6 (compute Λskid∗ (x
∗) publicly): Expi,6 is identical to Expi,5 except that CH compute

Λskid∗ (x
∗) publicly.

4. On the i-th encryption query ⟨fi⟩, CH runs (x∗, w∗) ← SampYes(mpk, id∗), computes
y∗ ← Pub(id∗, x∗, w∗) + vi, returns c∗ = (x∗ · u−1

i , y∗).

The differences between Expi,0 and Expi,1, Expi,1 and Expi,2, Expi,3 and Expi,4, Expi,5 and
Expi,6 are only conceptual. Therefore, they are perfectly equivalent.
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Claim 5.3. Expi,2 and Expi,3 are computationally indistinguishable, given the hardness of the
identity-based subset membership problem.

Proof. Suppose there is an adversary A that can distinguish Expi,2 and Expi,3 with some non-
negligible advantage, we can build an algorithm B breaks the identity-based subset membership
problem with the same advantage. B interacts with A as follows:

1. Given mpk from its own challenger where (mpk,msk)← Setup(λ), B sends mpk to A.
2. On extraction query ⟨id⟩, B forwards the query to its own challenger and sends the reply

to A.
3. A chooses id∗ as the target identity. B submits id∗ to its own challenger and receives back

x∗, which is either sampled from Lid∗ or X. B also makes an extraction query ⟨id∗⟩ and
receives back skid∗ .

4. On the i-th encryption query ⟨fi⟩, B computes y∗ ← Λskid∗ (x
∗ ·ui)+vi, sends c∗ = (x∗, y∗)

to A. Besides, B answers the first i− 1 encryption queries with Osim(·), and the last q− i
encryption queries with O0

enc(·). Since B can obtain a secret key for any identities by
querying its challenger, it is able to handle all the encryption queries properly.

5. On extraction query ⟨id⟩ where id ̸= id∗, B responds the same way as in Phase 1.

It is easy to see that if x∗ R←− Lid∗ , B simulates Expi,2 perfectly; if x∗ R←− X, B simulates Expi,3

perfectly. Therefore, B breaks the identity-based subset membership problem with the same
advantage as A distinguishing Expi,2 and Expi,3. This proves Claim 5.3.

Claim 5.4. Expi,4 and Expi,5 are computationally indistinguishable, given the hardness of the
identity-based subset membership problem.

Proof. We omit the proof since it is similar to that for Claim 5.3.

Note that Expi,0 is exactly Hybi−1, while Expi,6 is exactly Hybi. Combining all these above,
we have |AdvA(Hybi)− AdvA(Hybi−1)| ≤ 2 · ϵibsmp for each i ∈ [q], and thus |AdvA(Game 1)−
AdvA(Game 0)| ≤ 2q · ϵibsmp. This proves Lemma 5.2.

Lemma 5.5. Game 1 and Game 2 are computationally indistinguishable based on the identity-
based subset membership assumption.

Proof. We introduce q + 1 hybrids indexed by 0 ≤ i ≤ q between Game 1 and Game 2, where
in Hybi the first i encryption queries are answered with O1

enc(·) and the rest encryption queries
are answered with Osim(·). Clearly, Hyb0 is exactly Game 1 and Hybq is exactly Game 2.
In what follows, we show that for each 1 ≤ i ≤ q, Hybi−1 and Hybi are computationally
indistinguishable. Note that these two each successive hybrids only differ at the response to the
i-th encryption queries, the crux is to show that:

Osim(fi) ≈c O1
enc(fi)

To this end, we further introduce nine experiments (from Expi,0 to Expi,8) between each
successive hybrids Hybi−1 and Hybi to zoom in their differences. In all the nine intermediate
experiments, the first i − 1 encryption queries are answered with O1

enc(·), while the last q − i
encryption queries are answered with Osim(·). They only differ at the response to the i-th
encryption query ⟨fi = fui,vi⟩ as highlighted below.

As depicted in Figure 5, we need to prove Expi,1 ≈c Expi,2 and Expi,6 ≈c Expi,7 based on the
identity-based subset membership assumption, and show Expi,2 ≈s Expi,3 and Expi,5 ≈s Expi,6

based on the smoothness of Λ. Similar to previous analysis, a reduction algorithm to the
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Osim(fi)

≡ (x∗ · u−1
i ,Pub(id∗, x∗, w∗) + vi) Expi,0 : x

∗ R←− Lid∗

≡ (x∗ · u−1
i ,Λskid∗ (x

∗) + vi) Expi,1 : x
∗ R←− Lid∗ , via projective property

≈c (x∗ · u−1
i ,Λskid∗ (x

∗) + vi) Expi,2 : x
∗ R←− X, via IBSMP

≈s (x∗ · u−1
i , π∗ + vi) Expi,3 : π

∗ R←− Π, via smoothness
≡ (x∗, π∗ + vi) Expi,4 : x

∗ R←− X,X is a group
≡ (x∗, π∗ + 0|m|) Expi,5 : π

∗ R←− Π,Π is a group
≈s (x∗,Λskid∗ (x

∗) + 0|m|) Expi,6 : via smoothness
≈c (x∗,Λskid∗ (x

∗) + 0|m|) Expi,7 : x
∗ R←− Lid∗ , via IBSMP

≡ (x∗,Pub(id∗, x∗, w∗) + 0|m|) Expi,8 : x
∗ R←− Lid∗ , via projective property

O1
enc(fi)

Figure 5: Transitions between Osim(fi) and O1
enc(fi)

identity-based subset membership problem knows exactly one secret key for any id ∈ I. This fact
allows us to carry out hybrid arguments between Expi,1,Expi,2 and Expi,6,Expi,7. In addition,
throughout Expi,2 and Expi,5, the information of skid∗ is not leaked elsewhere except when
answering i-th encryption query, thus we can safely apply smoothness of Λ for the transitions
between Expi,2,Expi,3 and Expi,5,Expi,6.

Expi,0 (identical to Hybi−1): CH interacts with A as follows.

1. Run Setup(λ) to generate (mpk,msk), send mpk to A.
2. On extraction query ⟨id⟩, return skid ← Extract(msk, id).
3. A chooses id∗ as the target identity. CH computes skid∗ ← Extract(msk, id∗).
4. On the i-th encryption query ⟨fi⟩, CH runs (x∗, w∗) ← SampYes(mpk, id∗), computes

y∗ ← Pub(id∗, x∗, w∗) + vi, returns c∗ = (x∗ · u−1
i , y∗). Besides, B answers the first i − 1

encryption queries with O1
enc(·), and the last q − i encryption queries with Osim(·).

5. On extraction query ⟨id⟩ where id ̸= id∗, CH responds the same way as in Phase 1.

Expi,1 (compute Λskid∗ (x
∗) privately): Expi,1 is identical to Expi,0 except that CH computes

Λskid∗ (x
∗) privately in step 4.

4. On the i-th encryption query ⟨fi⟩, CH runs (x∗, w∗) ← SampYes(mpk, id∗), computes
y∗ ← Λsk∗id

(x∗) + vi, sends c∗ = (x∗ · u−1
i , y∗) to A.

Expi,2 (sample x∗ from X): Expi,2 is identical to Expi,1 except that CH samples x∗
R←− X.

4. On the i-th encryption query ⟨fi⟩, CH first picks x∗ ← SampAll(mpk), then computes
y∗ ← Λskid∗ (x

∗) + vi, sends c∗ = (x∗ · u−1
i , y∗) to A.

Expi,3 (replace Λskid∗ (x
∗) with π∗ R←− Π): Expi,3 is identical to Expi,2 except that CH replaces

Λskid∗ (x
∗) with π∗ R←− Π.

4. For the i-th encryption query ⟨fi⟩, CH picks x∗ ← SampAll(mpk), picks π∗ R←− Π, computes
y∗ ← π∗ + vi, sends c∗ = (x∗ · u−1

i , y∗) to A.

Expi,4 (replace x∗ · u−1
i with x∗): Expi,4 is identical to Expi,3 except that CH replaces x∗ · u−1

i

with x∗ in the ciphertext.
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4. For the i-th encryption query ⟨fi⟩, CH picks x∗ ← SampAll(mpk), picks π∗ R←− Π, computes
y∗ ← π∗ + vi, sends c∗ = (x∗, y∗) to A.

Expi,5 (replace vi with 0|m|): Expi,5 is identical to Expi,4 except that CH replaces vi with 0|m|

in the ciphertext.

4. For the i-th encryption query ⟨fi⟩, CH runs x∗ ← SampAll(mpk), picks π∗ R←− Π, computes
y∗ ← π∗ + 0|m|, sends c∗ = (x∗, y∗) to A.

Expi,6 (replace π∗ with Λskid∗ (x
∗)): Expi,6 is identical to Expi,5 except that CH replaces π∗

with Λskid∗ (x
∗) when computing y∗ in the ciphertext.

4. For the i-th encryption query ⟨fi⟩, CH picks x∗ ← SampAll(mpk), then computes y∗ ←
Λskid∗ (x

∗) + 0|m|, sends c∗ = (x∗, y∗) to A.

Expi,7 (sample x∗ from Lid∗): Expi,7 is identical to Expi,6 except that CH samples x∗
R←− Lid∗ .

4. For the i-th encryption query ⟨fi⟩, CH runs (x∗, w∗)← SampYes(mpk, id∗), then computes
y∗ ← Λskid∗ (x

∗) + 0|m|, sends c∗ = (x∗, y∗) to A.

Expi,8 (compute Λskid∗ (x
∗) publicly): Expi,8 is identical to Expi,7 except that CH computes

Λskid∗ (x
∗) publicly.

4. For the i-th encryption query ⟨fi⟩, CH runs (x∗, w∗)← SampYes(mpk, id∗), then computes
y∗ ← Pub(id∗, x∗, w∗) + 0|m|, sends c∗ = (x∗, y∗) to A.

The differences between Expi,0 and Expi,1, Expi,3 and Expi,4, Expi,4 and Expi,5, Expi,7 and
Expi,8 are only conceptual. Therefore, they are perfectly equivalent. Expi,2 and Expi,3 (resp.
Expi,5 and Expi,6) are statistically close due to the smoothness of Λ.

Claim 5.6. Expi,1 and Expi,2 are computationally indistinguishable based on the identity-based
subset membership assumption.

Claim 5.7. Expi,6 and Expi,7 are computationally indistinguishable based on the identity-based
subset membership assumption.

Proof. We omit the detailed proofs of Claim 5.6 and 5.7 here since they are similar to that for
Claim 5.3.

According to the definition, Expi,0 is exactly Hybi−1, while Expi,8 is exactly Hybi. Com-
bining all these above, we have that |AdvA(Hybi) − AdvA(Hybi−1)| ≤ 2ϵsmooth + 2ϵibsmp for
each i ∈ [q], and thus |AdvA(Game 2)− AdvA(Game 1)| ≤ q · (2ϵsmooth + 2ϵibsmp). This proves
Lemma 5.5.

Putting Lemma 5.2 and Lemma 5.5 together, |AdvA(Game 2)−AdvA(Game 0)| ≤ q(2ϵsmooth+
4ϵibsmp). This proves the theorem.

So far, we do not know how to extend the above construction to the multi-key setting.
The technical difficulty lies is that in the multi-key setting the encrypted message could be
a function of secret keys for multiple identities. More precisely, consider id = (id∗1, . . . , id

∗
n)

and f(sk1, . . . , skn) = Λsk1(u1) + · · · + Λskn(un) + v where ui ∈ X, v ∈ Π. The real KDM
encryption for encryption query ⟨i, f⟩ is of the form (x∗,Pub(id∗i , x

∗, w∗) +
∑

j ̸=i Λsk∗j
(uj) + v),

where x∗
R←− Lid∗i

. In this scenario, it appears that the homomorphic property of Λ combining
with the identity-based subset membership problem only allow us to simulate the real KDM

23



encryption without using sk∗i for id∗i . The involvements of secret keys for other target identities
seem unavoidable in the simulated encryption. As a consequence, we can not apply smoothness
of Λ to argue the indistinguishability between simulated encryption and zero encryption, as we
did in the single-identity setting. We left the extension to the multi-key setting as an interesting
problem.

6 KDM-secure IBE from iO and Puncturable Unique Signature
Though we have shown how to construct KDM-secure IBE scheme w.r.t. reasonable func-
tion family in the preceding section, it is still of great interest to build KDM-secure IBE for
larger function family. In this section, we propose a bounded KDM-secure IBE from iO and
puncturable unique signature, which is delicately adapted from the recent work by [MPS16].
Before presenting our construction, we first introduce the new notion named puncturable unique
signature and show how to construct it.

6.1 Puncturable Unique Signature
We introduce a new notion named puncturable unique signature (PUS), which adds the possi-
bility to derive punctured signing keys to unique signature [Lys02].

Definition 6.1 (Puncturable Unique Signature). A PUS scheme consists of four polynomial
algorithms as follows:

• Setup(λ): on input a security parameter λ, output a verification key vk and a signing key
sk. We assume vk includes the descriptions of the message space M and the signature
space Σ.

• Puncture(sk,m): on input sk and a message m∗, output a punctured signing key sk({m∗}),
which enables signing all messages but m∗.

• Sign(sk,m): on input a signing key sk and a message m, output a signature σ for m.
• PuncSign(sk({m∗}),m): on input a punctured signing key sk({m∗}) and a message m,

output a signature σ for m if m ̸= m∗ and ⊥ otherwise.
• Verify(vk,m, σ): on input vk, m and σ, output “1” to indicate σ is a valid signature of m

and “0” otherwise.

We require the following properties:

Uniqueness of signature. For all (vk, sk) ← KeyGen(λ) and all m ∈ M , there do not exist
values σ1, σ2 ∈ Σ such that σ1 ̸= σ2 and Verify(vk,m, σ1) = Verify(vk,m, σ2) = 1.
Unforgeability. Let A = (A1,A2) be an adversary against PUS and define its advantage in
the following experiment:

AdvA(λ) = Pr

Verify(vk,m∗, σ∗) = 1 :

(vk, sk)← KeyGen(λ);

(state,m∗)← AOsign(·)
1 (vk);

sk({m∗})← Puncture(sk,m∗);
σ∗ ← A2(state, sk({m∗}));

 ,

where Osign(·) is an oracle that on input m ∈M returns σ ← Sign(sk,m), and A1 is not allowed
to choose the message that has been queried for signatures as the target one. A PUS is said to
be unforgeable if for any PPT adversary A, its advantage defined as above is negligible in λ.
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Constructions of PUS. Interestingly, we observe that the short signature from OWF and
iO by Sahai and Waters [SW14] exactly constitutes a PUS if the underlying OWF is injective.
This provides us a concrete construction of PUS.

On the other hand, as noted in [Lys02], the construction of unique signature from verifiable
random functions (VRFs) is immediate if the proofs in the VRFs are unique. Likewise, PUS is
immediately implied by punctured VRFs satisfying the uniqueness of proofs, where punctured
VRFs itself is a special class of constrained VRFs [Fuc14]. Inspection of the circuit-constrained
VRF construction presented in [Fuc14] reveals that it has unique proof. This provides us a
generic construction of PUS.

6.2 Bounded KDM-secure IBE Scheme
Construction. Let PUS be a puncturable unique signature with message space I, and iO be
an indistinguishability obfuscator. Our construction is as below:

• Setup(λ): run (vk, sk)← PUS.KeyGen(λ), output mpk = vk, msk = sk.
• Extract(msk, id): on input msk, id ∈ I, run σ ← PUS.Sign(msk, id), output skid = σ.
• Encrypt(mpk, id,m): on input mpk = vk, id and a message m, output an obfuscated

circuit c← iO(Encmpk,id,m). The circuit Encmpk,id,m is depicted in Figure 6.
• Decrypt(skid, c): on input skid and a ciphertext c, output m← c(skid).

Encmpk,id,m

Constants: mpk, id, m
Input: sk

1. If PUS.Verify(mpk, id, sk) = 1, then output m; else output ⊥.

Figure 6: Encmpk,id,m takes as input sk, and has constants mpk, id and m hardwired. The size
of this circuit is padded to be the maximum of itself and Simmpk,id,f as described in Figure 7.

Simmpk,id,f

Constants: mpk, id, f
Input: sk

1. If PUS.Verify(mpk, id, sk) = 1, then output f(sk); else output ⊥.

Figure 7: Simmpk,id,f takes as input sk, and has constants mpk, id and f hardwired.

The correctness of the above construction is straightforward. For security, we have the
following theorem.

Theorem 6.1. If iO is secure and PUS is unforgeable, then the above IBE is a bounded KDM-
secure in the single-key setting.

Proof. We prove the above theorem via a sequence of games. Let id∗ be the target identity
chosen by the adversary. To facilitate the proof, we also introduce an oracle Osim(·), which on
input f returns iO(Simmpk,id∗,f ).
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Game 0. This game corresponds to the KDM security game that for each extraction query
⟨id⟩, CH responds normally with Extract(msk, id), for each encryption query ⟨f⟩, CH responds
with the real KDM encryption iO(Encmpk,id∗,f(skid∗ ))← O

0
enc(f).

Game 1. Same as Game 0 except that for each encryption query ⟨f⟩, CH responds with the
simulated encryption iO(Simmpk,id∗,f )← Osim(f).
Game 2. Same as Game 1 except that for each encryption query ⟨f⟩, CH responds with the
zero encryption iO(Encmpk,id∗,0|m|)← O1

enc(f).

To establish the desired KDM security, it suffices to show that Game 0 and Game 2 are
computationally indistinguishable. To this end, we show that both Game 0 and Game 2 are
computationally indistinguishable from the intermediate Game 1. We assume the maximum
number of encryption queries made by the adversary is upper bounded by a polynomial q in λ.

Lemma 6.2. Game 0 and Game 1 are computationally indistinguishable, given the security of
iO.

Proof. We introduce q+1 hybrids indexed by 0 ≤ i ≤ q between Game 0 and Game 1, where in
Hybi the first i encryption queries are answered with Osim(·) and the rest encryption queries are
answered withO0

enc(·). By definition, Hyb0 is exactly Game 0 and Hybq is exactly Game 1. Since
q = poly(λ), it suffices to show that for each 1 ≤ i ≤ q we have Hybi−1 ≈c Hybi. Note that these
two successive hybrids only differ at the response to the i-th encryption query ⟨fi⟩, thus the crux
of the proof is to show O0

enc(fi) ≈c Osim(fi), i.e., iO(Encmpk,id∗,fi(skid∗ )) ≈c iO(Simmpk,id∗,fi).
Next, we formally prove the above intuition by giving a reduction to the security of iO.

Suppose there is an adversary A that distinguishes Hybi−1 and Hybi with non-negligible
probability, we show how to build an algorithm B = (S,D) breaks the security of iO.
S(λ) behaves as follows: It runs (vk, sk) ← PUS.KeyGen(λ), sends mpk = vk to A. When

A makes extraction queries ⟨id⟩, S responds with skid ← PUS.Sign(msk, id). When A makes
the first i− 1 encryption queries, S responds with Osim(·). When A makes the i-th encryption
query ⟨fi⟩, S sets aux = (mpk,msk, id∗), then builds C0 as the circuit Encmpk,id∗,fi(skid∗ ), and
C1 as the circuit Simmpk,id∗,fi . S submits C0 and C1 to the iO challenger and receives back
iO(Cb). S then invokes D with (aux, iO(Cb)) to continue the simulation for A.

Before describing D, we observe that C0 and C1 behaves identically. It is easy to see that
both C0 and C1 output fi(skid∗) on the single input skid∗ (this is guaranteed by the unique
property of PUS) and ⊥ elsewhere. Thus, S satisfies the conditions needed for invoking the
indistinguishability property of iO.

Now, we can describe the algorithm D. Given aux and iO(Cb) as challenge, D continues
to interact with A with the aim to determine b. For the i-th encryption query, D answers
with iO(Cb). When A makes extraction queries ⟨id⟩ where id ̸= id∗, D responds with skid ←
PUS.Sign(msk, id). When A makes the rest encryption queries, D responds with O0

enc(·).
By construction, if B receives iO(C0) (resp. iO(C1)), then A’s view is identical to that

in Hybi−1 (resp. Hybi). Thereby, we have Hybi−1 ≈c Hybi for each 1 ≤ i ≤ q based on
the security of iO. By the definitions of the hybrids and the fact that q = poly(λ), we have
Game 0 ≈c Game 1. The lemma follows.

Lemma 6.3. Game 1 and Game 2 are computationally indistinguishable, given the security of
iO and the unforgeability of PUS.

Proof. We introduce q + 1 hybrids indexed by 0 ≤ i ≤ q between Game 1 and Game 2, where
in Hybi the first i encryption queries are answered with O1

enc(·) and the rest encryption queries
are answered with Osim(·). By definition, Hyb0 is exactly Game 1 and Hybq is exactly Game 2.
Since q = poly(λ), it suffices to show that for each 1 ≤ i ≤ q we have Hybi−1 ≈c Hybi. Note that
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these two successive hybrids only differ at the response to the i-th encryption query ⟨fi⟩, thus the
crux of the proof is to show Osim(fi) ≈c O1

enc(fi), i.e., iO(Simmpk,id∗,fi) ≈c iO(Simmpk,id∗,0|m|).
Next, we formally prove the above intuition by giving a reduction to the security of iO and the
unforgeability of PUS.

Suppose there is an adversary A that distinguishes Hybi−1 and Hybi with non-negligible
probability, we show how to build an algorithm B = (S,D) breaks the security of iO.
S(λ) behaves as follows: It invokes a PUS challenger and receives a verification vk, then

simulates A’s challenger by sending him mpk = vk. When A makes extraction queries ⟨id⟩,
S submits signing queries ⟨id⟩ to its PUS challenger and forwards the results to A. When
A makes the first i − 1 encryption queries, S responds with O1

enc(·). When A makes the i-
th encryption query ⟨fi⟩, S submits id∗ to its PUS challenger and receives back a punctured
signing key sk({id∗})← PUS.Puncture(sk, id∗), S then sets aux = (mpk, sk({id∗}), id∗), builds
C1 as the circuit Simmpk,id∗,fi , and C2 as the circuit Encmpk,id∗,0|m| . S submits C1 and C2 to the
iO challenger and receives back iO(Cb). S then invokes D with (aux, iO(Cb)) to continue the
simulation for A.

Before describing D, we observe that the circuits C1 and C2 have at most one differing-input.
To see this, note that C1 outputs fi(skid∗) and C2 outputs 0|m| on the single input skid∗ (this
is guaranteed by the unique property of PUS), and the two circuits output ⊥ elsewhere. For
the case fi(skid∗) = 0|m|, C0 and C1 are functionally equivalent. For the case fi(skid∗) ̸= 0|m|,
it remains to show that no PPT adversary is able to find the only differing-input. Observe that
the only differing-input skid∗ is exactly the unique signature on id∗, a reduction to the security
of PUS is immediate: suppose given (C1, C2, aux) there exists a PPT adversary F that can find
such differing-input, say skid∗ , of C1 and C2 with non-negligible probability, then S breaks the
unforgeability of PUS with the same probability.

Now, we can describe the algorithm D. Given aux and iO(Cb) as challenge, D continues
to interact with A with the aim to determine b. For the i-th encryption queries, D responds
with iO(Cb). When A makes extraction queries ⟨id⟩ where id ̸= id∗, D responds with skid ←
PUS.PuncSign(sk({id∗}), id). When A makes the rest encryption queries, A responds with
Osim(·).

By construction, if B receives iO(C1) (resp. iO(C2)), then A’s view is identical to that
in Hybi−1 (resp. Hybi). Thereby, we have Hybi−1 ≈c Hybi for each 1 ≤ i ≤ q based on
the security of iO. By the definitions of the hybrids and the fact that q = poly(λ), we have
Game 1 ≈c Game 2. The lemma follows.

The theorem follows from Lemma 1 and Lemma 2.

Remark 6.1. In the proof of Lemma 2, we actually need to use diO. Nevertheless, the two
circuits C1 and C2 have at most one differing-input. Thereby, according to Lemma A.1 we
could safely use iO rather than resort to diO.

Currently, we do not know how to extend the above construction to the multiple-keys setting.
The technique hurdle is that the circuit Simmpk,id,f is given as input one of the secret keys but
now has to output a function of (possibly) n secret keys. In the PKE setting, Marcedone et
al. [MPS16] solved this problem by embedding a special relationship among secret keys into
Simmpk,id,f . However, their approach seems not work here, because in IBE secret keys are
derived from identities and thus it is hard to manipulate the relationship among them. We left
the extension to the multiple-keys setting as an interesting problem.
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7 Counterexample for n-Circular Security from Differing-Input
Obfuscation and Puncturable IBE

Other than constructing IBE schemes for which we can prove KDM security, one may ask the
more fundamental question of “if standard security notions already imply KDM security”. A
series of recent works [ABBC10, CGH12, MO14, KRW15, BHW15, KW16, AP16] give negative
answer to this question in the public-key setting.

We make progress toward the truth of this question in the identity-based setting. Our goal
is to figure out whether n-circular security (which is a special case of KDM security) is implied
by the standard CPA/CCA security.

Similar to the public-key setting [BHW15], such a counterexample is easy to construct for
the case n = 1. Concretely, start from a CPA secure IBE scheme Π =(Setup, Extract, Encrypt,
Decrypt) which admits efficient CheckSK algorithm (cf. Definition A.5), one can modify it to
a new IBE scheme Π′ = (Setup,Extract,Encrypt′,Decrypt′), where the algorithms Setup and
Extract are same as that of Π; Encrypt′(mpk, id,m) outputs Encrypt(mpk, id,m)||0 if m ̸= skid
and m||1 otherwise (this could be done with the help of algorithm CheckSK); Decrypt′(skid, c||b)
outputs Decrypt(skid, c) if b = 0 and c otherwise. Clearly, Π′ is correct and inherits CPA security
from that of Π, but it is completely 1-circular insecure. The strategy behind this counterexample
is “check-then-mark”, that is, the encryption algorithm first checks if the encrypted message is
a valid secret key, then encrypts in two distinguished manners (e.g., by attaching a bit mark)
according to the check result.

From the proceeding discussion in introduction, while it can be easily shown that CPA
security does not imply 1-circular security, the case for n ≥ 2 turns out to be much challenging.
When n ≥ 2 it seems difficult to implement the “check-then-mark” strategy since the circle is
specified by the adversary “on the fly”. To circumvent this difficulty, we embed an obfuscation
of a circuit to the ciphertext with the hope that the circuit admits dynamic cycle detection
without compromising CPA security. As we sketched before in Section 2.4, we need a new
notion called puncturable IBE as the basis of our counterexample. In what follows, we first
formally introduce puncturable IBE and show how to construct it.

7.1 Puncturable IBE
Definition 7.1 (Punctureable IBE). A puncturable IBE (PIBE) scheme is an IBE scheme
whose master secret key allows efficient puncturing (analogous to puncturable PRF). The syntax
of puncturable IBE is identical to standard IBE except it equips two additional polynomial
algorithms as follows:

• Puncture(msk, id): on input msk and an identity id∗ ∈ I, output a punctured master
secret key msk({id∗}).

• Derive(msk({id∗}), id): on input msk({id∗}) and an identity id ∈ I, output a secret key
skid for id if id ̸= id∗ and ⊥ otherwise. We require that for all id ̸= id∗, the outputs of
Extract(msk, id) and Derive(msk({id∗}), id) have the same distribution.

Intuitively, the two algorithms ensure that there is a succinct description of the set of secret
keys for all identities but one.

Security. Let A = (A1,A2) be an adversary against PIBE and define its advantage in the
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following experiment:

AdvA(λ) = Pr


β = β′ :

(mpk,msk)← Setup(λ);

(state, id∗,m0,m1)← AOext(·)
1 (mpk);

msk({id∗})← Puncture(msk, id∗);

β
R←− {0, 1};

c∗ ← Encrypt(mpk, id∗,mβ);
β′ ← A2(state,msk({id∗}), c∗);


− 1

2
,

where Oext(·) is an oracle that on input id ∈ I returns skid ← Extract(msk, id), and A1 is not
allowed to choose the identity that had been queried for secret keys as the target one. A PIBE
is CPA-secure if for any PPT adversary A if its advantage defined as above is negligible in λ.

We then proceed to show the existence of PIBE.

PIBE from Hierarchical IBE. Let HIBE be an ℓ-level HIBE with identity space ({0, 1}∗)ℓ,
we can build a PIBE with identity space {0, 1}ℓ as follows.

• Setup(λ): output (mpk,msk)← HIBE.Setup(λ, ℓ).
• Extract(msk, id): on input msk and an identity id ∈ {0, 1}ℓ, map id to depth ℓ ID-

vector v = (id[1], . . . , id[ℓ]) where id[i] denotes the i-th bit of id, then compute skv ←
HIBE.Extract(msk, v), output skid = skv.

• Puncture(msk, id∗): on input msk and an identity id∗ ∈ {0, 1}ℓ: for 1 ≤ i ≤ ℓ, set depth
i ID-vector vi = (id∗[1], . . . , id

∗
[i−1], id

∗
[i]), then compute skvi ← HIBE.Extract(msk, vi), out-

put msk({id∗}) = (skv1 , . . . , skvℓ). It is easy to verify that the size of msk({id∗}) is
polynomial in λ.

• Derive(msk({id∗}), id): on input msk({id∗}) = (skv1 , . . . , skvℓ) and an identity id ∈
{0, 1}ℓ, if id ̸= id∗, find vj that is a prefix of id∗ and output skid ← HIBE.Derive(skvj , id);
if id = id∗, output ⊥.

• Encrypt(mpk, id,m): on input mpk, an identity id and a message m, map id to depth ℓ
ID-vector v = (id[1], . . . , id[ℓ]), output c← HIBE.Encrypt(mpk, v,m).

• Decrypt(skid, c): on input skid and a ciphertext c, interpret skid as skv, output m ←
HIBE.Decrypt(skv, c).

The correctness, checkable property and CPA security of the PIBE follow readily from that
of the underline HIBE. We omit the details here.

Remark 7.1. For our main purpose, we simply define PIBE with respect to a singleton {id}.
The notion can be easily generalized w.r.t. a polynomial-size identity set T ⊂ I. In the above,
we demonstrate the existence of PIBE by giving a generic construction from HIBE. We remark
that PIBE can also be neatly derived from Binary Tree Encryption (BTE) [CHK03], which is
arguably a more simple and general notion than HIBE.

7.2 Construction of the Counterexample for n-circular security
Construction of Counterexample. Let PIBE be a puncturable IBE scheme with efficient
CheckSK algorithm, diO be a differing-inputs obfuscator. For simplicity, we also assume SK ⊆
M in PIBE. We construct an IBE scheme with the same identity space, message space, and
secret key space as the starting PIBE:

• The Setup, Extract and CheckSK algorithms are the same as that of PIBE.
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• Encrypt(mpk, id,m): on input mpk, an identity id ∈ I and a message m, first compute
ce ← PIBE.Encrypt(mpk, id,m), then create an obfuscated circuit ct ← diO(λ,CycleTestid,m),
output the final ciphertext c = (ct, ce). The circuit CycleTestid,m is depicted in Figure 8.

• Decrypt(skid, c): on input skid and a ciphertext c = (ce, ct), output m← PIBE.Decrypt(skid, ce).

CycleTest

Constants: id, m
Input: id = (id1, . . . idn) and ce = (c1,e, . . . , cn,e).

1. If id ̸= id1, output ⊥.
2. Assign sk2 := m.
3. For i = 2 to n, do:

(a) If CheckSK(ski, idi) = 0, output ⊥.
(b) Else, compute sk(i mod n)+1 ← PIBE.Decrypt(ski, ci,e), and output ⊥ if

PIBE.Decrypt fails.
4. If CheckSK(sk1, id1) = 0, output ⊥; else output sk1.

Figure 8: CycleTest takes as input id = (id1, . . . , idn) and ce = (c1,e, . . . , cn,e), and has constants
id and m hardwired. The size of this circuit is padded to be the maximum of itself and
CycleReject as described in Figure 9.

CycleReject

Constants: none
Input: id = (id1, . . . , idn) and ce = (c1,e, . . . , cn,e).

1. Output ⊥.

Figure 9: CycleReject takes as input id = (id1, . . . , idn) and ce = (c1,e, . . . , cn,e), and has no
constant hardwired.

The correctness of the above construction follows from that of the starting PIBE. We then
prove it is still CPA-secure but n-circular insecure.

Theorem 7.1. If PIBE is a CPA-secure puncturable IBE and diO is a secure differing-input
obfuscator, then the above construction is CPA-secure.

Proof. We prove this theorem via a sequence of games.

Game 0. This is the standard CPA security game. CH interacts with A as below.

1. CH runs (mpk,msk)← Setup(λ), then sends mpk to A.
2. On extraction query ⟨id⟩, CH responds with skid ← Extract(msk, id).
3. A submits (id∗,m0,m1). CH picks a random bit β, runs Encrypt(mpk, id∗,mβ), i.e.,

computes c∗e ← PIBE.Encrypt(mpk, id∗,mβ), c∗t ← diO(λ,CycleTestid∗,mβ
). CH sets c∗ =

(c∗e, c
∗
t ) and sends c∗ to A.

4. On extraction query ⟨id⟩ that id ̸= id∗, CH responds the same way as in Phase 1.
5. Finally, A outputs a guess β′ for β and wins if β′ = β.
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Game 1. Same as Game 0 except that when generating the challenge ciphertext, CH replaces
CycleTestid∗,mβ

with CycleReject.

3. CH picks β ∈ {0, 1}, computes c∗e ← PIBE.Encrypt(mpk, id∗,mβ), c∗t ← diO(λ,CycleReject).
CH sets c∗ = (c∗e, c

∗
t ) and sends c∗ to A.

Lemma 7.2. The advantages of any PPT adversary in Game 0 and Game 1 are negligibly
close, given the security of the diO and the security of PIBE.

Proof. Suppose there is a PPT adversary A whose advantages in Game 0 and Game 1 are not
negligibly close, then we can build an algorithm B = (S,D) breaks the assumed security of diO
by interacting with A as follows.
S(λ) behaves as follows: It invokes a PIBE challenger and receives mpk, where (mpk,msk)←

PIBE.Setup(λ). It then begin to simulate A’s challenger by sending him mpk. In Phase 1, when
A makes extraction queries ⟨id⟩, S forwards them to its own PIBE challenger and sends the re-
ply back. In the challenge phase, upon receiving (id∗,m0,m1) from A, S submits (id∗,m0,m1)
to its PIBE challenger, and receives back a punctured master secret key msk({id∗}) and a
ciphertext c∗e ← Π.Encrypt(mpk, id∗,mγ) (where γ is unknown to S). S then discards c∗e, picks
a random bit β ∈ {0, 1}, sets aux = (mpk,msk({id∗}), id∗,mβ, β), builds C0 = CycleTestid∗,mβ

and C1 = CycleReject. S submits C0 and C1 to the diO challenger and receives back iO(Cb). S
invokes D with (aux, diO(Cb)) to continue the simulation for A.

Before describing D, we have to show that S satisfies the conditions needed for invoking
the indistinguishability property of diO, i.e., given (C0, C1, aux) no PPT adversary can find
a differing input of C0 and C1 with non-negligible probability. Observe that C0 outputs skid∗

on some inputs and ⊥ on the rest inputs, whereas C1 always outputs ⊥. A reduction to the
security of PIBE is immediate: suppose given (C0, C1, aux) there exists an adversary F that
can find a differing-input, say x, of C0 and C1 with non-negligible probability, then S obtains
a valid secret key skid∗ for id∗ with the same probability by simply computing C0(x) and thus
totally breaks the assumed CPA security of PIBE (always guess the right γ).10

Now, we can describe the algorithm D. Given diO(Cb) and auxiliary information aux =
(mpk,msk({id∗}), id∗,mβ, β) as challenge, D continues to interact with A with the aim to
determine b. To prepare the challenge ciphertext, D computes c∗e ← Π.Encrypt(mpk, id∗,mβ),
sets c∗t ← diO(Cb), and sends c∗ = (c∗e, c

∗
t ) to A. When A makes extraction query ⟨id⟩ with

id ̸= id∗, D responds with skid ← PIBE.Derive(msk({id∗}), id). Finally, A outputs a guess β′

for β. If A wins, D outputs 1.
By construction, if D receives diO(C0) (resp. diO(C1)), the probability that D outputs 1 is

exactly the probability of A winning in Game 0 (resp. Game 1).
The lemma follows.

Lemma 7.3. No PPT adversary has non-negligible advantage in Game 1, given the starting
PIBE is CPA-secure.

Proof. Suppose there is an adversaryA that wins in Game 1 with some non-negligible advantage,
we show how to build an algorithm B breaks the CPA security of PIBE with the same advantage.
B interacts with A as follows:

1. Given mpk where (mpk,msk)← PIBE.Setup(λ), B sends mpk to A.
2. On extraction query ⟨id⟩, B forwards the query to its own challenger and sends the reply

to A.
10A subtlety here is we have to require Π to satisfy perfect correctness, i.e., valid secret keys always decrypt

correctly. Most known IBE schemes based on number-theoretic assumptions meet this requirement.
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3. Upon receiving (id∗,m0,m1) from A, B submits (id∗,m0,m1) to its own challenger. Af-
ter receiving back a punctured master secret key msk({id∗}) and challenge ciphertext c∗e ←
PIBE.Encrypt(mpk, id∗,mβ) for some unknown bit β, B computes c∗t ← diO(λ,CycleReject),
and sends c∗ = (c∗e, c

∗
t ) to A.

4. On extraction query ⟨id⟩ that id ̸= id∗, B responds with punctured master secret key
msk({id∗}), i.e., skid ← PIBE.Derive(msk({id∗}), id).

5. Finally, A outputs a guess β′ for β. B forwards β′ to its own challenger.

It is easy to check that B simulates Game 1 perfectly. Therefore, if A wins in Game 1 with
some non-negligible advantage, B breaks the assumed CPA security of PIBE with the same
advantage. The lemma follows.

Combining all these above, the theorem immediately follows.

Theorem 7.4. The above construction is n-circular insecure.

Proof. We construct a PPT algorithm Test that breaks the n-circular security of the above con-
struction as follows. After receiving mpk from the challenger, Test randomly picks n identities
id = (id1, . . . , idn) and submits them to the challenger, and receives back c = (c1, . . . , cn). To
decide whether c is a circle encryption or a zero encryption, Test first parses ci = (ci,e, ci,t). By
definition, ci,t is diO(λ,CycleTestidi,m), where m is either sk(i mod n)+1 or 0|m|. Test then sets
ce = (c1,e, . . . , cn,e) and runs c1,t(id, ce), and outputs 0 if the result of is ⊥ and 1 otherwise.
If c is a cycle encryption w.r.t. id, the output of c1,t(id, ce) is 1. If c is a zero encryption,
the output of c1,t(id, ce) must be ⊥ with overwhelming probability. Otherwise, this means
that Test algorithm finds n identities whose secret keys are all zero strings with non-negligible
probability, which contradicts to the assumed CPA security of PIBE.

Clearly, Test is a PPT algorithm and wins the n-circular security game with advantage
negligibly close to 1/2. The desired result follows.

Separation from CCA security. The above counterexample shows that CPA security does
not necessarily imply n-circular security for IBE. It is interesting to know if stronger notions,
say CCA security, imply n-circular security.

Toward this question, we extend the framework [BHW15] of building counterexamples for
circular security to the IBE setting (cf. Appendix B), which might be of independent interest.
In this framework, a so called n-cycle tester plays a crucial role: a CPA (resp. CCA) secure IBE
scheme in combination with a compatible CPA secure n-cycle tester instantly imply a new IBE
scheme which is CPA (resp. CCA) secure but n-circular insecure. Note that our counterexample
described above can certainly serve as a CPA n-cycle tester, thereby a counterexample that
separates CCA security from n-circular security follows immediately via this framework by
coupling with a CCA secure IBE scheme.
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A Standard Cryptographic Primitives
A.1 Indistinguishability/Differing-Input Obfuscation for Circuits
We recall the notion of indistinguishability obfuscation for circuits from Garg et al. [GGH+13].
First, we define the notion of equivalent sampler.

Definition A.1 (Equivalent Sampler for Circuits). An efficient non-uniform sampling algorithm
Sample is called an equivalent sampler for a circuit family Cλ if there exists a negligible function
α such that the following holds:

Pr[∀x,C0(x) = C1(x) : (C0, C1, aux)← Sample(λ)] > 1− α(λ)

Definition A.2 (Indistinguishability Obfuscator (iO)). A uniform PPT machine iO is called
an indistinguishability obfuscator for a circuit class {Cλ} if the following conditions are satisfied:

• (Preserving Functionality) For all security parameter λ ∈ N, for all C ∈ Cλ, and for all
inputs x ∈ {0, 1}∗, we have:

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

• (Indistinguishability of Obfuscation) For any PPT adversaries S, D, if S constitutes an
equivalent sampler w.r.t. a negligible function α, we have:

|Pr[D(aux, iO(λ,C0)) = 1]− Pr[D(aux, iO(λ,C1)) = 1]| ≤ α(λ),

where (C0, C1, aux)← S(λ).
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[GGH+13] showed how iO can be constructed for the circuit class P/poly. Next, we recall
the notion of differing-input obfuscation from Ananth et al. [ABG+13], which is also equivalent
to that of Boyel et al. [BCP14]. First, we define the notion of a differing-inputs sampler.
Definition A.3 (Differing-Inputs Sampler for Circuits). An efficient non-uniform sampling
algorithm Sample is called a differing-inputs sampler for a circuit family Cλ if for all PPT
adversary A, we have that:

Pr[C0(x) ̸= C1(x) : (C0, C1, aux)← Sample(λ), x← A(C0, C1, aux)] ≤ α(λ)

Definition A.4 (Differing-Inputs Obfuscator for Circuits). A uniform PPT machine diO is
called a differing-inputs obfuscator for a circuit family {Cλ} if it satisfies the following conditions:

• (Preserving Functionality) For all security parameter λ ∈ N, for all C ∈ Cλ, and for all
inputs x ∈ {0, 1}∗, we have:

Pr[C ′(x) = C(x) : C ′ ← diO(λ,C)] = 1

• (Indistinguishability of Obfuscation) For any PPT adversaries S, D, if S constitutes a
differing-inputs sampler w.r.t. a negligible function α, we have:

|Pr[D(aux, diO(λ,C0)) = 1]− Pr[D(aux, diO(λ,C1)) = 1]| ≤ α(λ),

where (C0, C1, aux)← S(λ).
Lemma A.1 ([BCP14]). For the circuit class P/poly, iO implies diO for circuits differing on
at most polynomially-many inputs.

A.2 Puncturable Pseudorandom Functions
Puncturable PRFs (PPRFs) [SW14] is a simplest type of constrained PRFs (CPRFs) [KPTZ13,
BW13, BGI14]. In PPRFs, constrained key can be derived for any polynomial size subset T of
domain X, and such a constrained key allows evaluation on all elements x ∈ X\T . Formally, a
puncturable PRF F : K ×X → Y is given by four polynomial time algorithms as below:

• KeyGen(λ): on input a security parameter λ, output a random secret key k
R←− K.

• Puncture(k, T ): on input a secret key k ∈ K and a polynomial size subset T ⊂ X, output
a punctured key k(T ).

• Eval(k, x): on input a secret key k and an element x ∈ X, output F(k, x).
• PuncEval(k(T ), x): on input a punctured key k(T ) and an element x ∈ X, output F(k, x)

if x /∈ T and a special reject symbol ⊥ otherwise.

Security. Let A = (A1,A2) be an adversary against PPRFs and define its advantage in the
following experiment:

AdvA(λ) = Pr

β = β′ :

k ← KeyGen(λ);

(state, T = {x∗1, . . . , x∗n})← A
Oeval(·)
1 (λ);

k(T )← Puncture(k, T );

β
R←− {0, 1}, {y∗i,0 ← F(k, x∗i ), y

∗
i,1

R←− Y }1≤i≤n;

β′ ← AOeval(·)
2 (state, k(T ), {y∗i,β}1≤i≤n);

−
1

2
.

Here Oeval(·) is an evaluation oracle that on input x returns y ← F(k, x). A = (A1,A2) is
not allowed to query Oeval(·) with x∗i ∈ T . PPRF is said to be pseudorandom if for any PPT
adversary, its advantage defined as above is negligible in λ. A weaker notion named selective
pseudorandomness for PPRF can be defined via a similar experiment by asking A1 to commit
T at the very beginning.

38



A.3 Identity-Based Encryption
Definition A.5 (Identity-Based Encryption). An identity-based encryption scheme [BF03]
consists of four algorithms as follows.

• Setup(λ): on input a security parameter λ, output a master public key mpk and a master
secret key msk.11

• Extract(msk, id): on input msk and an identity id ∈ I, output a secret key skid for id.
• Encrypt(mpk, id,m): on input mpk and an identity id ∈ I and a message m ∈M , output

a ciphertext c.
• Decrypt(skid, c): on input a secret key skid and a ciphertext c ∈ C, output a message

m ∈M or a special reject symbol ⊥ indicating c is invalid.

Perfect correctness. For all (mpk,msk)← Setup(λ), all id R←− I, all skid ← Extract(msk, id),
all m R←−M and all c← Encrypt(mpk, id,m), it holds that Decrypt(skid, c) = m.

Next, we formally introduce a property called “checkable secret key” for IBE, which is vital
for our counterexample construction presented in Section 7.

Checkable secret key. A secret key sk is said to be valid for id if sk is honestly generated by
Extract(msk, id). Moreover, we say an IBE scheme satisfies “checkable secret key” property if
there exists an efficient deterministic algorithm CheckSK that can check if a given secret key sk
is valid for id. This property is natural in that most existing pairing-based IBE schemes [BF03,
BB04, Wat05, Gen06, Wat09] and lattice-based IBE schemes [GPV08, ABB10] satisfy it.

CPA Security. Let A = (A1,A2) be an adversary against IBE and define its advantage in the
following experiment:

AdvA(λ) = Pr

β = β′ :

(mpk,msk)← Setup(λ);

(state, id∗,m0,m1)← AOext(·)
1 (mpk);

β
R←− {0, 1};

c∗ ← Encrypt(mpk, id∗,mβ);

β′ ← AOext(·)
2 (state, c∗);

−
1

2
.

HereOext(·) is an extraction oracle that on input an identity id ∈ I returns skid ← Extract(msk, id).
Note that Oext(·) returns the same skid for repeated extraction queries on id. A = (A1,A2) is
not allowed to query Oext(·) with id∗. An IBE scheme is said to be CPA-secure if for any PPT
adversary A, its advantage defined as above is negligible in λ. The CCA security for IBE can be
defined similarly by giving the adversary access to an additional decryption oracle Odec(·, ·) that
on input ⟨id, c⟩ returns m← Decrypt(skid, c). A natural constraint is that A2 is not allowed to
query Odec(·, ·) with (id∗, c∗).

A weaken security notion for IBE is selective-identity CPA/CCA security, where the adver-
sary has to declare the target identity id∗ before seeing mpk.

B A Framework for Generating n-Circular Security Counterex-
amples

Recently, Bishop et al. [BHW15] introduced a new abstraction called an n-cycle tester which
greatly simplifies the process of finding and describing n-circular security counterexamples in

11We assume mpk includes the descriptions of identity space I, message space M , and ciphertexts space C.
mpk will be used as an input for algorithms Extract and Decrypt, and is omitted when the context is clear.
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the PKE setting. In this section, we extend n-Cycle Tester to the IBE setting, and show its
usefulness in separating CPA/CCA security from n-circular security for IBE.

Definition B.1 (n-Cycle Tester). An n-cycle tester in the IBE setting consists of four algo-
rithms specified as follows:

• Setup(λ): on input a security parameter λ, output a master public key mpk and a master
secret key msk.

• Extract(msk, id): on input msk and an identity id ∈ I, output a secret key skid for id.
• Encrypt(mpk, id,m): on input mpk, an identity id ∈ I and a message m ∈ M , output a

ciphertext c.
• Test(id, c): on input id = (id1, . . . , idn) and c = (c1, . . . , cn), output “1” to indicate c

forms encryption cycle w.r.t. id and “0” otherwise.

Testing Correctness. For any id = (id1, . . . , idn) ∈ In, the advantage of algorithm Test
defined in the following experiment is non-negligible in λ.

AdvTest(λ) = Pr


β′ = β :

(mpk,msk)← Setup(λ);
ski ← Extract(msk, idi) for each i ∈ [n];

β
R←− {0, 1};

For i = 1 to n :
β = 1 : ci ← Encrypt(mpk, idi, sk(i mod n)+1);

β = 0 : ci ← Encrypt(mpk, idi, 0
ℓ);

c← (c1, . . . , cn);
β′ ← Test(id, c);


− 1

2
,

where the probability is taken over the random coins used by Setup, Extract, Encrypt, and Test.

CPA Security. Similar to the PKE setting [BHW15], an n-cycle tester in the IBE setting
can be viewed as an IBE scheme without decryption algorithm, and recall the CPA security
experiment for IBE is not involved with decryption algorithm. Therefore, we can use the same
security experiment (cf. Definition A.5) to capture the CPA security of n-cycle tester in the
IBE setting.

B.1 CPA Counterexample from Cycle Testers
Let Π = (Setup,Extract,Encrypt,Decrypt) be an IBE scheme with identity space I and message
space M1 × M2 and secret key space SK1 ⊆ M1. Let Γ = (Setup,Extract,Encrypt,Test) be
an n-cycle tester with the same identity space I and message space M2 and secret key space
SK2 ⊆M2. We compose them to an IBE scheme Ψ with identity space I and secret key space
SK = SK1 × SK2 and message space M = M1 ×M2.

• Setup(λ): run (mpk1,msk1)← Π.Setup(λ) and (mpk2,msk2)← Γ.Setup(λ), output mas-
ter public key mpk = (mpk1,mpk2) and master secret key msk = (msk1,msk2).

• Extract(msk, id): on input msk = (msk1,msk2) and an identity id ∈ I, compute sk1 ←
Π.Extract(msk1, id) and sk2 ← Γ.Extract(msk2, id), output a secret key skid = (sk1, sk2).

• Encrypt(mpk, id,m): on input mpk = (mpk1,mpk2), an identity id ∈ I and a message
m = (me,mt) ∈ M , compute ce ← Π.Encrypt(mpk1, id,m), ct ← Γ.Encrypt(mpk2, id,mt),
output a ciphertext c = (ce, ct).

• Decrypt(skid, c): on input skid = (sk1, sk2) and c = (ce, ct), output m← Π.Decrypt(sk1, ce).
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• Test(id, c): on input id = (id1, . . . , idn) and c = (c1, . . . , cn), parse ci = (ci,e, ci,t) for each
i ∈ [n], set ct = (c1,t, . . . , cn,t), output Γ.Test(id, ct).

The correctness of Ψ.Test follows from that of Γ.Test. If (id, c) is a circle encryption (resp.
zero encryption) under Ψ, then (id, ct) is a circle encryption (resp. zero encryption) under Γ.
Thereby, Ψ.Test distinguishes the two cases with the same advantage as that of Γ.Test.

It remains to show the above construction is CPA-secure. This follows by a simple hybrid
argument based on the fact that an encryption under Ψ is a combination of two CPA-secure
encryptions, from Π and Γ respectively. We omit this proof as it is simplified version of the
proof for Theorem B.1 that we show later.

B.2 CCA Counterexample from Cycle Testers
Let Π = (Setup,Extract,Encrypt,Decrypt) be an IBE scheme with identity space I and message
space M1×M2×C2 and secret key space SK1 ⊆M1. Let Γ = (Setup,Extract,Encrypt,Test) be
an n-Cycle Tester with the same identity space I and message space M2 and secret key space
SK2 ⊆M2 and ciphertext space C2. We compose them to an IBE scheme Ψ with identity space
I and message space M = M1 ×M2 and secret key space SK = SK1 × SK2.

• Setup(λ): run (mpk1,msk1)← Π.Setup(λ) and (mpk2,msk2)← Γ.Setup(λ), output mas-
ter public key mpk = (mpk1,mpk2) and master secret key msk = (msk1,msk2).

• Extract(msk, id): on input msk = (msk1,msk2) and an identity id ∈ I, compute sk1 ←
Π.Extract(msk1, id) and sk2 ← Γ.Extract(msk2, id), output a secret key skid = (sk1, sk2).

• Encrypt(mpk, id,m): on input mpk = (mpk1,mpk2), an identity id ∈ I and a mes-
sage m = (me,mt) ∈ M , compute ct ← Γ.Encrypt(mpk2, id,mt), then compute ce ←
Π.Encrypt(mpk1, id, (me,mt, ct)), output a ciphertext c = (ce, ct).

• Decrypt(skid, c): on input skid = (sk1, sk2) and ciphertext c = (ce, ct), run Π.Decrypt(sk1, ce).
If the decryption result is not of the form (me,mt, ct), then output ⊥. Otherwise, output
the message m = (me,mt).

• Test(id, c): on input id = (id1, . . . , idn) and c = (c1, . . . , cn), parse ci = (ci,e, ci,t) for each
i ∈ [n], set ct = (c1,t, . . . , cn,t), output Γ.Test(id, ct).

Similar to the CPA setting as analyzed above, the correctness of Ψ.Test follows from that
of Γ.Test. We then proceed to examine the security of Ψ.

Theorem B.1. If Π is a CCA-secure IBE scheme, Γ is a CPA-secure n-cycle tester, then Ψ
is a CCA-secure IBE scheme.

Proof. We prove the CCA security of Ψ via a sequence of games. Let m0 and m1 be the messages
submitted by the adversary. We begin with Game 0 in which CH encrypts m0 as the challenge
ciphertext, and end with the hybrid that CH encrypts m1 as the challenge ciphertext. In all
these games, mpk and msk distribute identically to the real game, but either the structure of
the challenge ciphertext or the rules of answering the decryption queries are changed in each
two successive games. We specify these games as follows.

Game 0 (encrypt m0 = (m0,e,m0,t) into c∗): CH interacts with A as follows.

1. Run (mpk,msk)← Setup(λ).
2. On extraction query ⟨id⟩, return skid ← Extract(msk, id).
3. On decryption query ⟨id, c⟩, return m← Decrypt(skid, c).
4. A submits (id∗,m0,m1) to CH, where m0 = (m0,e,m0,t) and m1 = (m1,e,m1,t).
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5. CH runs c∗ ← Encrypt(mpk, id∗,m0): computes c∗t ← Γ.Encrypt(mpk2, id
∗,m0,t), c∗e ←

Π.Encrypt(mpk1, id
∗, (m0,e,m0,t, c

∗
t )), return c∗ = (c∗e, c

∗
t ).

6. On extraction query ⟨id⟩ where id ̸= id∗, return skid ← Extract(msk, id).
7. On decryption query ⟨id, c⟩ where (id, c) ̸= (id∗, c∗), output m← Decrypt(skid, c).

Game 1 (modify the decryption rules in Phase 2 step 7):

7. On decryption query ⟨id, c⟩ ̸= ⟨id∗, c∗⟩ where c = (ce, ct) and c∗ = (c∗e, c
∗
t ), if id = id∗ and

ce = c∗e directly output ⊥, otherwise output m← Decrypt(skid, c).

Game 2 (encrypt m1,t rather than m0,t when generating c∗t ):

5. CH computes c∗t ← Γ.Encrypt(mpk2, id
∗,m1,t), computes c∗e as in Game 1, outputs c∗ =

(c∗e, c
∗
t ).

Game 3 (encrypt (m1,e,m1,t, c
∗
t ) rather than (m0,e,m0,t, c

∗
t ) when generating c∗e):

5. CH computes c∗e ← Π.Encrypt(mpk1, id
∗, (m1,e,m1,t, c

∗
t )), computes c∗t as in Game 2, out-

puts c∗ = (c∗e, c
∗
t ).

Game 4 (modify back the decryption rules in Phase 2 step 7):

7. On decryption query ⟨id, c⟩ ̸= ⟨id∗, c∗⟩, output m← Decrypt(skid, c).

Lemma B.2. Game 0 and Game 1 are equivalent.

Proof. We note that the only difference between Game 0 and Game 1 is that when answering
decryption queries in Phase 2 CH directly returns ⊥ if id = id∗ and ce = c∗e. Note that for
decryption query of the form ⟨id∗, (c∗e, ct)⟩: if ct = c∗t , the query is illegal and will be rejected
with ⊥; if ct ̸= c∗t , the ciphertext is not valid since according to the construction of Ψ the third
element of the decryption result of c∗e must be c∗t . Thus, such change of decryption rule in Phase
2 is purely conceptual and the two games are perfectly equivalent.

Lemma B.3. Game 1 and Game 2 are computationally indistinguishable, given Γ is CPA-
secure.

Proof. We prove this lemma by giving a reduction to the CPA security of Γ. Suppose there is a
PPT adversary A that can distinguish Game 1 and Game 2, then we can construct an algorithm
B against the CPA security of Γ by interacting with A as follows:

1. Given mpk2 (where (mpk2,msk2) ← Γ.Setup(λ)) from the n-cycle tester challenger, B
runs (mpk1,msk1)← Π.Setup(λ), sets mpk = (mpk1,mpk2) and sends mpk to A.

2. On extraction query ⟨id⟩, B first computes sk1 ← Π.Extract(msk1, id) on its own, then
makes extraction query ⟨id⟩ to its challenger and gets back sk2 ← Γ.Extract(msk2, id), B
sends skid = (sk1, sk2) to A.

3. On decryption query ⟨id, c⟩, B computes sk1 ← Π.Extract(msk1, id), then answers the
decryption query with sk1. Note that the second component of skid, namely sk2, is not
used in decryption, thus B can handle all decryption queries correctly.

4. A submits (id∗,m0,m1), where m0 = (m0,e,m0,t) and m1 = (m1,e,m1,t).
5. B submits (id∗,m0,t,m1,t) to its own challenger, and receives back a challenge cipher-

text c∗t ← Γ.Encrypt(mpk2, id
∗,mβ,t) for some unknown bit β. B then computes c∗e ←

Π.Encrypt(mpk1, id
∗, (m0,e,m0,t, c

∗
t )), and sends c∗ = (c∗e, c

∗
t ) to A.

6. On extraction query ⟨id⟩ ̸= ⟨id∗⟩, B responds the same way as in Phase 1.
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7. On decryption query ⟨id, c⟩ ̸= ⟨id∗, c∗⟩, B responds the same way as in Phase 1 except
directly reject the queries of the form ⟨id∗, (c∗e, ct)⟩ with ⊥.

In the above, B perfectly simulates Game 1 if c∗t is a Γ-encryption of m0,t, and B perfectly
simulates Game 2 if c∗t is a Γ-encryption of m1,t. Therefore, B has the same advantage against
the CPA security of Γ as A distinguishes Game 1 and Game 2. According to the hypothesis
that Γ is CPA-secure, Game 1 and Game 2 are computationally indistinguishable. This proves
the lemma.

Lemma B.4. Game 2 and Game 3 are computationally indistinguishable, given the CCA
security of Π.

Proof. We prove this lemma by giving a reduction to the CCA security of Π. Suppose there
is a PPT adversary A that can distinguish Game 2 and Game 3, then we can construct an
algorithm B against the CCA security of Π by interacting with A as follows:

1. Given mpk1 (where (mpk1,msk1) ← Π.Setup(λ)) from the IBE challenger, B computes
(mpk2,msk2)← Γ.Setup(λ), sets mpk = (mpk1,mpk2), and sends mpk to A.

2. On extraction query ⟨id⟩, B computes sk2 ← Γ.Extract(msk2, id) on its own, makes ex-
traction query ⟨id⟩ to its challenger and gets back sk1 ← Π.Extract(msk1, id), B sends
skid = (sk1, sk2) to A.

3. On decryption query ⟨id, c⟩, B parses c = (ce, ct), then submits decryption query ⟨id, ce⟩
to its challenger and gets the reply (me,mt, c

′
t). If c′t ̸= ct, B returns ⊥. Otherwise, B

returns (me,mt).
4. A submits (id∗,m0,m1), where m0 = (m0,e,m0,t) and m1 = (m1,e,m1,t).
5. B computes c∗t ← Γ.Encrypt(mpk2, id

∗,m1,t), then submits id∗ and two target messages
(m0,e,m0,t, c

∗
t ), (m1,e,m1,t, c

∗
t ) to its own challenger. After receiving back the challenge

ciphertext c∗e ← Π.Encrypt(mpk1, id
∗, (mβ,e,mβ,t, c

∗
t )) for some unknown bit β from its

challenger, B sends c∗ = (c∗e, c
∗
t ) to A.

6. On extraction query ⟨id⟩ ̸= ⟨id∗⟩, B responds the same way as in Phase 1.
7. On decryption query ⟨id, c⟩ ̸= ⟨id∗, c∗⟩, B responds the same way as in Phase 1 except

directly rejects the queries of the form ⟨id∗, (c∗e, ct)⟩ with ⊥. Note that B is able to handle
all decryption queries in Phase 2 properly since it can always make decryption queries
⟨id, ce⟩ ̸= ⟨id∗, c∗e⟩ to its challenger.

According to the definitions, B perfectly simulates Game 2 if c∗e is a Π-encryption of
(m0,e,m0,t, c

∗
t ), and B perfectly simulates Game 3 if c∗e is a Π-encryption of (m1,e,m1,t, c

∗
t ).

Therefore, B has the same advantage against the CPA security of Π as A distinguishing Game
2 and Game 3. According to the hypothesis that Π is CCA-secure, Game 2 and Game 3 are
computationally indistinguishable. This proves the lemma.

Lemma B.5. Game 3 and Game 4 are equivalent.

Proof. The only difference between Game 3 and Game 4 is that CH directly returns ⊥ when
id = id∗ and ce = c∗e in Game 3 whereas CH returns ⊥ when id = id∗ and c = c∗ in Game 4.
Nevertheless, the response to all the decryption queries are identical. This case is the mirror
image of the argument made in proof of Lemma B.2. This proves the lemma.

According to the definition, in Game 0 c∗ is a Ψ-encryption of m0, while in Game 4 c∗ is a
Ψ-encryption of m1. The above lemmas indicate that Game 0 and Game 4 are computationally
indistinguishable. Thus, the desired CCA security immediately follows.
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