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Currently, it is believed in the literature that unconditionally secure bit commitment is impossible 

in non-relativistic quantum cryptography while only a weaker notion of bit commitment with 

finite commitment time is achievable in relativistic quantum setting. Moreover, relativistic 

classical bit commitment protocols allow arbitrary long commitment time but such protocols are 

not practically feasible; either because of multiple rounds of communication that result in 

exponential increase in communication complexity or due to asymptotic nature of security 

argument. The impossibility of practically feasible standard bit commitment leaves an obvious 

skepticism on the completeness of Hilbert space quantum cryptography and its claims of 

unconditional security. Contrary to the previously proposed results, we demonstrate here that an 

information-theoretic standard bit commitment scheme can be devised by using rules of purely 

non-relativistic quantum mechanics only; neither additional resources from theory of relativity 

nor multiple rounds of communications are required. The proposed bit commitment scheme can 

be applied efficiently with existing quantum technologies without long term quantum memory; 

quantum entanglement is required only for time t+δ where t is the communication time between 

the committer and receiver while δ << t is the processing time at laboratory.     

 

it commitment is one of the most important cryptographic primitive which has a number 

of applications in modern cryptography, communication, or distributed computing in 

general. For example, bit commitment is an essential building block for implementing a 

wide range of other tasks such as zero-knowledge proofs, coin tossing
1
, digital signature

2
, 

oblivious transfer
3
, and two-party secure computation

4,5
.   

A bit commitment is a task between two mistrustful parties, a committer and a receiver. 

In general, committer commits to a specific bit by giving some information to the receiver and 

then unveils his/her commitment at some time later. Standard bit commitment is said to be 

information-theoretically secure if it fulfils following three security requirements: (i) Hiding: 

receiver should not be able to extract the committed bit value during the scheme. (ii) Binding: 

when committer reveals, it must be possible for receiver to know the genuine bit value with 

absolute guarantee while committer should not be able to reveal a bit different from the 

committed one. (iii) Indefinite commitment time: the scheme should sustain information-

theoretic security for arbitrarily long time after commitment made by committer.   

In non-relativistic classical cryptography, secure bit commitment scheme based on 

unproven computational hardness is impossible against quantum technologies
6
. However, 

standard bit commitment is possible in relativistic classical cryptography
7,8

 with assurance of 

hiding, binding, and indefinite commitment time. Unfortunately, such relativistic classical 

protocols are not practically feasible either because of multiple rounds with exponential increase 

in communication
7
 or due to asymptotic nature of security argument

8
. Recently, Lunghi et al also 

proposed a relativistic classical multi-round bit commitment scheme
9
 with assurance of both 

B
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hiding and binding and commitment time longer than communication time between the locations 

of the agents. However, maximum commitment time allowed by their scheme is 212ms only.  

On the other hand, in non-relativistic quantum cryptography, currently it is believed in 

the literature that secure bit commitment is impossible against Mayers and Lo-Chau quantum 

attacks
10-13

 if committer and receiver do not pre-share any data. However, in relativistic quantum 

cryptographic settings, a secure but weaker notion of bit commitment protocols
 14-18

 have been 

presented with commitment time equivalent to the communication time between committer and 

one of the receiver’s agents. Moreover, relativistic quantum bit commitment protocol
15

 has been 

experimentally demonstrated, using quantum communication and special relativity, with 

commitment times of 15ms
19

 and 30µs
20

, respectively.  

Impossibility of standard bit commitment, with arbitrarily long commitment time, leaves 

an obvious question on the completeness of quantum information theory; Can quantum 

mechanics allow same standards for bit commitment while relying on Hilbert space formalism 

only as classical cryptography does with computational hardness or exponentially rise in 

communication complexity? Here we demonstrate that methods of purely non-relativistic 

quantum mechanics, EPR type quantum correlations
21

 in the form of teleportation
22-24

, are 

sufficient to guarantee unconditionally secure standard bit commitment. First we propose a non-

relativistic quantum bit commitment protocol and then show that it assures hiding, binding and 

arbitrarily long commitment time without requiring extra powers from theory of relativity as 

relativistic quantum bit commitment protocols
14-18

 do or multiple rounds of communications as 

relativistic classical bit commitment protocols
7-9

 require. Proposed scheme supersedes our earlier 

bit commitment scheme where commitment time was equivalent to the communication time 

between committer and one of the receiver’s agents
18

.   

Our proposed scheme is a two-round bit commitment scheme where committer commits 

in the first round and then confirms his/her commitment in the second round. The scheme offers 

indefinite commitment time by allowing receiver to extract non-locally correlated measurement 

outcomes during the scheme which can be stored for arbitrarily long time. As a result, the bit 

commitment scheme can be applied efficiently with existing quantum technologies without long 

term quantum memory; committer and receiver have no pre-shared quantum/classical data and 

quantum entanglement is required only for time t+δ where t is the communication time between 

the committer and receiver while δ << t is the processing time at laboratory.  

However, apart from proposed standard bit commitment in this paper and possibilities of 

other unconditionally secure cryptographic tasks in purely Hilbert space quantum formalism
25-27

, 

extra bounds from theory of relativity can be useful for multi-party tasks
28,29

 and position-based 

quantum cryptography
30-39

.   

 

Standard quantum bit commitment scheme 

Suppose committer Bob secretly prepares and shares an EPR pair βααβ HH ⊗∈Φ  with 

receiver Alice where βααβ HHH ⊗=  is four dimensional Hilbert space spanned by Bell basis

},,,{ 11100100 ΦΦΦΦ∈Φαβ . Here }1,0{, ∈βα
 
and we write four Bell states as  

2/)1100(0 ±=Φα  
and 2/)1001(1 ±=Φα . In other words, Bell states 0αΦ  

correspond to classical bit 0=β  while those of 1αΦ
 correspond to classical bit 1=β . That is, 

Bob commits him to the bit 0=β
 
or 1=β  by sharing EPR pair 0αΦ  or 1αΦ

 
with Alice. 
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At some later time that comes from the scheme, Bob applies unitary transformations 
βασσ xz  on his retained qubit and confirms his commitment by sending retained qubit to Alice. 

Detailed protocol is outlined below: 

1. Pre-commitment: Bob commits him to a bit }1,0{∈β  by sending entangled half of his secret 

EPR pair βααβ HH ⊗∈Φ
 
to Alice. Alice prepares her secret EPR pair βαβα ′′′′ ⊗∈Φ HH , 

applies Bell operator
24

 on αα ′⊗ HH , and stores classical result 21aa . Simultaneously, Alice 

applies Bell operator on β ′⊗ HH0
 
, here 0H∈ψ

 
is her secret single qubit system, and stores 

another classical result 21aa ′′ . 

2. Confirmation: Bob applies unitary operator βασσ xz  on her retained half, now transformed to 

ψσψ τ=′  , and confirms his commitment by sending state ψσσσψ τβα
xz=′

 
back to Alice. 

Alice measures ψ ′
 
, measurement basis are known only to her, and stores classical outcome. 

3. Opening: After arbitrarily long commitment time, Bob reveals his commitment by announcing 

two classical bits αβ . Alice verifies whether Bob’s announcement is consistent with non-locally 

correlated shares 21aa
 
, 21aa ′′

 
and hence exact teleportation encoding 

τσ or not. If quantum non-

local correlations are satisfied, Alice validates commitment genuine otherwise aborts.  

 

Security analysis 
The proposed scheme attains unconditional security through combination of quantum non-local 

correlations generated by repetitive action of Bell operators by Alice. In the pre-commitment 

phase, distributed quantum system can be expressed as 

                                                   
∑
=

′′′′ Φ⊗Φ=Φ⊗Φ
4

12

1

i
ii ββααβααβ                                            (1) 

where αα ′Φ , and ββ ′Φ  are local unitary equivalent to Bell basis depending on βααβ ′′Φ⊗Φ . 

Bell operator by Alice on αα ′Φ , shares an EPR channel ββ ′Φ  between Alice and Bob whose 

exact identity remains unknown to both parties. Now the shared system among Alice and Bob 

reduces to and can be expressed as 

                                                       

ψσψ τ
βαββ i

i
i
⊗Φ=Φ⊗ ∑

=
′′′′′

4

12

1

                                            

 (2) 

where βα ′′′′Φ  is local unitary equivalent to Bell basis depending on ββ ′Φ . After Bell operator 

on βα ′′′′Φ
 
again, Alice gets another classical 2-bit string 21aa ′′

 
while Bob’s half transforms to 

ψσψ τ=′ . Here Pauli encoding τσ
 
is non-locally correlated with classical strings 21aa

 
and 

21aa ′′
 
in possession of Alice as well as initial EPR system βααβ ′′Φ⊗Φ . We show here that 

hiding is guaranteed to Bob by following theorem 1 while binding is assured by Alice through 

theorem 2 and 3 respectively.  

 

Hiding: Suppose Alice tries to cheat by exploiting Mayers and Lo-Chau quantum attacks
10-13

 

and delays her actions until Bob confirms his commitment. In that case, Bob will be sending 



4 

 

αβ
βασσ Φxz

 
to Alice straightforward. Can Alice find exact identity of }1,0{∈β

 
prior to Bob’s 

opening? Interestingly answer is No by following theorem 1. 

 

Theorem 1: Suppose two distant parties Alice and Bob share a bipartite quantum system 

BA HH ⊗∈Φαβ  
;
 

}1,0{∈αβ  whose exact identity is known only to Bob. If Bob applies Pauli 

encoding },,,{ zxzxxz I σσσσσσ βα ∈
 
on retained half BH

 
and sends to Alice, the set 

},{ αβ
βασσ Φxz

 
remains arbitrary to Alice unless Bob reveals identity of αβ .   

Proof: Both Bell states },,,{ 11100100 ΦΦΦΦ∈Φαβ
 
and Pauli transformations 

},,,{ zxzxxz I σσσσσσ βα ∈
 
form complete orthonormal basis set for Hilbert space BA HH ⊗

 
and 

some canonical inner product space with inner product )( †
jiTr σσ

 
respectively. If one-to-one 

mapping of these two sets is followed, the transformation αβ
βασσ Φxz

 

always maps to a unique 

Bell state 00Φ ;  

                                                                     
00Φ=Φαβ

βασσ xz                                                         (3) 

That is, regardless of the initially shared Bell state αβΦ or committed bit β , Bell state 

measurement outcome on Alice’s site is always 00Φ . Hence, the exact identity of αβΦ
 
can 

only be known to Alice if and only if Bob reveals identity of αβ .  

 

Binding: Can Bob change his commitment after confirmation of his commitment? No. We 

would like to highlight here that even though Bob shares an EPR pair αβΦ  with Alice to make 

his initial commitment, his commitment gets mature only when Bob replies ψσσσψ τβα
xz=′ ; 

Alice teleports ψ
 
to Bob, Bob applies βασσ xz on his retained half and returns to Alice. That is, 

Bob have a choice and can change his commitment (EPR pair) during the time laps of pre-

commitment phase by applying specific Pauli transformations on retained half and it cannot be 

considered as successful cheating. However, after confirmation by returning ψσσσψ τβα
xz=′

 
to Alice, it is impossible for Bob to alter her commitment by following theorems 2 and 3.  

 

Theorem 2: Suppose two distant parties Alice and Bob secretly prepare bipartite quantum 

systems BABA HHH ′′′′ ⊗=,  and BABA HHH ⊗=,  respectively and Bob sends his entangled half 

AH
 
to Alice. If Alice applies Bell operator AU

 
on AAAA HHH ′′ ⊗=, , initial system BABA HH ,, ⊗′′  

transforms to BBAA HH ′′ ⊗ ,, . Exact identity of entangled system BBBB HHH ′′ ⊗=,  
remains 

unknown to both Alice and Bob unless they communicate and reveal their secret information.  

Proof: To restrict for binary measurement outcomes, we take both systems BABA HHH ′′′′ ⊗=,
 

and BABA HHH ⊗=,
 
of Alice and Bob respectively as 2-qubit maximally entangled states
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22
CC ⊗∈Φ ′′βα  and

22
CC ⊗∈Φαβ  

with Bell basis 2/)1100(00 +=Φ ,

2/)1001(01 +=Φ , 2/)1100(10 −=Φ  , and 2/)1001(11 −=Φ .  

From equation (1), it can be seen that regardless of the initially shared EPR system 

βααβ ′′Φ⊗Φ
 

, four classical outcomes }11,10,01,00{21 ∈aa
 
of Alice’s Bell operator on αα ′Φ  

and hence one of the four Bell states },,,{ 11100100 ΦΦΦΦ∈Φ ′ββ
 
swapped between Alice 

and Bob are equally likely, each with probability of ¼. Hence, the exact identity of ββ ′Φ
 
can 

only be known to someone who knows all three shares 21aa
 
and Bell states αβΦ

 
and βα ′′Φ . In 

other words, exact identity of entangled system BB HH ′′ ⊗∈Φ ββ  
remains unknown to both 

Alice and Bob unless they communicate and reveal their secret information. 

 

Theorem 3: Suppose two distant parties Alice and Bob share an EPR pair ββ ′Φ
 
whose exact 

identity is unknown to both Alice and Bob. If Alice teleports a quantum state ψ
 
to Bob, he gets 

two classical bits }11,10,01,00{21 ∈′′aa
 
while Bob’s entangled half becomes ψσψ τ=′ . The Pauli 

encoding },,,{ xzzxI σσσσσ τ ∈
 
remains unknown to Bob unless he knows both 21aa ′′

 
and exact 

Bell state ββ ′Φ . Similarly, Pauli encoding },,,{ xzzxI σσσσσ τ ∈
 
remains unknown to Alice 

unless she knows exact Bell state ββ ′Φ . 

Proof: From equation (2), it can be seen that regardless of the initially shared EPR system 

ββψ ′Φ⊗
 

, four classical outcomes }11,10,01,00{21 ∈′′aa
 
of Alice’s Bell operator on βα ′′′′Φ  and 

hence one of the four possible states ψστ

 

at Bob’s side are equally likely, each with 

probability of ¼. Hence, Pauli encoding τσ
 
can only be known to someone who knows both 

21aa ′′ and Bell state ββ ′Φ . 

 From theorems 2 and 3, it can be concluded that for each value of Alice’s Bell state 

measurement result 21aa , there is a unique swapped Bell state ββ ′Φ
 
and hence unique 

teleportation encoding 
τσ  corresponding to Bell state measurement result of Alice 21aa ′′ . Hence, 

by giving ψσσσψ τβα
xz=′  back to Alice, Bob cannot simulate with ψ ′ by change identity of 

αβ
 
on his will; a perfect binding for committed bit }1,0{∈β . 

 

Quantum bit commitment over noisy channels  

Quantum information is very fragile to noisy channels in nature. To avoid loses and hence 

dispute between committer and receiver, in the pre-commitment phase, maximally entangled pair 

for Bob’s commitment can be generated from Werner states or any supply of other entangled 

mixed states with entanglement purification procedure
40-42

 while keeping the identity of EPR pair 

secret from receiver Alice.  For example, Bob generates secretly two copies of same EPR pair 

and sends entangled half of each pair to Alice. Both Alice and Bob use entanglement purification 

procedure
40-42

 but only Alice announces her measurement result. Bob verifies whether remaining 
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pair is pure or not without opening his measurement result. If remaining EPR pair is pure and 

verified, he announces Alice to proceed bit commitment scheme otherwise repeats the 

purification. 

 

Discussion: 

We propose here a two-round quantum commitment scheme where committer commits to a 

specific bit by sharing an EPR pair with receiver in the first round. In the second round, 

committer applies unitary transformations, depending upon the identity of committed EPR pair, 

on his/her retained half and confirms his/her commitment by sending retained qubit to the 

receiver. We showed that proposed scheme guarantees perfect hiding to committer, perfect 

binding to receiver, and arbitrarily long commitment time without quantum memory. 

Proposed scheme is purely non-relativistic quantum mechanical, built over Hibert space 

unitary transformations and fulfills promises of unconditional security relying on methods of 

quantum mechanics only. (i) The scheme does not require any classical communication; Alice 

and Bob use only quantum channels for communication between them. (ii) The scheme does not 

require extra powers from relativity such as no-communication theorem; there is no constraint on 

time and space and neither party requires distributed agents at different points of Minkowski 

space time. (iii) Unlike previously proposed relativistic bit commitment schemes where 

commitment time is tried to enhance either through multiple rounds of communications or by 

enhancing communication time by taking large distance between committer and receiver, our 

scheme gives arbitrarily long commitment time by using only two round of communication 

while distance between committer and receiver can be as small as possible.  

Proposed scheme is unconditionally secure from both classical and quantum attacks. 

Since scheme does not require any classical communication between committer and receiver, 

hence is secure from classical attacks by definition. As for as quantum attacks are concerned, 

EPR type quantum non-local correlations guarantee that the scheme is perfectly concealed and 

receiver cannot predict/extract committed bit before the opening from committer. Similarly, 

multiple actions of Bell operator guarantee perfect binding to receiver that committer cannot 

change her committed bit after his/her confirmation. 

The proposed scheme is practical and can be efficiently employed for arbitrarily long 

commitment time with existing quantum technologies without requiring long term quantum 

memories or maintaining coherence over distant quantum channels. Repetitive measurements by 

Alice allow her to store measurement outcomes that are non-locally correlated with initially 

prepared entangled states. Entanglement is required only for time t+δ where t is the 

communication time between the committer and receiver while δ << t is the processing time at 

their laboratories. 

 In conclusion, possibilities of unconditionally secure standard bit commitment in purely 

Hilbert space quantum formalism would also allow implementing oblivious transfer, ideal coin 

tossing, quantum digital signatures, and two-sided two-party secure computations in general. 

These possibilities of pioneering tasks in cryptography, communication, and distributed 

computing would then reflect that methods of Hilbert space quantum mechanics are sufficient for 

unconditional security without requiring bounds of Minkowski space time and communication 

complexity. 
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