
Protect both Integrity and Confidentiality in Outsourcing Collaborative
Filtering Computations

Qiang Tang
SnT, University of Luxembourg

Luxembourg
Email: qiang.tang@uni.lu

Balázs Pejó
SnT, University of Luxembourg

Luxembourg
Email: balazs.pejo@uni.lu

Husen Wang
SnT, University of Luxembourg

Luxembourg
Email: husen.wang@uni.lu

Abstract—In the cloud computing era, in order to avoid
the computational burdens, many recommendation service
providers tend to outsource their collaborative filtering
computations to third-party cloud servers. In order to
protect service quality and privacy for end users, both the
integrity of computation results and the confidentiality of
original dataset need to be guaranteed. In this paper, we
analyze two integrity verification approaches by Vaidya
et al. and demonstrate their performances. In particular,
we analyze the verification via auxiliary data approach
which is only briefly mentioned in the original paper, and
demonstrate the experimental results (with better perfor-
mances). We then propose a new solution to outsource
all computations of the weighted Slope One algorithm
in multi-server setting and provide experimental results.
We finally discuss the possibility of using homomorphic
encryption to achieve both integrity and confidentiality
guarantees.

Keywords-Collaborative filtering; Outsourcing; Integrity;
Confidentiality

I. Introduction

Collaborative filtering is a general technique for
recommender systems to make automatic predictions
about the interests of a user by collecting preferences or
taste information from many users. It has been proven
to be quite effective in reality. Numerous organizations,
small or big, have deployed it to provide person-
alized services to their customers. But the benefits
do not come for free because collaborative filtering
algorithms are often computation-intensive, especially
when more data are desired to get better results. The
computational challenge might not be a problem for
organizations such as Amazon or Google, but it may
be a burden for organizations which either do not have
the necessary computation resources or do not want to
manage such resources. In the cloud computing era,
a natural solution is for the recommendation service
provider (referred to as RecSys throughout the paper)
to outsource the computations to the cloud. For exam-
ple, Netflix outsources its collaborative computations
to Amazon. When the computations are outsourced,
two issues arise. One is the integrity of the computa-

tion results. The cloud server may provide some fake
results instead of spending its resources to compute
the correct ones. Motivations behind such misbehavior
could differ, but saving its own cost and deliberately
disrupting the recommendation service are the two ob-
vious ones that we foresee. The other one is confiden-
tiality and more generally privacy issue. Many users
consider their ratings as sensitive information, which
leaks what they have done and their preferences. This
is particularly a concern if the recommendation service
is for scenarios like healthcare. We argue that both
integrity and confidentiality are desirable in practice.

With respect to integrity protection in outsourcing
collaborative filtering computations, two most relevant
works are [9] and [10]. In [9], Sheng et al. relied
on some algebraic properties to aggregately verify
the correctness (or, integrity) of inner product results
computed by the service provider. In [10], Jaideep et al.
proposed two approaches to verify the integrity of out-
sourced computations (precisely, for weighted Slope
One and adjusted Cosine-based algorithms). Moreover,
they introduced a game-theoretic approach which can
serve as a complementary deterring factor against the
server’s cheating attempt. Besides [9] and [10], there
are many other related works. For example, Wong et al.
[11] and Dong et al. [4] investigated the integrity issues
in outsourcing frequent itemset mining computations,
and Liu et al. [6] proposed probabilistic and determin-
istic methods to verify clustering results for k-means
clustering algorithms. With respect to confidentiality
(or privacy) protection in outsourcing collaborative fil-
tering computations, there have been indirectly-related
research results, including cryptographic ones (e.g. [2],
[8]) and obfuscation-based ones (e.g. [7], [12]).

A. Problem Statement and Our Contribution

The problem setting is as follows. The recommender
service provider RecSys possesses a rating dataset
(i.e. a rating matrix shown in Fig. I) and wants to
compute the predicted ratings for the unrated items.
For efficiency reasons, the RecSys will outsource the

computations to a cloud server and wants to guarantee
the integrity of computation results and the confiden-
tiality of rating dataset.

In this paper, we focus on the weighted Slope One
recommender algorithm from [5] for its nice structure.
Nevertheless, our discussions can be adapted to other
algorithms. Starting with two integrity verification ap-
proaches mentioned by Vaidya et al. [10], our main
contribution is the following.
• We first analyze the cheating and detection strate-

gies in four scenarios, and figure out the best
strategies for the RecSys and the cloud server.
Based on the analysis results, we then demonstrate
the performances of the verification via splitting
approach for the Movielens MLM (i.e. MovieLens
1M) dataset1 and the Netflix dataset. In particular,
we show a tradeoff between confidentiality and
verification efficiency.

• We then analyze the verification via auxiliary ap-
proach and propose a simplified variant. Based on
the experimental results, we demonstrate that the
proposed simplified variant is more effective from
the perspective of the RecSys, while it introduces
some mild overhead for the cloud server.

• We finally propose a solution to outsource the
computations in both stages for the weighted
Slope One algorithm in multi-server setting. In this
setting, we show that the RecSys can minimize its
verification cost and leverage the servers to verify
the integrity of outsourced computations.

B. Organization

In Section II, we review the problem of outsourc-
ing weighted Slope One algorithm. In Section III, we
present new analysis results for the verification via
splitting approach. In Section IV, we analyse the veri-
fication via auxiliary data approach, present a variant
and show comparison results. In Section V, we present
a new oursourcing solution in multi-server setting. In
Section VI, we conclude the paper.

II. Weighted Slope One Collaborative Filtering

In a recommender system, the item set is denoted
by B = (1, 2, . . . ,M) and the user set is denoted by
U = {1, 2, . . . ,N}. A user x’s ratings are denoted by
a vector Rx = (rx,1, . . . , rx,b, . . . , rx,M). The rating value
is often an integer from {0, 1, 2, 3, 4, 5}. If user x has
not rated item i then rx,i is set to be 0. The ratings
are often organized in a rating matrix, as shown in
Table I. The functionality of a recommender system
is to predict the unrated values. With respect to Rx,
a binary vector Qx = (qx,1, . . . , qx,b, . . . , qx,M) is defined

1http://grouplens.org/datasets/movielens/

as follows: qx,b = 1 iff rx,b , 0 for every 1 ≤ b ≤ M.
Basically, Qx indicates which items have been rated by

user x. The density of the rating matrix is d =
∑N

i=1
∑M

j=1 qi, j

MN .

Item 1 · · · Item i · · · item M
User 1 (R1) r1,1 · · · r1,i · · · r1,M
User 2 (R2) r2,1 · · · r2,i · · · r2,M

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

User N (RN) rN,1 · · · rN,i · · · rN,M

Table I
RatingMatrix

The weighted Slope One recommender algorithm [5]
exploits deviation metrics with “popularity differen-
tial” notion between items. It predicts the rating of an
item for a user from a pair-wise deviations of item
ratings. The algorithm has two stages.

Computation stage. In this stage, two matrices ΦM×M
and ∆M×M are generated. For every 1 ≤ i, j ≤ M, φi, j
and δi, j (i.e. the elements located in i-th row and j-th
column) are defined as follows.

φi, j =

N∑
u=1

qu,iqu, j, δi, j =

N∑
u=1

qu,iqu, j(ru,i − ru, j)

In more detail, φi, j is the number of users who rated
both item i and j, while δi, j is the deviation of the
ratings of item i from item j and ∆M×M is referred
to as the deviation matrix. This stage requires d2N M2

−M
2

subtractions and (d2N − 1) M2
−M
2 additions. Clearly, the

computation of ΦM×M matrix is very cheap, so that we
always assume RecSys will compute it locally.

Prediction stage. The prediction stage uses both ΦM×M
and ∆M×M as well as the original rating matrix to
predict the unrated ratings for all users. To compute
the predicted rating for item i for user x, the formula
of weight Slope One algorithm is

px,i =

∑
j∈B/{i} δi, j + rx, jφi, j∑

j∈B/{i} φi, j

The prediction px,i incurs the following computations:
dM − 1 multiplications, (2 + d)M − 5 additions and one
division. In total, (1 − d)NM predictions needs to be
calculated for all users.

Computation Stage Prediction Stage

+ (d2N − 1) M2
−M
2 (1 − d)NM((2 + d)M − 5)

− d2N M2
−M
2 dNM

× (1 − d)dN(M2
−M)

/ (1 − d)NM

Table II
Complexity ofWeighted Slope One

Based on the above analysis, the required computa-
tions are summarized in Table II. It seems that the com-
putation stage costs the RecSys much less resources

than the prediction stage for both algorithms. To vali-
date this intuition, we carry out an experiment based
on the well-known Movielens MLK (i.e. MovieLens
100K) and MLM (i.e. MovieLens 1M) datasets and the
Netflix dataset, detailed in Table III. Table IV presents
the running time on Intel(R) Xeon(R) CPU E3-1241 v3
@ 3.50GHz using 15 GB RAM.

Users (N) Items (M) Ratings Density (d)
MLK 943 1.682 100.000 0.063
MLM 6.040 3.952 1.000.209 0.042

Netflix 480.189 17.770 100.480.507 0.012

Table III
Dataset Characteristics

Computation Stage Prediction Stage
MLK 17 67
MLM 360 1.620

Netflix 135.847 423.125

Table IV
Implementation Results (seconds)

It confirms that the prediction stage costs much
more resources. So, it makes sense to outsource the
computations in both stages when the RecSys needs to
compute the predications for many of its users.

III. Examining the Verification via Splitting
Approach

With the verification via splitting approach, the
idea is to horizontally split the rating matrix D into
r (r ≥ 1) non-overlapping blocks. These blocks are
independently outsourced to the server, who performs
the requested computations on the blocks and returns
the results. Suppose δ(k)

i, j be the results based on the k-th
block, the server returns the following to the RecSys.

• Intermediate deviation values δ(k)
i, j , for all 1 ≤ i, j ≤

M and 1 ≤ k ≤ r.
• Final deviation values δi, j =

∑r
k=1 δ

(k)
i, j , for all 1 ≤

i, j ≤M.

A. Compare four Cheating-Detection Scenarios

In the following, we analyze the four different sce-
narios cheating-detection scenarios from [10] for veri-
fying the intermediate results δ(k)

i, j .

• Scenario 1 cheating strategy. The server randomly
picks up α (1 ≤ α ≤ M) items and sets the
deviation values associated with these items to
be random numbers in all the blocks. It is easy
to check that the cheating will affect 2αM−α2

−α
2

deviation values. The cheating rate is 2αM−α2
−α

M(M−1) .
verification strategy. For every block, the RecSys
randomly selects θ (1 ≤ θ ≤ M(M−1)

2) deviation
values to verify by re-computing these values. The

detection rate is 1−

((M−α)(M−α−1)
2

θ

)/(M(M−1)
2

θ

)r

. The

verification cost is rθ deviation computations.
• Scenario 2 cheating strategy. The server randomly

picks up in total β (1 ≤ β ≤ N) users/rows from
all blocks and discards their values in the compu-
tation. Suppose the union size of the rated items
from these β users is t, then the number of affected
deviation values is upper-bounded by 2tM−t2

−t
2 . We

emphasize that this bound is very loose, especially
when the density d is small. The cheating rate is
β
N . verification strategy. For every block, the Rec-
Sys randomly selects θ deviations to verify by
recomputing these values. The detection rate is

upper-bounded by 1−

((M−t)(M−t−1)
2

θ

)/(M(M−1)
2

θ

)r

. As

we emphasized above, the actual detection rate
can be much smaller than this bound because
the unaffected deviation values could be much
larger than (M−t)(M−t−1)

2 . The verification cost is rθ
deviation computations.

• Scenario 3 cheating strategy. The server randomly
picks up γ (1 ≤ γ ≤ r) blocks and sets the
related deviations to be random numbers. The
cheating rate is γ

r . verification strategy. The RecSys
randomly selects δ (1 ≤ δ ≤ r) blocks to verify
by re-computing one deviation value for each of
these blocks. In this case, the detection rate is

1 −
(
r − γ
δ

)/(r
δ

)
. The verification cost is δ deviation

computations.
• Scenario 4 cheating strategy. For every block, the

server cheats with probability ρ and sets the re-
lated deviation values to be random numbers. On
average, the cheating rate is ρ. verification strategy.
The RecSys randomly selects δ (1 ≤ δ ≤ r) blocks
to verify by re-computing one deviation value for
each of these blocks. The detection rate is simply
1− (1−ρ)δ. The verification cost is only δ deviation
computations.

Below, we compare these four scenarios in a pair-
wise manner, by considering the following factors: the
cheating rate of the server, the detection rate of the
RecSys, and the verification cost of the RecSys. For
any given cheating rate for the server, the RecSys
would prefer high detection rate and low verification
cost. Clearly, the server prefers solutions with opposite
properties.
• For Scenario 1 and Scenario 2, if we set 2αM−α2

−α
M(M−1) =

comp(N,M,r)−comp(N−β,M,r)
comp(N,M,r) then the server has the same

cheating rate. To this end, β =
(2αM−α2

−α)N
M(M−1) . Further-

more, for the same verification cost of rθ deviation

computations, we only need to decide whether
α > t. If so, then the RecSys has higher detection
rate in Scenario 1. Unfortunately, in Scenario 2,
we do not have a precise formula and can only
upper-bound the detection rate. Nevertheless, we
have t ≤ dβ =

d(2αM−α2
−α)N

M(M−1) in this scenario. We can
conclude that if dN < M

2 then t < α so that the
RecSys has higher detection rate in Scenario 1.

• For Scenario 3 and Scenario 4, if we set ρ =
γ
r

then the server has the same average cheating rate.
Furthermore, for the same verification cost of δ
deviation computations, we have 1−

(r−γ
δ

)/(r
δ

)
> 1−

(1 − ρ)δ. This implies that the RecSys will prefer
Scenario 3, while the server will prefer Scenario 4.

• For Scenario 1 and Scenario 3, if we set 2αM−α2
−α

M(M−1) =
γ
r then the server has the same cheating rate.
Furthermore, if we set rθ = δ then the RecSys has
the same verification cost. For any θ ≥ 1, we have
δ ≥ r so that the RecSys has detection rate 1 in
Scenario 3. This means that the RecSys will always
prefer Scenario 3, while the server will prefer the
Scenario 1.

• For Scenario 1 and Scenario 4, if we set 2αM−α2
−α

M(M−1) =
ρ then the server has the same cheating rate.
Furthermore, if we set rθ = δ then the RecSys
has the same verification cost. Since δ ≤ r, then
the RecSys has the same verification cost when
θ = 1. In this case, if the server has ever cheats,
the RecSys has the detection rate 1 in Scenario 4.
Note that, in Scenario 4, if the server cheats then
the detection rate cannot be computed as 1−(1−ρ)δ

any more. In contrast, the RecSys has a lower
detection rate in Scenario 1. This means that the
RecSys will prefer Scenario 4, while the server will
prefer the Scenario 1.

• For Scenario 2 and Scenario 4, we can use the
same reasoning as in the previous comparison to
conclude that the RecSys will prefer Scenario 4
while the server will prefer the Scenario 2.

From the comparisons, the RecSys will prefer Scenario
3 while the server will prefer Scenario 2 or Scenario
1 the most. Furthermore, we can draw the following
informal conclusions. For the RecSys, the best strategy
is to first randomly choose some blocks and then
randomly choose some deviation values in these blocks
to verify. For the server, the best strategy is to first ran-
domly choose some blocks and then set some deviation
values in these blocks to random values.

With respect to the verification of final deviation
values δi, j (1 ≤ i, j ≤ M), the RecSys can randomly
select a subset and verify them by summing up the
related intermediate results.

B. Experimental Results
In the following, we use MLM and Netflix datasets

as examples to study the performances. Referring to
the previous discussions, we assume the RecSys and
the server adopt the following strategies respectively.
• cheating strategy. The server randomly selects γ

blocks, and sets ζ percent of the intermediate
deviation values in them to be random numbers.
Moreover, the server randomly selects ζ percent of
the final deviation values to be random numbers.

• verification strategy. In every block, the RecSys
randomly chooses θ intermediate deviation values
to verify. Moreover, the RecSys randomly chooses
100θ final deviation values to verify.

Based on this assumption, the server can set γζ
r = ρ if it

wants to achieve the cheating rate ρ, and the RecSys’s
detection rate is

Pd =

1 −

(M(M−1)(1−ζ)
2

θ

)/(M(M−1)
2

θ

)γ · 1 −
(M(M−1)

2 − 100θ
100θ

)/(M(M−1)
2

100θ

)
It is straightforward to verify that, by using a larger

r, the RecSys achieves higher detection rate Pd with
the same verification cost. Next, we choose r = 1 (i.e.
no splitting) and r = 10 respectively to have a closer
look at the detection rates for the MLM dataset2. In
the experiment, we fix a number of (ρ, θ) pairs and
summarize the Pd values in Tables V and VI. In Table
VI, Pd values are minimized with respect to γ and ζ.

PPPPPθ
ρ

2−1 2−2 2−3 2−4 2−6 2−9

10 0.9990 0.9437 0.7369 0.4755 0.1457 0.0194
20 1.0000 0.9968 0.9308 0.7249 0.2702 0.0383
40 1.0000 1.0000 0.9952 0.9243 0.4674 0.0752
60 1.0000 1.0000 0.9997 0.9792 0.6113 0.1107
80 1.0000 1.0000 1.0000 0.9943 0.7163 0.1448

100 1.0000 1.0000 1.0000 0.9984 0.7930 0.1776
200 1.0000 1.0000 1.0000 1.0000 0.9571 0.3236

Table V
Pd ValuesWhen r = 1

PPPPPθ
ρ

2−1 2−2 2−3 2−4 2−6 2−9

1 1.0000 0.9954 0.8594 0.6240 0.1239 0.0035
2 1.0000 1.0000 0.9802 0.8594 0.2757 0.0125
4 1.0000 1.0000 0.9996 0.9802 0.4923 0.0412
6 1.0000 1.0000 1.0000 0.9972 0.6391 0.0771
8 1.0000 1.0000 1.0000 0.9996 0.7431 0.1154
10 1.0000 1.0000 1.0000 0.9999 0.8171 0.1537
20 1.0000 1.0000 1.0000 1.0000 0.9666 0.3194

Table VI
Pd ValuesWhen r = 10

The results show that, to achieve similar detection
rates Pd, the required verification cost decreases roughly
in a linear manner with respect to the number of

2The detection rates for the Netflix dataset are almost the same to
those in in Tables V and VI. We skip the details here.

blocks. We summarize the verification costs for the
MLM and Netflix datasets in Tables VII and VIII.

r = 1 θ 10 20 40 60 80 100 200
Total Time. 0.0008 0.0014 0.0026 0.0039 0.0052 0.0067 0.0135

r = 10 θ 1 2 4 6 8 10 20
Total Time. 0.0005 0.0010 0.0020 0.0031 0.0041 0.0051 0.0101

Table VII
Total Costs forMLM Dataset (seconds)

r = 1 θ 10 20 40 60 80 100 200
Total Time. 0.02936 0.0546 0.1126 0.1659 0.2220 0.2873 0.5794

r = 10 θ 1 2 4 6 8 10 20
Total Time. 0.0048 0.0071 0.0128 0.0187 0.0240 0.0298 0.0570

Table VIII
Total Costs for Netflix Dataset (seconds)

It seems that the larger r the better for the RecSys.
However, one concern is that the server may only cheat
on a small number of final deviation results instead of ζ
percent as we have assumed. In this case, the detection
rates will be much smaller than those in Table VI.

C. Verification via Splitting with Confidentiality
The other concern for both r = 1 and r > 1 is that,

after receiving the blocks of D, the server knows that
each row of these blocks are the ratings of a user for
the list of items. This may make it easy for the server
to re-identify the user. To mitigate this risk, the RecSys
can randomly and independently permute the columns
of every block before sending them to the server. By
doing so, it becomes difficult for the server to figure
the correspondence between the permuted ratings and
the items. The downside is that the server is not able
to compute the final deviation values δi, j (1 ≤ i, j ≤M)
anymore. The RecSys needs to combine these values
based on the permutation information. The complexity
of combining the intermediate results takes 2(r−1) M2

−M
2

additions. For the MLM and Netflix datasets, the run-
ning time is 36 and 740 seconds respectively. Clearly,
this complexity is much higher than the verification
costs in Tables VII and VIII.

This implies that for the MLM and Netflix datasets,
it is better to set r = 1 and permute the columns for
the sake of verification efficiency and confidentiality.

IV. Examining the Verification via Auxiliary Data
Approach

A. Recap the Original Approach
The original approach from [10] generates synthetic

data to be merged with the original matrix D, as shown
in Fig. 1. For efficiency reasons, it is required that n′ �
N and m′ � M. In order to prevent the server from
figuring out the synthetic data, it is necessary that the
real users “rate” the fake items (Z) as well as the fake
users “rate” the real items (Y). Clearly, the fake ratings

from Y may lead to inaccurate item-item deviations,
while the fake ratings from Z increases the verification
computation cost. In [10] the authors come up with the
following idea for generating Y and Z: let user u rate
items i and j. The impact on the deviation is ru,i − ru, j.
By setting another user v ratings such that rv,i − rv, j =
−(ru,i−ru, j), the deviation between i and j is unchanged.
E.g. if ratings are in the interval [min,max] then by
setting rv,i = inverse(ru,i) = min + max − ru,i all changes
in the deviations are eliminated. As seen in Equation
(1), as long as the sum of ratings belonging to the two
items from the group of users is equal then ∆i, j = 0.
This easily generalizes the generation of elements of Y
and Z for more items.∑

u

ru,i − ru, j = r1,i − r1, j + · · · + rk,i − rk, j = 0

⇒ r1,i + · · · + rk,i = r1, j + · · · + rk, j = γ
(1)

Formally, this approach can be applied with the follow-
ing steps: (1) the RecSys generates the synthetic matri-
ces X,Y,Z to be integrated with D; (2) it then randomly
permutes the rows and columns of the new matrix
and send it to the server; (3) the server computes an
intermediate deviation matrix ∆

′′

for the RecSys; (4)
the RecSys derives another deviation matrix ∆

′

for the
matrix shown in Fig. 1 based on the permutations it has
done; (5) the RecSys verifies the deviation values for
the matrix X; (6) if the verification passes, the RecSys
can obtain the deviation matrix ∆ for D from ∆

′

.

Figure 1. Splitting I Figure 2. Splitting II

The cost for the RecSys is mainly generating the
synthetic data and computing deviation values based
on X, and pre-computation can be done.

B. A Simplified Variant

We observe that the matrix Y only plays the role
of hiding X in Fig. 1 while it increases the server’s
complexity in computing deviation values. Therefore,
we propose to extend D as shown in Fig. 2, where X∗

and Z∗ are computed in the same way as X and Z. By
doing so, everything stays the same except that the in-
curred complexity by Y is avoided. With the simplified
variant and the original approach, the server needs to
compute (M+m∗)(M+m∗−1)

2 deviation values, among which
m∗M deviation values are due to the verification needs
while only m∗(m∗−1)

2 of them can be used by the RecSys
(in step (5) of the procedure). In order to reduce

the computational overhead for the server, it is ideal
to minimize the value m∗ while keeping the m∗(m∗−1)

2
deviation values non-zero. Suppose the matrix X∗ has
n∗ rows, then the probability that the inner product

of any two columns is nonzero is (n∗
n∗d)−(n∗−n∗d

n∗d)
(n∗

n∗d)
where

d is the density of D. Tables IX and X shows the

minimal n∗ values for (n∗
n∗d)−(n∗−n∗d

n∗d)
(n∗

n∗d)
to achieve a number

of probabilities. Note that due to the lower density, to
achieve a similar probability, n∗ is larger in the case of
the Netflix dataset.

n∗ 100 200 300 400 500
Probability 0.1528 0.8413 0.9748 0.9994 0.9999

Table IX
Values forMLM Dataset

n∗ 7000 10500 17500 21000 35000
Probability 0.6395 0.7835 0.9220 0.9531 0.9899

Table X
Values for Netflix Dataset

Next, we fix some cheating and detection rates and
figure out the m∗ values. Let’s assume the server will
randomly choose ρ percent of deviation values and
set them to random values. The detection rate can be
computed as follows.

Pd = 1 −
((M+m∗)(M+m∗−1)

2 −
m∗(m∗−1)

2
ρ(M+m∗)(M+m∗−1)

2

)/((M+m∗)(M+m∗−1)
2

ρ(M+m∗)(M+m∗−1)
2

)
(2)

With respect to the MLM and Netflix datasets, we
fix a number of (ρ, m∗) pairs and summarize the
detection rates Pd in Table XI. Interestingly, the Pd
values are exactly the same with four-digits precision,
even though those of MLM dataset should be slightly
larger than those of Netflix dataset.

PPPPPm∗
ρ

2−1 2−2 2−3 2−4 2−6 2−9

2 0.5000 0.2500 0.1250 0.0625 0.0156 0.0020
4 0.9844 0.8220 0.5512 0.3211 0.0902 0.0117
6 1.0000 0.9866 0.8651 0.6202 0.2104 0.0289
10 1.0000 1.0000 0.9975 0.9452 0.5077 0.0842
20 1.0000 1.0000 1.0000 1.0000 0.9498 0.3103
40 1.0000 1.0000 1.0000 1.0000 1.0000 0.7824
80 1.0000 1.0000 1.0000 1.0000 1.0000 0.9979

Table XI
Pd values forMLM and Netflix Datasets

It shows that for reasonable cheating and detection
rates the RecSys only needs to add very small-sized X∗

from the perspective of column size m∗ and compute
m∗(m∗−1)

2 deviation values based on X∗.

C. Comparison to Verification via Splitting
In comparison, the verification via auxiliary data

approach mainly has two advantages.

• It has minimal computational complexity for the
RecSys, by minimizing the size of X∗. Furthermore,
it allows the RecSys to pre-compute X∗ and Y∗.

• It introduces fake data into the dataset and some-
how anonymizes the original dataset so that it is
more confidentiality-friendly (see Section VI).

Referring to Tables V, VI, and XI, we can roughly say
that m∗ = 20 in the verification via auxiliary approach
provides similar detection rates to those of θ = 200
when r = 1 and θ = 20 when r = 10 in the verification
via splitting approach. We present comparison results
in Table XII. With respect to the verification via split-
ting approach, we take the minimum values from from
the last columns in Tables VII and VIII; with respect to
the running time of the verification via auxiliary data
approach, it is based on a 300× 20 matrix X∗ for MLM
and a 21000 × 20 matrix X∗ for Netflix.

Verification via Splitting Verification via Auxiliary Data
MLM 0.0101 0.0010

Netflix 0.0570 0.0054

Table XII
Cost Comparison for RecSys (seconds)

The downside is that it incurs some overhead for
the server, as we have discussed in the beginning
of Section IV-B. If m∗ is much smaller than M, then
the overhead is quite small. Nevertheless, this can be
regarded as a tradeoff of the approach.

V. Outsourcing inMulti-server Setting

The discussions in Section III and IV assume a
single-server setting. In this section, we mainly aim
at a solution to outsource both stages of the weighted
Slope One algorithm in the two-server setting. We also
remark on extending the solution further.

A. Outsourcing to Two Servers

Suppose there are two non-colluding servers, named
CS1 and CS2. The solution outsources the computations
of the computation and prediction stages in two steps.

We stress that, in the following solution, the RecSys
should randomly permute the matrix D with respect to
all the rows and columns before splitting it in both steps.
Otherwise, the servers can avoid detection by only honestly
computing the to-be-verified values. However, for the sim-
plicity of presentation, we skip this permutation and de-
permutation steps in our descriptions.

1) In the first step, the players interact as follows.
a) The RecSys splits the rating matrix D into

D∗1 and D∗2 as shown in Fig. 3.
i) It splits D into two N

2 ×M sub-matrices
D1 and D2.

ii) It randomly chooses m′ columns from D1
and put them into D2. The resulting N

2 ×

(M + m′) matrix is named D∗2.
iii) It randomly chooses m′ columns from D2

and put them into D1. The resulting N
2 ×

(M + m′) matrix is named D∗1.
The RecSys sends D∗1 and D∗2 to CS1 and CS2
respectively. Let the user set associated with
D∗1 (D∗2) be denoted asN1 (N2). Let’s assume
the added m′ columns corresponding to D∗1
(D∗2) define a new item set I1 (I2).

b) After receiving D∗1, CS1 computes a matrix
∆(1)

(M+m′)×(M+m′). For every i, j ∈ B
⋃

I1, δ(1)
i, j

is computed as δ(1)
i, j =

∑
u∈N1

qu,iqu, j(ru,i −

ru, j). Similarly, CS2 computes a matrix
∆(2)

(M+m′)×(M+m′). For every i, j ∈ B
⋃

I2, δ(2)
i, j is

computed as δ(2)
i, j =

∑
u∈N2

qu,iqu, j(ru,i − ru, j).

c) After receiving ∆(i)
M×M for i = 1, 2 from both

servers, the RecSys proceeds as follows.
i) It verifies the deviation values for the

new item sets I1 and I2. Since these val-
ues are computed by both CS1 and CS2,
the verification is just comparison.

ii) If the verification passes, the RecSys com-
putes ∆M×M. For every 1 ≤ i, j ≤ M,
δi, j = δ(1)

i, j + δ(2)
i, j .

Figure 3. Splitting I Figure 4. Splitting II

2) In the second step, the RecSys first computes
ΦM×M, and then proceeds as follows.

a) The RecSys splits the rating matrix D into
D†1 and D†2 as shown in Fig. 4.
i) It splits D into two N

2 ×M sub-matrices
D1 and D2.

ii) It randomly chooses n′ rows from D1 and
put them into D2. The resulting (N

2 +n′)×
M matrix is named D†2.

iii) It randomly chooses n′ rows from D2 and
put them into D1. The resulting (N

2 +n′)×
M matrix is named D†1.

The RecSys sends D†1 and D†2 to CS1 and CS2
respectively. In addition, the RecSys sends
∆M×M,ΦM×M to both servers. Let the user
set associated with D†1 (D†2) be denoted as
N†1 (N†2). Let’s assume the added n′ rows

corresponding to D†1 (D†2) define a new user
set U1 (U2).

b) After receiving ∆M×M,ΦM×M and D†1, CS1
computes the predictions px,i for all x ∈ N†1
and i ∈ B. Similarly, CS2 computes the pre-
dictions px,i for all x ∈N†2 and i ∈ B.

c) After receiving the predictions from both
servers, the RecSys first verifies the values
form the user sets U1 and U2. Since these
values are computed by CS1 and CS2 simul-
taneously, the verification is just comparison.
If the verification passes, the RecSys can
accepts the predictions for user x ∈ U.

From the description, it is clear that the main cost
for the RecSys is to compute ∆M×M in the first step.
It is only about M(M−1)

2 additions. The computational
complexity for every server is shown in Table XIII.

Step 1 Step 2

+
(d2 N

2 −1)((M+m′)2
−(M+m′))

2
(1−d)(N

2 +n′)M((2+d)M−5)
2

−
d2 N

2 ((M+m′)2
−(M+m′))

2

×
(1−d)d(N

2 +n′)|(B|2−M)
2

/
(1−d)(N

2 +n′)M
2

Table XIII
Computational Complexity for Individual Server

Suppose CS1 cheats by setting ρ percent values to be
random numbers, while CS2 is honest. The detection
rates in the first step and the second step are 1 − f (ρ)
and 1− g(ρ) respectively. If CS2 also cheats in the same
manner, then the detection rate in the first step and the
second step are 1− f (ρ)2 and 1− g(ρ)2 respectively. The
functions f (ρ) and g(ρ) are defined as follows. Note
that if cheating is detected, the RecSys needs to do
extra work to figure out who has/have cheated.

f (ρ) =

((M+m′)(M+m′−1)
2 −m′(m′ − 1)

ρ (M+m′)(M+m′−1)
2

)
((M+m′)(M+m′−1)

2

ρ (M+m′)(M+m′−1)
2

) , g(ρ) =

(
(1 − d)M(N

2 − n′)

ρ(1 − d)M(N
2 + n′)

)
(

(1 − d)M(N
2 + n′)

ρ(1 − d)M(N
2 + n′)

)

With respect to the MLM and Netflix datasets, we
fix a number of (ρ, m′) pairs and study the detection
rates Pd in step 1. Table XIV summarizes the results
when only one server cheats. Table XV summarizes the
results when both servers cheat. Interestingly, the Pd
values are exactly the same for both datasets with four-
digits precision, even though those of MLM dataset
should be slightly larger than those of Netflix dataset.

Next, we fix a number of (ρ, n′) pairs and study the
detection rates Pd in step 2. When one server cheats,

PPPPPm′
ρ

2−1 2−2 2−3 2−4 2−6 2−9

2 0.7500 0.4375 0.2344 0.1211 0.0310 0.0039
4 0.9998 0.9683 0.7986 0.5390 0.1722 0.0232
6 1.0000 0.9998 0.9818 0.8557 0.3765 0.0570
10 1.0000 1.0000 1.0000 0.9970 0.7576 0.1613
16 1.0000 1.0000 1.0000 1.0000 0.9772 0.3745
20 1.0000 1.0000 1.0000 1.0000 0.9975 0.5243
30 1.0000 1.0000 1.0000 1.0000 1.0000 0.8175

Table XIV
Pd wir.t. m′ and ρ (MLM and Netflix, one cheats)

PPPPPm′
ρ

2−1 2−2 2−3 2−4 2−6 2−9

2 0.9375 0.6836 0.4138 0.2275 0.0611 0.0078
4 1.0000 0.9990 0.9594 0.7875 0.3147 0.0458
6 1.0000 1.0000 0.9997 0.9792 0.6113 0.1107
10 1.0000 1.0000 1.0000 1.0000 0.9413 0.2967
16 1.0000 1.0000 1.0000 1.0000 0.9995 0.6088
20 1.0000 1.0000 1.0000 1.0000 1.0000 0.7737
30 1.0000 1.0000 1.0000 1.0000 1.0000 0.9667

Table XV
Pd w.r.t. m′ and ρ (MLM and Netflix, two cheat)

Tables XVI and XVII summarize the results for the
MLM dataset and the Netflix Dataset, respectively.

PPPPPn′
ρ

2−9 2−10 2−11 2−12 2−13 2−14

1 1.0000 0.9994 0.9753 0.8426 0.6033 0.3701
2 1.0000 1.0000 0.9994 0.9753 0.8428 0.6033
3 1.0000 1.0000 1.0000 0.9961 0.9377 0.7506
4 1.0000 1.0000 1.0000 0.9994 0.9754 0.8430
5 1.0000 1.0000 1.0000 0.9994 0.9754 0.8430
6 1.0000 1.0000 1.0000 1.0000 0.9961 0.9378
7 1.0000 1.0000 1.0000 1.0000 0.9985 0.9609

Table XVI
Pd w.r.t n′ and ρ (MLM, one cheats)

PPPPPn′
ρ

2−9 2−10 2−11 2−12 2−13 2−14

1 1.0000 1.0000 1.0000 0.9998 0.9862 0.8827
2 1.0000 1.0000 1.0000 1.0000 0.9998 0.9862
3 1.0000 1.0000 1.0000 1.0000 1.0000 0.9984
4 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table XVII
Pd w.r.t n′ and ρ (Netflix, one cheats)

It is clear that, for both datasets, even setting a
small n′ and very low cheating rate, Pd values are
very big. Due to its lower density, the Pd values for
the Netflix dataset are larger. When both server cheat,
the Pd values will even be bigger than those from these
tables. Due to space limitation, we skip the details here.

B. Outsourcing to More Servers

The proposed solution in the previous subsection
can be naturally extended to k-server setting. Based

on the experimental results, it is clear that there will
be not much gain in step 2 because adding one or two
rows have already made the detection rates Pd very
big. The only interesting question is on the detection
rates in step 1. Below, we take the 3-server setting as an
example. We split the matrix D as in Fig. 5 and assume
similar outsourcing operations to those in step 1 of the
2-server setting.

Figure 5. Splitting Matrix D for Three Servers

Table XVIII summarizes the results when only one
server cheats, and the Pd values are smaller than those
in Table XIV. Table XIX summarizes the results when
all servers cheat, and the Pd values are bigger than
those in Table XV. This means that 3-server setting is
not always better than the 2-sever setting, depending
on how many servers cheat.

PPPPPm′
ρ

2−1 2−2 2−3 2−4 2−6 2−9

2 0.5833 0.3125 0.1615 0.0820 0.0208 0.0026
4 0.9974 0.9273 0.7195 0.4671 0.1449 0.0193
6 1.0000 0.9984 0.9569 0.7954 0.3320 0.0495
10 1.0000 1.0000 0.9999 0.9897 0.7015 0.1441
16 1.0000 1.0000 1.0000 1.0000 0.9551 0.3405
20 1.0000 1.0000 1.0000 1.0000 0.9917 0.4814
30 1.0000 1.0000 1.0000 1.0000 1.0000 0.7708

Table XVIII
Pd w. r.t. m′ and ρ (MLM and Netflix, one cheats)

PPPPPm′
ρ

2−1 2−2 2−3 2−4 2−6 2−9

2 0.9375 0.6836 0.4138 0.2275 0.0611 0.0078
4 1.0000 0.9998 0.9818 0.8557 0.3765 0.0570
6 1.0000 1.0000 1.0000 0.9935 0.7072 0.1414
10 1.0000 1.0000 1.0000 1.0000 0.9772 0.3745
16 1.0000 1.0000 1.0000 1.0000 1.0000 0.7183
20 1.0000 1.0000 1.0000 1.0000 1.0000 0.8665
30 1.0000 1.0000 1.0000 1.0000 1.0000 0.9903

Table XIX
Pd w.r.t. m′ and ρ (MLM and Netflix, three cheat)

VI. Protecting Confidentiality and Concluding
Remarks

With the integrity verification approaches, in par-
ticular the verification via auxiliary data approach,
certain levels of confidentiality can be achieved. With-
out background knowledge, from the permuted rating
matrix it is difficult to figure out the correspondence

between rating values and items. However, if an at-
tacker has some background knowledge, there is less
guarantee. To achieve a higher level of confidentiality
protection, the RecSys can encrypt the rating matrix
and let the server compute the predictions based on the
encrypted data. Note that this can even allow users to
hide their rating values from the RecSys. For efficiency
reasons, the RecSys may encrypt the non-zero rating
values, and randomly permute the encrypted values
to hide which items have been rated by a certain user.
From the implementation in [1], we get the timing cost
for homomorphic addition (0.024 ms), homomorphic
multiplication (31ms), based on an Intel Core i7-3520M
at 2893.484 MHz. For the MLK dataset, the estimated
complexity for the server is 548.5 hours. If the server
has hardware implementation based on FPGA [3], then
it will have an acceleration factor of 24.5 times. For a
powerful server with hardware implementations, we
may have a relatively optimistic solution for the MLK
dataset. However, efficiency will remain be an issue
with respect to the MLM and Netflix datasets.

It is an open problem to investigate lightweight
solutions for rigorous protection of confidentiality in
outsourcing. A related problem is to achieve confiden-
tiality and integrity simultaneously. With homomor-
phic encryption, it is straightforward to have integrity
because we can add a few dummy records (e.g. with all
zeros) to verify integrity. However, it becomes harder
if we desire lightweight solutions without completely
relying on homomorphic encryption schemes. Another
open problem is to see how exactly the proposed
approaches can be applied to recommender algorithms
other than weighted Slope One.

Acknowledgements

Qiang Tang (partially) and Husen Wang are sup-
ported by a CORE (junior track) grant from the Na-
tional Research Fund, Luxembourg. Qiang Tang (par-
tially) and Balázs Pejó are supported by an internal
project from University of Luxembourg.

References

[1] J. W Bos, K. Lauter, J. Loftus, and M. Naehrig. Improved
security for a ring-based fully homomorphic encryp-
tion scheme. In Cryptography and Coding, pages 45–64.
Springer, 2013.

[2] J. F. Canny. Collaborative filtering with privacy. In Secu-
rity and Privacy, 2002. Proceedings. 2002 IEEE Symposium
on, pages 45–57. IEEE, 2002.

[3] V. Dimitrov and I. Verbauwhede. Modular hardware
architecture for somewhat homomorphic function eval-
uation. In Cryptographic Hardware and Embedded Systems–
CHES 2015: 17th International Workshop, Proceedings, vol-
ume 9293, page 164. Springer, 2015.

[4] B. Dong, R. Liu, and H. W. Wang. Result integrity
verification of outsourced frequent itemset mining. In
Data and Applications Security and Privacy XXVII, pages
258–265. Springer, 2013.

[5] D. Lemire and A. Maclachlan. Slope one predictors
for online rating-based collaborative filtering. In SDM,
volume 5, pages 1–5. SIAM, 2005.

[6] R. Liu, H. W. Wang, P. Mordohai, and H. Xiong. Integrity
verification of k-means clustering outsourced to infras-
tructure as a service (iaas) providers. In SDM, pages
632–640, 2013.

[7] F. McSherry and I. Mironov. Differentially private recom-
mender systems: building privacy into the net. In Pro-
ceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 627–636.
ACM, 2009.

[8] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N.
Taft, and D. Boneh. Privacy-preserving matrix factoriza-
tion. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 801–812. ACM,
2013.

[9] G. Sheng, T. Wen, Q. Guo, and Y. Yin. Verifying correct-
ness of inner product of vectors in cloud computing. In
Proceedings of the 2013 international workshop on Security in
cloud computing, pages 61–68. ACM, 2013.

[10] J. Vaidya, I. Yakut, and A. Basu. Efficient integrity
verification for outsourced collaborative filtering. In Data
Mining (ICDM), 2014 IEEE International Conference on,
pages 560–569. IEEE, 2014.

[11] W. K. Wong, D. W. Cheung, E. Hung, B. Kao, and
N. Mamoulis. An audit environment for outsourcing
of frequent itemset mining. Proceedings of the VLDB
Endowment, 2(1):1162–1173, 2009.

[12] I. Yakut and H. Polat. Arbitrarily distributed data-
based recommendations with privacy. Data & Knowledge
Engineering, 72:239–256, 2012.

