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Abstract. Multidimensional linear attacks are one of the most powerful
variants of linear cryptanalytic techniques now. However, there is no
knowledge on the key-dependent capacity and data complexity so far.
Their values were assumed to be close to the average value for a vast
majority of keys. This assumption is not accurate. In this paper, under a
reasonable condition, we explicitly formulate the capacity as a Gamma
distribution and the data complexity as an Inverse Gamma distribution,
in terms of the average linear potential and the dimension. The capacity
distribution is experimentally verified on the 5-round PRESENT.
Regarding complexity, we solve the problem of estimating the average
data complexity, which was difficult to estimate because of the existence
of zero correlations. We solve the problem of using the median complex-
ity in multidimensional linear attacks, which is an open problem since
proposed in Eurocrypt 2011. We also evaluate the difference among the
median complexity, the average complexity and a lower bound of the
average complexity – the reciprocal of average capacity. In addition, we
estimate more accurately the key equivalent hypothesis, and reveal the
fact that the average complexity only provides an accurate estimate for
less than half of the keys no matter how many linear approximations are
involved.
Finally, we revisit the so far best attack on PRESENT based on our
theoretical result.

Keywords: multidimensional linear attack, capacity, data complexity,
linear hull effect, linear potential

1 Introduction

Block ciphers are used as basic building primitives in symmetric cryptography for
encryption, authentication, construction of hash functions and so on. Evaluation
of their practical security has been a hot research issue over the decades, giv-
ing rise to different analysis techniques. Statistical attacks exploit non-uniform
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behaviors of the plaintext-ciphertext data to find information about the key.
One of the most prominent statistical attacks is linear cryptanalysis. Previously,
linear trails were assumed to behave equally for each key [20,3,17,4]. Then, by
considering many trails in one approximation [24,25], the linear hull effect raises
interesting discussions about fixed-key behaviors in single linear approximations
[22,21]. Daemen et al. gave a fixed-key probability distribution for single linear
correlations [13], leading to subsequent works on e.g., fundamental assumptions
[9], the effect of key schedules [1] and measures for data complexity [19], all
for single linear attacks. However, we still do not understand the situation in
multidimensional linear cryptanalysis.

A collection of linear approximations has a capacity which measures their bias
to the uniform distribution. One important open problem in multidimensional
linear cryptanalysis is to estimate the capacity and data complexity when a
large number of different keys are considered. In previous work, the capacity
was assumed to hold an average value constantly for most of the keys, and the
data complexity was usually measured by reciprocal of the average capacity.
However, neither is correct. As we know, the key equivalent hypothesis has been
questioned for single linear approximations and differential trails [9,5,12]. Now
this hypothesis also requires adjustment in multidimensional linear setting.

Also, it has always been difficult to compute average data complexity over the
keys in linear cryptanalysis. Using Jensen’s inequality, Murphy [22] points out
that the Fundamental Theorem [24] can only give a lower bound for the average
data complexity when a collection of linear trails in a linear approximation is
used. Leander shows that in single linear attacks we should focus on median
complexity instead of average complexity since the latter usually turns to infinity
[19]. Both Murphy’s and Leander’s concerns haven’t been addressed yet in the
scenario of multidimensional linear attacks.

As one of the most powerful variants of linear attacks, multidimensional lin-
ear attacks notably benefit the data complexity, both in theory and in practice
[10,16,11,23,15]. Moreover, the multidimensional linear distinguisher has been
discovered to have connections with other statistical distinguishers, e.g., trun-
cated differential distinguishers [6], statistical saturation distinguishers [19], and
integral distinguishers [8]. All the above suggests the importance of multidimen-
sional linear cryptanalysis, hence, the lack of knowledge on fundamental aspects
of this attack is especially surprising, and deserves more attention.

Our Contributions. In this paper, we point out that under a reasonable assump-
tion, the distribution of key-dependent capacity can be explicitly formulated
with a Gamma distribution, depending on average linear potential and dimen-
sion (Sect. 3). This distribution is verified experimentally on the round-reduced
PRESENT cipher. Then, we derive the distribution of data complexity, an In-
verse Gamma distribution based on the same parameters (Sect. 4). Our results
allow a more accurate measurement for multidimensional linear attacks.

With these distributions, in Sect. 5 we discuss three well-known measures
when considering the data complexity of multidimensional linear attacks: the
reciprocal of average capacity, the average and the (general) median complexity.
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The following fundamental questions in single linear attacks are then generalized
to multidimensional linear attacks and solved.

Firstly, we consider the standard key equivalence hypothesis. We discover
that instead of holding for a majority of keys, the average capacity actually
holds for less than half of the keys, no matter how many linear approximations
are used. Hence, we modify the hypothesis in a way which is more in line with
the practical situation.

Secondly, as we know, the average data complexity of single linear attacks is
difficult to calculate, since the linear hull effect may result in zero correlation for
some keys. However, we show that the situation changes when multiple linear
approximations are involved, and in this case the average data complexity can
be easily calculated from the Inverse Gamma distribution. Then, by generalizing
Murphy’s idea from the case of linear hulls to the case of multiple linear approx-
imations, the reciprocal of average capacity is proved to be only a lower bound
of the average data complexity. We also figure out the exact difference between
this lower bound and the average data complexity.

Thirdly, we solve the open problem proposed by Leander in [19] by develop-
ing the usage of median complexity to multidimensional linear attacks. Finally,
all measures of data complexity are compared under different dimensions. An
interesting observation is that, the median complexity infinitely approaches to
the average one as the dimension increases.

In Sect. 6, we revisit Cho’s 25 rounds of multidimensional linear attack on
PRESENT [10], which targets the most rounds of PRESENT with data complex-
ity less than the whole codebook. As an application of our theoretical analysis,
we can directly estimate the average capacity, instead of making a complex proof
like [10]. Our results are very close to Cho’s. Moreover, the exact knowledge of
the capacity distribution allows us to compute the ratio of weak keys precisely.
Using Cho’s attack method by changing some parameters in the attack, 2123.24

weak keys for 26 rounds PRESENT can be recovered with no more than 262.5

plaintext-ciphertext pairs.

2 Preliminaries

2.1 Block Ciphers and Linear Cryptanalysis

Let F2 be the binary field with two elements and Fn2 be the n-dimensional vector
space over F2. The inner product on Fn2 is defined by a · b =

∑n
i=1 aibi, where a,

b ∈ Fn2 .

A block cipher is a mapping E : Fn2 × Fκ2 → Fn2 with Ek(·) def
= E(k, ·) for

each k ∈ Fκ2 . If y = Ek(x), x, y and k are referred to as the plaintext, the
ciphertext and the master key, respectively. A key-alternating cipher is a block
cipher consisting of an alternating sequence of unkeyed rounds and simple bitwise
key additions.

Linear cryptanalysis uses a linear relation between bits from x, y and k.
A linear approximation (u, v) is a probabilistic linear relation expressed as a
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boolean function of these bits, i.e.,

B(k)
def
= u · x⊕ v · Ek(x), (1)

where (u, v) is called the text mask. B(k) is a boolean random variable charac-
terized by

p(k)
def
= Pr

x∈Fn
2

(B(k) = 0).

We call c(k) = 2p(k) − 1 the fixed-key correlation of the linear approxima-
tion (u, v). The linear potential (LP) [24] of approximation (u, v) is defined as
LP (k) = c(k)2. Both c(k) and LP (k) vary over different keys, and can be re-
garded as real-value random variables over the whole key space.

In a linear approximation (u, v), there may be many paths with different
intermediate masks, but sharing the same input and output mask (u, v). A path
that considers linear relation round by round is called as linear trail (or linear
characteristic). Note that in a key-alternating cipher, the LP of a linear trail1 is
independent of the subkeys.

2.2 Multidimensional Linear Approximations and Data Complexity

Multidimensional linear attacks use m approximations with linearly independent
text masks, called base approximations, to construct an m-dimensional vectorial
boolean function f . Let p = (p0, p1,. . . , p2m−1) be the probability distribution
of f . It can be computed by the following lemma.

Lemma 1. ([15, Corollary 1]) Let f : Fn2 7→ Fm2 be a vectorial boolean function
with the probability distribution p. Then, we have

ca =
∑
η∈Fm

2

(−1)a·ηpη, for all a ∈ Fm2

and

pη = 2−m
∑
a∈Fm

2

(−1)a·ηca, for all η ∈ Fm2 .

Here, ca is the correlation of the boolean function a · f , a ∈ Fm2 .

In multidimensional linear attack, ca is indeed the correlation of the approx-
imation that combines the base approximations linearly.

Let q = (q0, ..., q2m−1) be another discrete probability distribution of an m-
bit random variable. Then, the capacity of p and q is defined as follows.

1 Hereafter, whether the LP is of a linear approximation or of a linear trail will be
clear from the context.
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Definition 1. The capacity between two probability distributions p and q is de-
fined by

C(p, q) =

2m−1∑
η=0

(pη − qη)2q−1η .

The capacity of multidimensional linear approximations with probability dis-
tribution p is C(p) = C(p, θ), where θ is the uniform distribution.

Lemma 2. ([15, Corollary 2]) Given an m-dimensional vectorial boolean func-
tion f with the probability distribution p, the capacity is

C(p) =
∑

a∈Fm
2 ,a6=0

c2a.

Thus, the capacity of multidimensional linear approximations is computed
from m base approximations and other 2m−1−m approximations that are XOR
sum of the m base approximations. These 2m−1−m approximations, denoted as
combined approximations, are linearly spanned from the m base approximations.

To estimate the data complexity of multidimensional linear cryptanalysis,
the Chernoff information D∗ can be considered [2].

Theorem 1. ([2, Theorem 1]) Let BestAdvN (p, q) be the best advantage for
distinguishing probability distribution p from probability distribution q, using N
samples. We have

1−BestAdvN (p, q) = 2−ND
∗(p,q)+o(N).

Hence, the data complexity is N ≈ 1
D∗(p,q) . When q is the uniform distribu-

tion and p is close to q, the Chernoff information can be approximated by the
capacity C(p), [2, Theorem 7], by

D∗(p, q) ' C(p)

8 ln 2
.

In this case, when the optimal distinguisher based on LLR-statistic (or χ2-
statistic) is used, the data complexity is given as λ

C(p) , where λ depends on

the success probability of the distinguisher.
The probability distribution p of an m-dimensional linear approximation ac-

tually varies over different keys, so does the capacity (as we will show later).
Hereafter, instead of using C(p(k)), we use C(k) to represent the variable of
key-dependent capacity.

2.3 Related Distributions

Note 3. Let N (µ, σ2) be the normal distribution with mean µ and variance σ2.
Let Γ (α, θ) be the Gamma distribution under the shape-scale parametrization,
with mean αθ, the probability density function g and the cumulative distribution
function G. If X ∼ N (0, σ2), then X2 ∼ Γ (1/2, 2σ2). Inv-Gamma(α,β) denotes
the inverse-Gamma distribution with mean β

α−1 for α > 1. If X ∼ Γ (α, θ), then
1
X ∼ Inv-Gamma(α, θ−1).
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Daemen et al. give the distribution of the fixed-key LP of linear approxima-
tions when linear hull effect is considered [13].

Approximation 4. [13, Theorem 22] Given a key-alternating cipher with in-
dependent round-keys, when the number of linear trails of (u, v) is large enough
and their LP are small compared to ELP(u,v), the fixed-key correlation of (u, v),
c(k), which is a real-value random variable, follows

c(k) ∼ N (0, ELP (u, v)).

The fixed-key LP (k) follows the distribution of Γ ( 1
2 , 2ELP (u, v)), with mean

ELP(u,v) and variance 2ELP (u, v)2, where ELP (·) is the average linear poten-
tial of the approximation over all keys.

The ELP (u, v) can be denoted as c2 and computed by the following propo-
sition for key-alternating ciphers.

Proposition 1. [24,12] Let E be a key-alternating block cipher and assume that
all subkeys are independent. The average LP of a linear approximation is the sum
of all LP of the linear trails tj, LPT(tj), between the input and output mask of
this approximation, i.e.,

ELP (u, v) =
∑

tj∈(u,v)

LPT (tj).

3 Key-dependent Capacity in Multidimensional Linear
Approximations

In this section, we study the distribution of key-dependent capacity. Let c(k)
(resp. LP (k)) be a real-value random variable representing the fixed-key cor-
relation (resp. linear potential) of the linear approximation and we can know
c(k) and LP (k) from Approximation 4. When multiple linear approximations
are used, we use i in the subscript to denote the index of linear approximations,
e.g., denote ci(k) as the fixed-key correlation of the ith linear approximation.
W.l.o.g, we use i = 1, . . . ,m to represent the subscript of m base approximations.

In [16], the authors claim that in practical experiments the probability dis-
tributions vary a lot over the keys while the capacity remains rather constant.
However, in this section we point out that the capacity also varies over different
keys from the theoretical point and give experimental verification. We focus on
dealing with two cases, both existing in practical block ciphers. The two cases
are identified by two different assumptions whose validity should be checked in
experiments on reduced round versions of the cipher. These two cases are shown
in Proposition 2 and Proposition 3, respectively.

Proposition 2. Let us assume that in an m-dimensional linear attack using m
base approximations the correlations ci(k) are i.i.d. to N (0, c2) over the keys,
where c2 is the average LP. If for each fixed key, the binary random variables
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associated to the base approximations are statistically independent, the fixed-
key capacity of this m-dimensional linear approximation, C(k), approximately
follows Gamma-distribution Γ (m2 , 2c

2).

Proof. Let f1(k), . . . , fm(k) be m linearly independent base approximations to
construct the m-dimensional approximation f(k), and f(k) = (f1(k), . . . , fm(k))
is an m-dimensional vectorial boolean function with the probability distribution
p(k) = {pη(k)}, where η ∈ Fm2 and pη(k) is the probability that f(k) = η.
Indeed, fi(k) is a binary random variable with correlation ci(k). Since fi(k) are
statistically independent each other for each fixed key k,

pη(k) =

m∏
i=1

(
1

2
+ (−1)fi(k)

ci(k)

2
), η ∈ Fm2

According to Definition 1,

C(k) =
∑
η∈Fm

2

(pη(k)− 2−m)2/2−m = 2m
∑
η∈Fm

2

(pη(k)− 2−m)2

= 2m
∑
η∈Fm

2

(

m∏
i=1

(
1

2
+ (−1)fi(k)

ci(k)

2
)− 2−m)2

For each fixed key, ci(k) · cj(k)� ci(k),

C(k) = 2m
∑
η∈Fm

2

[

m∑
i=1

(−1)fi(k)
ci(k)

2 · 2m−1
]2

= 2m
∑
η∈Fm

2

[
1

22m−2
(

m∑
i=1

(
ci(k)

2
)2 + 2

∑
i 6=j

(−1)fi(k)+fj(k)
ci(k)

2

cj(k)

2
)]

Since
∑
η∈Fm

2

∑
i 6=j(−1)fi(k)+fj(k) ci(k)2

cj(k)
2 = 0,

C(k) =
2m

22m−2

∑
η∈Fm

2

m∑
i=1

(
ci(k)

2
)2 =

m∑
i=1

ci(k)2 =

m∑
i=1

LPi(k)

Since ci(k) are i.i.d. to N (0, c2), LPi(k) are i.i.d to Γ ( 1
2 , 2c

2), i = 1, . . . ,m.

Thus, C(k) is the sum of m independent Gamma distribution Γ ( 1
2 , 2c

2). Hence,

C(k) ∼ Γ (m2 , 2c
2).

Recall that for one-dimensional linear approximations, c2 can be calculated
by Proposition 1 when the dominant trails in a linear approximation are known.

Proposition 2 considers the scenario where the LP of base approximations are
dominant. In this case, we approximate the capacity by summing the LP of base
approximations and ignoring the LP of combined approximations (see Lemma

7



2). To show the reasonableness of this approximated capacity, we also bound the
error of our approximation. For this part of analysis, please see Appendix B.

In the other hand, Proposition 3 considers the case that not only m base
approximations but also 2m−1−m combined approximations have non-negligible
contribution to the capacity. In this case, the correlations of 2m−1−m combined
approximations are not independent any more. Thus, we derive the capacity in
this case under another hypothesis.

Proposition 3. Let us assume that in an m-dimensional linear attack using the
m-dimensional linear approximation the probabilities pη(k) is i.i.d. to a normal
distribution N (2−m, σ2), for all η ∈ Fm2 . Then the fixed-key capacity of this m-
dimensional linear approximation, C(k), follows Gamma-distribution Γ ( 2m−1

2 , 2·
2mσ2).

Proof. Since pη(k) are i.i.d. to N (2−m, σ2),

Q =

2m−1∑
η=0

(pη(k)− 2−m)2

σ2
∼ χ2(2m − 1) = Γ (

2m − 1

2
, 2)

According to the definition of capacity,

C(k) =

2m−1∑
η=0

(pη(k)− 2−m)2

2−m
= 2mσ2Q = Γ (

2m − 1

2
, 2 · 2mσ2)

Compared with Proposition 2 which considers only m base approximations
with equally dominant correlations, Proposition 3 indeed addresses the situation
where the correlation ca(k) of 2m− 1 approximations are identically distributed
(for the proof please refer to Appendix A). Thus, the average LP of 2m − 1
approximations are equal, denoted as c2 again. As we know, the average capacity
is the sum of the average LP of involved approximations, i.e., (2m − 1) · 2mσ2 =
(2m− 1)c2, the distribution of capacity in Proposition 3 can also be represented
as Γ ( 2m−1

2 , 2c2).

Experimental verification In order to verify that the above analysis re-
flects the reality with reasonable accuracy, we have experimentally computed
the capacity distributions sampled from 5000 randomly chosen keys for 5-round
PRESENT. A set of usable one-dimensional linear approximations is discovered
in [26], with theoretical average LP computed as 2−16.83. Thus, the correlation
distributions of these approximations are N (0, 2−16.83), and the LP distributions
are Γ ( 1

2 , 2
−15.83)2.

2 For more details about the approximations used in our experiments, please refer to
[26].
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We can select linearly independent approximations from this set as the base
approximations. Here we examine the 2-dimensional and 4-dimensional linear
approximations for the case of Proposition 2.

In this case, the base approximations with input masks from different S-boxes
in the first round and output masks from different S-boxes in the last round are
chosen. According to Proposition 2, the theoretical distribution of 2-dimensional
capacity is Γ (1, 2−15.83) and of 4-dimensional capacity is Γ (2, 2−15.83). The ex-
perimental distributions of 2-dimensional and 4-dimensional capacity sampled
over 5000 keys are as (a) and (b) of Fig 1, respectively.

(a) 2-dimension (b) 4-dimension

Fig. 1. Experimental (black) and theoretical (red) distributions of the capacity for the
2 and 4-dimensional approximation of the first case

As illustrated in Fig 1, the experimental distribution of capacity follows the
theoretical estimate closely. The scattering of data points occurs due to the fact
that we basically use a histogram, and deal with raw data instead of averaging.

4 Distribution of Data Complexity

With the knowledge of capacity distribution, the distribution of data complex-
ity, which approximates to λ times the reciprocal of capacity, can be obtained
formally. Hereafter we focus on the case mentioned in Proposition 2. The case
of Proposition 3 can be deduced in a similar way.

Corollary 1. If the fixed-key capacity of the multidimensional linear approx-
imation follows C(k) ∼ Γ (m2 , 2c

2), then the fixed-key data complexity of the

corresponding multidimensional attack follows N(k) ∼ Inv-Gamma(m2 , λ

2c2
).

Corollary 1 is derived directly from Proposition 2 (also refer to Note 3), and
addresses the case that m correlations of base approximations play a prominent
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role in the capacity. Since λ is a constant for any fixed success probability in an
attack, w.l.o.g. hereafter we study the above data complexity distribution as Inv-
Gamma(m2 ,

1

2c2
). For each key k, N(k) is asymptotically inversely proportional to

C(k). The average data complexity over all keys is denoted by N , N = Ek[N(k)],
which is proportional to

Ek

[
1

C(k)

]
=

1

|K|
∑
k∈K

1

C(k)
,

where K denotes the whole key space, and Ek(·) means an expected value taken
over the whole key space. According to Corollary 1 and the mean of inverse
Gamma distribution (see Note 3), the average data complexity is Ek[ 1

C(k) ] =
1

2c2(m/2−1)
= 1

mc2−2c2
.

Remark. The data complexity distribution in Corollary 1 also holds for single
linear attacks where m = 1. In the case of m = 1, the average data complexity
is infinite as pointed out by [19]3, which corresponds to the fact that the mean
of the distribution Inv-Gamma( 1

2 ,
1

2c2
) doesn’t exist. When m is equal to 2, the

mean of the inverse Gamma distribution also doesn’t exist because there are
always values going to infinite according to the distribution.

Similarly, the average capacity over the keys

Ek[C(k)] =
1

|K|
∑
k∈K

C(k)

is equal to mc2, derived from the mean of the Gamma distribution in Proposition
2 (see Note 3).

(a) Probability density function (b) Cumulative distribution function

Fig. 2. Distributions of the data complexity for m = 2, 4, 6, 8, 20.

3 In fact, the data complexity should be upper-bounded by the size of the codebook.
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(a) Probability density function (b) Cumulative distribution function

Fig. 3. Distributions of the capacity for m = 2, 4, 6, 8, 20.

Example 5. For clearer explanation, hereafter a simple example which quite
meets real situations in practical ciphers is used in our analysis. We take c2 as
2−40, which roughly equates the case in 15-round PRESENT, and take different
m as 2, 4, 6, 8, 20 respectively. In this example, the distribution functions of
data complexity are shown in Fig 2, and the distribution functions of capacity
are shown in Fig 3.

5 Evaluation of the Data Complexity

In practical attacks, Ek[ 1
C(k) ] and 1

Ek[C(k)] are highly related to the evaluation

of data complexity. Since Ek[ 1
C(k) ] is hard to estimate, the complexity is usually

measured by 1
Ek[C(k)] . In this section, we firstly propose a refined key equiv-

alent hypothesis for Ek[C(k)] (Sect. 5.1). With the exact description of data
complexity distributions, the difficulty of evaluating Ek[ 1

C(k) ] is overcome, and

a basic issue about the relation of average capacity and average data complex-
ity is studied (Sect. 5.2). We also extend Leander’s idea of exploiting median
data complexities [19] to multidimensional linear attacks (Sect. 5.3). Finally, all
measures are compared.

5.1 Adjusted Key Equivalence Hypothesis

In regard to the connection between the fixed-key capacity and the average ca-
pacity in a multidimensional linear system, the traditional key equivalence hy-
pothesis indicates that the fixed-key capacity does not deviate significantly from
its average value [14,18]. This key equivalence hypothesis can be interpreted as
follows: C(k) ≈ Ek[C(k)], for almost all keys k. As we have shown, the capacity
is actually Gamma distributed so that this hypothesis does not hold. Thus, two
questions arise: which value is suitable for the evaluation of the attack com-
plexity? Is that average value enough and correct? We start with the following
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conjecture to show that the average capacity is far from being able to represent
the majority of keys.

Conjecture 1. There are always less than half of the keys having a capacity
larger than the average capacity. That is, |{k∗ ∈ K|C(k∗) ≥ Ek[C(k)]}| < 1

2 |K|.
Hence, less than half of the right keys can be recovered with a data complexity
of λ

Ek[C(k)] , where K is the whole key space.

Table 1. The ratio of keys that have a capacity larger than the average capacity

m 2 4 6 8 20

ratio(%) 36.79% 40.6% 42.32% 43.35% 45.79%

This conjecture is illustrated in Table 1 with Example 5. With the increase
of m, the ratio of keys that have a capacity larger than the average capac-
ity approximates to 1

2 , but cannot equal 1
2 . This is because, for such a skew

Gamma distribution as in Proposition 2, the median value is always smaller
than the mean. It can be concluded that, using the number of cipher texts equal
to λ

Ek[C(k)] , more than half of the keys cannot be recovered successfully with

a reasonable probability. Thus, the average capacity is not enough to bring a
sound estimation of attack complexities for most keys, especially when m is not
large enough.

Since the capacity is highly dependent on the choice of the key, we would
like to determine the number of plaintext-ciphertext pairs needed so that the
multidimensional attack can succeed for a majority of keys. A natural way to
adjust the hypothesis is to consider the upper bound of data complexity for, e.g.
90%, of the keys, meaning that for these 90% keys the amount of data texts can
guarantee a successful attack with high probability, even for some of these keys
this data complexity is overestimated.

Hypothesis 6. (Adjusted Key Equivalence Hypothesis) If the capacity distri-
bution of an m-dimensional linear attack satisfies Proposition 2, then 90% of the
keys in the key space have a capacity no smaller than G−1(0.1), where G is the
cumulative distribution function of Γ (m2 , 2c

2). Using λ
G−1(0.1) data is enough for

recovering 90% of the keys in the key space.

5.2 On Average Data Complexity

Why the average data complexity is calculable? It is known that in
the classical single linear attacks considering linear hull effect, the average data
complexity is hard to derive and usually infinite because of the existence of zero
correlation. This difficulty now can be solved in the situation of m-dimensional
linear attacks, since the average value can be easily derived from the accurate
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distributions of data complexity, when m is larger than 2. We will now look at
the properties of capacity distributions to explain the reason why the average
data complexity is calculable in multidimensional attacks.

In the single linear setting, the keys with zero C(k) may make the average
complexity infinite, thus, this part of keys should be focused on. Here, we point
out that by taking multiple linear approximations simultaneously into consid-
eration instead of only one, the number of keys with zero capacity can be very
tiny so that the average complexity turns out to be computable.

We compare the ratio of keys bringing C(k) between zero and ε, where ε
is a fixed value very close to zero. From (b) of Fig 3, it is obvious that with
the increase of m, the ratio of keys with capacity going to zero decreases. This
ratio for several fixed ε is shown in Table 2. From Table 2 we can see that as the

Table 2. The ratio of keys with capacity close to zero for different m and ε

ε \m 2 4 6 8 20

10−16 5.5× 10−5 1.5× 10−9 2.77× 10−14 3.8× 10−19 6.95× 10−50

10−20 5.5× 10−9 1.5× 10−17 2.77× 10−26 3.8× 10−35 6.95× 10−90

10−25 5.5× 10−14 1.5× 10−27 2.77× 10−41 3.8× 10−55 6.95× 10−140

increase of m, the ratio of keys with capacity close to zero decreases dramatically.
This is because as the number of approximations grows, for each key there is
higher probability that at least one approximation brings a non-zero LP, so that
a non-zero capacity. Hence, for a fixed ε, the more base approximations are used,
the less keys exist that have infinite data complexity. When ε is small enough
and m has a reasonable size, this ratio can be negligible in the whole key space.
In this case it is sound to assume that there is no key causing a zero capacity,
so that the average data complexity is computable.

A difference between Ek[ 1
C(k)

] and 1
Ek[C(k)]

. The problem discussed here

was first pointed out in the context of linear hull effect by Murphy [22]. We
extend it to multidimensional linear attacks and make further investigation.

In some attack analysis, e.g. [10], the reduction in data complexity given
by multiple approximations is based on the assertion that the data complexity
N is proportional to 1

Ek[C(k)] . Like the effectiveness issue of linear hull effect

studied in [22], there is also a difference between 1
Ek[C(k)] and the actual average

data complexity. According to Jensen’s Inequality and the fact that reciprocal
of positive real numbers is a convex function, we have

Ek

[
1

C(k)

]
≥ 1

Ek[C(k)]
.
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Thus, the 1
Ek[C(k)] can only be used to give a lower bound to the average data

complexity.
Jensen’s Inequality gives a general comparison without considering the details

of the variables. When the distributions of both C(k) and 1
C(k) are known,

Ek[ 1
C(k) ] and 1

Ek[C(k)] can be derived as in Sect. 4. Their difference is formulated

as 1

mc2−2c2
− 1

mc2
= 2

m(m−2)c2
. Therefore, in fact the equality will never hold for

m larger than 2, i.e., Ek[ 1
C(k) ] is always larger than 1

Ek[C(k)] . The difference can

be ignored only when m is large enough. Fig. 4 shows the difference for m = 4
and m = 20. For small m the difference is much more non-negligible, and 1

Ek[C(k)]

Fig. 4. The difference between Ek[ 1
C(k)

] and 1
Ek[C(k)]

with c2 ranging from 2−60 to

2−40.

does not reflect the real average data complexity. As more approximations are
involved, the difference has a quicker trend to be small. For a fixed m, the smaller
is the average LP, the larger is the difference. That is, as c2 decreases, which is a
typical case since cryptanalysts always try to break as many rounds of the cipher
as possible, the difference between Ek[ 1

C(k) ] and 1
Ek[C(k)] turns to be huge.

5.3 On Median Data Complexity

Leander proposed a way to overcome the problem of infinite data complexities
for single linear attacks [19]. Namely, instead of studying the average complexity,

he studied the median complexities Ñ such that for half of the keys the data
complexity of an attack is less than or equal to Ñ . So far the usage of median
complexity in multidimensional linear attacks remains unsolved, which we will
discuss in this section. A general definition of Np is as follows, where Ñ = N1/2.

Definition 2. ([19, Definition 1]) Np is defined as the complexity such that the
probability that for a given key the attack complexity is lower than Np, is p.

Although Leander gave this general definition, he focused on the case of
N1/2 in single linear attacks. With the knowledge of accurate distributions of
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data complexity, we generalize Leander’s Theorem 2 in [19] not only under the
multidimensional linear model but also from N1/2 to Np.

Theorem 2. Assuming independent subkeys in an m-dimensional linear attack
using m base approximations with the i.i.d. LP that is Γ ( 1

2 , 2c
2), p percent of

the keys yield to a capacity of at least G−1(1 − p), where G is the cumulative
distribution function of Γ (m2 , 2c

2). Thus, the complexity of this m-dimensional

linear attack is less than λ
G−1(1−p) with the probability p.

Leander’s Theorem 2 is a special case of Theorem 2 taking m as 1 and p as
1
2 , when the noisy linear trails are ignored in the linear hull effect (If the noisy
trails are considered, the ratio of keys reduces by a factor of 2). If we explain
Leander’s Theorem 2 in our context, we use the fact that G−1(1/2) = 0.46c2,
where G is the cumulative distribution function of Γ ( 1

2 , 2c
2) (see [19] for more

details).

As illustrated in (b) of Fig 3, for the Y-axis at 1/2, the median capacity
increases with the increment of m. That is, when the LP of base approxima-
tions are i.i.d., the more approximations we use, the lower data complexity we
require for the same ratio of weak keys. Given a fixed capacity (so that a fixed
data complexity), the ratio of keys causing a larger capacity than the fixed one
increases when more base approximations are used. Thus, the ratio of weak keys
resulting in a data complexity lower than the fixed one also increases.

Considering Example 5 again, we take different p, and fix the same λ (as
1 w.l.o.g.) for each m. The highest data complexity required for different m-
dimensional linear attacks for p percent of keys is shown in Table 3.

Table 3. The highest data complexity for different m and different ratios of keys

m 2 4 6 8 20

log2(N1/3) 38.864 37.805 37.22 36.813 35.532

log2(N1/2) 39.529 38.253 37.581 37.123 35.727

log2(N2/3) 40.302 38.75 37.974 37.457 35.931

When the general median complexity Np is applied, there is such a question:
which p is more suitable for measuring and comparing the strength of a linear
attack. Obviously, it is meaningless to compare N1/3 and N2/3 directly. A natural

and simple way is to consider the value of
Np

p because the division of p can
unify the disparity for different Np to a reasonably great extent. For example, if
the attack complexity is lower than N1/3 with probability 1/3, then the attack
requires to be repeated 3 times for a sufficiently sound success rate. This should
be equivalently compared with the case that, let’s say, an attack with complexity
lower than N1/2 has to be repeated twice. By confirming the existence of the
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minimal
Np

p , we can evaluate different multidimensional linear attacks with the

value of minp
Np

p . The results are shown in Table 4.

Table 4. Comparison of the average data complexity, the median data complexity, the
reciprocal of average capacity, and minp

Np

p
.

m 2 4 6 8 20

log2(Ek[ 1
C(k)

]) ∞ 39 38 37.41 35.83

log2(N1/2) 39.529 38.253 37.581 37.123 35.727

log2( 1
Ek[C(k)]

) 39 38 37.41 37 35.68

log2(minp
Np

p
) 40.44 39.25 38.55 38.04 36.46

Moreover, comparing Ek[ 1
C(k) ],

1
Ek[C(k)] and the median complexity, we ob-

serve that the average complexity is always larger than the median one, and the
median complexity is always larger than the reciprocal of average capacity. As m
increases, the difference between these three values decreases. When m is large
enough, these values are approximately equal (see Table 4), since the Gamma
and Inverse Gamma distribution turn to be normal distributions.

6 Application to Cho’s Multidimensional Attack on
PRESENT

6.1 Cho’s Attack on 25-round PRESENT

The structure of PRESENT [7] makes it vulnerable for a multidimensional at-
tack: there are several strong one-dimensional approximations. The linear hull
of each such approximation with non-negligible correlations consists of several
equally strong single-bit trails, whose intermediate masks have Hamming weight
one. The average LP c2 of all such approximations are 22(−2r)L(r) [26], where
L(r) is the number of r-round trails in each approximation. The so far best re-
sult for PRESENT is proposed by Cho aiming to 25 rounds [10]. Nine 23-round
m-dimensional linear approximations are used simultaneously, and each of them
has the dimension m = 8 starting at one of the S-boxes Si, i = 5,9 or 13 and
ending at one of the S-boxes Sj , j = 5,6 or 7. They recover 16 bits of key in
the first round and 16 bits of key in the last round. Please refer to [10] for more
details of this attack. Cho proved that the average capacity is 2−52.77, and gave
the formula of data complexity as in [10]:

N = (
√
advantage · 4 ·M + 4(Φ−1(2Ps − 1))2)/C = λ/C (2)

where Φ is the cumulative distribution function of the normal distribution, Ps
is the success probability, C(p) is the capacity, M is the number of linear ap-
proximations used in the attack. In Equation (2), if the advantage is equal to a
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bits, then the right key candidate should be within the position of 2`−a, where
` is the number of targeted key bits. Cho chose the λ = 29.08 (advantage is 32
bits, M = 9 · (28 − 1), Ps = 0.95)4 , and estimated the average data complexity
about 261.85.

6.2 Our Investigation on Cho’s Attack

We give a simpler but close estimation on the capacity and data complexity
of Cho’s attack. The authors in [16] claimed that Cho observes in practical
experiments that the probability distribution of multidimensional linear approx-
imations varies a lot with the keys, while the capacity remains rather constant.
We have shown that the capacity also varies for different keys from theoretical
and experimental viewpoints.

In order to attack 25-round PRESENT, 23-round approximations are used,
thus r = 23. According to [26], L(23) = 367261713, thus c2 = 2−63.55. With
Proposition 2 and Proposition 3, the fixed-key capacity of 9 8-dimensional ap-

proximations is estimated to be Γ (9 · 28−1
2 , 2−62.55). Hence, the average ca-

pacity is 2−52.39. With the same λ as Cho, we obtain the data complexity

N = 29.08

C(k) ∼ Inv-Gamma(9 · 2
8−1
2 , 271.63). The average data complexity is 261.47.

This result is very close to the estimate in Cho’s attack, but easier to compute.

In the same way, we see that the capacity distribution which was used by Cho
in his key-recovery attack on 26-round PRESENT, is distributed approximately

as Γ (9 · 2
8−1
2 , 2−65.16). With the knowledge of distributions, we can derive the

exact number of weak keys corresponding to different attack scenarios. Using
Cho’s attack method by taking λ = 27.58 (advantage is 4 bits, Ps = 0.8), there
are now 2123.24 (3.7% in the whole key space) weak keys with capacity larger
than 2−54.92. That means, for 2123.24 keys out of 2128 keys, 26-round PRESENT
can be attacked using less than 262.5 plaintext/ciphertext pairs, with success
probability 0.8.

7 Conclusion and Further Work

In this paper, we deal with the multidimensional linear attacks using m base
approximations with i.i.d. correlations (linear potential). We focus more on the
case where the base linear approximations can be regarded as statistically in-
dependent. In this case, we point out that the capacity of multidimensional
linear approximations satisfies a Gamma distribution, which also leads to an
exact Inverse Gamma distribution for the data complexity. Both distributions
are parametrized by the dimension and the average linear potential of each
approximation. These theoretical results have been verified by experiments on
PRESENT. We establish an explicit connection between the fixed-key behaviour

4 This result is slightly different from [10], since Eq. (2) is slightly corrected in [16]
and our computation uses the corrected formula.
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and the average behaviour. Based on the distributions, several fundamental is-
sues are discussed in more detail. Multidimensional linear attacks not only ben-
efit from data complexity, but also offer more convenience for measuring the
average data complexity due to the fact that the ratio of keys with capacity
going to zero decreases with the increase of dimension. The relation of the me-
dian and average data complexity, as well as the inverse of average capacity is
derived. When the dimension is large enough, these three values are infinitely
close. We also propose a modified key equivalent hypothesis that is more suitable
for practical situations. Finally, the multidimensional linear attack on 25- and
26-round PRESENT is analyzed based on our theoretical result.

In future work, more complicated cases about the relations of LP distribu-
tions should be studied, which may bring more precise evaluation on multidi-
mensional attacks. The measure of

Np

p can be extended to single linear attacks.
Moreover, given the close relation between statistical saturation attacks and mul-
tidimensional linear attacks, our results may allow a clearer understanding for
the capacity of statistical saturation attacks, whose key-dependent performance
still lacks accurate measurement.
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A Appendix - Proof of Lemma 7

Lemma 7. For an m-dimensional linear approximation with the probability dis-
tribution pη(k) i.i.d. to the normal distribution N (2−m, σ2), η = 0,...,2m − 1,
the correlations ca(k) (a ∈ Fm2 , a 6= 0) of the involved 2m − 1 approximations
are identically distributed.

Proof. According to Lemma 1, for a 6= 0,

ca(k) =
∑
η∈Fm

2

(−1)a·ηpη(k)

=
∑
η∈Fm

2

(−1)a·η(pη(k)− 2−m + 2−m)
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=
∑
η∈Fm

2

(−1)a·η(pη(k)− 2−m) +
∑
η∈Fm

2

(−1)a·η2−m

As pη(k) are i.i.d. to the normal distribution N (2−m, σ2), pη(k)− 2−m are i.i.d.
to N (0, σ2). Thus, ∑

η∈Fm
2

(−1)a·η(pη(k)− 2−m) ∼ N (0, 2mσ2)

As
∑
η∈Fm

2
(−1)a·η2−m is equal to 0, ca(k) are identically distributed to the

normal distribution N (0, 2mσ2), where a ∈ Fm2 and a 6= 0.

B Appendix - Error Bound of Proposition 2

In Proposition 2, the binary random variables associated to the base approxi-
mations are statistically independent, for each fixed key. According to Piling-up
Lemma, the LP of combined approximations is equal to the multiplication of the
corresponding base LPs. Thus, the accurate capacity is the summation of LP of
all base and combined approximations (see Lemma 2):

C(k) = LP1(k)+· · ·+LPm(k)+LP1(k)×LP2(k)+· · ·+LP1(k)×LP2(k)×· · ·×LPm(k)

=

m∏
i=1

(LPi(k) + 1)− 1,

while our approximated capacity in Proposition 2 is
∑m
i=1 LPi(k). Their differ-

ence is
m∏
i=1

(LPi(k) + 1)− 1−
m∑
i=1

LPi(k)

< (

∑m
i=1 LPi(k) +m

m
)m − 1−

m∑
i=1

LPi(k)

In practical attacks, LPi(k)� 1 is natural and reasonable. Denote
∑m
i=1 LPi(k)

as A, and A� 1. The above formula can be written as

(
A+m

m
)m − 1−A = (

A

m
+ 1)m − 1−A = 1 +

m∑
i=1

Cim
mi

Ai − 1−A

=

m∑
i=2

Cim
mi

Ai <

m∑
i=2

Ai < (m− 1)A2

In our case, A is a random variable distributed to Γ (m2 , 2c
2). The expected

value of A, E(A), is mc2. The variance of A, D(A), is m/2×(2c2)2. The expected
value of A2, E(A2), is equal to D(A) + [E(A)]2, i.e.,

E(A2) = D(A) + [E(A)]2
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= m(m+ 2)(c2)2

Thus, the expected value of the error is less than (m−1)m(m+2)(c2)2, which is
reasonably smaller than the expected value of our approximated capacity, mc2.
As we target towards attacking more and more rounds of the cipher, in average
c2 tends to be close to the inverse of the message space, for example, 2−64,
meaning that the error is negligible in this case.
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