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Abstract

We prove that a system of linear congruences of a particular form
has at most a unique solution below a certain bound which can be
computed efficiently. Using this result we develop attacks against the
DSA schemes which, under some assumptions, can provide the secret
key in the case where one or several signed messages are available.
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1 Introduction

In August 1991, the U.S. government’s National Institute of Standards and
Technology (NIST) proposed an algorithm for digital signatures. The algo-
rithm is known as DSA, for Digital Signature Algorithm [18, 16, 14]. It is
an efficient variant of the ElGamal digital signature scheme [6] intended for
use in electronic mail, electronic funds transfer, electronic data interchange,
software distribution, data storage, and other applications which require
data integrity assurance and data authentication. In 1998, an elliptic curve
analogue called Elliptic Curve Digital Signature Algorithm (ECDSA) was
proposed and standardized [9, 13, 14]. In the next subsection we shall recall
the outlines of DSA and ECDSA.

1.1 The DSA Schemes

First, for DSA, the signer chooses a prime p of size between 512 and 1024
bits with increments of 64, q is a prime of size 160 with q|p − 1 and g is
a generator of the unique order q subgroup G of Z∗

p. Further, he chooses
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a ∈ {1, . . . , q − 1} and computes A = ga mod p. The public key of the
signer is (p, q, g, A) and his private key a. Furthermore, the signer chooses
a publicly known hash function h mapping messages to {0, . . . , q − 1}. To
sign a message m, he chooses a random number k ∈ {1, . . . , q − 1} which is
the ephemeral key, computes

r = (gk mod p) mod q and s = k−1(h(m) + ar) mod q.

The signature of m is the pair (r, s). The signature is valid if and only if
the following equality holds:

r = ((gs
−1h(m)modqAs

−1rmodq) mod p) mod q.

The ECDSA uses an elliptic curve E over Fp and a point P ∈ E(Fp) with
order a prime q of size around 160 bits. The signer selects a ∈ {1, . . . , q−1}
and computes Q = aP . Its public key is (p,E, P, q,Q) and his private key a.
To sign a message m having hash value h(m) ∈ {0, . . . , q − 1}, he selects a
random number k ∈ {1, . . . , q−1} which is the ephemeral key and computes
kP = (x, y) (where x and y are regarded as integer between 0 and p − 1).
Next, he computes

r = x mod q and s = k−1(h(m) + ar) mod q.

The signature of m is the pair (r, s). For the verification of the signature
one computes

u1 = s−1h(m) mod q, u2 = s−1r mod q, u1P + u2Q = (x0, y0).

He accepts the signature if and only if r = x0 mod q.
The security of DSA (respectively ECDSA) relies on the hardness of the

discrete logarithm problem in prime fields and theirs subgroups (respectively
in the group of elliptic curve). Thus, the parameters of the two systems
were chosen in such a way that the computation of discrete logarithms is
computationally infeasible, and so the secret key a and the ephemeral key
k are well protected.

1.2 Related Works

The use of lattices and the LLL reduction method [15] is an efficient tool for
attacking a variety of cryptographic schemes. Attacks to DSA schemes using
lattice reduction techniques and the equality s = k−1(h(m) + ar) mod q are
given in [1], [12], [19], [20], [3], [21], [5] and [7].

In [1] it is shown that if random numbers for DSA are generated using a
linear congruential pseudorandom number generator (LCG), then the combi-
nation of the DSA “signature equations” with the LCG generation equations
lead to a system of equations which provide the secret key. Babai’s closest
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vector approximation algorithm is used to solve such a system. This algo-
rithm only returns approximations to the closest vector which are not very
good.

In [12], several heuristic attacks to recover the secret key are proposed
under the hypothesis that for a reasonable number of signatures, a small
fraction of the corresponding nonce k is revealed. As in [1], the attacks are
based on the LLL-based Babai CVP approximation algorithm. They used
several heuristic assumptions which did not allow precise statements on its
theoretical behaviour.

The first provable polynomial-time attack against DSA is given in [19]
under the hypothesis that the size of q is not too small compared with p and
the probability of collisions for the hash function h is not too large compared
with 1/q. More precisely, if for a certain (polynomially bounded) number of
random messages m and random nonces k, about log1/2 q least significant
bits of k are known, then in polynomial time one can recover the signer’s
secret key a. This attack is adapted to the case of ECDSA [20].

In [3], the authors, using one message, compute with the LLL reduction
method, two short vectors of a three-dimensional lattice and in case where
the second shortest vector is sufficiently short, they deduce two lines which
intersect in (a, k), provided that a and k are sufficiently small. If two mes-
sages are available one has a linear congruence relating the corresponding
ephemeral keys and the same attack is applicable.

The attack presented in [21] uses also one message. The algorithm LLL
and two algorithms for the computation of the integral points of two classes
of conics are combined for the computation of the secret key provided that
at least the elements of one of the sets {a, k−1 mod q}, {k, a−1 mod q} and
{a−1 mod q, k−1 mod q} are sufficiently small. As in the previous attack,
if two messages are available we can apply these attacks to the congruence
relating the two ephemeral keys.

In [5] a two dimensional lattice L is used which is defined by a signed mes-
sage. Lagrange Lattice Reduction algorithm, provides a basis of L formed by
two successive minima. Using this basis we construct two linear polynomials
fi(x, y) such that (a, k) is the intersection point of two straight lines of the
form fi(x, y) = ciq, where ci ∈ Z (i = 1, 2). If a and k are sufficiently small,
then ci belong to a small set and so we can compute the secret key a in poly-
nomial time. Similar attacks hold for the pairs (k−1 mod q, k−1a mod q)
and (a−1 mod q, a−1k mod q). If we have two signed messages, then we
can apply the same attacks to the equation related the two ephemeral keys.

Finally, in [7] it is assumed that we only know that there are equalities
between δ bits of the unknown ephemeral keys used to sign some messages.
It is shown that this implicit information should be extracted by construct-
ing a lattice which contains a very short vector such that its components
yield the secret key. When the ephemeral keys share enough bits δ, this
vector is small enough and so can be computed by the LLL lattice reduction
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algorithm. Furthermore, the Gaussian heuristic is used to find a condition
on the number of shared bits δ in function of the number of messages for
this vector to be the shortest of the lattice.

1.3 Our Contribution

In this paper, we also use the equality s = k−1(h(m) + ar) mod q and we
develop new attacks on the DSA schemes. More precisely, we first compute a
lower bound for the size of vectors of a particular class of lattices. Using this
result and the Micciancio-Voulgaris theorem [17] on closest vector problem,
we prove that a system of n linear congruences, where n ≤ log log q − 1,
of a particular form has at most a unique solution of size smaller than
qn/(n+1)/16 which can be computed in polynomial time. Thus, using only a
signed message, we can construct a such system of linear congruences, which,
in the case where it satisfies some condition, provide us the secret key in
polynomial time. If we have two signed messages, then we can perform the
attack to the linear congruence relating the corresponding ephemeral keys.
Further, we give some variants of this attacks using the modular inverses of
the keys.

When more than one messages are available it is more possible to con-
struct the linear system with the required properties. If we possess a small
fixed number of signed messages, say ≤ 20, the time complexity of the attack
remain polynomial. On the other hand, if we use the maximum number of
log log q − 1 messages, then our attack has subexponential running time.

Our attack is rigorous while the attacks in [12] and [7] use heuristic as-
sumptions. Furthermore, it is independent from the pseudorandom number
generator which is used for the generation of the random numbers. The at-
tacks in [19, 20] use polynomially bounded number of random messages and
in [7] some messages which are signed with ephemeral keys sharing enough
bits, while our attacks can be performed with only one message. The attacks
in [21] and [5] use also one message but they compute the secret key in poly-
nomial time in the case where at least one of the keys or its modular inverse
is at most q1/2 +O(log q). This bound in our attack is qn/(n+1)/16. On the
other hand, a disadvantage of our attacks is that some hypothesis which are
dependent from the available signed messages must be verified that in many
cases are not. Finally, note that when ours attacks are applicable we can
compute a secret key of full size in the case where its inverse is less than
qn/(n+1)/4 as the example at the end of the paper shows. Thus, in order the
DSA schemes to be protected from ours attacks the secret, the ephemeral
keys and their modular inverses must have the same size as q.
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1.4 The Structure of the Paper

The paper is organized as follows. In Section 2, we recall some basic results
about lattices, the Micciancio-Voulgaris theorem on closest vector problem
and we prove a key lemma for the proof of our result. In section 3, using
these results, we prove our theorem on the solutions of a system of linear
congruences. Our attacks based on it are presented in Sections 4. An
example is given in Section 5 and finally Section 6 concludes the paper.

2 Auxiliary Results

Let B = {b1, . . . ,bn} ⊂ Zn be a basis of Rn. A n-dimensional lattice
spanned by B is the set

L = {z1b1 + · · ·+ znbn/ z1, . . . , zn ∈ Z}.

The Euclidean norm of a vector v = (v1, . . . , vn) ∈ Rn is defined to be the
quantity

‖v‖ = (v21 + · · ·+ v2n)1/2.

Throughout the paper we state log for the natural logarithm and log2 for
the logarithm with base 2.

We shall use the following results.

Lemma 1 Let q be a prime > 2 and integers n with 0 < n ≤ log log q − 1,
Ai (i = 1, . . . , n) with 2i−1qi/(n+1) < Ai < 2iqi/(n+1) and Bi ∈ {1, . . . , q−1}.
We denote by L the lattice spanned by the rows of the square matrix

J =


−1 A1 A2 . . . An
0 q 0 . . . 0
0 0 q . . . 0
...

...
...

...
...

0 0 0 . . . q

 .

Then for every nonzero v ∈ L we have

‖v‖ > qn/(n+1)

8
.

Proof. First, we shall see that An < q. We have 2nqn/(n+1) < q if and only
if 2n < q1/(n+1) which is equivalent to n(n+ 1) < log2 q. Further,

n(n+ 1) ≤ (log log q − 1)(log log q) ≤ (
√

log q − 1)
√

log q < log2 q.

It follows that An < q.
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Suppose next that there are integers x0, . . . , xn such that

v = (−x0, x0A1 + x1q, . . . , x0An + xnq)

is a nonzero vector of L satisfying

‖v‖ ≤ qn/(n+1)

8
.

Then we have

max{|x0|, |x0A1 + x1q|, . . . , |x0An + xnq|} <
qn/(n+1)

8
.

If x0 = 0, then there is i ∈ {1, . . . , n} such that xi 6= 0 and so, we get
‖v‖ > q which is a contradiction. Thus x0 6= 0. If x0Aj + xjq = 0, then
xj 6= 0. Thus q|x0Aj and so, we get either q|x0 or q|Aj . On the other hand
we have 0 < |x0| < q and 0 < Aj < An < q which is a contradiction. Hence
x0Aj + xjq 6= 0 (j = 1, . . . , n).

Let i ∈ {1, . . . , n} such that

q(n−i)/(n+1)

2i+2
< |x0| <

q(n−i+1)/(n+1)

2i+1
.

If xj 6= 0 with 1 ≤ j ≤ i, then we have

qn/(n+1)

8
> |x0Aj + xjq| ≥ q − |x0|Aj > q − q(n−i+1)/(n+1)

2i+1
Ai >

q

2
,

whence we get 1 > 4q1/(n+1) which is a contradiction. Hence xj = 0 (j =
1, . . . , i). Then we have

‖v‖ > |x0Ai| >
q(n−i)/(n+1)

2i+2
2i−1qi/(n+1) =

qn/(n+1)

8
.

which is a contradiction. The result follows.

Theorem 1 Let L be a n-dimensional lattice and y ∈ Rn. Then there is a
deterministic algorithm that computes v ∈ L such that for every t ∈ L we
have

‖v − y‖ ≤ ‖t− y‖

in time 22n+o(n).

Proof. See [17].
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3 A System of Linear Congruences

Our attacks are based on the following theorem:

Theorem 2 Let q be a prime > 2 and positive integers n and Ai, Bi (i =
1, . . . , n) such that n ≤ log log q−1 and 2i−1qi/(n+1) < Ai < 2iqi/(n+1). Then
the system of congruences

yi +Aix+Bi ≡ 0 (mod q) (i = 1, . . . , n)

has at most one solution v = (x, y1, . . . , yn) ∈ {0, . . . , q − 1}n+1 having

‖v‖ < qn/(n+1)

16
.

If a such solution exists, then the algorithm of Theorem 1 applied on the
vector (0, B1, . . . , Bn) and the lattice of Lemma 1 gives a vector w whose
first coordinate is x. The time complexity of computation of x is O((log q)2).

Proof. Let v = (x, y1, . . . , yn) be a solution of the system with

‖v‖ < qn/(n+1)

16
.

Consider the lattice L spanned by the rows of the square matrix

J =


−1 A1 A2 . . . An
0 q 0 . . . 0
0 0 q . . . 0
...

...
...

...
...

0 0 0 . . . q


and set b = (0, B1, . . . , Bn). Since yi + Aix + Bi ≡ 0 (modq), there is
zi ∈ Z such that −xAi + ziq = yi + Bi (i = 1, . . . , n). Then the vector
u = (x,−xA1 + z1q, . . . ,−xAn + znq) belongs to L and we have

‖u− b‖ = ‖(x, y1, . . . , yn)‖ = ‖v‖ < qn/(n+1)

16
.

On the other hand, by Theorem 1 we can compute w ∈ L such that

‖w − b‖ ≤ ‖u− b‖ < qn/(n+1)

16
.

The time complexity of the computation is 22n+o(n) = O((log q)2). Thus, we
have

‖u−w‖ ≤ ‖u− b‖+ ‖w − b‖ < qn/(n+1)

8
.

Since u−w ∈ L, Lemma 1 implies u = w. Thus, if w = (w0, . . . , wn), then
we get x = w0.
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4 Our Attacks

In this section we describe our attacks. Let n be a positive integer ≤
log log q − 1. Suppose we have t ≤ n signed messages mj (j = 1, . . . , t)
and theirs signatures (rj , sj), respectively, with DSA (resp. ECDSA). Then
there are kj ∈ {1, . . . , q − 1} such that rj = (gkj mod p) mod q (resp.
rj = xj mod q and kjP = (xj , yj)) and sj = k−1

j (h(mj) + arj) mod q. It
follows that

kj + Cja+Dj ≡ 0 (mod q) (j = 1, . . . , t)

where Cj = −rjs−1
j mod q and Dj = −s−1

j h(mj) mod q.
We give below an algorithm based on Theorem 2 which computes a under

some assumptions.

DSA-ATTACK-1
Input: (mj , rj , sj) (j = 1, . . . , t).

1. Compute Cj = −rjs−1
j mod q and Dj = −s−1

j h(mj) mod q.

2. Select integers Ai (i = 1, . . . , n) with 2i−1qi/(n+1) < Ai < 2iqi/(n+1).
(If 2i−1qi/(n+1) < Ci < 2iqi/(n+1), then we can take Ai = Ci).

3. Compute Bij = AiDjC
−1
j mod q (i = 1, . . . , n, j = 1, . . . , t).

4. Denote by M the set of maps µ : {1, . . . , n} → {1, . . . , t}. For every
µ ∈ M , compute (as it is explained in Theorem 2) the coefficient xµ
of the solution vµ = (xµ, y1,µ(1), . . . , yn,µ(n)) of the system

yi +Aix+Bi,µ(i) ≡ 0 (mod q) (i = 1, . . . , t)

with ‖vµ‖ < qn/(n+1)/16.

5. For every µ ∈M check if xµ is the private key a.

The performance of the algorithm is given in the following proposition.

Proposition 1 Put kij = kjAiC
−1
j mod q (i = 1, . . . , n, j = 1, . . . , t).

Suppose there is µ ∈M such that

‖(a, k1µ(1), . . . , knµ(n))‖ <
qn/(n+1)

16
.

Then the algorithm DSA-ATTACK-1 computes a. Its time complexity for
the case of DSA is O((log p)2(log q)1+log t) bit operations and for ECDSA
O((log q)2((log q)log t+(log log q)4)) bit operations and O((log q)1+log t) ellip-
tic curves operations.
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Proof. Steps 1, 2, 3 and 4 build for every µ ∈M the system of congruences

yi +Aix+Bi,µ(i) ≡ 0 (mod q) (i = 1, . . . , t).

Step 1 needs O((log q)2t) bit operations. The computation of each qi needs
time O(i2(log q)2). The required time for the computation of bqi/(n+1)c is
O(i2(log q)2) [4] and for 2ibqi/(n+1)c is O(i3(log q)2). Thus, we can select Ai
such that

2i−1bqi/(n+1)c+ 2i−1 ≤ Ai ≤ 2ibqi/(n+1)c.
So, the time complexity of Step 2 is

O(
n∑
i=1

i3(log q)2) = O((log q)2n4) = O((log q)2(log log q)4).

Step 3 needs O((log q)2(log log q)2) bit operations. Step 4 requires tn times
the application of algorithm of Theorem 1 and so its time complexity is
O((log q)2+log t). Therefore, the time complexity of the construction of all
the systems and the computation of xµ is

O((log q)2((log q)log t + (log log q)4)).

The complexity of Step 5, in the case of DSA, is O((log p)2(log q)1+t) bit
operations and in the case of ECDSA, is O((log q)1+t) elliptic curves op-
erations. Therefore, for DSA, the time complexity of the procedure is
O((log p)2(log q)1+t) bit operations and for ECDSA O((log q)2((log q)log t +
(log log q)4)) bit operations and O((log q)1+t) elliptic curves operations.

For every µ ∈ M , the vector (a, k1,µ(1), . . . , kn,µ(n)) is a solution of the
system of congruences

yi +Aix+Bi,µ(i) ≡ 0 (mod q) (i = 1, . . . , t).

Thus, in the case where there is µ ∈M satisfying

‖(a, k1µ(1), . . . , knµ(n))‖ <
qn/(n+1)

16
,

Theorem 2 implies that a is among the elements xµ and so it can be com-
puted by the algorithm DSA-ATTACK-1 .

Multiplying by a−1 the congruence

kj + Cja+Dj ≡ 0 (mod q) (j = 1, . . . , t)

we get
kja

−1 + Cj +Dja
−1 ≡ 0 (mod q) (j = 1, . . . , t).

Thus, replacing (Cj , Dj) by (Dj , Cj) and a by a−1, we obtain a variant of
DSA-ATTACK-1 which under some assumption provides us a−1 mod q and
so a. We call it DSA-ATTACK-2. Thus, we have the following result.
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Proposition 2 Put kij = kja
−1AiD

−1
j mod q (i = 1, . . . , n, j = 1, . . . , t).

Suppose there is µ ∈M such that

‖(a−1 mod q, k1µ(1), . . . , knµ(n))‖ <
qn/(n+1)

16
,

Then the algorithm DSA-ATTACK-2 computes a. Its time complexity for
the case of DSA is O((log p)2(log q)1+log t) bit operations and for ECDSA
O((log q)2((log q)log t+(log log q)4)) bit operations and O((log q)1+log t) ellip-
tic curves operations.

Suppose now that t ≥ 2. So we can eliminate a among the congruences

kj + Cja+Dj ≡ 0 (mod q) (j = 1, . . . , t)

and we deduce the congruences

kj + C̃jkt + D̃j ≡ 0 (mod q) (j = 1, . . . , t− 1),

where C̃j = −CjC−1
t mod q and D̃j = −CjC−1

t Dt +Dj mod q. Replacing
in DSA-ATTACK-1 (Cj , Dj) by (C̃j , D̃j) we have another variant of DSA-
ATTACK-1 which we call DSA-ATTACK-3 and under some assumption
provide us a. Hence, we have the following result.

Proposition 3 Put kij = kjAiC̃
−1
j mod q (i = 1, . . . , n, j = 1, . . . , t− 1).

Suppose there is µ ∈M such that

‖(kt, k1µ(1), . . . , knµ(n))‖ <
qn/(n+1)

16
,

Then the algorithm DSA-ATTACK-3 computes a. Its time complexity for
the case of DSA is O((log p)2(log q)1+log t) bit operations and for ECDSA
O((log q)2((log q)log t+(log log q)4)) bit operations and O((log q)1+log t) ellip-
tic curves operations.

Furthermore, multiplying by k−1
t the congruences

kj + C̃jkt + D̃j ≡ 0 (mod q) (j = 1, . . . , t− 1)

we obtain

kjk
−1
t + C̃j + D̃jk

−1
t ≡ 0 (mod q) (j = 1, . . . , t− 1).

So, replacing (Cj , Dj) in DSA-ATTACK-2 by (C̃j , D̃j) we have another at-
tack which we call DSA-ATTACK-4.
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Proposition 4 Put kij = kjk
−1
t AiD̃

−1
j mod q (i = 1, . . . , n, j = 1, . . . , t).

Suppose there is µ ∈M such that

‖(k−1
t mod q, k1µ(1), . . . , knµ(n))‖ <

qn/(n+1)

16
,

Then the algorithm DSA-ATTACK-4 computes a. Its time complexity for
the case of DSA is O((log p)2(log q)1+log t) bit operations and for ECDSA
O((log q)2((log q)log t+(log log q)4)) bit operations and O((log q)1+log t) ellip-
tic curves operations.

Remark 1 If t is very small fixed number, say t < 20, then the time com-
plexity of our attacks is polynomial.

Remark 2 Note that as large the number of available messages is, as pos-
sible is to construct a system with the required properties.

5 An Example

We consider the elliptic curve E given in [2, Example 3, p. 182] defined over
the finite field Fp, where p = 2160 + 7 is a prime, by the equation

y2 = x3 + 10x+ 1343632762150092499701637438970764818528075565078.

The number of points of E(Fp) is the 160-bit prime

q = 1461501637330902918203683518218126812711137002561.

Consider the point P = (x(P ), y(P )) of E(Fp) of order q, where

x(P ) = 858713481053070278779168032920613680360047535271,

y(P ) = 364938321350392265038182051503279726748224184066.

We take as private key the 160−bit integer

a = 874984668032211733311386841306673749333236586178.

The public key is Q = aP = (x(Q), y(Q)) where

x(Q) = 597162246892872056034315330452950636324741691536,

y(Q) = 1181877329208353060566969266758924757549684357390.

Let m1, m2 and m3 be three messages with hash values

h(m1) = 1238458437157734227527825004718505271235024916418,

h(m2) = 1028653949698644928576637572550961266718086213222,

h(m3) = 1359253753908721564345086919389145449479510713328.
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Suppose that the following ephemeral keys have been used respectively for
the generation of the signatures of the three messages:

k1 = 466080543322889688835467115835518398826523750031,

k2 = 730750818665451459101842416358141509827966271589,

k3 = 730750818665451459101842416358141509827966279681.

The size of k1 is 158 bits and the size of k2 and k3 is 159 bits. We have the
points Ri = kiP = (x(Ri), y(Ri)) (i = 1, 2, 3), where

x(R1) = 1254157729089443995418123832523808277031313949462,

y(R1) = 23109942117176529567525517253616649087109941040,

x(R2) = 725144377910246885534616706756699404195507663231,

y(R2) = 724834174614588160856240480005855379930897712013,

x(R3) = 250593598147858114836913138265564915457464710851,

y(R3) = 63119281333557571230379851501639067328261656282.

The signature of mi is (ri, si) where si = k−1
i (h(mi) + ari) mod q and

ri = x(Ri) (i = 1, 2, 3). We have

s1 = 1363805341335356352807650823690154552653914451119,

s2 = 1286644068312084224467989193436769265471767284571,

s3 = 1357235540051781293143720232752751840677247754090.

First, we remark that

a−1 mod q = 5070602400912917605986812821509 < 2103.

Thus, we shall apply DSA-ATTACK-2 with t = n = 3. The couple (a−1 mod
q, kja

−1 mod q) is a solution of the congruence

y +Dix+ Ci ≡ 0 (mod q) (i = 1, 2, 3),

where

C1 = 1461501463106331049611349884018124821212302099515,

D1 = 34359738369,

C2 = 856585227192969567381714973407499157966149117422,

D2 = 1389773565760524781352174297091678638955836274432,

C3 = 25289181258142448854230843836548288088082171610,

D3 = 494393186466616365369065630169592100192862982492.

We have

bq1/4c = 1099511627775,

bq1/2c = 1208925819614629174706175,

bq3/4c = 1329227995784915872903806163633513155.
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Next, we have to consider integers Ai (i = 1, 2, 3) satisfying

2i−1qi/4 < Ai < 2iqi/4 (i = 1, 2, 3).

So, we take A1 = D1, A2 = 281 + 1 and A3 = 2122 + 23.
Since we have

l1 = a−1k1 mod q < 291,

l2 = k2a
−1A2D

−1
2 mod q < 290,

l3 = k3a
−1A3D

−1
3 mod q < 250,

we obtain

‖(a−1 mod q, l1, l2, l3)‖ <
q3/4

16
.

Hence, the DSA-ATTACK-2 can provide us a−1 mod q and so, the secret
key a.

6 Conclusion

In this paper we proposed some attacks on DSA schemes in the case where
one or several signed messages are available. Using these messages we built
several systems of linear congruences which, in the case where their coeffi-
cients and solutions satisfy some inequalities, can provide us the secret key
of the scheme. These attacks can also be applied on other signature schemes
where the secret and the ephemeral keys are solutions of a linear congruence,
such as Schnorr’ signature, Heyst-Pedersen signature, GPS, etc [8, 16, 22].
Note that in the case where the secret, the ephemeral keys and their modular
inverses have the same size as q, our attacks cannot be applied.
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