
Verification Methods for the Computationally Complete
Symbolic Attacker Based on Indistinguishability

Gergei Bana
INRIA Paris-Rocquencourt

Paris, France
bana@math.upenn.edu

Rohit Chadha
University of Missouri

Colombia MO, United States
chadhar@missouri.edu

ABSTRACT
In recent years, a new approach has been developed for verifying
security protocols with the aim of combining the benefits of sym-
bolic attackers and the benefits of unconditional soundness: the
technique of the computationally complete symbolic attacker of
Bana and Comon (BC) [6]. In this paper we argue that the real
breakthrough of this technique is the recent introduction of its ver-
sion for indistinguishability [7] because, with the extensions we
introduce here, for the first time, there is a computationally sound
symbolic technique that is syntactically strikingly simple, to which
translating standard computational security notions is a straight-
forward matter, and that can be effectively used for verification of
not only equivalence properties, but trace properties of protocols as
well. We first fully develop the core elements of this newer version
by introducing several new axioms. We illustrate the power and
the diverse use of the introduced axioms on simple examples first.
We introduce an axiom expressing the Decisional Diffie-Hellman
property. We analyze the Diffie-Hellman key exchange, both in
its simplest form and an authenticated version as well. We pro-
vide computationally sound verification of real-or-random secrecy
of the Diffie-Hellman key exchange protocol for multiple sessions,
without any restrictions on the computational implementation other
than the DDH assumption. We also show authentication for a sim-
plified version of the station-to-station protocol using UF-CMA as-
sumption for digital signatures. Finally, we axiomatize IND-CPA,
IND-CCA1 and IND-CCA2 security properties and illustrate their
usage.

1. INTRODUCTION
Security protocols are analyzed with respect to “attacker mod-

els”, which formalize the capabilities of the attacker. There are
primarily two approaches to rigorously model the capabilities of
the attacker. The first approach, inspired by the theory of compu-
tational complexity, essentially says that a protocol is secure if an
attacker, modeled as a polynomially-bounded probabilistic Turing
machine, can break the security property only with negligible prob-
ability. The second approach, inspired by the theory of logic and
programming languages, assumes perfect black-box cryptography
and nondeterministic symbolic computation by the attacker. It is
common to call the former model the computational model while
the latter the Dolev-Yao model.

The computational model generally provides far stronger secu-
rity guarantees than the Dolev-Yao model. However, proofs in the
computational model tend to be complex and error-prone. The
Dolev-Yao model on the other is simpler and intuitive, and several
tools are available for automatically proving security in the Dolev-
Yao model, such as PROVERIF [12], SCYTHER [17].

Given that proofs in the computational model tend to be long and
error-prone, it is desirable to have machine-assisted proofs. Two

main research directions have been considered in the literature to
achieve this goal. The first one is to establish computational sound-
ness results (see [2, 4] for example), which show that under certain
conditions, the Dolev-Yao model is fully abstract with respect to
the computational one and thus it is sufficient to analyze protocols
in the Dolev-Yao model. Another approach is to carry out sym-
bolic proofs of correctness directly in the computational model with
the help of formal provers as is the case with CRYPTOVERIF [13]
and EASYCRYPT [10]. Both of these approaches have limitations.
Computational soundness results require too strong assumptions on
the computational implementation, calling into question their util-
ity. Furthermore, when considering additional primitives, one has
to establish the soundness results for the whole system again. As
the proofs of computational soundness results are rather complex,
this imposes a significant burden. Because of these issues, although
once a research direction receiving much attention, it has largely
been abandoned by now. The efforts of most researchers currently
go into developing tools that work directly in the computational
model. However, often the current state-of-the-art formal provers
are not able to complete the proofs in computational model, even
for secure protocols. When the provers fail to complete the proof,
it is not clear if the failure is due to a protocol flaw or due to the
limitations of the prover.

A third approach advocated by Bana and Comon in [6] (and
developed in [5, 8, 22, 7]), formalizes protocols and attackers in
first-order logic. The notion of symbolic attacker is kept, but in-
stead of specifying a restricted list of actions that an attacker can
do as is the case in the Dolev-Yao model, [6] only specifies facts
that the attacker cannot violate. These facts come from the nature
of probabilistic polynomial time computation and the underlying
cryptographic assumptions. The facts are called axioms and form a
recursive set. Without any axiom, the symbolic attacker is allowed
to do anything (i.e. attacker messages can satisfy any property),
and all protocols are insecure. Adding axioms limits the attacker
and makes verification of protocols possible. Once verification is
done with a set of axioms, the protocol is secure with respect to any
implementation that satisfies the axioms. For the rest of the paper,
we shall call this approach the BC technique.

When verifying security of protocols with the BC technique, one
tries to prove that the negation of the security goal expressed as a
first-order formula is logically inconsistent with the axioms. If one
manages to establish inconsistency, then a proof of security in the
computational model follows, as in this approach the attacker is al-
lowed to perform all operations that a computational attacker can
do. Failure to prove this inconsistency yields a first-order model
consisting of a sequence of symbolic actions, which a computa-
tional attacker may perform to launch an attack (e.g. in [5] a new at-
tack on the NSL protocol found with this technique was presented).
Furthermore, all computational attacks are symbolically accounted
for as any computational attack yields a model in which both the

1

axioms and negation of the security goal are true. It is for the lat-
ter reason that [6] have coined the term computationally complete
symbolic attacker for the symbolic attacker in this approach.

Thus, the BC technique overcomes significant limitations of the
Dolev-Yao technique when it comes to computational soundness,
while maintaining its simplicity. As compared to the the aforemen-
tioned tools working directly in the computational model, if a proof
fails in the BC framework then a possible attack is constructed. If
the proof succeeds, then it provides a set of formulas, without any
implicit assumptions, that, if satisfied by the implementation, re-
sult a secure protocol. Furthermore, this approach is not stricken
by the commitment problem (see e.g. [21]), an issue with all other
symbolic verification techniques.

While the initial papers on the computationally complete sym-
bolic attacker focussed on deducibility properties, [7] extended the
approach to indistinguishability properties: two protocols Π1,Π2

are said to be computationally indistinguishable if for each proba-
bilistic polynomial-time attacker, the difference in the probability
that it outputs 1 when interacting with Π1 and the probability that it
outputs 1 when interacting with Π2 is negligible. Several standard
security properties are modeled as indistinguishability properties.
These include strong flavors of confidentiality, privacy, anonymity,
real-or-random secrecy.

Our contributions. While [7] sets up the framework needed to
model the computationally complete symbolic attacker for indistin-
guishability properties, the set of axioms introduced therein were
only sufficient to prove one session of a protocol they considered.

One of the main contributions of this work is to axiomatize the
if_ then_else_ constructor, as the axioms introduced in [7] are not
sufficient to derive equivalence of branching terms in general. We
illustrate through a number of perhaps surprising examples in Sec-
tion 7 to indicate the power of the axioms. They are basic, general
axioms, not designed for with any particular protocol on our minds.
We present a restricted completeness theorem for the axiomatiza-
tion of if _ then _ else _ . The set of axioms is not complete in
general, but we do believe that they cover most situations relevant
for protocol equivalence in general. The axioms are independent.
They are also modular and expansion of the logic will not destroy
their validity.

The next group of main contributions are the axiomatization of
the Decisional Diffie-Hellman (DDH) assumption, the verification
of secrecy of the Diffie-Hellman (DH) protocol for multiple ses-
sions the axiomatization of security of digital signatures, and the
verification of authentication of an authenticated DH protocol. The
formalization of real-or-random secrecy and authentication in the
BC framework for equivalence properties is also our novel contri-
bution.

In the BC framework, the DDH assumption appears as an ax-
iom and it is a direct translation of the usual computational DDH
assumption to our syntax, hence computational soundness of it is
almost trivial. A feature of our axiomatic approach to the DDH as-
sumption is worth noting. Recall that in the computational model,
the DDH assumption for two parties is sufficient to derive the DDH
assumption for multiple parties. We show that this proof can be car-
ried out completely symbolically in our formalism (See Example
19).

We then show how real-or-random secrecy [3] of the exchanged
key can be formalized and verified in the BC framework. This is
carried out for the case when each agent can participate in 2 ses-
sions (both allowed to play the initiator as well as the responder
role). Our proof can be easily generalized to any bounded number
of sessions and more than two parties.

We axiomatize existential unforgeability against chosen message

attacks (UF-CMA) [20] of digital signatures, and show that the
technique and our axioms can also be used to verify a trace prop-
erty: authentication. Towards this end, we present an authenti-
cated version of the DH protocol, which is a simplified version
of the station-to-station protocol, formalize authentication in the
current framework and verify authentication from the responder’s
view. Generalizations to arbitrary bounded number of sessions and
agents are a straightforward matter in this case as well.

Our final contribution is a common axiomatization of IND-CPA,
IND-CCA1 and IND-CCA2 security properties of encryptions. An
axiom for IND-CPA was also presented in [7], the two are equiva-
lent. The IND-CCA1 and IND-CCA2 axioms are new. We also il-
lustrate with an example how to use IND-CCA2 axiom, and finally
state real-or-random secrecy and authentication verification results
concerning the Needham-Schroeder-Lowe (NSL) protocol [?].

We would like to highlight that in the BC framework based on in-
distinguishability, the standard cryptographic notions seem to trans-
late very easily to axioms, such that the axiom is sound if and only
if the computational security property holds. This is indicated by
our DDH, UF-CMA, IND-CPA, IND-CCA1 and IND-CCA2 ax-
ioms. Note further that although the authors of [7] designed this
technique for indistinguishability properties, it can also be conve-
niently used for trace properties such as authentication.

In summary, the contributions of this work are many of the Core
Axioms of Table 1, the independence theorem, the completeness
theorem, the DDH axiom, the UF-CMA axiom, the IND-CCA1 and
IND-CCA2 axioms, and techniques of how to apply these axioms.
The role of the examples of Sections 7 and 12 as well as the DH
protocol proofs and the NSL result are to demonstrate the power of
the axioms we introduced, to show various techniques of applying
them, and to show how to apply the technique for multiple sessions,
and how to formulate in the BC framework for indistinguishability,
with the help of oracles, the notions of real-or-random secrecy and
even of trace properties as authentication.

Related Work. There are other attempts in the literature for
computationally sound analysis of Diffie-Hellman-based protocols.
Most notably, in [19], the authors explain how in computational
PCL they can only verify Diffie-Hellman based protocols as long
as terms are non-malleable. For that reason, they need to sign
their Diffie-Hellman terms for the verification of secrecy. We do
not need any such assumption. CryptoVerif has also been used to
verify signed Diffie-Hellman key exchange protocols. AKE proto-
cols have been verified using the EasyCrypt proof assistant, with
Computational DH assumption [9]. The most notable other com-
putationally sound verification of the NSL protocol is [23], but the
author could not treat the case when agents play both initiator and
responder roles in matching sessions, which does not cause any
problem in the BC technique.

Acknowledgements. We are indebted to Hubert Comon-Lundh
and Adrien Koutsos for the invaluable discussions. We also thank
anonymous reviewers who have provided useful comments.

2. SYNTAX
We shall follow closely the notation in [7]. We summarize the

salient features of the syntax and the semantics of the logic below,
and the reader is referred to [7] for details. We shall introduce
the additional syntax needed for the Diffie-Hellman key exchange
through running examples.

2.1 Terms
Let S be a finite set of sorts that includes at least the sorts bool

and message. X is an infinite set of variable symbols, each com-
ing with a sort s ∈ S.

2

The set N of names (for random seeds) is an infinite set of
symbols that are treated as functions symbols of arity 0 and sort
message. The set of elements of N shall be interpreted as ran-
dom bit strings.

In addition, we assume a (fixed) set of function symbols, F .
Each element of F has a type, which is an element of the set
S∗ × S. When type(f) = (s1, . . . , sn, s), we also write f :
s1 × . . . × sn → s and call n the arity of f . We assume that
F includes at least the following function symbols:

• Booleans true : bool false : bool.
• Polymorphic conditional branching if _ then _ else _ :

bool×message×message→ message
bool× bool× bool→ bool.

• Polymorphic equality test

EQ(_, _) :
message×message→ bool
bool× bool→ bool.

We also use the following abbreviations

• not(b)
def≡ if b then false else true .

• x = y
def≡ EQ(x, y) ∼ true.

The choice of the equality symbol for this abbreviation is mo-
tivated by the fact that this functions as equality: it is a con-
gruence relation with respect to our syntax (see Section 5).

EXAMPLE 1. Since in this work we consider the Diffie-Hellman
key exchange, we shall need exponentiation. Although not neces-
sary for the DH protocol, we also include pairing and projection
functions as it shall be useful for combining messages. Accord-
ingly, we shall also include in F the following function symbols:

exp_(_, _) :
message×message

×message → message

〈_, _〉 : message×message → message
π1(_), π2(_) : message → message.

The subscript of exp takesG that stands for a cyclic group, the first
argument g is for an element of the group, and the second argument

is the exponent. We shall use the abbreviations ga
def≡ expG(g, a)

and gab
def≡ (ga)b. Note that we do not write G explicitly in the

abbreviation.
We also need function symbols for the algorithms that generate

groups, their generators, and exponents so that their distributions
satisfies the DDH assumption. We introduce

• generate group specification and generator
ggen(_) : message→ message
• generate exponent (the “r" stands for ring)
r(_) : message→ message.

The function symbol ggen is for the algorithm that generates a pair
consisting of the description of a cyclic group G and a generator g
of the group. We shall write G(_) for π1(ggen(_)), and g(_) for
π2(ggen(_)). r is to denote the algorithm that generates an expo-
nent randomly. We specified them as being given on message, but
honest agents shall only apply them on names inN .

We shall use the variables g, g1, g2, . . . to abbreviate a term of
the form g(x). We shall also use the variables a, b, c, d, . . . to
abbreviate terms of the form r(x) in the exponents of g’s. When
ggen(_) and r(_) are applied correctly onN then they will satisfy
the DDH assumption.

Furthermore, as we want to consider multiple sessions as well,
we need a way for the attacker to instruct an agent to start a new
session. For this, we shall include

• start new session: new : message
• specify action: act(_) : message→ message
• message body: m(_) : message→ message.

A call by the attacker for starting a new session is then expressed
by EQ(act(x),new) = 1 for input variable x. The main message
part, where ga is supposed to come from the other agent is m(x).

Equational theory: we also postulate that the above functions
satisfy the following equations:

πk 〈x1, x2〉 = xk for k = 1, 2 ; gab = gba.

When we do not explicitly quantify variables, we shall mean uni-
versal quantification. Furthermore, any first order formula ∀g.θ[g]
is an abbreviation for ∀x.θ[g(x)], ∀a.θ[a] is an abbreviation for
∀x.θ[r(x))] (similarly for b). 2

WhileF contains function symbols necessary for the system and
also those representing cryptographic primitives, an additional set
of function symbols G represents adversarial computation. G con-
tains countably many symbols: for every natural number n at least
one whose type is messagen → message. In the BC technique,
a message from the adversary always has the form f(t1, ..., tn),
where f ∈ G and t1, ..., tn are the messages from honest agents
sent earlier. As in this technique, there is no Dolev-Yao-type pat-
tern matching, the adversarial message is not a term created from
function symbols in F . As we shall see later, f ∈ G is allowed to
satisfy any property that does not contradict the axioms.

We shall also use ~f : messagen → messagem to denote a
vector of functions {fi : messagen → message}mi=1.

We assume that F , G, N , X are disjoint. Terms are built using
F , G, N , X , following the sort discipline: for each s ∈ S, let
Ts(F ,G.N ,X) be the smallest set such that

• if n ∈ N , then n ∈ Tmessage(F ,G.N ,X), and if x ∈ X has
sort s, then x ∈ Ts(F ,G.N ,X) and
• if f : s1 × . . . × sn → s is a symbol of F ∪ G, and
t1 ∈ Ts1(F ,G.N ,X), . . . , tn ∈ Tsn(F ,G.N ,X), then
f(t1, . . . , tn) ∈ Ts(F ,G.N ,X).

We do not have implicit coercion: a term of sort bool cannot be
seen (also) as a term of sort message.

EXAMPLE 2. Given F as defined in Example 1, variables g, a,
and f ∈ G, then

if EQ(act(f(g)),new) then ga else 0

is a term of sort message. This means that if the message f(g)
(computed from the public g) from the adversary indicates the start
of a new session, then a new a is generated and ga is sent. 2

REMARK 1. In order to display the formulas more concisely,
we use the abbreviations

if b then t
def≡ if b then t else 0

b1 & b2
def≡ if b1 then b2 else false 2

2.2 Formulas
We have for every sequence of sorts s1, . . . , sn a predicate sym-

bol that takes 2× n arguments of sort (s1 × . . .× sn)2, which we
write as t1, . . . , tn ∼ u1, . . . , un (overloading the notations for the
predicate symbols with different types). t1, . . . , tn ∼ u1, . . . , un
represents the indistinguishability of the two sequences of terms
t1, . . . , tn and u1, . . . , un.

Our set of formulas, which will be used both for axioms and se-
curity properties are first-order formulas built on the above atomic
formulas.

3

EXAMPLE 3. The following is a formula:

g, ga, gb, gab ∼ g, ga, gb, gc

This is actually almost the form of the Decisional Diffie-Hellman
assumption, except that we will need to make sure that g, a, b and
c are independently, correctly generated. This shall be discussed
when we state our DDH axiom. 2

3. SEMANTICS
In the BC technique, two semantics are considered for the first-

order formulas. The first is computational semantics: in order for
the formulas to be interpreted computationally and to be able to
consider their computational validity, computational semantics is
needed. The other is abstract first-order semantics. In this tech-
nique, a symbolic attack means consistency of the axioms with the
negation of the security property, which is equivalent to the exis-
tence of an abstract first-order model satisfying the axioms and the
negation of the security property. We follow closely the definitions
given in [7].

3.1 Abstract first-order interpretation
As usual in first-order logic: The domain D of the interpretation

can be anything (and in our case it has subsets of bools and mes-
sages). Function symbols can be freely interpreted as some func-
tions over this domain, predicates again freely interpreted as rela-
tions over this domain. Interpretation of logical constants, namely,
negation, entailment, conjunction, disjunction, quantification are
fixed to be the usual Tarskian interpretation.

3.2 Computational interpretation
A computational modelMc is a particular first-order model in

which the domain consists of probabilistic polynomial-time algo-
rithms. The interpretation of function symbols is limited to poly-
nomial-time algorithms such that the outputs of the machines in-
terpreting the domain elements are inputs to these algorithms. The
interpretation of the predicate ∼ is fixed to be computational in-
distinguishability of probability distributions. More precisely, it is
defined the following way:
1. The domain of sort message (denoted by Dmessage or Dm in
short) is the set of deterministic Turing machines A equipped with
an input (and working) tape and two extra tapes (that are used for
the random inputs). All tapes carry bit strings only, the additional
tapes contain infinitely long randomly generated bit strings. We
require that the computation time of A is polynomial in the worst
case w.r.t the input (not the content of the extra tapes). One of the
extra tapes is shared by honest agents for drawing random values,
while the other is used by the attacker when it draws random values.
We write A(w; ρ1; ρ2) for the output of the machine A on input w
with extra tape contents ρ1, ρ2.

The domain of sort bool is the set of such machines whose output
is in {0, 1}. We denote this by Dbool (or Db in short).
2. A function symbol f ∈ F ∪ G, f : s1 × . . . × sn → s is
interpreted as a mapping [[f]] : Ds1 × . . . × Dsn → Ds defined
by some polynomial time (deterministic) Turing machine Af such
that for (d1, . . . , dn) ∈ Ds1 × . . .×Dsn :

• If f ∈ F , then [[f]](d1, . . . , dn) is the machine that on input
w and extra tapes ρ1, ρ2, outputs

[[f]](d1, . . . , dn)(w; ρ1; ρ2) :=

Af (d1(w; ρ1; ρ2), . . . , dn(w; ρ1; ρ2))

In other words, the way [[f]] acts on (d1, . . . , dn) is that

we compose the machine Af with the machines d1, . . . , dn.
Note that the machineAf cannot use directly the tapes ρ1, ρ2.
• If g ∈ G, [[g]](d1, . . . , dn) is the machine such that, on input
w and extra tapes ρ1, ρ2, it outputs

[[g]](d1, . . . , dn)(w; ρ1; ρ2) :=

Ag(d1(w; ρ1; ρ2), . . . , dn(w; ρ1; ρ2); ρ2)

Note that the machineAg cannot use directly the tape ρ1: the
interpretations of function symbols in G are chosen by the
attackers who cannot use directly the possibly secret values
generated from ρ1, but may use extra randomness from ρ2.
• For all computational models, we require fixed interpreta-

tions of the following function symbols:
– [[true]] is the algorithm inDb outputting 1 on all inputs.
– [[false]] is the algorithm inDb outputing 0 on all inputs.
– [[0]] is the algorithm in Dm terminating with no output.
– if _ then _ else _ is interpreted as a function

[[if _ then _ else _]] : Db ×Dm ×Dm → Dm

such that on the triple (d, d1, d2) ∈ Db×Dm×Dm, it
gives the algorithm [[if _ then _ else _]](d, d1, d2) with

[[if _ then _ else _]](d, d1, d2)(w; ρ1; ρ2)

:=

{
d1(w; ρ1; ρ2) if d(w; ρ1; ρ2) = 1
d2(w; ρ1; ρ2) if d(w; ρ1; ρ2) = 0

If d1, d2 ∈ Db, then [[if_then_else_]](d, d1, d2) ∈ Db.
– EQ(_, _) is interpreted as the function

[[EQ(_, _)]] : Dm ×Dm → Db

such that [[EQ(_, _)]](d1, d2) is the algorithm

[[EQ(_, _)]](d1, d2)(w; ρ1; ρ2)

:=

{
1 if d1(w; ρ1; ρ2) = d2(w; ρ1; ρ2)
0 if d1(w; ρ1; ρ2) 6= d2(w; ρ1; ρ2)

3. A name n ∈ N is interpreted as the machine [[n]] = An that,
given a word of length η, extracts a word of length p(η) from ρ1
for some non-constant polynomial p. This machine does not use
ρ2. Different names extract disjoint parts of ρ1, hence they are in-
dependently generated. We assume that p is the same for all names,
that is the semantics is parametrized by this p. This way, all names
are drawn independently, uniformly at random from {0, 1}p(η).
4. Given a term t, an assignment σ of the free variables of t, taking
values in the corresponding domains Ds, a security parameter η
and a sample ρ (ρ is a pair ρ1; ρ2), [[t]]ση,ρ is defined recursively as:

• for a variable x, [[x]]ση,ρ := (xσ)(1η; ρ) (the output of the
algorithm xσ on 1η; ρ, or, equivalently, the output of the ma-
chine interpreting x on the input 1η , with random tapes ρ),
• for a name n, [[n]]ση,ρ is the output of the machine An on 1η

and tape ρ,
• for a function symbol f ∈ F ,

[[f(t1, . . . , tn)]]ση,ρ := [[f]]([[t1]]ση,ρ, . . . , [[tn]]ση,ρ).
• for a function symbol g ∈ G,

[[g(t1, . . . , tn)]]ση,ρ := [[g]]([[t1]]ση,ρ, . . . , [[tn]]ση,ρ, ρ2).

5. The indistinguishability predicate ∼ is interpreted as computa-
tional indistinguishability ≈ of sequences of elements in D of the
same length. That is: d1, . . . , dn ≈ d′1, . . . , d

′
n iff for any polyno-

mial time Turing machine A,

|Prob{ρ : A(d1(1η; ρ), . . . , dn(1η; ρ); ρ2) = 1}−
Prob{ρ : A(d′1(1η; ρ), . . . , d′n(1η; ρ); ρ2) = 1}|

4

is negligible in η. In particular, given an assignment σ of free
variables in Ds, and an interpretation [[·]] of the function symbols
as above, ∼ is interpreted as the relation ≈ between sequences
of the same length, which is defined as follows: [[t1, . . . , tn]] ≈
[[u1, . . . , un]] iff for any polynomial time Turing machine A

|Prob{ρ : A([[t1]]ση,ρ, . . . , [[tn]]ση,ρ; ρ2) = 1}−
Prob{ρ : A([[u1]]ση,ρ, . . . , [[un]]ση,ρ; ρ2) = 1}|

is negligible in η. We writeMc, σ |= t1 . . . tn ∼ u1 . . . un, and
say thatMc, σ satisfies t1 . . . tn ∼ u1 . . . un. Satisfaction of com-
pound formulas is defined from satisfaction of atomic formulas as
usual in first-order logic. We writeMc, σ |= θ ifMc, σ satisfies
the first-order formula θ in the above sense. If ~x is the list of free
variables in θ, thenMc |= θ stands forMc |= ∀~x.θ. A formula is
computationally valid if it is satisfied in all computational models.

EXAMPLE 4. We have introduced a number of function sym-
bols in Example 1, which we shall use for analyzing the Diffie-
Hellman key exchange protocol. We do not fix the computational
implementations of these function symbols, but assume that what-
ever the interpretations are, they operate on bit strings, and they
satisfy the equations we assumed about them. It is notable that for
the DDH assumption we need randomly generated groups (group
schemes, see [14]), and group generators of those groups. More-
over, the exponents must also be randomly generated. For that rea-
son, the function symbols ggen and r act on names, the interpre-
tation of which are random. We are going to assume that these
random groups are such that they satisfy the DDH assumption. 2

4. PROTOCOLS
The authors of [7] treated protocols as abstract transition systems

without committing to any particular way of specifying protocols.
They could be specified for instance in the applied pi-calculus [1]
or any other process calculus. The authors of [7] also assumed a
bounded number of sessions: each protocol comes with an arbi-
trary but fixed bound on the number of steps in its execution. It
would be possible to define the protocols without such a bound, but
the the general soundness result (Theorem 1 of [7]) holds only for
computational adversaries that exploit bounded number of sessions
in the security parameter. Therefore, without loss of generality we
can just as well put the bound in the protocol for simplifying the
formulation.

4.1 The transition system
We shall now introduce the abstract transitions systems used in

[7]. Observe that in our transition systems, we shall also decorate
the states with the names generated in the transition. A protocol is
an abstract transition system defined by:

• A finite set of control states Q with a strict partial ordering
>, an initial state q0 and a set Qf ⊆ Q of final states.
• For each state q ∈ Q, a linearly ordered (finite) set T (q) of

transition rules

q, (N0, N1, ..., Nn), (~x)
θ−→ q′, (N0, N1, ..., Nn, N), s, (~x, x)

– ~x ≡ x1, . . . , xn and x are variables.
– N0, N1, ..., Nn, N are lists of names.
– θ is a term of sort bool with variables in x1, . . . , xn, x
– q, q′ ∈ Q are such that q > q′.
– s is a term with variables in x1, . . . , xn, x.

T (q) is empty if and only if q ∈ Qf . Otherwise, T (q) con-
tains a maximal transition, whose guard θ is true.
• An initial knowledge φ0.

Intuitively, a transition q, (N0, N1, ..., Nn), (~x)
θ−→ q′, (N0,

N1, ..., Nn, N), s, (~x, x) is a guarded transition which changes
the state from q to q′ upon receiving the message x; the variables
x1, . . . xn store the messages sent by the attacker so far, Ni is the
list of names generated upon the receipt of xi, and the Boolean
condition θ specifies the condition under which the transition can
be fired (namely, the conditions under which a participating agent
moves forward). The term s specifies the message put out in the
transition, that is, the message sent by the agent with new names
in N . The partial ordering on states ensures progress and hence
termination. The linear ordering on transitions specifies in which
order the guards have to be tried. The ordering on the states thus
rules out any non-determinism in the protocol itself.

EXAMPLE 5. The Diffie-Hellman key exchange protocol is the
following (see e.g. [14]):

• A group description G and a group generator element g are
generated honestly, according to a randomized algorithm,
and made public.
• The Initiator generates a random a in Z|g| and sends ga.
• The Responder receives ga, generates a random b in Z|g| and

sends gb, and computes (ga)b.
• The Initiator receives gb, and computes (gb)a.

Here we shall consider two honest parties running two parallel
sessions, each of which may be initiator and responder. More ses-
sions can be analyzed similarly: the terms would be much bigger,
but there would not be any qualitative difference.

As mentioned earlier, the protocol formulation of [7] rules out
any non-determinism. The above protocol however is not neces-
sarily determinate for the following reason: For example, when
agent A has initiated two sessions of the protocol and he receives
a response, then it is not clear to which session he will accept the
incoming message. For this, we assume that the message coming
from the adversary specifies which session the agent should assign
it to. Note, the adversary can, of course, direct messages to incor-
rect sessions thereby creating confusion.

Accordingly, since we want to consider two sessions for each
participant, we introduce four session identifiers (message con-
stants in F): two for agent A: i1, i2, and two for agent B: i3 and
i4. We further introduce a function symbol to : message →
message which extracts from an incoming message the session.
As for their semantics, the session identifiers can be any fixed, dis-
tinct bit strings and to is a function that extracts from a bit string
a part that is agreed to be the position for the session identifier. On
a bit string that is of the wrong form, the interpretation of to can
give an error. We also assume that the session identifiers are dis-
tinct: EQ(i, j) ∼ false for sessions i 6≡ j. Finally, to ensure that
the Initiator also responds something at the end of its role so that
execution of other sessions can continue, we introduce an accept
message acc : message.

Then the initiator role of A for session i is the following:

• A receives a message into x1
• If to(x1) = i, and x1 instructsA to start a new session, then
A generates an a in Z|g|, and sends ga.
• A receives message into x2.
• If to(x2) = i, then A computes m(x2)a and sends acc.

The responder role of A is the following:

• A receives a message into y1
• If to(y1) = i, then A generates an a in Z|g|, computes
m(y1)a and sends ga.

5

We can translate this to a transition system the following way. The
set of states Q are given by

{qk1k2k3k4`1`2`3`4
|k1, k2, k3, k4 ∈ {0, 1, 2}, `1`2`3`4 ∈ {0, 1}} ∪ {q̄}.

Here kj numbers the rounds of session ij that has been completed
if it is an initiator session, and `j numbers the round of session ij
that has been completed if it is a responder session. Clearly, both
kj and lj cannot be 0 at the same time for a state. q00000000 is the initial
state q0. The state q̄ is the final state where the system jumps if all
tests fail. Those qk1k2k3k4`1`2`3`4

states where for each j, either kj or lj
is maximal are also final.

The transition system is then such that there is a transition cor-
responding to each pair (qk1k2k3k4`1`2`3`4

, q
k′1k

′
2k

′
3k

′
4

`′1`
′
2`

′
3`

′
4

) where the primed
indices are the same as the unprimed ones except for one where the
primed is 1 greater than the unprimed. Moreover, for each non-final
qk1k2k3k4`1`2`3`4

, there is a transition to q̄ guarded by true when all test
fails, which is the last according to the ordering >. We do not list
all transition rules here as they are rather straightforward but long.
We only give some examples:

Consider for example the transitions from q10020100 . The only pos-
sibilities are to q20020100 , to q10120100 , to q10020110 and to q̄. The transitions
are with this ordering:

q10020100 , (
~N), (~x)

EQ(to(x5),i1)−−−−−−−−−→ q20020100 , (
~N, ()),acc, (~x, x5)

q10020100 , (
~N), (~x)

EQ(to(x5),i3)&EQ(act(x5),new)−−−−−−−−−−−−−−−−−−−−−→
→ q10120100 , (

~N, (n5)),g(n0)r(n5), (~x, x5)

q10020100 , (
~N), (~x)

EQ(to(x5),i3)−−−−−−−−−→ q10020110 , (
~N, (n5)),g(n0)r(n5), (~x, x5)

q10020100 , (
~N), (~x)

true−−→ q̄, (~N, ()),0, (~x, x5)

where ~x = x1, x2, x3, x4, and ~N = N0, N1, N2, N3, N4 with
each Nj either a fresh name or an empty list. Note here that n0 is
the name used to generate the Diffie-Hellman group description.

Clearly, from q00000000 there are 8 possible transitions by increasing
any of the 0’s to 1, and there is an additional transition to q̄. They
are the following as j = 1, 2, 3, 4

q00000000 , ((n0)), ()
EQ(to(x1),ij)&EQ(act(x1),new)−−−−−−−−−−−−−−−−−−−−−→

→ q
kj=1

0000 , ((n0), (n1)),g(n0)r(n1), (x1)

q00000000 , ((n0)), ()
EQ(to(x1),ij)−−−−−−−−−→ q0000`j=1,((n0), (n1)),g(n0)r(n1), (x1)

q00000000 , ((n0)), ()
true−−→ q̄, (n0, ()),0, (x1).

That is, if the adversary calls for a new session ij , then a new initia-
tor session is started. If the adversary sends to sessions ij but does
not call for a new session, then the agent starts a responder session,
and assumes the incoming message is from the initiator.

4.2 Execution and indistinguishability
Computational and symbolic executions were defined precisely

in [7]. Instead of repeating the abstract definitions here, we appeal
to the reader’s intuition, and only illustrate through examples how
the executions work symbolically as we carry out the proof there.

We recall first that in case of the symbolic execution, to treat
protocol indistinguishability of protocols Π and Π′, the Dolev-Yao
way would be to match the branches of the execution of Π and
that of Π′ such that the matched branches are statically equivalent
(see e.g. [16]).However, as the authors discussed in [7], obtaining
computational soundness through such matching seems infeasible.
Instead, the authors in [7] folded the protocol execution into a single

trace, such that the tests of the participating agents at each round
on the incoming message were included in the terms that were sent
out with the help of the function symbol if _ then _ else _ . We
illustrate this in the following example.

EXAMPLE 6. The folded symbolic execution of two sessions
of the DH protocol between A initiator and B responder has the
following trace:

• φ0 ≡ G, g
• φ1 ≡ φ0,

if EQ(to(f1(φ1)), i1) & EQ(act(f1(φ1)),new)

then ga1

else if EQ(to(f1(φ1)), i1)

then ga1

else if EQ(to(f1(φ1)), i2) & EQ(act(f1(φ1)),new)

then ga2

else if EQ(to(f1(φ1)), i2)

then ga2

else if EQ(to(f1(φ1)), i3) & . . .
...

else if EQ(to(f1(φ1)), i4)

then ga4

else 0

• etc.

Where G ≡ π1(ggen(n0)) and g ≡ π2(ggen(n0)) and aj ≡
r(nm(j)) for j = 1, 2, 3, 4 and some increasing functionm : N→
N. To obtain φ2, one proceeds the following way. First create a
term that lists all conditions to reach all possible states after the
first step:

if EQ(to(f1(φ1)), i1) & EQ(act(f1(φ1)),new)

then q10000000

else if EQ(to(f1(φ1)), i1)

then q00001000

else if EQ(to(f1(φ1)), i2) & EQ(act(f1(φ1)),new)

then q01000000

else if EQ(to(f1(φ1)), i2)

then q00000100

else if EQ(to(f1(φ1)), i3) & . . .
...

else if EQ(to(f1(φ1)), i4)

then q00000001

else 0

Then, the states have to be replaced with the terms that describe
the transitions out of the state. For example, in Example 5, we also
listed the transitions from q10020100 . The term that corresponds to these
transitions from q10020100 is

6

Axioms for indistinguishability.
REFL: ~x ∼ ~x
SYM: ~x ∼ ~y −→ ~y ∼ ~x
TRANS: ~x ∼ ~y ∧ ~y ∼ ~z −→ ~x ∼ ~z
RESTR: If p projects and permutes onto a sublist,

~x ∼ ~y −→ p(~x) ∼ p(~y)

FUNCAPP: for any ~f : s1, ..., sn → s′1, ..., s
′
m, ~f ∈ F ∪ G,

~x ∼ ~y −→ ~x, ~f(~x) ∼ ~y, ~f(~y)
TFDIST: ¬ (true ∼ false)

Axioms for equality.
EQREFL: x = x
EQCONG: = is a congruence relation with respect to

the current syntax.
EQTHEO: = preserves the equational theory of functions

presuming that the computational interpretation
satisfies the equations bitwise.

Axioms for if _ then _ else _ .
IFSAME: if b then x else x = x
IFEVAL: for any t1, t2 terms,

if b then t1[b] else t2[b]
= if b then t1[true] else t2[false]

IFTRUE: if true then x else y = x
IFFALSE: if false then x else y = y
IFBRANCH: ~z, b, x ∼ ~z′, b′, x′ ∧ ~z, b, y ∼ ~z′, b′, y′ −→

~z, b,
if b then x

else y ∼ ~z′, b′,
if b′ then x′

else y′

Axioms for names.
FRESHIND: for any names n1, n2 and lists of closed terms

~v, ~w, such that fresh(n1;~v, ~w)
and fresh(n2;~v, ~w) holds,
~v ∼ ~w −→ n1, ~v ∼ n2, ~w.

FRESHNEQ: for any name n and a closed term v such that
fresh(n; v) holds, we have EQ(n, v) ∼ false.

Table 1: Core Axioms

if EQ(to(f4(φ4)), i1)

then acc
else if EQ(to(f4(φ4)), i3) & EQ(act(f4(φ4)),new)

then gb1

else if EQ(to(f4(φ4)), i4)then gb1else 0. 2

This way, the indistinguishability of two protocols Π and Π′ can
be reduced to the indistinguishability of the lists of the sent mes-
sages. Let fold(Π) denote the folded execution of protocol Π,
and let Φ(fold(Π)) denote the sequence φ0, φ1, . . . of folded mes-
sages sent on the single symbolic trace. Then the following general
soundness theorem was proved in [7]:

THEOREM 1. Let Π,Π′ be two protocols. Let A be any set of
formulas (axioms). If A and Φ(fold(Π)) 6∼ Φ(fold(Π′)) are incon-
sistent, then the protocols Π and Π′ are computationally indistin-
guishable in any computational modelMc for whichMc |= A.

5. CORE AXIOMS
In this section we present the core axioms for our technique. In

[7] a few axioms were presented that were sufficient to prove the
protocol they considered for one session. In general though, those
axioms for if _ then _ else _ are certainly not sufficient to compare
the branching of two protocols. In this section we present further
axioms for if _ then _ else _ , and for = as well. As usual, the free
variables in axioms are assumed to be universally quantified.

The core axioms tare listed in Table 1 and explained below. There
are broadly four categories of our axioms. The first category of ax-
ioms, axioms for indistinguishability, are useful to reason about the
indistinguishability predicate ∼. The second category of axioms,
axioms for equality, are useful to reason about the abbreviation =.
Collectively, they justify use of the equality symbol for the abbre-
viation. The third category of axioms, axioms for if _ then _ else
lie at the heart of reasoning about different branches of protocol ex-
ecution. The last category of axioms, axioms for names, are useful
to reason about fresh names. These axioms (more precisely, ax-
iom schemas) use the notion of freshness [7]: For a list of pairwise
distinct names N , and a (possibly empty) list of closed terms ~v,
fresh(N ;~v) is the constraint that none of names in N occur in ~v.

Some of these axioms were proven computationally sound in [7].
The others are proven similarly; we omit their proofs here as they
are rather straightforward. Their novelty lies not in the difficulty of
their soundness proofs but in their applicability in protocol proofs.
The axioms are independent:

THEOREM 2. The core axioms are independent.

The proof goes as usual: For each axiom θ an abstract first-order
model is constructed that satisfies all other axioms and the negation
of θ.

Note that all axioms we introduce are modular, that is, expanding
the logic will not invalidate the current axioms. Observe also the
general nature of the axioms; they are in no way special to the
DH protocol. They are basic properties that allow us to manipulate
if _ then _ else _ branching, equality and equivalence, and they
should be useful in the verification of any protocol. In Section 7 we
illustrate their use on simple examples.

Note that the axioms are not complete. A complete axiomatiza-
tion might be very difficult, and it is not a priority. Completeness in
restricted cases can be shown though. For example, the following
theorem is true:

THEOREM 3. Suppose the only function symbols in t1 and t2
are if _ then _ else _ , true and false.

t1 = t2 is computationally valid, if and only if
EQREFL,EQCONG,

IFSAME,IFEVALIFTRUE,IFFALSE,` t1 = t2.

PROOF. 1. Suppose first t1 = t2 is computationally valid.
We prove that the listed axioms imply t1 = t2 by induction
on the number of bool variables in the first arguments of in-
stances of if _ then _ else _ in the formula t1 = t2.

(a) Suppose first that there are zero number of such vari-
ables. Thanks to IFTRUE,IFFALSE, we can assume
that t1 and t2 have no if _ then _ else _ terms at all.
Thus, our formula is x = y, where x and y are either
variables or true or false. Clearly, if x and y are syn-
tactically different (that is, x 6≡ y), then x = y is not
valid as the variables can just be interpreted as two con-
stant bit strings, different from 1 and 0. When they are
syntactically equal, x = x, then this is just EQREFL.

7

(b) Suppose now that we have shown the statement for n
different bool variables in t1 = t2. Consider the case
n + 1. So either t1 or t2 has at least one instance of
if _ then _ else _ , suppose w.l.o.g. it is t1. That means

t1 = if b then t11 else t21

for some b, t11, t21, where by axiom IFEVAL, we can
assume that neither t11, nor t21 contains b, and by axioms
IFTRUE and IFFALSE we can assume that there is no
true and false in the first argument of if _ then _ else _ .
If t2 has b in the first argument of if _ then _ else _ ,
then we can move it out to the front so that

t2 = if b then t12 else t22

for some t12, t22, where we can again assume that neither
t12, nor t22 contains b, and true and false are removed
from the conditions of if _ then _ else _ . If t2 does
not have b, then by IFSAME, we can still write it as
t2 = if b then t12 else t22 with t12 = t22 = t2. So we can
assume w.l.o.g. that t2 also has this form.
We claim that t11 = t12 ∧ t21 = t22 is computationally
valid. Suppose not, breaking say, t11 = t12. Then there
is a modelMc and the variables in t11, t21, t12, t22 have
an interpretation σ such thatMc, σ 6|= t11 = t12. This
means that [[t11]]σ and [[t12]]σ are not equal up to negligi-
ble probability:

Prob{ρ : [[t11]]ση,ρ 6= [[t12]]ση,ρ}

is non-negligible. Remember, t11, t21, t12, t22 do not con-
tain b. Let us define the interpretation of b (extend σ to
b) such that it is a single bit, generated randomly and in-
dependently of all the interpretations of other variables
in t11, t21, t12, t22. By the definition of the semantics of
if _ then _ else _ ,

{ρ : [[b]]ση,ρ = 1 ∧ [[t11]]ση,ρ 6= [[t12]]ση,ρ}
⊆ {ρ : [[t1]]ση,ρ 6= [[t2]]ση,ρ}.

Hence
1
2

Prob{ρ : [[t11]]ση,ρ 6= [[t12]]ση,ρ}
≤ Prob{ρ : [[t1]]ση,ρ 6= [[t2]]ση,ρ},

and since the LHS of this inequality is non-negligible,
the RHS is also non-negligible. But that meansMc, σ |=
t1 6= t2 contradicting our assumption. The proof is
analogous when t21 = t22 is not valid. So we have that
t11 = t12 and t21 = t22 are both computationally valid.
As t11 = t12 and t21 = t22 do not contain b any more, by
the induction hypothesis, both t11 = t12 and t21 = t22 are
derivable from the axioms. Then

t1 = if b then t11 else t21
EQCONG

= if b then t12 else t22 = t2.

2. The converse follows immediately from the computational
soundness of EQREFL, EQCONG, IFSAME, IFEVAL, IFTRUE,
IFFALSE.

Observe that as an immediate consequence of EQTHEO we get:

EXAMPLE 7. For the function symbols in Example 1,
πk 〈x1, x2〉 = xk and gab = gba are axioms by EQTHEO. 2

We could also have defined the axioms differently. The following
example indicates that the very intuitive axiom schema IFEVAL
and IFSAME can be replaced by three axioms IFTF, IFIDEMP,
IFMORPH below. Later, we shall use all of IFSAME, IFEVAL,
IFTF, IFIDEMP, IFMORPH, whichever is more convenient to ap-
ply.

EXAMPLE 8. Let us define the following three axioms

IFIDEMP : if b then
(if b then x1

else y1

)
else

(if b then x2
else y2

)
= if b then x1 else y2

IFMORPH : f(z1, ..., if b then x else y , ..., zn)

=
if b then f(z1, ..., x, ..., zn)

else f(z1, ..., y, ..., zn)

IFTF : if b then true else false = b

It is easy to see that

IFTF,IFIDEMP,IFMORPH,EQREFL,EQCONG
` IFSAME,IFEVAL

and

IFEVAL,IFSAME,IFTRUE,IFFALSE,EQREFL,EQCONG
` IFTF,IFIDEMP,IFMORPH .

To see the first, we need the transitivity of equality with:

if b then t1[b] else t2[b]
IFTF
=

if b then t1[if b then true else false]
else t2[if b then true else false]

IFMORPH
=

if b then if b then t1[true] else t1[false]
else if b then t2[true] else t2[false]

IFIDEMP
= if b then t1[true] else t2[false]

and1

x
IFTRUE

= if true then x else if b then y else z
IFMORPH

=
if b then if true then x else y

else if true then x else z
IFTRUE

= if b then x else x

To see the second:

b
IFSAME

= if b then b else b IFEVAL= if b then true else false

f(z1, ..., if b then x else y , ..., zn)
IFSAME

=
if b then f(z1, ..., if b then x else y , ..., zn)

else f(z1, ..., if b then x else y , ..., zn)
IFEVAL

=
if b then f(z1, ..., if true then x else y , ..., zn)

else f(z1, ..., if false then x else y , ..., zn)
IFTRUE
IFFALSE

= if b then f(z1, ..., x, ..., zn) else f(z1, ..., y, ..., zn)

if b then
(if b then x1

else y1

)
else

(if b then x2
else y2

)
IFEVAL

= if b then
(if true then x1

else y1

)
else

(if false then x2
else y2

)
IFTRUE
IFFALSE

= if b then x1 else y2 . 2

1This observation is due to Adrien Koutsos

8

5.1 Soundness of the Axioms
The soundness of the axioms for indistinguishability were proven

in [7] except for TFDIST. But that is trivial: the interpretation
of true is identically 1, the interpretation of false is identically 0,
which can be distinguished by the algorithm that outputs its input.

PROPOSITION 1. Axioms EQREFL, EQCONG and EQTHEO are
computationally sound.

PROOF. x = x is trivial by the semantics of EQ and true.
To see EQCONG, note that by the definition of the semantics of

EQ and true,Mc |= EQ(x, y) ∼ true means that [[x]] and [[y]] are
equal on all inputs except possibly some inputs that have negligi-
ble probability. As any change that affects the outputs only with
negligible probability does not affect the satisfaction of formulas
expressed by the current syntax (∼ ignores any change with negli-
gible probability), congruence indeed holds.

Finally, for EQTHEO, if the computational semantics satisfies the
equations bitwise, then or any given equation (of the equational
theory), the interpretations of the two terms on the two sides agree
on each input. Hence they are equal up to negligible probability as
well.

PROPOSITION 2. The IF axioms are computationally sound.

PROOF. IFSAME, IFEVAL, IFTRUE, IFFALSE: These ax-
ioms are all of the form

t1 = t2

with t1 and t2 terms varying from axiom to axiom. Assume that σ
is an assignment of the variables of t1 and t2 to algorithms taking
values in the corresponding domains. Let η be a security parameter.
In each case, by the definition of [[if _ then _ else _]], it is a trivial
matter to verify that

[[t1]]ση,ρ = [[t2]]ση,ρ. .

Then, by the definition of [[EQ(_, _)]] and [[true]], we have that
EQ(t1, t2) ∼ true is satisfied and that completes the proof.
IFBRANCH:

~z, b, x ∼ ~z′, b′, x′ ∧ ~z, b, y ∼ ~z′, b′, y′ −→
~z, b, if b then x else y ∼ ~z′, b′, if b′ then x′ else y′

Assume an assignment σ of the free variables ~z, ~z′, b, b′, x, x′, y, y′,
taking values in the corresponding domains and a security parame-
ter η.Assume further that ~z, b, x ∼ ~z′, b′, x′ and ~z, b, y ∼ ~z′, b′, y′.
Fix an adversary A. Let pl, pr, px1 , px2 , py1 and py2 be defined as
follows.

pl = Prob{ρ : A([[~z, b, if b then x else y]]σρ,η; ρ2) = 1}.
pr = Prob{ρ : A([[~z′, b′, if b′ then x′ else y′]]σρ,η; ρ2) = 1}.
px = Prob{ρ : A([[~z, b, x]]σρ,η; ρ2) = 1 & [[b]]σρ,η = 1}
px′ = Prob{ρ : A([[~z′, b′, x′]]σρ,η; ρ2) = 1 & [[b′]]σρ,η = 1}
py = Prob{ρ : A([[~z, b, y]]σρ,η; ρ2) = 1 & [[b]]σρ,η = 0}.
py′ = Prob{ρ : A([[~z′, b′, y′]]σρ,η; ρ2) = 1 & [[b′]]σρ,η = 0}.

It is easy to see that pl = px + py and that pr = px′ + py′ .
Therefore |pl−pr| ≤ |px−px′ |+ |py−py′ |. In order to prove the
soundness of the axiom we need to show that |pl−pr| is negligible
in η. In order to prove this, it suffices to show that both |px − px′ |
are |py1 − py′ | are negligible in η.

We now show that |px − px′ | is negligible in η. Let the se-
quence ~m1 have the same number of elements as ~z. Consider the
adversary B that on input ~m1, b1,m2 and random tape ρ2 runs
A(~m1, b1,m2) when b1 is 1 and outputs 0 otherwise. Now, it is

easy to see that

Prob{ρ : B([[~z, b, x]]σρ,η; ρ2) = 1} = px
Prob{ρ : B([[~z′, b′, x′]]σρ,η; ρ2) = 1} = px′ .

Thus, |px−px′ | = |Prob{ρ : B([[~z, b, x]]σρ,η; ρ2) = 1}−Prob{ρ :
B([[~z′, b′, x′]]σρ,η; ρ2) = 1}|. Now, the latter is negligible in η as
~z, b, x ∼ ~z′, b′, x′. Hence, |px − px′ | is also negligible in η. Simi-
larly, we can show that |py − py′ | is negligible in η and the result
follows.

PROPOSITION 3. Axioms FRESHIND and FRESHNEQ are com-
putationally sound.

PROOF. For FRESHIND, note that fresh(n1, n2;~v, ~w) implies
that [[n1]] and [[n2]] are independent of [[~v, ~w]] because all names are
assumed to use different parts of the random tape ρ1, and functions
can only use randomness from ρ2. This means that [[n2, ~w]] and
[[n1, ~w]] have identical probability distributions. Hence, if an al-
gorithm A can differentiate [[n1, ~v]] from [[n2, ~w]], then A can also
differentiate [[n1, ~v]] from [[n1, ~w]]. If there is such anA, then there
is also a B differentiating [[~v]] and [[~w]], namely the one that gen-
erates a random bit string s that has identical distribution with the
interpretation of names, and then gives (s, [[~v]]) or (s, [[~w]]) to A.

To see soundness of FRESHNEQ, note again that [[n]] and [[v]] are
independent. As [[n]] has uniform distribution on {0, 1}p(η), there is
at most negligible probability for [[n]] to agree with [[v]], and hence
there is only negligible probability for [[EQ(n, v)]] to be nonzero,
from which soundness follows.

6. DDH ASSUMPTION
The BC formalism for indistinguishability properties is very con-

venient for axiomatizing cryptographic assumptions. Our Deci-
sional Diffie-Hellman (DDH) axiom is a straightforward translation
of the usual DDH assumption to this formalism:

• DDH assumption:
fresh(n, n1, n2, n3) −→
(G(n),g(n),g(n)r(n1),g(n)r(n2),g(n)r(n1)r(n2))

∼ (G(n),g(n),g(n)r(n1),g(n)r(n2),g(n)r(n3))

That is, this property postulates that an adversary cannot distin-
guish g(n)r(n1)r(n2) from g(n)r(n3) even if the items G(n), g(n),

g(n)r(n1), g(n)r(n2) are disclosed.

PROPOSITION 4. The above axiom is sound if and only if the
interpretation of (ggen(_),r(_)) satisfies the Decisional Diffie-
Hellman assumption (see for example [14]).

PROOF. The proof is almost trivial. According to the semantics
of ∼ in Section 3.2, violation of the DDH axiom means there is an
A algorithm for which the advantage is non-negligible when it is
fed with the interpretation of (G(n), g(n), g(n)r(n1), g(n)r(n2),

g(n)r(n1)r(n2)) and the interpretation of (G(n), g(n), g(n)r(n1),

g(n)r(n2), g(n)r(n3)). That is exactly the violation of the DDH
assumption in [13], Definition 2.1.

7. SHORT EXAMPLES
In this section we illustrate with a few short examples how the

axioms we introduced work.

EXAMPLE 9. In the formula below, IFMORPH lets us pull out
if _ then _ else _ from under t1, t2, and IFIDEMP lets us get
rid of several instances of b. And, as EQREFL and EQCONG imply

9

transitivity of =, we have

IFIDEMP,IFMORPH,EQREFL,EQCONG `
if b then t1[if b then x1 else y1]

else t2[if b then x2 else y2]
=

if b then t1[x1]
else t2[y2] 2

EXAMPLE 10. We have that for any constant f ∈ F ∪ G,

TRANS,RESTR,FUNCAPP,EQREFL `
x ∼ f −→ x = f.

To see this, consider x ∼ f . By FUNCAPP, x, f ∼ f, f , and
again by FUNCAPP, x, f,EQ(x, f) ∼ f, f,EQ(f, f). By RESTR,
EQ(x, f) ∼ EQ(f, f). By EQREFL, f = f , which is a shorthand
for EQ(f, f) ∼ true. Then by TRANS, EQ(x, f) ∼ true, which is
x = f .

Note that in particular, x = y iff EQ(x, y) = true. 2

EXAMPLE 11. We have

TRANS,RESTR,FUNCAPP,

IFSAME,IFIDEMP,IFMORPH,IFTF,EQREFL,EQCONG `
if EQ(x1, x2) then x1 else y = if EQ(x1, x2) then x2 else y

This is because:

EQ
(

if EQ(x1, x2) then x1 else y ,
if EQ(x1, x2) then x2 else y

)

IFMORPH
=

if EQ(x1, x2) then EQ
(
x1,
if EQ(x1, x2) then x2 else y

)
else EQ

(
y,
if EQ(x1, x2) then x2 else y

)
Example 9

= if EQ(x1, x2) then EQ (x1, x2) else EQ (y, y)

Example 10
= if EQ(x1, x2) then EQ (x1, x2) else true

IFEVAL
= if EQ(x1, x2) then true else true IFSAME

= true

where EQCONG is also used, but we omitted its indication. 2

EXAMPLE 12. We prove the following:

IFIDEMP,IFMORPH,EQREFL,EQCONG `
if b then x1 else y1 = if b then x2 else y2
−→ if b then t[x1] else t′[y1] = if b then t[x2] else t′[y2]

The statement can be proven using Example 9 and congruence of
the equality:

if b then t[x1] else t′[y1]

= if b then t[if b then x1 else y1] else t′[if b then x1 else y1]

= if b then t[if b then x2 else y2] else t′[if b then x2 else y2]

= if b then t[x2] else t′[y2]

Putting this together with Example 11, we have in particular that:2

EQBRANCH ≡
if EQ(x1, x2) then t[x1] else t′= if EQ(x1, x2) then t[x2] else t′.

2

These two previous examples mean that equality is not only a
congruence, but if x1 and x2 are equal on a branch, they are inter-
changeable on that particular branch.
2This property was first formulated by Adrien Koutsos as one that
is particularly useful in proofs.

EXAMPLE 13. By the previous examples, we have
EQ(true, false) = false as follows:

EQ(true, false)

IFTF
= if EQ(true, false) then true else false

EQBRANCH
= if EQ(true, false) then false else false IFSAME

= false

2

EXAMPLE 14. By the previous examples, we also have

EQ(x, y) = EQ(y, x).

The proof is the following:

EQ(x, y)

IFTF
= if EQ(x, y) then true else false

IFEVAL
= if EQ(x, y) then EQ(x, y) else false

EQBRANCH
= if EQ(x, y) then EQ(y, x) else false

IFTF
=

if EQ(x, y) then (if EQ(y, x) then true else false)
else false

IFMORPH
=

if EQ(y, x) then (if EQ(x, y) then true else false)
else (if EQ(x, y) then false else false)

IFSAME
=

if EQ(y, x) then (if EQ(x, y) then true else false)
else false

IFTF
= if EQ(y, x) then EQ(x, y) else false

EQBRANCH
= if EQ(y, x) then EQ(y, x) else false

IFEVAL
= if EQ(y, x) then true else false IFTF

= EQ(y, x) 2

EXAMPLE 15. By the invertibility of pairing, we can also show
that for two distinct names n1 and n2,

EQ(n1, 〈n1, n2〉) = false.

To see this, note that from the equational theory of the pairing,
π2(〈n1, n2〉) = n2, which, by Axiom EQTHEO, the meaning of =
as an abbreviation, and Example 10, means EQ(n2, π2(〈n1, n2〉))
= true. Then

EQ(n1, 〈n1, n2〉)
IFTF
= if EQ(n1, 〈n1, n2〉) then true else false

EQTHEO
Example 10

= if EQ(n1, 〈n1, n2〉) then EQ(n2, π2(〈n1, n2〉)) else false
EQBRANCH

= if EQ(n1, 〈n1, n2〉) then EQ(n2, π2(n1)) else false
FRESHNEQ
Example 10

= if EQ(n1, 〈n1, n2〉) then false else false IFSAME
= false 2

EXAMPLE 16. It is easy to see from the definition of not, that

EQREFL,EQCONG,IFMORPH,IFTRUE,IFFALSE `
if not(b) then x else y = if b then y else x 2

EXAMPLE 17. For variables b1, b2, n1, n′1, n2, n′2, n2, n′3, n′4:

b1, b2, n1, n2, n3 ∼ b1, b2, n′1, n′2, n′3 ∼ b1, b2, n′4, n′2, n′3 →
if b1 then n1 else (if b2then 〈n2, n3〉else 〈n1, n2, n3〉) ∼
if not(b2) then (if b1then n′1else 〈n′1, n′2, n′3〉)

else (if b′1then n′4else 〈n′2, n′3〉)

10

Fix b1, b′1, b2, b′2, n1, n
′
1, n2, n

′
2, n3, n

′
3, n
′
4.

1. Assume
b1, b2, n1, n2, n3 ∼ b1, b2, n′1, n′2, n′3 ∼ b1, b2, n′4, n′2, n′3.

2. Thanks to IFMORPH, we have that
if b1then n1 else (if b2then 〈n2, n3〉else 〈n1, n2, n3〉)

=
if b2then (if b1 then n1else 〈n2, n3〉)

else (if b1then n1else 〈n1, n2, n3〉)
3. From Example 16 we get that

if b2 then (if b1then n1else 〈n2, n3〉)
else (if b1then n1else 〈n1, n2, n3〉)

=
if not(b2) then (if b1then n1else 〈n1, n2, n3〉)

else (if b1then n1else 〈n2, n3〉)
4. By line 1, axioms FUNCAPP and RESTR,

not(b2), if b1 then n1 else 〈n1, n2, n3〉
∼ not(b2), if b1 then n′1 else 〈n′1, n′2, n′3〉

and
not(b2), if b1 then n1 else 〈n2, n3〉

∼ not(b2), if b1 then n′4 else 〈n′2, n′3〉 .
5. The previous step together with IFBRANCH, RESTR imply

if not(b2) then (if b1then n1else 〈n1, n2, n3〉)
else (if b1then n1else 〈n2, n3〉)

∼
if not(b2) then (if b1then n′1else 〈n′1, n′2, n′3〉)

else (if b′1then n′4else 〈n′2, n′3〉)
6. Line 5 together with the congruence of equality imply

if b1 then n1 else (if b2then 〈n2, n3〉else 〈n1, n2, n3〉)
∼
if b′2 then (if b′1then n′1else 〈n′1, n′2, n′3〉)

else (if b′1then n′4else 〈n′2, n′3〉)
.

The theorem follows. 2

EXAMPLE 18. Axioms IFIDEMP and IFMORPH reduce terms
in the frame significantly for the following reason. Consider the
simple situation when the frame φ2 looks like

φ0, if b1
[
f1(φ0)

]
then t11

[
f1(φ0)

]
else t21

[
f1(φ0)

]
,

if b1
[
f1(φ0)

]
then

(
if b12

[
f2(φ1)

]
then t112

[
f2(φ1)

]
else t122

[
f2(φ1)

])
else

(
if b22

[
f2(φ1)

]
then t012

[
f2(φ1)

]
else t002

[
f2(φ1)

])
Inside f2, the φ1 is φ0, ifb1[f1(φ0)]thent11[f1(φ0)]elset21[f1(φ0)]
also has branching, but by axiom IFIDEMP and IFMORPH, that
branching can be removed. So the last term in the frame equals

if b1
[
f1(φ0)

]
then

(if b12
[
f2(φ0, t

1
1[f1(φ0)])

]
then t112

[
f2(φ0, t

1
1[f1(φ0)])

]
else t122

[
f2(φ0, t

1
1[f1(φ0)])

])

else
(if b22

(
f2(φ0, t

2
1[f1(φ0)])

)
then t012

[
f2(φ0, t

2
1[f1(φ0)])

]
else t002

[
f2(φ0, t

2
1[f1(φ0)])

])
Similarly, even in later terms of the frame, all the branching in the
adversary messages (as in the t’s above) can be removed. Note that
because of the way terms were folded in the protocol execution, the
branching is always kept as we go to higher elements of the frame,
they only get extended: Just as above, there is an initial branching
by b1, then there is a second by b2, then b3, and they all show up in
all later terms as well.) That is, φn+1 will have the same branching
as φn plus an additional layer of branching, and these branchings
can all be pulled out to the front of the terms. 2

EXAMPLE 19. In this example we show that a three-party ver-
sion of the DDH assumption can be derived from the usual DDH

assumption. In this case, G, g, ga, gb, gc, gab, gac, gbc, are all
public, and gabc is secret. We show that with all this public in-
formation, gabc is indistinguishable from ge where e is a freshly
generated exponent. More precisely, we show the following:

fresh(G, g, a, b, c, e)→(
G, g, ga, gb, gc,
gab, gac, gbc, gabc

)
∼
(
G, g, ga, gb, gc,
gab, gac, gbc, ge

)
1. Take a d with fresh(G, g, a, b, c, e, d).
2. Thanks to DDH axiom, we have that
G, g, ga, gb, gab ∼ G, g, ga, gb, gd.

3. From line 2 and axiom FRESHIND, we get that
c,G, g, ga, gb, gab ∼ c,G, g, ga, gb, gd.

4. From line 3 and repeated use of axiom FUNCAPP (for expo-
nentiation with c) we get that c,G, g, ga, gb, gab, gc, gac,
gbc, gabc ∼ c,G, g, ga, gb, gd, gc, gac, gbc, gdc

5. From line 4 and axiom RESTR we get that G, g, ga, gb, gab,
gc, gac, gbc, gabc ∼ G, g, ga, gb, gd, gc, gac, gbc, gdc

6. By DDH, we get that G, g, gd, gc, gdc ∼ G, g, gd, gc, ge
7. From line 6 and axiom FRESHIND we get that
a, b,G, g, gd, gc, gdc ∼ a, b,G, g, gd, gc, ge

8. From line 7 and repeated use of axiom FUNCAPP we get that
a, b,G, g, gd, gc, gdcga, gb, gca, gcb

∼ a, b, G, g, gd, gc, gega, gb, gca, gcb
9. Since we have postulated that gca = gac and that gcb = gbc,

we get thanks to Line 8 and axiom RESTR that G, g, ga, gb,
gd, gc, gac, gbc, gdc ∼ G, g, ga, gb, gd, gc, gac, gbc, ge

10. Thanks to axiom TRANS, lines 5 and 9, we get that G, g, ga,
gb, gab, gc, gac, gbc, gabc ∼ G, g, ga, gb, gd, gc, gac, gbc, ge

11. Now, thanks to line 2 and axiom FRESHIND,
c, e,G, g, ga, gb, gab ∼ c, e,G, g, ga, gb, gd

12. Thanks to line 11 and repeated use of axiom FUNCAPP we
get that c, e,G, g, ga, gb, gab, gc, ge, gac, gbc

∼ c, e,G, g, ga, gb, gd, gc, ge, gac, gbc
13. Thanks to line 12, axiom RESTR and SYM we get that G, g,

ga, gb, gd, gc, gac, gbc, ge ∼ G, g, ga, gb, gab, gc, gac, gbc, ge
14. Now, thanks to lines 10, 13 and axiom TRANS we get that

G, g, ga, gb, gab, gc, gac, gbc, gabc

∼ G, g, ga, gb, gab, gc, gac, gbc, ge
The result follows. 2

EXAMPLE 20. The Diffie-Hellman assumption does not imply
that for fresh(G, g, a, b, c, d, e), the equivalence G, g, ga, gb, gc,
gab, gbc ∼ G, g, ga, gb, gc, gd, ge holds. However, we do have
that for β closed bool term on g, ga, gb, gc and function symbols,
if fresh(G, g, a, b, c, d) holds, then

G, g, ga, gb, gc, if β then gab else gbc ∼ G, g, ga, gb, gc, gd

This can be derived the following way: From the DDH assumption,
G, g, ga, gb, gab ∼ G, g, ga, gb, gd. By FRESHIND, we also have
that c,G, g, ga, gb, gab ∼ c,G, g, ga, gb, gd, and by FUNCAPP
and RESTR, G, g, ga, gb, gc, gab ∼ G, g, ga, gb, gc, gd. As β is
a closed term on g, ga, gb, gc, by FUNCAPP and RESTR again,
we have G, g, ga, gb, gc, β, gab ∼ G, g, ga, gb, gc, β, gd. Simi-
larly, G, g, ga, gb, gc, β, gbc ∼ G, g, ga, gb, gc, β, gd. Then, by
IFBRANCH we obtain G, g, ga, gb, gc, if β then gab else gbc ∼
G, g, ga, gb, gc, ifβ thengd elsegd and finally by IFSAME we get
what we wanted to prove. 2

8. DIFFIE-HELLMAN KEY EXCHANGE
Let us come back now to our running example of the Diffie-

Hellman key exchange protocol. In this section we show that if

11

the group scheme used for the key exchange protocol satisfies the
DDH assumption, then the shared key satisfies real-or-random se-
crecy. More precisely, we show that two protocols, one in which
the real shared key gab is published at the end and one in which
gd is published with a freshly generated d, are indistinguishable.
Real-or-random secrecy was introduced in [3]. According to their
definition, the adversary can request an oracle to reveal the shared
key of the honest agents. The oracle either reveals true shared key,
or it reveals a newly generated random key, and the adversary has
to guess whether the real or the freshly generated random key was
revealed. Real-or-random secrecy holds if the attacker guesses cor-
rectly with a probability at most negligibly exceeding 1/2.

Note, the basic DH protocol does not ensure authentication: agents
A andB have no way to know if they really communicate with each
other. For example, if the adversary sends some bit string s to A,
the key that A generates, sa will not be secret. Accordingly, the
oracle has to chose those keys between A and B that were indeed
honestly computed and shared. Only those keys have a chance to
remain secret. Hence, the oracle takes a session (specifying the
agent as well) as an input and checks if there is a matching session.
If there is no matching session then it outputs the key computed by
the agent. If on the other hand, there is a matching session then
the oracle outputs either the real key, or generates a new gc and
outputs that. To formalize the oracles, we need a new function
symbol, reveal(_) : message → message, and we add a few
transitions to those in Example 5 as described below.

• Protocol Π1 is defined such that the oracle always reveals the
actual computed key of the requested session, if there is any: To
a state qk1k2k3k4...`j=1... , we add the following transitions:

qk1k2k3k4...`j=1... , (
~N), (~x)

θi−→ qk1k2k3k4...`j=2... , (
~N, ()),m(xi)

r(ni), (~x, x)

where i runs through indices of ~x ≡ x1, ..., xm s.t. Ni 6= () and

θi ≡ EQ(reveal(x), ij) & EQ(to(xi), ij).

We order the transitions so that they are all of higher order than
those in Section 5. The order of the transitions labeled with θi
decreases with increasing i. If qk1k2k3k4...`j1=1... = qk1k2k3k4...`j2=1..., then the
transition corresponding to smaller j has higher order. Moreover,
to a state q...kj=2...

`1`2`3`4
, we add the following transitions:

q
...kj=2...

`1`2`3`4
, (~N), (~x)

θih−−→ q
...kj=3...

`1`2`3`4
, (~N, ()),m(xi)

r(nh), (~x, x)

where i and h run through all indices of ~x ≡ x1, ..., xm such
that Nh 6= () with the restriction h < i, and

θih ≡ EQ(reveal(x), ij) & EQ(to(xi), ij) & EQ(to(xh), ij)
¬(EQ(act(xi),new)) & EQ(act(xh),new)

We order the transitions so that they are all of higher order than
those in Section 5, they decrease by j, and a transition labeled
with θih is higher for smaller i, and, within i, θih is higher for
smaller h. We also add

qk1k2k3k4`1`2`3`4
, (~N), (~x)

θj−→ q̄, (~N, ()),0, (~x, x)

if kj < 2 and `j < 1 with θj ≡ EQ(reveal(x), ij), again
with higher order than those transitions in Example 5.

In other words, in protocol Π1, in each round, first it is checked if
there was a reveal(x) request, and the oracle always reveals the
key computed in session reveal(x) if such a key was computed.
If there is no reveal(x) request, then Π1 continues executing the

DH protocol. The reason for the high number of transitions is that
the oracle has to find the point where the key was computed.

• Protocol Π2 is defined such that if the oracle request concerns
a key that was computed in some session iα, and there was an-
other session iβ in which the same key was computed, then a gc

is revealed with a freshly generated random n. Otherwise the
computed key is revealed if there is any: To a state q...kα=2...

...`β=1... ,
besides the transitions of Π1, we add the following transitions:

q...kα=2...
...`β=1... , (

~N), (~x)
θiγδε−−−→ q...kα=3...

...`β=2... , (
~N, (n)),g(n0)r(n), (~x, x)

θ1γδε ≡ EQ(reveal(x), iα) & EQ(to(xγ), iα) & EQ(to(xδ), iβ)

&EQ(to(xε), iα) & not(EQ(act(xγ),new)) & EQ(act(xε),new)

&EQ(m(xδ),g(n0)r(nε)) & EQ(m(xγ),g(n0)r(nδ))

θ2γδε ≡ EQ(reveal(x), iβ) & EQ(to(xγ), iα) & EQ(to(xδ), iβ)

&EQ(to(xε), iα) & not(EQ(act(xγ),new)) & EQ(act(xε),new)

&EQ(m(xδ),g(n0)r(nε)) & EQ(m(xγ),g(n0)r(nδ))

and γ > δ > ε. The new transitions are ordered so that they have
a higher order than the transitions in Π1. Amongst the new tran-
sitions of Π2, the transitions are ordered by decreasing α, then
decreasing β, then decreasing i, then decreasing γ, then decreas-
ing δ and decreasing ε. These checks ensure that if there is a
session where they computed key match, then a newly generated
random key g(n0)r(n) is revealed.

Note, the oracle requests do not interfere with the protocol. Their
sole purpose is to model secrecy of some of the computed keys,
namely those for which there is a session with a matching key. The
next theorem states that such keys satisfy real-or-random secrecy.

PROPOSITION 5. The above two protocols, Π1 and Π2, allow-
ing two parallel sessions for the DH key exchange protocol, are
computationally indistinguishable as long as the group scheme sat-
isfies the DDH assumption.

PROOF. Consider first Π1, and let us make the following obser-
vation. When the protocol is folded, there are if then else branch-
ings for each conjunct in the conditions θ, including for those that
appear in the oracle requests. However, in θi above in the ora-
cle move, only EQ(reveal(x), ij) is a new condition, the condi-
tion EQ(to(xi), ij) already appeared earlier in the execution, so
there is already a branching according to the latter. By IFMORPH
and IFIDEMP, just as in Example 18, such additional branch-
ing can be removed while the output m(xi)

r(ni), takes the value
of the form m(fi(φi))

r(ni) where EQ(to(fi(φi)), ij) is satisfied.
Only the branching according to EQ(reveal(x), ij) remains in
the oracle step. When ij is a Responder session, m(fi(φi))

r(ni)

is the key computed in this session, and revealed by the oracle.
The same is true for θih, but there ij is an Initiator session and
the oracle output is accordingly m(fi(φi))

r(nh), where r(nh) is
computed initially in this session, and fi(φi) is the message that
is supposed to be coming from the responder. In Π2, conditions
EQ(m(xδ),g(n0)r(nε)) and EQ(m(xγ),g(n0)r(nδ)) are also new
in the oracle step, so these branchings cannot be removed. As
m(xγ)r(nε) is the key computed in the Initiator session iα, while
m(xδ)

r(nδ) is the key computed in Responder session iβ , condi-
tions EQ(m(xδ),g(n0)r(nε)) and EQ(m(xγ),g(n0)r(nδ)) make
sure that both are g(n0)r(nδ)r(nε).

With this understanding in mind, consider a protocol Π′′2 , which
is like Π2, but in the transition, we replace the output g(n0)r(n) by
m(xδ)

r(nδ) for i = 2, and by m(xγ)r(nε) for i = 1. This means that

12

Π′′2 outputs the same exact messages as Π1, ignoring the additional
branching. Considering the frames, that means that Φ(fold(Π1)) ∼
Φ(fold(Π′′2)) by several applications of axiom IFSAME. Then,
consider the protocol Π′2, which we receive from Π2 by replacing
the output g(n0)r(n) by g(n0)r(nδ)r(nε). Then, according to the
previous paragraph, using the results of Example 11 and Example
12, we have Φ(fold(Π′′2)) ∼ Φ(fold(Π′2)).

The only thing left to prove is Φ(fold(Π′2)) ∼ Φ(fold(Π2)).
This relies mainly on the DDH axiom and the IFBRANCH axiom:
The only difference between Φ(fold(Π′2)) and Φ(fold(Π2)) is that
some of the final sent messages are g(n0)r(nδ)r(nε) in the first,
while g(n0)r(n) in the second. We cannot immediately use the
DDH axiom, because the values of δ and ε may vary from branch
to branch. Considering just a single branch of Π′2, the complete
list of messages that have been sent look like G(r(n0)), g(r(n0)),

g(n0)r(n1), ..., gr(n4), g(n0)r(nδ)r(nε). Because of the DDH as-
sumption, FRESHIND, FUNCAPP, we have

G(r(n0)),g(r(n0)),g(n0)r(n1), ..., g(n0)r(n4),g(n0)r(nδ)r(nε)

∼ G(r(n0)),g(r(n0)),g(n0)r(n1), ..., g(n0)r(n4),g(n0)r(n).

All tests θ in the protocol definition are applied only on messages
sent by the adversary (which are functions applied on public terms)
and g(n0)r(n1), ..., gr(n4). Hence, for such a test θ, by FUNCAPP
and RESTR we also have

θ,G(r(n0)),g(r(n0)),g(n0)r(n1), ..., g(n0)r(n4),g(n0)r(nδ)r(nε)

∼ θ,G(r(n0)),g(r(n0)),g(n0)r(n1), ..., g(n0)r(n4),g(n0)r(n)

We can add all the tests along the branch, and we can do the same
for all branches, with different δ and ε. Using axiom IFBRANCH
numerous times, all the equivalent branches can be folded into
branching terms, giving us Φ(fold(Π′2)) ∼ Φ(fold(Π2)). This
completes the proof.

REMARK 2. Of course, an automated proof would work di-
rectly transforming the frames, not through transforming the pro-
tocols. Extension to proofs for higher (but bounded) number of
sessions is a straightforward matter; only the formulas would be
longer. The proof for the key exchange with more than two parties
is also entirely analogous once the DDH property for more parties
is derived. We did this for three parties in Example 19, and for
more parties the derivation is similar. 2

9. DIGITAL SIGNATURES
In order to continue to demonstrate the usability of our tech-

nique, we also consider authentication that signatures can deliver.
In this section we introduce an axiom that formalizes UF-CMA se-
cure digital signatures (see Section 12.2 of [20]). In the next section
we demonstrate how to use it together with the core axioms to ver-
ify an authenticated DH key exchange. Accordingly, we shall also
include in F the following function symbols:

k(_) : message → message
sign(_, _) : message×message → message
ver(_, _, _) : message×message×message → bool

Here k(_) denotes the public-key secret-key pair generation algo-
rithm. An honest key looks like k(n) where n is a name and

pk(x)
def≡ π1(k(x)) and sk(x)

def≡ π2(k(n)) are the public
verification key and secret signing key parts of k(n) respectively.
sign(y, z) is the message z signed with secret key y and ver(y, z, u)
is the verification of signature u on the message z with the public

key y. The co-domain of the function symbol ver is bool as the
computational interpretation of ver outputs a value in {0, 1}.

The signature scheme must satisfy two conditions:

• Correctness: If a message signed with sk(x) is verified with
the corresponding pk(x), then the verification algorithm out-
puts 1. This is captured by the axiom schema:

ver
(
pk(x), t, sign(sk(x), t)

)
= true.

• Existential unforgeability under adaptively chosen message
attacks (UF-CMA secure): Informally, this is the security re-
quirement for digital signatures and says that a PPT attacker
should not be able to forge a signature on any message cho-
sen by the attacker, even after requesting an oracle to show
the signatures of at most polynomial number of messages
adaptively chosen by him. The interested reader can find the
precise definition in Section 12.2 of [20].
We now state an axiom schema that captures UF-CMA se-
curity. Let n be a name and let t, u be closed terms such
that all occurrences of sk(n) in t, u can be enumerated as
sign(sk(n), t1), sign(sk(n), t2), ..., sign(sk(n), t`). The
term sk(n) does not occur in any other form in t, u, and all
other occurrences of n in t, u are of the form pk(n).
Let b0t,u, b1t,u, . . . b`t,u be defined recursively as:

b0t,u
def≡ false

bjt,u
def≡ if EQ(t, tj) then ver(pk(n), t, u) else bj−1

t,u

Then, the axiom schema is

ver(pk(n), t, u) = b`t,u.

That is, if t is one of tj , the signature of which appears in t
or u, then the RHS outputs ver(pk(n), t, u). If t is neither
of tj , then the RHS outputs false, expressing the idea that no
signature of a new t can be created. We shall henceforth refer
to this axiom schema UF-CMA.

PROPOSITION 6. If the interpretation of (k, ver, sign, π1, π2)
satisfies the UF-CMA property then the UF-CMA axiom is sound.
Conversely, if there is a constant ` ∈ N and an UF-CMA attack A
against the interpretation of (k, ver, sign) such that the number of
oracle queriesA makes does not exceed ` for any η, then UF-CMA
axiom is violated in some computational model (with the given in-
terpretation of (k, ver, sign, π1, π2)).

PROOF. We proceed by contradiction. Assume that there are
closed terms t, u and a computational modelMc such thatMc 6|=
EQ(ver(pk(n), t, u), b`t,u) ∼ true where b`t,u is defined as in the
axiom UF-CMA. This means that there is a Turing machine A that
runs in polynomial time in the security parameter η such that

AdvA(η) = |Prob{ρ : A([[true]]ρ,η; ρ2) = 1}
−Prob{ρ : A([[EQ(ver(pk(n), t, u), b`t,u)]]ρ,η; ρ2) = 1}|

is a non-negligible function in η.
By definition, [[true]]ρ,η = 1 and [[EQ(ver(pk(n), t, u), b`t,u)]]ρ,η =

1 whenever [[ver(pk(n), t, u)]]ρ,η = [[b`t,u]]ρ,η. Thus,

AdvA(η) ≤ Prob{ρ : [[ver(pk(n), t, u)]]ρ,η 6= [[b`t,u]]ρ,η}.

Thanks to the semantics of if _ then _ else _ , we have that the
set {ρ : [[ver(pk(n), t, u)]]ρ,η 6= [[b`t,u]]ρ,η} is exactly the set

F (η) = {ρ : [[ver(pk(n), t, u)]]ρ,η = 1,
∧̀
i=1

[[t]]ρ,η 6= [[tj]]ρ,η}.

13

SinceAdvA(η) is a non-negligible function in η, Prob{F (η)} is a
non-negligible function in η.

Then an adversary B can win the UF-CMA game against pk(n)
as follows. On the security parameter η, B is given [[pk(n)]]ρ,η by
the oracle. B generates an interpretation of names that occur in
t, u according toMc. Then B computes [[t]]ρ′,η, [[u]]ρ′,η using its
interpretation for the names; whenever it needs to compute a sig-
nature sign(sk(n), ti), it consults the oracle. It is easy to see that
the probability B wins the UF-CMA game is exactly Prob{F (η)}
which is a non-negligible function in η.

Proving the converse is equally easy. Let us consider an UF-
CMA attacker A on the given interpretation of k, sign, ver, π1, π2

that succeeds with non-negligible probability and makes at most `
oracle queries. Let [[k]], [[sign]], [[ver]], [[π1]], [[π2]] be the interpreta-
tion of k, sign, ver, π1, π2.

Fix a name n and function symbols f0, f1, ..., f`+1, f
′
`+1 ∈ G.

Let t1, t2, . . . , t`+1, t, u be defined as follows:

t1
def≡ f0(pk(n))

ti+1
def≡ fi+1(pk(n), sign(sk(n), ti), . . . , sign(sk(n), t1))

t
def≡ t`+1

u
def≡ f ′`+1(pk(n), sign(sk(n), t`), . . . , sign(sk(n), t1)).

Fix the interpretation of f0, f1, ..., f`+1, f
′
`+1 as follows. [[f0]]

is the Turing Machine that on input m and tapes ρ1; ρ2 simulates
the attacker A until it prepares the message query to be submit-
ted to the signing oracle. At that point [[f0]] outputs the actual
query and stops. For 0 < j ≤ `, [[fj]] is the Turing Machine
that on input m, s1, s2, sj−1 simulates the attacker A until it pre-
pares the j-th query to be submitted to the signing oracle with one
minor modification: whenever A submits the i-th query to the or-
acle for i < j and gets the signature on the query; [[fj]] does
not query the oracle and uses si instead of the signature. [[fj]]
outputs the j-th query to be submitted to the oracle and stops.
In a similar fashion, [[f`+1]] simulates A until A is ready to out-
put a message and a claimed signature on the message. [[f`+1]]
outputs just the message and stops. Likewise, [[f ′`+1]] simulates
A until A is ready to output a message and a claimed signature
on the message, outputs just the signature part and stops. It is
easy to see that the computational model Mc with this interpre-
tation of k, sign, ver, π1, π2, f0, f1, . . . f`+1, f

′
`+1 violates the ax-

iom schema: Let F (η) be again defined as:

F (η) = {ρ : [[ver(pk(n), t, u)]]ρ,η = 1,
∧̀
i=1

[[t]]ρ,η 6= [[tj]]ρ,η}.

SinceA is assumed to break the UF-CMA security, the set F (η) is
non-negligible. But, it is again easy to see that

F (η) = {ρ : [[ver(pk(n), t, u)]]ρ,η 6= [[b`t,u]]ρ,η}.

Hence, if we define B to be the algorithm that outputs its input, we
have that

AdvB(η) = |Prob{ρ : B([[true]]ρ,η; ρ2) = 1}
−Prob{ρ : B([[EQ(ver(pk(n), t, u), b`t,u)]]ρ,η; ρ2) = 1}|

is non-negligible. Hence the converse follows.

The converse of this proposition means that our axiom is as tight
as possible as the technique works only for bounded number of
sessions and hence bounded number of signatures.

10. AUTHENTICATED DIFFIE-HELLMAN
KEY EXCHANGE

We apply our core axioms to rather different purpose: authenti-
cation. We consider an authenticated Diffie-Hellman key exchange
protocol which is a simplified version of the station-to-station pro-
tocol. Note that the original station-to-station protocol contains
key-confirmation as well using encryption; we omit that now to
keep syntax simple. Our version of the protocol is the following:

• A group description G and a group generator element g are
generated honestly, according to a randomized algorithm,
and made public. Public key, secret key pairs (pkA, skA)
and (pkB , skB) are generated honestly for both A and B
and pkA, pkB are made public.
• The Initiator generates a random a in Z|g| and sends ga.
• The Responder receives ga, generates a random b in Z|g| and

sends
〈
gb, sign(skB ,

〈
gb, ga

〉
)
〉
, and computes (ga)b.

• The Initiator receives
〈
gb, sign(skB ,

〈
gb, ga

〉
)
〉
, verifies the

signature, computes (gb)a, and sends sign(skA,
〈
ga, gb

〉
).

• The Responder receives sign(skA,
〈
ga, gb

〉
), verifies the sig-

nature, and outputs acc.

Real-or-random secrecy for the shared keys can be verified the
same way as for the DH protocol, no new axioms are needed.

Here we show that with the help of the UF-CMA axiom, we can
also prove authentication of the authenticated key exchange. We
concentrate on the responder’s authentication of the initiator, and
the initiator’s authentication of the responder can be handled simi-
larly. For simplicity, we assume that all sessions of A are initiator
sessions and all sessions of B are responder sessions. We also as-
sume that there are no other agents. These assumptions can all be
relaxed without the need of additional core axioms, but the formu-
lation of the transition system becomes significantly more complex.
We skip the definition of the transition system for lack of space.

Now, responder’s authentication of the initiator means that if B
received and verified a message that looked like sign(skA,

〈
y, gb

〉
)

for some input y, then A has a matching session, which in this case
just means thatA has a session in which he sent sign(skA, 〈ga, x〉)
for some x before B received it, on the same branch (which is
the same that A received 〈x, sign(skB , 〈x, ga〉)〉, and verification
succeeded), and EQ(x, gb) & EQ(y, ga) is satisfied on this branch.

There are various possibilities to express responder’s authenti-
cation of the initiator in our language, we present one. Namely,
similarly to our modeling of secrecy, we can define an oracle query
that takes a session i as input, and if i is a completed responder ses-
sion and there is no matching initiator session in the above sense
then the oracle outputs 1 (that is, true symbolically), meaning there
is an attack against authentication. Otherwise it outputs 0 (that is,
false symbolically). Let the protocol that ends with such an oracle
query be called Πauth

1 . We can also define Πauth
2 such that the oracle

always outputs 0. These oracles can be formalized as in the case of
secrecy. Then, the authentication property can be formalized as:

Φ(fold(Πauth
1)) = Φ(fold(Πauth

2)).

Observe that we used equality, and not indistinguishability. This
means that Πauth

1 cannot output 1 with non-negligible probability.

PROPOSITION 7. Let Πauth
1 and Πauth

2 be the two protocols as
defined above. Assuming the signature scheme satisfies the UF-CMA
assumption, Φ(fold(Πauth

1)) = Φ(fold(Πauth
2)).

PROOF. (Sketch.) If on a branch of Φ(fold(Πauth
1)) there is a

true as the final output, then by the definition of the oracle this
branch lies on the true side of the branching corresponding to the

14

condition ver(pkA,
〈
fi(φi), g

b
〉
, fj(φj)) at the last move of the

responder. Here fi(φi) is the message that B received earlier and
that was supposed to be ga from A, while fj(φj) is supposed to be
sign(skA,

〈
ga, gb

〉
) fromA. According to UF-CMA and EQCONG,

ver(pkA,
〈
fi(φi), g

b
〉
, fj(φj)) can be rewritten as a branching term,

which gives false (and hence the final output is also false by axioms
IFMORPH and IFIDEMP and the definition of the oracle) unless φj
(and hence the earlier φi) contains a term sign(skA, t) for some t
such that EQ(

〈
fi(φi), g

b
〉
, t) evaluates to true. By the role of A,

sign(skA, t) must be of the form sign(skA, 〈ga, fh(φh)〉) for an a
that A generated at the beginning of the role in which this appears.
That is, we are on the true side of the EQ(

〈
fi(φi), g

b
〉
, 〈ga, fh(φh)〉)

branching. In the final oracle step, there is a branching accord-
ing to EQ(fi(φi), g

a) & EQ(fh(φh), gb), which must fail for the
oracle to output true, because otherwise there is a matching ses-
sion. In the rest of the argument we show that if we are on the
true side of EQ(

〈
fi(φi), g

b
〉
, 〈ga, fh(φh)〉), then in the final or-

acle step the branching EQ(fi(φi), g
a) & EQ(fh(φh), gb) can be

replaced with true, and hence the final output is always false. By
the equational theory of pairs, and congruence of equality, the term
EQ(fi(φi), g

a) &EQ(fh(φh), gb) can be rewritten as

EQ(π1(
〈
fi(φi), g

b
〉
), π1(〈ga, fh(φh)〉))

&EQ(π2(〈ga, fh(φh)〉), π2(
〈
fi(φi), g

b
〉
))

But by Example 11 and Example 12 if we are on the true side of
EQ(

〈
fi(φi), g

b
〉
, 〈ga, fh(φh)〉), then this can be replaced by

EQ(π1(〈ga, fh(φh)〉), π1(〈ga, fh(φh)〉))
&EQ(π2(〈ga, fh(φh)〉), π2(〈ga, fh(φh)〉))

which in turn can be replaced by true by EQREFL and EQCONG.
This means Φ(fold(Πauth

1)) is equal to a frame where all final out-
puts are false. Then, by axiom IFSAME and congruence, all branch-
ings of the final oracle step can be collapsed and thus we obtain
Φ(fold(Πauth

2)), and that is what we needed.

11. SECURITY OF ENCRYPTIONS AND FUR-
THER VERIFICATION RESULTS

We shall now show that the standard IND-CPA, IND-CCA1 and
IND-CCA2 security notions for encryption (see e.g. [11]) can be
easily translated to the BC framework, illustrating the convenience
of the BC framework. We assume the function symbol k and ab-
breviations sk, pk are as in Section 9.

11.1 Encryptions
Let {_}_

_ : message × message × message → message
and dec(_, _) : message × message → message and r(_) :
message → message be function symbols for encryption, de-
cryption and random seed generation satisfying dec({x}zpk(y), sk(y))
= x. (r is not to be confused with r we used for group exponenti-
ation.) Let L : message → message be a function symbol for
length such that [[L]](d)(w; ρ1; ρ2) := 1|d(w;ρ1;ρ2)| where for a bit
string s, |s| denotes its length. Let ~t [x] be a list of terms with a
single variable x. For a closed term v, let ~t [v] denote the term that
we receive from ~t [x] by replacing all occurrences of x by v. Let u,
u′, u′′ be closed terms. Consider the formula

~t [if EQ(L(u),L(u′)) then {u}r(n2)

pk(n1)
else u′′]

∼
~t [if EQ(L(u),L(u′)) then {u′}r(n3)

pk(n1)
else u′′]

in which n1 ∈ N occurs only as k(n1), sk(n1) only occurs in
decryption position (that is, as in dec(_, sk(n1))), and n2, n3 do

not occur anywhere else. We call the above formula

• ENCCPA if sk(n1) does not occur anywhere,

• ENCCCA1 if for any t′[x] term with x explicitly occurring in
t′[x], the term dec(t′[x], sk(n1)) is not a subterm of ~t [x],
and

• ENCCCA2 if for any t′[x] term with x explicitly occurring in
t′[x], the term dec(t′[x], sk(n1)) occurs only as

if EQ(t′[x], x) ∧ EQ(L(u),L(u′)) then t′′[x]
else dec(t′[x], sk(n1)).

Formally, the formula above is ENCCCA2 if each component
term ti[x] of the vector ~t[x] is (n1, u, u

′)−ENCCCA2 compli-
ant as defined (recursively) below. We say that a term t[x] is
(n, u, u′)−ENCCCA2 compliant if one of the following holds:

- t[x] is a ground term, not equal n.

- t[x] ≡ pk(n).

- t[x] is the variable x.

- There is a function symbol f ∈ F ∪ G and terms t1[x], ...,
tr[x] such that t[x] ≡ f(t1[x], t2[x], ..., tr[x]) and for any
t′[x] term containing x, t[x] 6≡ dec(t′[x], sk(n)) and ti[x]
is (n, u, u′)− ENCCCA2 compliant for each i = 1, . . . , r.

- There are (n, u, u′)−ENCCCA2 compliant terms t′[x], t′′[x],
such that t[x] is

if EQ(t′[x], x) ∧ EQ(L(u),L(u′)) then t′′[x]
else dec(t′[x], sk(n)).

Intuitively, x represents the place for the left-right encryption or-
acle response in the security game for encryption. Terms that can
be computed before using the left-right encryption oracle are those
that do not contain x. As CPA security does not allow decryption
oracle, we allow no decryption. CCA1 allows decryption request
before the encryption request, hence decryption can be applied to
terms without x. In CCA2, we have to make sure that if decryption
is applied on t1[x] term containing x, then t1[x] is not the encryp-
tion oracle response, namely, x, and if it is, then the decryption
returns 0. In fact, this definition of ENCCCA1 is equivalent with the
one in [7]

THEOREM 4. If [[k(_) , {_}_
_ , dec(_, _)]] is CPA secure, then

ENCCPA is computationally sound. If it is CCA1 secure, then ENCCCA1

is computationally sound. If it is CCA2 secure, then ENCCCA2 is
computationally sound. Conversely, if there is a constant ` ∈
N and a CPA (or CCA1 or CCA2 respectively) attack A against
[[k(_) , {_}_

_ , dec(_, _)]] such that the number of oracle queries
A makes does not exceed ` for any η, then ENCCPA (or ENCCCA1

or ENCCCA2 respectively) axiom is violated in some computational
model with the given interpretation [[k(_) , {_}_

_ , dec(_, _)]].

PROOF. We prove the validity of ENCCCA2, the others are analo-
gous but simpler. We proceed by contradiction. Assume that there
is a list of terms ~t[x] with a single variable x, and closed terms u,
u′, u′′ as well as names n1, n2, n3, and a computational model
Mc such that

Mc 6|=
~t [if EQ(L(u),L(u′)) then {u}r(n2)

pk(n1)
else u′′]

∼
~t [if EQ(L(u),L(u′)) then {u′}r(n3)

pk(n1)
else u′′]

15

This means that there is a Turing machineA that runs in polyno-
mial time in the security parameter η such that

AdvA(η) =

|Prob{ρ : A([[~t [

if EQ(L(u),L(u′))

then {u}r(n2)

pk(n1)

else u′′
]]]ρ,η; ρ2) = 1}

−Prob{ρ : A([[~t [

if EQ(L(u),L(u′))

then {u′}r(n3)

pk(n1)

else u′′
]]]ρ,η; ρ2) = 1}|

is a non-negligible function in η. Then an adversary B can win the
IND-CCA2 game against k(n1) as follows. As usual in the IND-
CCA2 security definition, on the input 1η , the encryption oracle
first generates an internal bit b randomly, and an public-key secret-
key pair (pk, sk). B is given pk by the oracle. B generates bit
strings for the names that occur in~t[x], u, u′, u′′ (except for n1, n2,
n3) according to the way names are generated inMc. Using these,
B then computes the interpretations of u, u′, u′′, and subterms of
~t[x] that do not contain x: The only thing B does not have access to
in these terms is the interpretation sk of sk(n1), but according to
our assumption, that only occurs in decryption positions. So those
interpretations are computed by submitting the interpretation in the
cyphertext position to the decryption oracle. (The case of ENCCCA1

is the same, while the ENCCPA axiom does not allow sk(n1) to oc-
cur at all.) Once all these terms are computed, if the interpretation
of u and the interpretation of u′ have the same length, then B sub-
mits the two interpretations to the encryption oracle, which then
returns the encryption of one of them, c. The oracle generates the
interpretation of n2 or n3 depending on which plaintext it encrypts.
If the two lengths disagree, then let us call c the interpretation of
u′′. Then B continues computing all of the interpretation of ~t[x] by
substituting c for x. This computation in the ENCCCA2 axiom may
again contain decryptions by sk(n1), but as they are assumed to
be guarded by the assumptions that those decrypted terms are not
equal to the value returned by the encryption oracle, again submis-
sion to the decryption oracle is possible. (In ENCCCA1 and ENCCPA

cases here sk(n1) is not allowed to occur any more.) When B
finishes the computation of the interpretation of ~t(x), it hands the
result over to A. When A finishes, B outputs the output of A. By
the construction of B,

Prob{B(1η, pk) = 1 ∧ b = 0} =

Prob{ρ : A([[~t [

if EQ(L(u),L(u′))

then {u}r(n2)

pk(n1)

else u′′
]]]ρ,η; ρ2) = 1}

and

Prob{B(1η, pk) = 1 ∧ b = 1} =

Prob{ρ : A([[~t [

if EQ(L(u),L(u′))

then {u′}r(n2)

pk(n1)

else u′′
]]]ρ,η; ρ2) = 1}

Thus, the quantity

|Prob{B(1η, pk) = 1 ∧ b = 1}
−Prob{B(1η, pk) = 1 ∧ b = 0})|

is non-negligible by our assumption. Now,

|Prob{B(1η, pk) = b} − 1
2
| =

|Prob{B(1η, pk) = 1 ∧ b = 1}
+Prob{B(1η, pk) = 0 ∧ b = 0} − 1

2
| =

|Prob{B(1η, pk) = 1 ∧ b = 1}
+(1

2
− Prob{B(1η, pk) = 1 ∧ b = 0})− 1

2
| =

|Prob{B(1η, pk) = 1 ∧ b = 1}
−Prob{B(1η, pk) = 1 ∧ b = 0})|

.

As the quantity

|Prob{B(1η, pk) = 1 ∧ b = 1}
−Prob{B(1η, pk) = 1 ∧ b = 0})|

is non-negligible, IND-CCA2 security is broken by B.
The proof of the converse is the following. Let us consider an

IND-CCA2 attacker A on the given interpretation of k(_), {_}_
_,

dec(_, _) that succeeds with non-negligible probability and makes
at most ` oracle queries. Note that the actual number of oracle
requests may vary by η and ρ, but we can always add requests the
answers of which are ignored, so without loss of generality, we can
assume that there are uniformly ` submissions, of which the m’th
is the submission to the encryption oracle.

Fix a name n and function symbols f0, f1, ..., fm−1, fm, f
′
m,

f ′′m, fm+1, ..., f` ∈ G. Let t1, t2, ..., tm−1, u, u
′, u′′, tm+1[x], ...,

t`[x] be defined as follows:

t1
def≡ f0(pk(n))

ti+1
def≡ fi+1(pk(n), dec(t1, sk(n)), ..., dec(ti, sk(n)))

u
def≡ fm(pk(n), dec(t1, sk(n)), ..., dec(tm−1, sk(n)))

u′
def≡ f ′m(pk(n), dec(t1, sk(n)), ..., dec(tm−1, sk(n)))

u′′
def≡ f ′′m(pk(n), dec(t1, sk(n)), ..., dec(tm−1, sk(n)))

tj+1[x]
def≡ fj+1(pk(n), dec(t1, sk(n)), ..., x, ..., cj)

~t[x]
def≡ t`[x]

Where for j = m, ..., `− 1,

cj =
if EQ(tj [x], x) ∧ EQ(L(u),L(u′)) then 0

else dec(tj [x], sk(n1))

LetMc be a model with the following the interpretations of the
function symbols f0, ..., f`.

[[f0]] is the Turing Machine that on input s0 and tapes ρ1; ρ2 sim-
ulates the attackerA until it prepares a message query to be submit-
ted to the decryption oracle. At that point [[f0]] outputs the actual
query and stops. For 0 < i < m, [[fi]] is the Turing Machine
that on input s0, s1, s2, si−1 simulates the attacker A until it pre-
pares the i-th query to be submitted to the decryption oracle. Let
si be the response or the decryption oracle. [[fm]], [[f ′m]] and [[f ′′m]]
simulate A until A is ready to output the pair of messages to the
encryption oracle. [[fm]] outputs the first, [[f ′m]] outputs the second
of the pair to be submitted to the encryption oracle if they have the
same length, while the output of [[f ′′m]] is used in further computa-
tions if their lengths differ. [[fj]] for j > m is similar, [[fj]] is the
Turing Machine that on input s0, s1, s2, sm−1, c, sm+1, ..., sj−1

simulates the attacker A until it prepares the j-th query sj to be
submitted to the decryption oracle. Here c is what the encryption
oracle returns, while s’s are what the decryption oracle returned.

16

We claim that with these definitions,

Mc 6|=
~t [if EQ(L(u),L(u′)) then {u}r(n2)

pk(n1)
else u′′]

∼
~t [if EQ(L(u),L(u′)) then {u′}r(n3)

pk(n1)
else u′′]

Let B be the algorithm that simply outputs its first input. Then

Prob{ρ : B([[~t [

if EQ(L(u),L(u′))

then {u}r(n2)

pk(n1)

else u′′
]]]ρ,η; ρ2) = 1} =

Prob{A(1η, pk) = 1 ∧ b = 0}

and

Prob{ρ : B([[~t [

if EQ(L(u),L(u′))

then {u′}r(n2)

pk(n1)

else u′′
]]]ρ,η; ρ2) = 1} =

Prob{A(1η, pk) = 1 ∧ b = 1}

But just as before,

|Prob{A(1η, pk) = 1 ∧ b = 1}
−Prob{A(1η, pk) = 1 ∧ b = 0})| =
|Prob{A(1η, pk) = b} − 1

2
|

According to our assumption,A violates IND-CCA2 security, hence
|Prob{A(1η, pk) = b} − 1

2
| is non-negligible, hence so is

|Prob{ρ : B([[~t [

if EQ(L(u),L(u′))

then {u}r(n2)

pk(n1)

else u′′
]]]ρ,η; ρ2) = 1}

−Prob{ρ : B([[~t [

if EQ(L(u),L(u′))

then {u′}r(n2)

pk(n1)

else u′′
]]]ρ,η; ρ2) = 1}|

and that completes the proof.

EXAMPLE 21. Suppose that nonce and key generation are such
that there are 0-ary function symbols `nonce and `skey such that L(n) =
`nonce and L(sk(n)) = `skey, and suppose also that pairing is length
regular, that is, L(x1) = L(x2)∧L(y1) = L(y2)→ L(〈x1, x2〉) =
L(〈y1, y2〉). Note also that from the definition of the interpretation
of L, the formula L(L(x)) = L(x) is sound. Consider real-or-
random secrecy of n (let ki ≡ k(ni), ri ≡ r(ni+2)):

{sk1, n5}r1
pk2
,
{
π2

(
dec
(
f({sk1, n5}r1

pk2
), sk2

))
, n
}r2

pk1
, n

∼ {sk1, n5}r1
pk2
,
{
π2

(
dec
(
f({sk1, n5}r1

pk2
), sk2

))
, n
}r2

pk1
, n′

(1)
with f ∈ G. It is easy to show that the core axioms together
with ENCCCA2 and the above properties of L, and the equations
for pairing–projections, encryption–decryption imply this formula.
The intuition of course is that sk1 is hidden by the encryption with
pk2, the decrypted message in the second encryption is n5, hence
no key cycle occurs encrypting with pk1, and so the second en-
cryption does not reveal information about n. The key point of the
proof is to transform first the terms so that ENCCCA2 can be applied.
For example, since dec acts on f(...), we have to make sure that
there is a conditioning as we required in the definition of ENCCCA2.

So we start the proof by rewriting f({sk1, n5}r1
pk2

) according to

f({sk1, n5}r1
pk2

) =

if EQ(f({sk1, n5}r1
pk2

), {sk1, n5}r1
pk2

)

then f({sk1, n5}r1
pk2

)

else f({sk1, n5}r1
pk2

)

by IFSAME, and then applying IFMORPH and the equations for
encryption and pairing, we obtain

π2(dec(f({sk1, n5}r1
pk2

), sk2))
EQCONG

=

π2

dec

 if EQ(f({sk1, n5}r1
pk2

), {sk1, n5}r1
pk2

)

then f({sk1, n5}r1
pk2

)

else f({sk1, n5}r1
pk2

)
, sk2

Example 11
=

π2

dec

 if EQ(f({sk1, n5}r1
pk2

), {sk1, n5}r1
pk2

)

then {sk1, n5}r1
pk2

else f({sk1, n5}r1
pk2

)
, sk2

IFMORPH=

if EQ(f({sk1, n5}r1
pk2

), {sk1, n5}r1
pk2

)

then π2(dec({sk1, n5}r1
pk2
, sk2))

else π2(dec(f({sk1, n5}r1
pk2

), sk2))
=

if EQ(f({sk1, n5}r1
pk2

), {sk1, n5}r1
pk2

)

then n5

else π2(dec(f({sk1, n5}r1
pk2

), sk2))

Let us define

~t[x] := x,

 if EQ(f(x), x)
then n5

else π2(dec(f(x), sk2))

r1

pk2

, n.

Note that ~t for k2 satisfies the conditions for ENCCCA2, because the
only decryption term (with the decryption key sk2) containing x is
dec(f(x), sk2)), but this term occurs only under

if EQ(f(x), x) then n5 else π2(dec(f(x), sk2)) ,

f(x) corresponding to t′[x] in the definition of ENCCCA2 and n5

corresponding to t′′. Now let ~u be the same list of terms as ~t except
that it ends with n′ instead of n. Hence ~u similarly satisfies the
conditions of ENCCCA2. Note then that the formula (1) is the same
as

~t[{sk1, n5}r1
pk2

] ∼ ~u[{sk1, n5}r1
pk2

].

Note also that because of our assumptions on the length (at the
beginning of this example), for a fresh n6,

L(〈sk1, n5〉) = L(〈sk(n6), n5〉).

By the definition of = and Example 10,

EQ(L(〈sk1, n5〉),L(〈sk(n6), n5〉)) = true,

and so by IFTRUE,

{sk1, n5}r1
pk2

=

if EQ(L(〈sk1, n5〉),L(〈sk(n6), n5〉))
then {sk1, n5}r1

pk2
else 0

and

{sk(n6), n5}r1
pk2

=

if EQ(L(〈sk1, n5〉),L(〈sk(n6), n5〉))
then {sk(n6), n5}r1

pk2
else 0

17

Using this, EQCONG and ENCCCA2, we get that

~t[{sk1, n5}r1
pk2

] ∼ ~t[{sk(n6), n5}r1
pk2

] (2)

and

~u[{sk1, n5}r1
pk2

] ∼ ~u[{sk(n6), n5}r1
pk2

] (3)

With these moves, we have removed sk1 from under the encryp-
tions in formula (1). Now,

~t[{sk(n6), n5}r1
pk2

] =

{sk(n6), n5}r1
pk2
,
{
π2

(
dec
(
f({sk(n6), n5}r1

pk2
), sk2

))
, n
}r2

pk1
, n

(4)
And again by the length assumptions, for a fresh nonce n7,

L

(〈
π2

(
dec
(
f({sk(n6), n5}r1

pk2
), sk2

))
, n
〉)

=

L

(〈
π2

(
dec
(
f({sk(n6), n5}r1

pk2
), sk2

))
, n7

〉)
Hence, applying ENCCCA2 for a second time just as before, but now
for k1, we obtain that

{sk(n6), n5}r1
pk2
,
{
π2

(
dec
(
f({sk(n6), n5}r1

pk2
), sk2

))
, n
}r2

pk1
, n

∼
{sk(n6), n5}r1

pk2
,
{
π2

(
dec
(
f({sk(n6), n5}r1

pk2
), sk2

))
, n7

}r2

pk1
, n

(5)
Putting together formulas (2), (4), and (5), with TRANS and EQCONG,
we have that
~t[{sk1, n5}r1

pk2
] ∼

{sk(n6), n5}r1
pk2
,
{
π2

(
dec
(
f({sk(n6), n5}r1

pk2
), sk2

))
, n7

}r2

pk1
, n.

(6)
The same way we can derive that

~u[{sk1, n5}r1
pk2

] ∼

{sk(n6), n5}r1
pk2
,
{
π2

(
dec
(
f({sk(n6), n5}r1

pk2
), sk2

))
, n7

}r2

pk1
, n′.

(7)
But the right-hand sides of formulas (6) and (7) are equivalent as
an immediate consequence of axioms FRESHIND and RESTR. Fi-
nally again transitivity delivers

~t[{sk1, n5}r1
pk2

] ∼ ~u[{sk1, n5}r1
pk2

]

which is what we wanted to show.

REMARK 3. Example 21 illustrates the advantage of the BC
technique for indistinguishability over the BC technique for reach-
ability [6] for CCA2 encryption. In the BC technique for reacha-
bility, the proof that n cannot be computed from the two encrypted
messages can be only done with the complicated key-usability no-
tion of in [8]. Here we could simply use ENCCCA2 and no new pred-
icate was needed.

11.2 Further Verification Results
Using axiom ENCCCA2, we have also verified the NSL protocol

for any number of sessions by hand: real-or-random secrecy of
nonces shared between honest agents, authentication and agree-
ment, agents being allowed to play both initiator and responder
roles, even in matching sessions. These properties can be formu-
lated for the NSL protocol with the help of oracles just as we saw
for the two versions of the DH protocol. Then, just as we saw in
Example 21, in each round of the protocol, we have to introduce

if _ then _ else _ symbols to distinguish all cases when the de-
crypted adversarial message is any one of the previous honest en-
cryptions, and when it is neither. When it is one of the previous
encryptions, the decryption and the encryption cancel each other,
and when the adversarial message is neither of the previous en-
cryptions, then using ENCCCA2, the plaintext can be replaced with
1’s using L. Finally, the possibility that a given decryption is ap-
plied on the wrong honest encryption from another session or from
the wrong message of the correct session has to be eliminated us-
ing axioms FRESHIND and FRESHNEQ. Without any further as-
sumptions there are numerous attacks (not present in [23] because
of assumptions on pairs and triples) such as that presented in [5].
However, if agents check whether bit strings expected to be nonces
from the communicating parties have the correct length `nonce (see
Example 21), then all these attacks are prevented.

The anonymity proof of the private authentication protocol pre-
sented in [7] is also easily generalized.

12. CONCLUSIONS
We have introduced key extensions to the core of computation-

ally complete symbolic attacker based on indistinguishability first
introduced in [7] that are necessary to apply the technique to an-
alyze protocols allowing multiple sessions. Towards this end, we
introduced a number of new axioms for the if_then_else_ function
symbol, a core element of the technique. We have illustrated how
these axioms work through several small examples. We also intro-
duced axioms expressing DDH assumption, UF-CMA unforgeabil-
ity of signatures, IND-CPA, IND-CCA1 and IND-CCA2 security
of encryptions that are immediate translations of the corresponding
computational properties to the framework. Through the verifica-
tion of real-or-random secrecy of the DH key exchange protocol
and NSL protocol and the verification of authentication of a sim-
plified version of the STS protocol and authentication and agree-
ment for the NSL protocol, we showed how the model can be used
to tackle multiple sessions, algebraic properties, real-or-random se-
crecy, and even trace properties.

Directions of future work are decidability results and automa-
tion. We believe that our logic is undecidable in general, but tractable
for verification of interesting class of protocols. The latter belief
is based on the procedures and techniques designed in [22] for
verification of reachability properties in the BC framework. For
reachability, verification for a large class of protocols turns out to
be decidable in co-NP [22]. Note as well that PROVERIF is not
guaranteed to terminate, but still can be used for verification very
efficiently.

13. REFERENCES
[1] M. Abadi and C. Fournet. Mobile values, new names, and

secure communication. In POPL’01, pages 104–115. ACM,
2001.

[2] M. Abadi and P. Rogaway. Reconciling two views of
cryptography (the computational soundness of formal
encryption). Journal of Cryptology, 15(2):103–127, 2002.

[3] M. Abdalla, P-A. Fouque, and D. Pointcheval.
Password-based authenticated key exchange in the
three-party setting. In PKC’05, LNCS, pages 65–84, 2005.

[4] M. Backes, B. Pfitzmann, and M. Waidner. A composable
cryptographic library with nested operations. In CCS’03,
pages 220–230. ACM, 2003.

[5] G. Bana, P. Adão, and H. Sakurada. Computationally
Comlete Symbolic Attacker in Action. In FSTTCS’12,
LIPIcs, pages 546–560. Schloss Dagstuhl, 2012.

18

[6] G. Bana and H. Comon-Lundh. Towards unconditional
soundness: Computationally complete symbolic attacker. In
POST’12, LNCS, pages 189–208. Springer, 2012.

[7] G. Bana and H. Comon-Lundh. A computationally complete
symbolic attacker for equivalence properties. In CCS ’14,
pages 609–620. ACM, 2014.

[8] G. Bana, K. Hasebe, and M. Okada. Computationally
complete symbolic attacker and key exchange. In CCS ’13,
pages 1231–1246. ACM, 2013.

[9] G. Barthe, J. M. Crespo, Y. Lakhnech, and B. Schmidt. Mind
the gap: Modular machine-checked proofs of one-round key
exchange protocols. Cryptology ePrint Archive, Report
2015/074, 2015. http://eprint.iacr.org/.

[10] G. Barthe, B. Grégoire, S. Heraud, and S. Zanella-Béguelin.
Computer-aided security proofs for the working
cryptographer. In CRYPTO 2011, volume 6841 of LNCS,
pages 71–90. Springer, 2011.

[11] M. Bellare, A. Desai, D. Pointcheval, and Ph. Rogaway.
Relations among notions of security for public-key
encryption schemes. In CRYPTO’98, LNCS. Springer, 1998.

[12] B. Blanchet. An automatic security protocol verifier based on
resolution theorem proving (invited tutorial). In CADE’05,
Tallinn, Estonia, July 2005.

[13] B. Blanchet. A computationally sound mechanized prover
for security protocols. IEEE Transactions on Dependable
and Secure Computing, 5(4):193–207, 2008.

[14] D. Boneh. The decision diffie-hellman problem. In
ANTS-III’98, pages 48–63. Springer-Verlag, 1998.

[15] V. Cheval and B. Blanchet. Proving more observational
equivalences with proverif. In POST’13, Lecture Notes in
Computer Science, pages 226–246. Springer, 2013.

[16] H. Comon-Lundh and V. Cortier. Computational soundness
of observational equivalence. In CCS’08, pages 109–118.
ACM, 2008.

[17] C. Cremers. The scyther tool: Verification, falsification, and
analysis of security protocols. In CAV’08, volume 5123 of
LNCS, pages 414–418. Springer, 2008.

[18] A. Armando et al. The AVISPA Tool for the automated
validation of internet security protocols and applications. In
CAV’05, volume 3576 of LNCS, pages 281–285, 2005.

[19] P. Gupta and V. Shmatikov. Towards computationally sound
symbolic analysis of key exchange protocols. In FMSE’05,
pages 23–32. ACM, 2005.

[20] J. Katz and Y. Lindell. Introduction to Modern
Cryptography. Chapman & Hall/CRC Press, 2007.

[21] R. Küsters and M. Tuengerthal. Computational soundness for
key exchange protocols with symmetric encryption. In
CCS’09, pages 91–100. ACM, 2009.

[22] Guillaume Scerri. Proofs of security protocols revisited.
Thèse de doctorat, Laboratoire Spécification et Vérification,
ENS Cachan, France, January 2015.

[23] Bogdan Warinschi. A computational analysis of the
needham-schroeder protocol. In 16th Computer security
foundation workshop (CSFW), pages 248–262. IEEE, 2003.

19

