
A Framework for Outsourcing of Secure Computation

(Revised Version)?

Thomas P. Jakobsen, Jesper Buus Nielsen, and Claudio Orlandi

Aarhus University, Denmark, {tpj,jbn,orlandi}@cs.au.dk

Abstract We study the problem of how to efficiently outsource a sensitive computation on secret
inputs to a number of untrusted workers, under the assumption that at least one worker is honest.

In our setting there are a number of clients C1, . . . , Cn with inputs x1, . . . , xn. The clients want to
delegate a secure computation of f(x1, . . . , xn) to a set of untrusted workers W1, . . . ,Wm. We want do
so in such a way that as long as there is at least one honest worker (and everyone else might be actively
corrupted) the following holds:

1. the privacy of the inputs is preserved;

2. the output of the computation is correct (in particular workers cannot change the inputs of honest
clients).

We propose a solution where the clients’ work is minimal and the interaction pattern simple (one
message to upload inputs, one to receive results), while at the same time reducing the overhead for the
workers to a minimum. Our solution is generic and can be instantiated with any underlying reactive
MPC protocol where linear operations are “for free”. In contrast previous solutions were less generic
and could only be instantiated for specific numbers of clients/workers.

1 Introduction

In this paper we will use the term secure multiparty computation (or MPC for short) to refer to any problem
where a number of parties wants to compute a function f on inputs x1, . . . , xn while guaranteeing interesting
security properties such as the privacy of the inputs and the correctness of the outputs. In particular we
will consider the setting where n parties (the clients) provide inputs and receive outputs, in the presence of
m additional parties (the workers) who act as helpers to reduce the computational burden on the clients.
Clients do not trust each other, and they wish to trust the workers as little as they have to.

A notable example is the case of verifiable delegation of computation [GGP10,PHGR13,BSCG+13,BFR13]
where one (or more) computationally bounded clients want to perform a computation on an untrusted cloud
provider, and therefore wish to perform this computation in a way that the work required to verify the
correctness of the result is much less than the work needed to compute the function itself, while also protecting
the privacy of the inputs. Traditionally, the problem of verifiable delegation of computation is studied in the
presence of a single untrusted worker. However in this case the only known way of protecting the privacy of
the inputs is by using fully-homomorphic encryption schemes. This introduces a huge computational overhead
for the worker. If one is interested only in verifying the correctness of the output, recent studies show that
using SNARKs (succinct non-interactive arguments of knowledge) can be made much more practical than
expected a few years ago [PHGR13,BSCG+13].

Another important application is large-scale secure computation, where one wants to run a secure com-
putation on thousands or millions of secure inputs. In this setting a (significant) number of clients C1, . . . , Cn
with inputs x1, . . . , xn, want to securely evaluate f(x1, . . . , xn). However running any existing MPC proto-
cols for general functionalities between all the clients would require that all parties are online at the same
time [HLP11], and the communication overhead of every practical protocol for dishonest majority scales
quadratically with the number of parties. Instead, the clients can delegate their computation to a (small)

? The protocol described in the proceeding version of this paper is susceptible to a selective failure attack which is
fixed in this version. We thank Berry Schoenmakers for pointing out the problem.

set of untrusted workers W1, . . . ,Wm. This is a relevant scenario in practice, and many real-world uses of se-
cure computation follow this paradigm, e.g., the Danish sugar beet auction [BCD+09], Sharemind [BLW08],
MEVAL [CMF+14], etc. A limitation of these solutions is that they require a majority of the workers to
be honest and only guarantee security against passive corruptions (in particular, a dishonest worker can
arbitrarily change the input of an honest client).

In this work instead we want to consider solutions which are secure when all but one of the workers are
corrupted: this allows to use less workers to achieve the same security, which might be important in practice
as the main cost of the system (probably) will be the price to rent computing time on the workers. Since we
want to tolerate that all but one of the workers can be corrupted, we cannot use a protocol that guarantees
termination. In fact, if we want to tolerate that all but one worker might be corrupted, it must provably
be the case that a single worker can deadlock the system. This, however, can be detected and then other
workers can be rented next time. However, our protocol guarantees termination whenever all workers are
honest, independently of how many clients are corrupted.

There is a lot of prior work looking at this and related problems, both in terms of concrete [KMR11,
KMR12,PTK13,CLT14,KMRS14] and asymptotic efficiency [Gen09,BV11,LTV12,GHRW14]. We will com-
pare to related work of the first kind after presenting our protocol. The latter kind of work heavily relies
on advanced cryptographic tools such as fully-homomorphic encryption: while this “swiss-army knife” of
cryptography allows for wonderful and surprising results in terms of feasibility and asymptotic complexity,
it introduces a huge computational overhead for the workers and therefore it is worth studying alternative
solutions that can be used in practice.

2 Technical Overview

We want to make sure that the work performed by the clients is minimal – in particular independent of
the size of the function to be computed. As already discussed, this is possible (and with optimal asymptotic
efficiency) using fully-homomorphic encryption. However this will incur a huge computational overhead for
the workers. So, following the approach of [KMR11,KMR12,PTK13,CLT14] we seek for a protocol where the
client has to trust that at least one of the workers is honest. Moreover, instead of designing a specific protocol
to solve the problem, we propose a more generic approach to this problem, which can be instantiated using
different building blocks depending on the particular application. This gives more flexibility and allows for
a greater range of applications (for instance, solutions based on garbled circuits are typically limited to two
parties).

Our main building block will be a protocol for reactive secure computation (that is, a protocol where it
is possible to open intermediate values) and where linear operations are for free. Many protocols of this kind
are known (e.g., [DO10,BDOZ11,NNOB12,DPSZ12,DKL+13])1.

It is clear that the overall efficiency will be highly impacted by the efficiency of the underlying protocol,
and in this paper we do not try to improve on this (but there is plenty of ongoing research on the subject).
Instead, we consider only the (somewhat orthogonal) problem of how to let clients provide inputs to the
workers in such a way that the clients’ work is minimal and the overhead induced on the underlying MPC
protocol is as limited as possible. We believe this modular approach is useful, both from a conceptual point
of view, and also from a practical point of view e.g., one can imagine that improvements on the underlying
MPC protocols for the workers would not require one to update the software on the client side.

We describe now the main idea of our framework. It will be instructive to think of a simple setting
where one client, running on a computationally limited device (e.g., a mobile phone) wants to delegate a
computation to two workers (e.g., two cloud providers) which are not fully trusted. The client has input x
and the workers have no input. At the end of the protocol the client is supposed to learn z = f(x) for some
public function f (later on, in the multiclient setting, we will also ask that each client learns only this output
and nothing else about the inputs of the other parties). The workers should not learn anything.

1 Also Yao’s protocol can be made to fit this framework using standard techniques [HL10].

2

2.1 A Simple but Inefficient Solution

There is a very simple solution to prevent the workers from learning the input/output of the computation,
namely we can let the client additively secret share its inputs between the two workers W1,W2: the client
C picks random x1, x2 such that x1 + x2 = x and sends xi to Wi. In addition, to make sure neither W1,W2

learn the output of the function, we let C send one-time pads r1, r2 to W1,W2.
Now W1,W2 run their favorite secure computation protocol (which guarantees security against actively

corrupted parties) to securely evaluate the function

g((x1, r1), (x2, r2)) = f(x1 + x2) + r1 + r2

and send the output to C1 who can reconstruct the output by removing the pads. Note that under the
assumption that linear operations are “for free” securely evaluating g is as efficient as securely evaluating f .

This solution only works if at most one of W1,W2 is passively corrupted, as a malicious adversary can
input a share x̃i = xi + εx to the secure computation, thus being able to add an error ε to the client’s input
(or r̃i = ri + εr, thus adding an error to the output). This can be fixed by having the client send a (shared)
MAC together with his shares. That is, now the client picks a key k, computes a MAC t = Tag(k, (x, r)) and
secret shares the MAC between the two workers, who now run an MPC protocol for the function:

g′((x1, t1, k1, r1), (x2, t2, k2, r2))

:=

{
f(x, y) + r, if Ver(t, k, (x, r)) = 1

abort, else

where x = x1+x2, r = r1+r2, t = t1+t2 and k = k1+k2. Unfortunately this requires that the MAC is verified
by the secure computation protocol, and this will increase the circuit size significantly. Even using simple,
information theoretic MACs might add a significant number of multiplications to the workers’ computation.
An additional problem is that a corrupted worker could change its share of the key k, so a plain MAC is not
sufficient.

2.2 Our Solution

The right MAC scheme. Our solution relies on the following observation: in the previous protocol MACs
and keys are only required to check that none of the workers lie about the client’s inputs. After those values
are given as input to the secure computation protocol, they are essentially “committed” and cannot be
changed anymore. Therefore, at this point the key can simply be revealed, which together with a careful
choice of MAC scheme will turn the MAC verification into a linear computation which does not have any
significant impact on the efficiency of the overall protocol. In particular, the MAC needs to satisfy two
properties:

1. The MAC should be a linear function of the message i.e., the function t = Tag(k,x)2 should be of the
form

t = h0(k) +
∑̀
i=1

hi(k) · xi

for some (arbitrary) function h0, . . . , h` (since this function can be computed by the workers “in public”
on the revealed key k).

2. The MAC should be secure against algebraic manipulation: in the overall protocol, any corrupted worker
can add arbitrary errors to the key, the tag and the message i.e., in the presence of corrupted workers
the actual MAC verification will be

t̃
?
= Tag(k̃, x̃)

2 Here x = (x1, . . . , x`) represents the vector to be MAC’ed e.g., x = (x, r) in the description so far

3

where t̃ = t+ εt, k̃ = k+ εk and x̃ = x+ εx for adversarially chosen (εt, εk, εx). However note that, since
there is at least one honest worker (and the clients secret share the tag and key), the corrupted workers
do not get to see t and k before choosing εt and εk (on the other hand, we make no assumption that the
adversary does not know x). All in all, we need a MAC scheme with the following security property: the
adversary chooses messages x and errors (εt, εk, εx), then a random key k is sampled and the adversary
wins only if

Tag(k,x) + εt = Tag(k + εk,x+ εx) . (1)

This is exactly the notion of an algebraic manipulation detection code of [CDF+08], and in the same
paper the following (optimal) construction is given:

t = Tag(k,x) = k`+2 +
∑̀
i=1

ki · xi ,

where the computation is performed in a large field F. In a nutshell, if (εk, εt, εx) 6= (0, 0,0) then the
equality in (1) can be rewritten as p(k) = 0 for a non-zero polynomial p of degree at most ` + 1, and
since k is chosen at random the equality holds with probability at most (`+1)|F|−1. Note that this holds
for all x (even adversarially chosen), and therefore implies that no selective-failure attacks are present
(i.e., attacks where the validity of the MAC check depends on the inputs of the clients). In particular,
if εk 6= 0 then p(k) is a polynomial of degree exactly `+ 1, independently of the value of x. Note finally
that computing the MAC only involves linear operation in x, as required by Property 1.

High level description of the protocol. We are now ready to provide a high level description of our
generic framework for outsourcing of computation.

Client Input Phase: Let F be a sufficiently large finite field, which is efficient to compute in securely using
the underlying MPC protocol.3 Assume that all inputs are from F. (If not, simply parse the input as
several elements from F and continue as follows for each element.) Each client Cj , on input xj ∈ F samples
a random mask rj ∈ F, defines xj = (xj , rj), picks a random key kj ∈ F and computes tj = Tag(kj ,xj)
as described above. Now every client computes an additive secret sharing (over F) of (tj , kj ,xj) and
sends a share to each worker Wi.

Workers Computation Phase: All workers {Wi} input the shares they receive to the MPC protocol, then
they “open” the keys kj ’s. Once kj are opened they check that the tags are correct, i.e., they compute
(and open) the value

β = s ·

∑
j

(Tag(kj ,xj)− tj)

 ,

where s is a secret random field element. If the output is not 0, the workers output abort. Else, the
workers compute and open the “encrypted outputs”

cj = f(x1, . . . , xn) + rj ;

Client Output Phase: Finally each worker Wi sends the output cj to each client client Cj . If client Cj
receives the same output from all workers, he outputs the unmasked value zj = cj − rj , else output
abort.

3 By F being efficient to compute in securely we mean that taking a multiplication between a secret value and a
public value should be very efficient. As an example, if the underlying protocol is Yao garbled circuits, we can take
F = GF (2κ). Then multiplication with a public value will just be taking XOR of some of the bits of the secret
value, which is essentially for free using the free XOR technique [KS08]: no communication and no additional data
storage. If the underlying protocol is based on secret sharing or encrypted data over some field, then F can be
taken to be that field.

4

The protocol is secure for the client as long as at most n − 1 workers are (actively) corrupted: in a
nutshell, a corrupted Wi cannot change its share without breaking the security of the MAC scheme. Of
course, a corrupted worker can make the protocol abort and prevent termination, but this is unavoidable in
the dishonest majority setting.4 Note that revealing the key of the MAC has no impact on the security, as
by that time a corrupted worker has already committed to his share of the input and the MAC. Moreover,
no (selective failure) attacks can be mounted: using a wrong key as input to the protocol always makes the
protocol abort: when β 6= 0, then β is uniformly random thanks to s; moreover, if there is at least one j such
that Tag(kj ,xj) 6= tj , then β 6= 0 i.e., different MAC errors for honest clients do not cancel out, since the
MACs are computed using independently random keys.

Finally, as the output is masked, the workers do not learn any information about it. Note that a corrupted
worker might try to modify the output value by sending c̃j 6= cj to the client during the output phase – this
could be solved by adding a MAC to the output, but in fact a simpler way exists, namely having the client
simply check that all the outputs he receives are the same (remember, at least one of the Wi’s is honest). Of
course a malicious worker can then prevent the client from getting the output, but this is possible anyway as
we assume that all but one worker might be corrupted, in which case it is impossible to guarantee termination
of the secure multiparty computation protocol run between the workers. Hence a malicious worker might
just make the secure computation deadlock, which would have the same effect of the client not getting its
output.

In terms of efficiency, the Workers Computation Phase requires only (on top of the complexity of
securely computing f) a few openings and a single multiplication used to randomize the MAC checks.

The framework can be used in several settings, choosing appropriate number of clients and workers.
As discussed earlier, the single-client/many-workers setting can be used for private and verifiable delega-
tion of computation. This is to be compared with single-server verifiable delegation of computation proto-
cols [PHGR13,BSCG+13], which is getting extremely close to practice if one is only interested in correctness
of the result, but requires the use of FHE to achieve input privacy. In addition, current solutions do not ex-
tend to the case of multiple clients, while our solutions naturally generalizes. The multiple-client/few-workers
setting can be used for large-scale secure computation.

Finally, we note that while it is clear that it is not possible to achieve any privacy if all workers are
corrupted, it is possible to achieve (a flavour of) correctness by combining the techniques of this paper with
those in [BDO14].

2.3 Extensions

In Section 4 we informally describe some extensions of our framework.

Dealing With Malicious Clients. As we will show in Section 4.1, using our framework we can even
guarantee termination in the relevant setting where a malicious client is trying to make the computation
abort by using an invalid input. This is particularly relevant when the numbers of clients is much bigger than
the number of workers, and it therefore is undesirable that a single, corrupted client can make the whole
computation abort. Think, e.g., of an electronic election: a single invalid vote should not prevent all honest
parties from reaching a consensus, instead it should be counted as a void vote. This of course introduces new
challenges, as a malicious worker should not be able to claim that a client is corrupted and therefore replace
the input of a honest party.

The main idea behind our solution is the following: If multiple clients are present, we check that all of the
MACs are valid using a single multiplication. If β 6= 0 we recursively split the MACs in half and we search for
the incorrect MACs. This takes log n multiplications times the number of incorrect MACs. Once we identify
the set of incorrect MACs, we need to decide whether this is due to a corrupted worker or a corrupted client.
Note that this is not trivial: one might think that it is enough to let clients sign their messages, but then a
malicious worker could claim he did not receive the signature. See Section 4.1 for our solution.

4 In a later section, we will discuss how to distinguish between a cheating client and a cheating worker. This will be
useful in the multi-client setting.

5

Eventual Output Consensus. In Section 4.2 we address a final issue: in the above protocols a single
corrupted worker can make some honest clients output the correct output while making other honest clients
output “abort”. This is addressed by letting the workers send all the (encrypted) outputs to all clients along
with some signatures. Now, every time an honest client outputs a value 6= ⊥, this client forwards the outputs
and the signature to all clients. Thus, eventually, if one honest client gets an output then all honest clients
get an output.

2.4 Relationship To Previous Work

Here we discuss the relationship with some of the most relevant work in this area. Kamara et al. [KMR11]
studied the problem of server-aided secure computation with relaxed security guarantees (i.e., non-collusion
between corrupted parties). In their solution one of the clients also acts as a worker (i.e., it performs com-
putation linear in the circuit size), therefore we interpret this as a setting with two workers (where one of
the two happens to have an input as well). They also show how to transform protocols for secure delega-
tion of computation into protocols in the server-aided model, but also this requires clients interacting with
each other. The server-aided model with non-colluding parties was also studied in [KMR12], which gives an
efficient protocol based on Yao garbled circuits in this setting. The protocol still requires some interaction
between the clients. Subsequently Carter et al. [CMTB13] claimed a number of improvements over Kamara
et al., but also in their solution the clients need to interact further than the simple upload input/download
output pattern of our scheme, and also require additional non-collusion assumptions. A recent work known
as Whitewash [CLT14] improves this by presenting a protocol that is secure when the client and one of
the workers collude. We do not see how to modify Whitewash to allow for multiple clients or workers. In
addition, the output message of Whitewash has an extra factor k overhead, whereas in our protocol the
output message from the workers to the clients is of the same size as the output of the function. Finally
Peter et al. [PTK13] propose a protocol based on a variant of Paillier encryption for the setting of many
clients and two workers. However the PTK protocol only offers passive security, and it is not clear whether
it can be extended to more than 2 workers.

Compared to all above mentioned protocols, we find our solution to be 1) more elegant, as it decouples the
problem of clients providing inputs to the problem of workers performing the computation 2) more flexible, as
it supports any number of clients and workers, and it allows the workers to chose the best possible protocols
to perform the secure computation at hand, without having to modify the protocol at the client side 3)
more efficient for the client, as the interaction pattern is minimal and the clients do not need to perform any
cryptographic operations (only simple field operations) 4) more secure, as security holds up to m−1 actively
corrupted workers and no non-collusion assumptions need to be made (that is, we guarantee security even
when the corrupted parties share data among each other).

It is worth noting that these advantages are achieved without sacrificing the overall efficiency of the
system: interestingly all previous solutions seem to obtain protocols that are essentially as efficient as the
underlying protocol. This is also true in our case, as we only increase the size of the secure computation
circuit by a single secure multiplication when there is no cheating (and log(n) additional multiplications if
detection of corrupted clients is desired). A summary of this comparison can be found in Table 1.

3 Our Framework

3.1 Notation and Preliminaries

Let F be a finite field with log |F| > κ, with κ the security parameter. We write x ← F to say that x
is sampled uniformly from a finite field F. When we write x + y, the addition refers to the finite field F
(therefore, k ← F, c = x + k is a “one-time-pad” of x). We want to compute a function f described by an
arithmetic circuit (multiplications and additions) over F.

6

Client
Protocol n m Security Based on Work Interaction Notes

This any > 1 Active any m · sizeinp (fo) N

PTK [PTK13] any 2 Passive Paillier sizeinp (pk) N

Whitewash [CLT14] 1 2 Active GC sizeinp (sk) N

CMTB [CMTB13] 1 2 Active GC sizeinp (pk) Y Non-collusion

Salus [KMR12] any 2 Active GC sizeinp (sk) Y Non-collusion

Table 1. Comparison with previous work. n,m are the number of allowed clients and workers respectively. In the
Client Work column, (pk/sk/fo) indicate whether the client needs to perform public key operations, secret key opera-
tions or simple field operations. The Interaction column states N if clients interaction is limited to sending/receiving
one message to/from the workers or Y otherwise. The work of the client in our solution is linear in m, but in all other
rows m is a constant.

We divide our parties into clients C1, . . . , Cn and workers W1, . . . ,Wm. Each client has an input of λ field
elements.5 Workers have no inputs. Note that clients and workers need not be disjoint sets. The function

f : Fλ×n → Fn

is publicly agreed upon by all clients and workers and takes n inputs of size λ (one from each client) and
outputs a single field element to each client (it is trivial to extend this to the case of longer outputs). We write
x1, . . . ,xn to denote the input vectors of the clients, with xj ∈ Fλ ∀j, and we write z = f(x1, . . . ,xn) ∈ Fn.

In the protocol we will actually compute an enhanced function:

f̂ : F(λ+1)×n → Fn ,

where each client Cj inputs also a random rj ← F and where the (public) output is c = z + r.
In the protocol the clients send a single message (to each worker), then the workers perform some joint

computation (using interaction) and finally send a single message to all clients. Therefore the communication
pattern for the clients is optimal: one message to provide input, one to receive output. We require in addition
that the workload of the clients should not depend on the size of the function f to be evaluated and in the
protocol the size of the input message will be (λ+ 3) ·m field elements, while the size of the received output
message is m field elements.

We use AMD codes from [CDF+08]. In particular we will use the following notation:

Key Generation: k ← Gen(1κ) outputs a random field element k ← F;
Tag Generation: On input a vector x of field elements with |x| = ` and a key k the function t← Tag(k,x)

outputs

t = k`+2 +
∑̀
h=1

xhk
h .

Verification: On input a tag t′ ∈ F, a key k′ ∈ F and a vector x′ with |x′| = ` the function Ver(t′, k′,x′)
outputs 1 iff t′ = Tag(k′,x′).

We only assume that at least one of the workers is honest. In particular, clients are not assumed to be honest.
We only consider static corruptions. We prove security in the UC framework [Can01].

3.2 The Underlying MPC Protocol

As discussed before, our framework can be instantiated with any secure computation protocol that allows
for reactive computation and where linear operations (additions) are “for free” that is, their efficiency can

5 We will assume all clients input the same number of field elements. Our protocol can be trivially extended to
handle clients with different input sizes.

7

be essentially ignored when considering the overall complexity of the protocol. In order to keep generality,
we will describe our protocol assuming that the workers have access to an ideal functionality for reactive
computation as in Figure 1. Thanks to the UC composition theorem, one can replace the functionality with
any protocol that UC-implements it, and the overall protocol will still be secure. This allows for a modular
presentation and to separate the issues of the clients interacting with the workers (giving inputs and receiving
outputs) without worrying about which specific protocol is used by the workers.

Functionality FMPC

The functionality is for the parties W1, . . . ,Wm.

Rand: On input (rand ,Wi, vid) from all parties Wi, with vid a fresh identifier, the functionality outputs
(rand , vid) to the adversary. On a later input (complete, vid) from the adversary, the functionality sam-
ples r ← F, stores (vid , r) and outputs (complete, vid) to all parties.

Input: On input (input ,Wi, vid , x ∈ F) from Wi and (input ,Wi, vid , ?) from all other parties, with vid a fresh
identifier, the functionality outputs (input ,Wi, vid , ?) to the adversary. On a later input (complete, vid) from
the adversary, the functionality stores (vid , x) and outputs (complete, vid) to all parties.

Secret Eval: On command
(eval , vid1, . . . , vidp, f, vidp+1, . . . , vidp+q)

from all parties (if vidp+1, . . . , vidp+q are present in memory and vid1, . . . , vidp are not), the functionality
outputs (eval , vid1, . . . , vidp, f, vidp+1, . . . , vidp+q) to the adversary. On a later input

(complete, vid1, . . . , vidp, f, vidp+1, . . . , vidp+q)

from the adversary, the functionality retrieves (vidp+1, x1), . . . , (vidp+q, xq) computes

(z1, . . . , zp)← f(x1, . . . , xq)

and stores (vid1, z1), . . . , (vidp, zp). Then it outputs (complete, vid1, . . . , vidp, f, vidp+1, . . . , vidp+q) to all
parties.

Output: On input (output ,Wi, vid) from all parties (if vid is present in memory), the functionality outputs
(output ,Wi, vid) to the adversary. On a later input (complete, vid) from the adversary, the functionality
retrieves (vid , x) and outputs it to Wi.

Further adversarial behavior: All the completion messages are delivered at the will of the adversary only,
i.e., a message like (complete, . . .) is not delivered to an honest party until the adversary signals that it
should be delivered, and the adversary might deliver to different parties at different times.

Figure 1. The ideal functionality for reactive MPC.

We use some short-hand notation: [x] is a secret representation of x, i.e., a value uploaded to the ideal
functionality using the Input command or computed via the Secret Eval command. The representation is
assumed to be cheap to compute on using linear operations on elements from F, so we will write [ax+ by] =
a[x] + b[y] for publicly known a, b ∈ F and secrets x, y ∈ F, and we will not count these operations towards
the complexity of the protocol. All our notation generalizes to vectors in a straightforward way i.e., we will
write [ax+ by] = a[x] + b[y]. We use this notation:

Input: [x] ← Input(Wi, x) allows party Wi to input the value x ∈ F to the computation; We also define a
command [r]← Rand() which can be simply implemented by having all Wi perform [ri]← Input(Wi, ri);
for random ri ∈ F and then [r] =

∑
i[ri];

Eval: ([z1], . . . , [zp]) ← f([x1], . . . , [xq]) allows to compute an agreed upon function f of q inputs and p
outputs on secret representations, producing again secret representations. This is done via the Secret
Eval command.

Linear: For public a, b ∈ F and secret x, y ∈ F the command [z] ← a[x] + b[y] allows parties to compute
a linear combination in F. This is a special case of Secret Eval, but we single it out for notational

8

convenience and because the command is assumed to be essentially for free for our framework to make
sense.

Multiplication: [z]← Mul([x], [y]) allows parties to compute a representation of z = x · y. This is a special
case of Secret Eval, but we single it out for notational convenience and because the command is assumed
to be not too expensive for our framework to make sense.

Open: x← Open([x]) publicly reveals the value inside [x]; We also define x← OpenTo(Wi, [x]) which allows
to reveal a value only to party Wi, and can always be implemented doing [r]← Input(Wi, r) for uniform
random r chosen by Wi and c← Open([k + r]), and then party Wi outputs x = c− r.

3.3 Protocol Analysis

The protocol is given in Figure 2 (see Section 2 for a high-level description of the protocol).

Theorem 1. Let π be the protocol in Figure 2. We prove that π securely implements the ideal functionality
FfFE against any static adversary corrupting any number of clients and at most m− 1 workers.

We do the proof in the UC framework [Can01]. We prove static security against an adversary corrupting
any number of clients and up to all but one of the workers. Recall that we have the following proof burden.

There is a real world where we run the protocol. The parties of the protocol have access to secure point-
to-point channels (which can in turn be implemented using cryptography) plus a copy of FMPC. In the real
world there is an adversary A attacking the protocol. It is the adversary A which controls the corrupted
parties, i.e., it sends messages on behalf of the corrupted parties and sees all messages sent to the corrupted
parties, including the messages to and from FMPC. In addition the adversary has access to the adversarial
behavior allowed by FMPC, like deciding when messages are delivered. There is also an environment Z. It is
the environment which provides the inputs to the honest parties of the protocol and which sees the outputs of
the honest parties of the protocol. The environment Z can also interact with A, in any way that they desire
and at any time. The interaction is via exchanging messages. At the end of the interaction, the environment
outputs a bit. We denote the distribution of this bit by Execπ,A,Z(κ), where κ is the security parameter.
Both A and Z are restricted to poly-time computations.

In the ideal process there are three entities, the ideal functionality FfFE, the adversary S and the environ-

ment Z. It is the environment which provides inputs to FfFE via the (dummy) honest parties, and it sees their

outputs from FfFE. It is the adversary S which provides inputs to FfFE on behalf of the corrupted parties, and

it sees the outputs to the corrupted parties from FfFE. In addition it has access to the adversarial behavior

allowed by FfFE. Besides this, Z and S can interact by exchanging messages. At the end of the execution, Z
will output a bit. We use ExecFf

FE,S,Z
(κ) to denote the distribution of this bit. Both S and Z are restricted

to poly-time computations.
To prove security of the protocol we have to construct for all adversaries A for the real world an adversary

S for the ideal process such that no Z can guess whether it interacts with π and A or FfFE and S. We also
call this adversary S a simulator. Technically we require that for all A there exists S such that for all Z the
value |Pr[Execπ,A,Z(κ) = 1]− Pr[ExecFf

FE,S,Z
(κ) = 1]| goes to 0 faster than any inverse polynomial in k.

We proceed to the proof. Assume we are given any A. The simulator S works as follows:

Simulated Protocol S runs internally a copy of π, i.e., a copy of each party C1, . . . , Cn,W1, . . . ,Wm along
with a copy of FMPC. We call this the simulated protocol. To distinguish the simulated parties from the
corresponding parties in the real execution we write C̃1, . . . , C̃n, W̃1, . . . , W̃m and F̃MPC for the parties
and the ideal functionality and π̃ for the simulated protocol as a whole.

Simulated Adversary S also runs internally a copy of A, we call this the simulated adversary and denote
it by Ã.

Monitor Corrupted Parties S lets the simulated adversary Ã and the simulated parties interact exactly
as in the real execution, i.e., whenever Ã instructs a corrupted party to send a given message, the
simulator performs this command in the simulated protocol, and whenever a corrupted simulated party

9

All algebraic notation denotes operations in F.

Clients Input Phase: Each client Cj with input xj :

1. Pick random {xj,i}mi=1 from Fλ s.t.,
∑m
i=1 xj,i = xj ;

2. Pick random {kj,i}mi=1 from F; let kj =
∑m
i=1 kj,i;

3. Pick random {rj,i}mi=1 from F; let rj =
∑m
i=1 rj,i;

4. Compute

tj = Tag(kj , (xj , rj)) = kλ+3
j + kλ+1

j · rj +

λ∑
h=1

kh · xj,h ;

5. Pick random {tj,i}mi=1 from F s.t.,
∑m
i=1 tj,i = tj ;

6. Send the values vj,i = (xj,i, tj,i, kj,i, rj,i) to Wi for i ∈ {1, . . . ,m}.

Workers Computation Phase: The workers W1, . . . ,Wm do:

1. Each worker Wi, for i ∈ {1, . . . ,m}, waits until receiving input (eval) and then proceeds as below:
2. Each worker Wi, for i ∈ {1, . . . ,m} executes:

(a) [xj,i]← Input(Wi,xj,i);
(b) [tj,i]← Input(Wi, tj,i);
(c) [kj,i]← Input(Wi, kj,i);
(d) [rj,i]← Input(Wi, rj,i);

3. All workers jointly computea for all j ∈ {1, . . . , n}:
(a) [xj] =

∑m
i=1[xj,i];

(b) [tj] =
∑m
i=1[tj,i];

(c) [kj] =
∑m
i=1[kj,i];

(d) [rj] =
∑m
i=1[rj,i] (and let [r] = ([r1], . . . , [rn]));

(e) kj ← Open([kj]);
(f) [αj] = [tj]− Tag(kj , ([xj], [rj]));

4. [s]← Rand();
5. [β] = Mul([s],

∑n
j=1[αj]);

6. β ← Open([β]); If β 6= 0 output abort and halt, else continue;
7. Compute: [z] = f([x1], . . . , [xn]);
8. Compute: [c] = [z] + [r];
9. c← Open([c]);

Client Output Phase:

1. (Each worker Wi) Send cj to Cj ;
2. Let cj,i be the output that Cj receives from Wi;
3. If ∃i0, i1 such that cj,i0 6= cj,i1 , then Cj outputs abort and halts, else let cj = cj,1;
4. Cj outputs zj = cj − rj .
a Note that all the operations described below can be computed “for free” since they are linear in the secret

representation [·]. The only non linear operations – computing the powers of k inside Tag – is done in public.

Figure 2. The protocol.

receives a message in the execution of the simulated protocol, S gives this message to A. Notice that as
a consequence of this simulation strategy, S knows all messages sent and received by corrupted parties,
including the messages to and from F̃MPC. The simulator also knows the internal state of F̃MPC, as it is
S which runs the copy F̃MPC. We use these facts later.

10

Functionality FfFE
The functionality is for the parties C1, . . . , Cn,W1, . . . ,Wm.

Input: On input (input , Cj ,xj) from Cj and (input , Cj , ?) from all Wi, the functionality outputs (input , Cj , ?)
to the adversary. On a later input (complete, Cj) from the adversary, the functionality stores (input , Cj ,xj)
and outputs (complete, input , Cj) to all Wi.

Eval: On command (eval) from all Wi at a point where (input , Cj ,xj) is stored for all j ∈ {1, . . . , n}, compute

z = f(x1, . . . ,xn)

and store (output , Cj , zj) for all j ∈ {1, . . . , n}. Then output (eval , {zj}j∈J) to the adversary, where J is the
set of indices of corrupted clients.

Output: On command (deliver , Cj) from the adversary, at a point where (output , Cj , zj) is stored, output zj
to Cj and delete (output , Cj , zj).

Figure 3. The ideal functionality for (outsourced) function evaluation of f .

Relay Between Adversary and Environment S lets the simulated adversary A and Z interact exactly
as in the real execution, i.e., whenever Ã sends a message to its environment S passes it on to Z, and
whenever Z sends a message to S, the simulator just passes it on to A.

Dummy Honest Inputs Whenever Z gives an input xj to an honest Cj , the simulator S is given (input , Cj , ?).

It then picks a dummy input x̃j for C̃j , e.g., x̃j = 0 or some other legal input. Then it simply runs π̃

according to the protocol, but with this dummy input x̃j to C̃j instead of the correct input xj (which
is unknown to S by the rules of the game).

Eval Whenever Z gives an input (eval) to an honest Wi, the simulator S is given (eval ,Wi). It then simply
inputs (eval) to W̃i in the simulated protocol and then runs W̃i according to the protocol.

Extracting Corrupted Inputs Recall that it is S which must provide inputs to FfFE on behalf of the

corrupted parties. It must try to make these inputs consist with the “input” of the corrupted C̃j . Note

that C̃j has no explicit input, it is defined via its behavior in the protocol. The job of the simulator is

hence to extract this implicit input. The simulator extracts the input xj of a corrupted C̃j as follows: It

waits until all workers have input the values x̃i,j , t̃ij , k̃i,j , r̃i,j to F̃MPC. Then it computes x̃j =
∑m
i=1 x̃j,i

and r̃j =
∑m
i=1 r̃j,i. Then it inputs xj = x̃j to FfFE on behalf of the corrupted Cj . It saves r̃j for later

use.

Patching Corrupted Outputs Recall that A sees the outputs of corrupted parties in the simulated pro-
tocol and can talk to Z which sees the inputs and outputs of FfFE. Hence it is important that the outputs

in the simulated protocol are consistent with the inputs and outputs of FfFE. This is not necessarily the
case, as we ran the simulated protocol on dummy inputs for all honest parties. The simulator deals with
this as follows. Assume that the simulated protocol reaches Step 9 in the Workers Computation Phase.
Before executing this step, the simulator S will modify the value of cj inside F̃MPC for each corrupted

C̃j . Observe that if the simulated protocol reaches Step 9, then all parties in the simulated protocol must
have given inputs, or the simulated protocol would not have passed Step 2d in the Workers Computation
Phase. Hence S will have given an input xj to FfFE on behalf of each corrupted Cj at this point. Further-

more, since it is S which gives (dummy) inputs to the honest C̃j in the simulated protocol and since S

only does so when Z gives input to the corresponding Cj on FfFE, we can conclude that when π̃ reaches

Step 9, the environment gave input to FfFE on behalf of all honest Cj . So, all in all, when the simulated

protocol reaches Step 9, all Cj received an input xj in FfFE. Using a similar line of reasoning we see that

if π̃ reaches Step 9, then Z must have input (eval) to all honest Wi on FfFE. So, now S can input (eval)

to all corrupted Wi on FfFE. In response FfFE computes z = f(x1, . . . ,xn) and outputs (eval, {zj}j∈J)
to S, where J is the set of corrupted parties. Now S computes c̃j = zj + r̃j , where r̃j was computed and

11

stored in Extracting Corrupted Inputs. Then S changes the internal state of F̃MPC to hold the value
cj = c̃j . Then it simply runs the simulated protocol according to the protocol.

Honest Output Delivery Whenever an honest client C̃j reaches Step 4 in Client Output Phase, the
simulator inputs (deliver , Cj) to FMPC, which makes FMPC output zj to Z on behalf of Cj .

That completes the description of the simulator. We now prove that

|Pr[Execπ,A,Z(κ) = 1]− Pr[ExecFf
FE,S,Z

(κ) = 1]| ≤ (λ+ 2)2−κ+1 .

Let E be the event that some client Cj has its input replaced, i.e., Cj runs with input xj , but after
Step 2d in Workers Computation phase it holds for the values xi,j in FMPC that xj 6=

∑m
i=1 xi,j (or

similarly, rj 6=
∑
ri,j). We can also define E in the simulation, but via the (dummy) input x̃j and the values

x̃i,j in F̃MPC and say that E occurs when x̃j 6=
∑m
i=1 x̃i,j . Let Ē denote the event that E did not occur.

We clearly have that

Pr[Execπ,A,Z(κ) = 1] =

Pr[E] Pr[Execπ,A,Z(κ) = 1|E]+

(1− Pr[E]) Pr[Execπ,A,Z(κ) = 1|Ē]

and

Pr[ExecFf
FE,S,Z

(κ) = 1] =

Pr[E] Pr[ExecFf
FE,S,Z

(κ) = 1|E]+

(1− Pr[E]) Pr[ExecFf
FE,S,Z

(κ) = 1|Ē] .

We will first show Claim 1 : the probability Pr[E] is the same in the real execution and in the ideal process.
We will also prove Claim 2 : Pr[E] ≤ (λ+ 2)2−k+1. Then we show Claim 3 : It holds that

Pr[ExecFf
FE,S,Z

(κ) = 1|Ē] = Pr[Execπ,A,Z(κ) = 1|Ē] .

From these three claims it follows that

|Pr[Execπ,A,Z(κ) = 1]− Pr[ExecFf
FE,S,Z

(κ) = 1]|

≤ |Pr[E] Pr[Execπ,A,Z(κ) = 1|E]−
Pr[E] Pr[ExecFf

FE,S,Z
(κ) = 1|E]|

≤Pr[E] ≤ (λ+ 2)2−κ+1

as desired.

Proof of Claims 1 and 2 We prove that if the adversary uses values xi,j such that xj 6=
∑m
i=1 xi,j , then

β 6= 0 with probability ≤ (λ+ 2)2−κ+1, and the probability is independent of xj . The same proof applies to
the simulation, as the simulation is just a run of the real protocol but on different inputs. From this Claims
1 and 2 then follow.

Let α =
∑
j αj . There are two (non-disjoint) ways it can happen that β = 0, namely α = 0 and s = 0.

Since Pr[s = 0] ≤ 2−κ, independently of xj , it is sufficient to prove that

Pr[α = 0] ≤ (λ+ 2)2−κ

and that the probability is independent of xj .
If all clients are corrupted, there is nothing to prove. So, since corrupting more parties gives the adversary

strictly more powers and since the role of all clients is symmetric, let us assume without loss of generality

12

that all clients except C1 are corrupted, which means that all values αj with j 6= 1 are under full control of
the adversary. Thus we define φ = −

∑m
j=2 αj and we clearly see that

Pr[α1 = φ] = Pr[α = 0] .

Our model assumes that at least one worker is honest. Since the role of all workers is symmetric, let us
assume without loss of generality that all workers except W1 are corrupted. Since Z and A can communicate,
we cannot assume that A does not know x1, and since getting x1 clearly cannot make A worse off, let us
assume without loss of generality that A knows x1. To be able to distinguish between the correct values of
xi,1 and the wrong ones chosen by corrupted workers, use xi,1 to denote the values chosen by C1 and use
x̄i,1 to denote the values in FMPC. Note that x̄1,1 = x1,1 since W1 is honest. We use similar notation for
the values ki,j , ri,j and ti,j .

Notice that for i > 1 the adversary knows both xi,1 and x̄i,1, as it received xi,1 and it chose x̄i,1. Hence
it also knows the relative error Xi,1 = x̄i,1−xi,1. Notice that x̄i,1 = xi,1 +Xi,1. I.e., the adversary inputs
the correct input plus some known error. Similarly we can write k̄i,1 = ki,1 + Ki,1, r̄i,1 = ri,1 + Ri,1 and
t̄i,1 = ti,1 +Ti,1 for values Ki,1, Ri,1 and Ti,1 known by the adversary. We use X1 =

∑m
i=2Xi,1 to denote the

sum of relative errors. Note thatX1 is known by the adversary. Similarly, let T1 =
∑m
i=2 Ti,1, R1 =

∑m
i=2Ri,1

and let K1 =
∑m
i=2Ki,1. Note that x̃1 = x1 +X1, t̃1 = t1 + T1, r̃1 = r1 + R1 and k̃1 = k1 + K1. We have

that

Tag(k1, (x1, r1))− t1 = 0

by design. We define a polynomial

p(k1,1) = α1 = Tag(k̃1, (x̃1, r̃1))− t̃1

and note that we can rewrite this as

p(k1,1) = Tag(k1 +K1, (x1 +X1, r1 +R1))− Tag(k1, (x1, r1))− T1 .

If (X1, R1,K1, T1) = (0, 0, 0, 0) there is nothing to prove (i.e., the adversary is behaving honestly), so assume
that this is not the case. Recall that

Tag(k1, (x1, r1)) = (k1)λ+3 + (k1)λ+1 · (r1) +

λ∑
h=1

(k1)h · x1,h

and that k1 =
∑
i k1,i. Thus we note that if K1 6= 0 then p(k1,1) is a polynomial of degree exactly λ + 2

(independent of anything else) and therefore ∀φ ∈ F

Pr
k1,1←F

[p(k1,1) = φ|K1 6= 0] ≤ (λ+ 2) · |F|−1 .

If K1 = 0 then we have that p(k1,1) is a non-zero polynomial of degree at most λ + 1. In particular, since
the tag is linear in the message we have that

p(k1,1) = Tag(k1, (X1, R1)− T1 .

This implies that

Pr
k1,1←F

[p(k1,1) = φ|K1 = 0] ≤ (λ+ 1) · |F|−1 ,

which implies the claim.

13

Proof of Claim 3 First consider the following mind game. Consider an execution ExecFf
FE,S

1,Z(κ), which

runs exactly as the execution ExecFf
FE,S,Z

(κ), except that each time where S is about to use a dummy input

x̃i = 0 on behalf of honest Ci, it instead cheats and inspects FfFE to get the real value xi and then it uses
x̃i = xi. Besides this cheat, everything runs as in the simulation. Note that in a simulation S is of course not
allowed to perform the above cheat. However, we are here only defining a random variable ExecFf

FE,S
1,Z(κ)

for sake of the proof, and we are of course free to define it as we want. We claim that

|Pr[ExecFf
FE,S,Z

(κ) = 1|Ē]− Pr[ExecFf
FE,S

1,Z(κ) = 1|Ē]| = 0 .

The reason is that the views of A and Z do not depend on the dummy inputs at all. To see this notice
that x̃i is input to F̃MPC and is not used anywhere else. And, the only values leaked by F̃MPC which might
depend on x̃i are the values cj . As for the value cj for all corrupted Cj , note that it is patched to c̃j before

it is output from F̃MPC, hence it has the same distribution no matter whether S uses x̃j = 0 or x̃j = xj .
As for the value cj for all honest Cj , note that cj = z̃j + rj for a uniformly random value rj . Hence, even
though z̃j might depend on whether S uses x̃j = 0 or x̃j = xj , the value cj does not, as it is one-time pad
encrypted with rj which is known only to the honest Cj .

Consider then the mind game ExecFf
FE,S

2,Z(κ), which runs exactly as the previous mind game ExecFf
FE,S

1,Z(κ),

except that we change the step Patching Corrupted Outputs such that S does not perform the patching
cj = c̃j . Instead it just runs the simulated protocol with the value cj already inside F̃MPC. We claim that

Pr[ExecFf
FE,S

1,Z(κ) = 1|Ē]− Pr[ExecFf
FE,S

2,Z(κ) = 1|Ē] = 0 .

Notice that in ExecFf
FE,S

2,Z(κ) each honest C̃i is run with input x̃i = xi, where xi is the input to Ci on

FfFE. Then for each corrupted C̃i define x̃i as in Extracting Corrupted Inputs. Then it follows from the fact

that E does not happen that the values z computed by F̃MPC are equal to f(x̃1, . . . , x̃n), as no honest party

has its input replaced. Since the input to FfFE is xi = x̃i for the honest party (qua the cheat) and xi = x̃i

for the corrupted parties (by design of Extracting Corrupted Inputs), it follows that the values (z1, . . . , zn)

computed by F̃MPC are equal to the values (z1, . . . , zn) computed by FfFE. Furthermore, when the values

(z1, . . . , zn) computed by F̃MPC are equal to the values (z1, . . . , zn) computed by FfFE, the patching cj = c̃j
clearly has no effect as cj = zj + r̃j and c̃j = zj + r̃j . Ergo, it does not matter whether we do the patching
or not.

We finally claim that the following holds

|Pr[ExecFf
FE,S

2,Z(κ) = 1|Ē]− Pr[Execπ,A,Z(κ) = 1|Ē]| = 0 .

Notice that after replacing dummy inputs by true inputs and dropping the patching of corrupted outputs,
the “simulated” protocol run by S2 is actually just a correct run of π on exactly the same inputs xi given to
FfFE by Z. I.e., S is internally running π exactly as it is being run in Execπ,A,Z(κ). There might, however,
still be a difference in the view of Z: In ExecFf

FE,S
2,Z(κ) the output of an honest client Ci to Z is the value

zi output by FfFE. In Execπ,A,Z(κ) the output of an honest client Ci to Z is the value zi output by Ci.

We hence need to argue that in ExecFf
FE,S

2,Z(κ) the output of an honest client C̃i is identical to the value

zi output by FfFE. To see this, recall that we argued above that the values (z1, . . . , zn) computed by F̃MPC

are equal to the values (z1, . . . , zn) computed by FfFE. Hence, all we have to argue is that the output of an

honest client C̃i is identical to the value zi computed by FMPC. This is so, as ci = zi + ri and the correct
value of ci is sent to Ci by at least one honest worker, so Ci only accepts ci, and then it outputs ci− ri = zi.

4 Extensions

4.1 Coping with Malicious Clients

In the previous protocol a malicious client can force the entire protocol to abort by using an invalid input
(e.g., providing a MAC that is not consistent). As a result it will happen that β 6= 0 and the computation

14

will abort. In an application where there are thousands or millions of clients it is undesirable that a single
malicious (or faulty) client can prevent the whole computation from terminating. We therefore want a
protocol which guarantees termination whenever all workers are honest. The problem is that when β 6= 0
we cannot see if it happened because of a malicious worker or a malicious client. We therefore need to add
extra mechanisms for detecting who was cheating and for recovering when it was a client.

The high-level idea of our solution is to identify clients which provided invalid inputs and replace their
inputs with a default value. This means that all attacks possible by a client are equivalent to choosing an
alternative input, which is of course an allowed option for even an honest party. The only difference is that
in case of cheating, all workers will learn that the client cheated, and all workers will learn the (alternative)
input of the client. This should deter clients from cheating at all. “Cheating” might, however, also happen
because a client is faulty, so we should expect a few cheating parties occasionally. Since we want to consider
cases where n is huge, we will therefore present a solution optimized for the case where there are very few
cheating parties relative to the size of n.

The first step is to identify the troublesome clients. Note that
∑n
j=1 αj 6= 0 just shows that some αj 6= 0.

We can find it by securely computing
∑n/2
j=1 αj and

∑n
j=n/2+1 αj and revealing blinded values to check which

of them is non-zero (possibly both). Then continue like this recursively, until all j for which αj 6= 0 are
known. At the point where O(n) sums have been computed, blinded and opened, switch to a mode where we
simply open blinded versions of all αj . This way we never use more than O(n) multiplications, and if there
is a constant number of non-zero αj , then we use only O(log n) multiplications. Let I be the set of indices
j such that αj 6= 0. The above strategy finds I except with negligible probability. Now we must for each
j ∈ I find out whether Cj is corrupted or whether some worker input a different value to the computation
than the one provided by Cj . Assume for now that 1) a worker can reveal which values it received from Cj
without the worker being able to reveal a value different from the ones actually received from Cj and 2) it is
OK to reveal the input xj of Cj . In that case the solution is trivial: for each j ∈ I each worker Wi will reveal
the values (xj,i, rj,i, tj,i, kj,i) received from Cj and the workers will open the values [xj],[rj], [tj] and [kj] to
check that Wi uploaded the right values to FMPC. If not, Wi is corrupted, and the protocol is terminated.
Otherwise, it must be the case that tj 6= Tag(kj , (xj , rj)), as αj 6= 0. So, since all the uploaded values were
the ones received from the client, it follows that Cj is corrupted. In that case the protocol continues, using,
e.g., xj = 0 as input on behalf of Cj . We now discuss how to get rid of the two assumptions.

As for the second assumption, we will simply let each Cj split the input xj into two random shares y1
j

and y2
j for which xj = y1

j + y2
j . E.g., pick y1

j uniformly at random and let y2
j = xj − yj

1. Then proceed

as before, but let Cj give both of the inputs y1
j and y1

j as above, i.e., with separate keys and MACs. Now,
if any one of them turns out to be troublesome, open it and find out who was cheating. If it was Cj , use
a default value. If it was Wi, terminate. Then compute z = f(y1

1 + y2
1 , . . . ,y

1
n + y2

n). Note that there is
never a need to reveal both y1

j and y2
j : if they are both troublesome, simple reveal y1

j and use that value to

make the decision. Furthermore, revealing a single of the values y1
j or y2

j is secure, as they are individually
uniformly random and independent of xj .

As for the first assumption, notice that it is not enough to ask Cj to sign the values it sends to Wi: The
client might simply not send a signature, and when Wi complains that Cj did not send a signature, it might
be Wi that is lying. In fact, any solution where the client sends something over a secure channel will fall prey
to this problem: The client might refuse to send the value, but it might also be the worker lying about not
having received that value. We therefore need a solution where clients only send public values. Furthermore,
since all but one worker might be corrupted, any public value not sent to all workers, might still fall prey
to the above attack: the m − 1 workers seeing the value might refuse to have received it. Hence we might
essentially restrict ourselves to solutions where the client sends one public value and sends it to all workers.

We describe one such solution. Assume that each Wi has a public encryption key ei for a public-key
encryption scheme and that only Wi knows the decryption key di. We need that this encryption scheme
is secure against chosen-ciphertext attack (IND-CCA2) and that decryption yields the message plus the
randomness used to encrypt, and that IND-CCA2 security holds even if the decryption oracle returns this
randomness. In the random oracle model, RSA-OAEP is such an encryption scheme, assuming that the RSA

15

Algorithm FIND: Input: ([a1], [a2], . . . , [aq]), a list of q secret shared values.

1. [s]← Rand();
2. [β] = Mul([s],

∑
j∈1,...,q[aq]);

3. β ← Open([β]);
4. If β = 0 return {};
5. Else, if q = 1 return {[a1]};
6. Else, let r = bq/2c and return FIND([a1], . . . , [ar]) ∪ FIND([ar+1], . . . , [aq]).

Figure 4. Algorithm to identify potentially inconsistent client inputs.

function is one-way. Our solution then proceeds as follows: Use vj,i to denote the value that a client Cj
should send secretly to Wi. The client will compute an encryption γj,i = Eei((i, j, vj,i); sj,i), where sj,i is the
randomness used by the encryption algorithm. Then C broadcasts (γj,1, . . . , γj,n) to all workers. Then Wi

computes (i′, j′, vj,i, sj,i) = Ddi(γj,i). If i′ 6= i or j′ 6= j, then Wi broadcasts (i′, j′, vj,i, sj,i) and all workers
check that γj,i = Eei((i

′, j′, vj,i); sj,i) and that i′ 6= i or j′ 6= j. If this is the case, use a default input for Cj .
If it is not the case, then Wi is cheating. In that case, terminate the protocol. If Wi is later asked to reveal
vj,i, Wi broadcasts (vj,i, sj,i) and all workers check that γj,i = Eei((i, j, vj,i); sj,i).

It is also possible to get a solution not using the random oracle model. Each key ei is the parameters for
an identity-based encryption scheme and di is the master secret key. The client will compute an encryption
γj,i ← Eei,(i,j,sid)(vj,i), i.e., encrypt vj,i under the identity (i, j, sid), where sid is a session identifier which is
fresh for each run of the protocol. If Wi is later asked to reveal vj,i, Wi generates and broadcasts the secret
key di,j,sid for identity (i, j, sid). Then all workers compute vj,i = Ddi,j,sid(γj,i).

We are then left with the problem of how the client broadcasts to the workers. Note that we can use a
standard authenticated broadcast protocol like Dolev-Strong broadcast [DS83], as this protocol requires the
sender to send just a single message to each of the other participant, here the workers.

Note that the above solution requires that the client be able to sign messages. We would ideally like a
solution which works under the sole assumption that the clients have an authenticated channel to each of
the workers, as this is strictly more general and better models practice, where clients might authenticate
themselves towards the computation providers using a simple password mechanism on top of a server au-
thenticated secure transport layer. However, such a solution is not possible. It is well-known that broadcast
among m parties without the use of signatures, requires that > m/2 of the parties are honest, and we want
to tolerate that all but one worker is corrupted. We must therefore settle for a solution where clients need
to have public keys for a signature scheme.

We finally note that the security property that we are trying to achieve in this section i.e., how to
make sure that a single faulty client cannot make the computation stall, cannot be captured in the UC
framework: since the adversary fully controls the network and the delivery of messages, in the UC framework
the adversary can make the computation stall even if no parties are corrupted.

Figure 5 shows the resulting protocol: the protocol assumes that a public encryption scheme (E,D) has
been set up such that each worker Wi holds a private decryption key di while all other parties, workers
as well as clients, hold the corresponding public encryption key ei. Furthermore, the protocol assumes a
broadcast primitive; we use BROADCAST(id,msg, {Ri}) to denote that a party P broadcasts msg to a set
of receivers {Ri} while msg ← RECEIVE(id, P) is used by a party to receive msg broadcast by P . As noted,
broadcast can be realized using Dolev-Strong [DS83]. A recursive algorithm FIND, listed in Figure 4, is used
for identifying potentially inconsistent client inputs. FIND may result in O(n log n) multiplications. In order
to have O(n) multiplications, let e be any constant, e.g. e = 2, and modify FIND such that a global counter
δ is increased for every multiplication (i.e., δ := δ+ 1 each time Step 2 of FIND is executed). If at some point

16

All algebraic notation denotes operations in F.

Clients Input Phase: Each client Cj with input xj :

1. Pick random y1
j . Compute y2

j = xj − y1
j ;

2. For w ∈ {1, 2} do the following:
(a) Pick random {yw

j,i}mi=1 from Fλ s.t.,
∑m
i=1 y

w
j,i = yw

j ;
(b) Pick random {kwj,i}mi=1 from F; let kwj =

∑m
i=1 k

w
j,i;

(c) Pick random {rwj,i}mi=1 from F; let rwj =
∑m
i=1 r

w
j,i;

(d) Compute

twj = Tag(kwj , (y
w
j , r

w
j)) = (kwj)λ+3 + (kwj)λ+1 · (rwj) +

λ∑
h=1

(kwj)h · (ywj,h) ;

(e) Pick random {twj,i}mi=1 from F s.t.,
∑m
i=1 t

w
j,i = twj ;

(f) Define the values vwj,i := (yw
j,i, t

w
j,i, k

w
j,i, r

w
j,i) for i ∈ {1, . . . ,m}.

(g) Compute γwj,i := Eei((i, j, v
w
j,i); s

w
j,i) for i ∈ {1, . . . ,m};

(h) Broadcast γwj,i to the workers, i.e., invoke BROADCAST(input, (γwj,i)
m
i=1, {Wi}mi=1).

Workers Input Phase: Each worker Wi does:

1. Upon (γwj,1, γ
w
j,2, . . . , γ

w
j,m)← RECEIVE(input, Cj) do:

(a) Compute (i′, j′, vwj,i, s
w
j,i) = Ddi(γ

w
j,i);

(b) If i′ 6= i or j′ 6= j, BROADCAST(bad-input, (i′, j′, vwj,i, s
w
j,i), {Wl}ml=1).

2. Upon (l′, j′, vwj,l, s
w
j,l)← RECEIVE(bad-input,Wl), if γwj,l = Eel((l

′, j′, vwj,l); s
w
j,l) and if it is also the case that

l′ 6= l or j′ 6= j, set [xj]← [0]. Otherwise, abort the protocol.

Workers Computation Phase: Upon (eval) each worker Wi does:

1. For w ∈ {1, 2} do:
(a) For all j ∈ {1, . . . , n} do:

i. [yw
j,i]← Input(Wi,y

w
j,i); [yw

j] =
∑m
i=1[yw

j,i];
ii. [twj,i]← Input(Wi, t

w
j,i); [twj] =

∑m
i=1[twj,i];

iii. [kwj,i]← Input(Wi, k
w
j,i); [kwj] =

∑m
i=1[kwj,i];

iv. [rwj,i]← Input(Wi, r
w
j,i); [rwj] =

∑m
i=1[rwj,i] (and let [rw] = ([rw1], . . . , [rwn]));

v. kwj ← Open([kwj]);
vi. [αwj] = [twj]− Tag(kwj , ([y

w
j], [rwj]));

(b) Compute Iw := FIND([αw1], [αw2], . . . , [αwn]).
2. Let I := I1 ∪ I2. For j /∈ I, set [xj] := [y1

j] + [y2
j]. For j ∈ I, do as follows:

(a) If j ∈ I1, let w := 1, else w := 2. Wi now reveals vwj,i := (yw
j,i, t

w
j,i, k

w
j,i, r

w
j,i) as follows:

(b) Wi invokes BROADCAST(reveal, (vwj,i, s
w
j,i), {Wl}ml=1);

(c) Upon (vwj,i, s
w
j,i)← RECEIVE(reveal,Wi), a worker Wl aborts if γwj,i 6= Eei((i, j, v

w
j,i); s

w
j,i);

(d) Upon receiving all vwj,l := (yw
j,l, t

w
j,l, k

w
j,l) for l ∈ {1, . . . ,m}, compute yw

j :=
∑
l y

w
j,l, t

w
j :=

∑
l t
w
j,l,

kwj :=
∑
l k
w
j,l; r

w
j :=

∑
l r
w
j,l;

(e) Wi then computes y′w
j ← Open(y′w

j); t′wj ← Open([twj]); k′wj ← Open([kwj]); r′wj ← Open([rwj]);
(f) If (y′w

j , t′wj , k
′w
j , r

′w
j) 6= (yw

j , t
w
j ,
w
j , r

w
j), Wi aborts, otherwise [xj]← [0].

3. Compute: [z] = f([x1], . . . , [xn]);
4. Compute: [c] = [z] + [r];
5. c← Open([c]);

Client Output Phase:

1. (Each worker Wi) Send cj to Cj ;
2. Let cj,i be the output that Cj receives from Wi;
3. If ∃i0, i1 such that cj,i0 6= cj,i1 , then Cj outputs abort, else let cj = cj,1;
4. Cj outputs zj = cj − rj .

Figure 5. The protocol coping with malicious clients.

17

δ > e · n, abort the entire recursion and compute ∪nj=1FIND([αwj]) as result instead. The default value used

for inconsistent client input is 0. We assume that [0] has been created at the beginning of the protocol.6

4.2 Eventual Output Consensus

One problem with the above protocol is that it might happen that some honest clients learn their outputs
and some other honest clients do not learn their outputs. This can be provoked by a single malicious worker.
If the outputs are used as input in a later protocol (for instance, a later execution of the outsourcing protocol
itself), this might cause some of the honest clients to start the later protocol while some other honest clients
will never start the later protocol. This might lead to problems with functionality, deadlock and also security
problems, as it might wash out the fraction of honest clients participating in the ensuring computation.

We will describe a generic and efficient way to achieve a property which we call eventual output consensus,
meaning that either no honest clients receive an output or all honest clients will eventually receive their
output. This will, e.g., ensure that either no honest clients will continue with a later protocol, or all honest
clients will eventually start executing the later protocol.

We now describe our solution. As a first modification, all workers will send c to all clients, the workers
will sign the value c, and the clients will accept only if they receive the same c from all workers along with
valid signatures from all workers. If so, the client Cj will retrieve cj from c and output zj = cj − rj as usual.
Whenever a client Cj outputs a value cj , it will forward c to all other clients, along with the signatures of
all workers. If a client Cj has not yet given output and receives such a c signed by all workers, it will in
turn retrieve cj from c, output zj = cj − rj , and forwards c to all clients along with the signatures. It is
easy to see that this is secure under the assumptions that at least one worker is honest, as all values used to
determine outputs are signed by all workers and therefore also the honest worker.

One might wonder if we can do better than eventual agreement on the output. It turns out that we
can not. In our model all but one worker can be corrupted and any number of clients can be corrupted.
This means that all-in-all more than half of the participants might be corrupted. It is well-known that in
a setting without honest majority, generic MPC cannot guarantee termination or fairness. I.e., we cannot
ensure that all honest clients will learn their outputs and we cannot even ensure that it does not happen
that the corrupted clients learn their outputs and no honest clients learn their outputs. The best we can
hope for is therefore that at least the honest clients have consensus on whether outputs were gotten or not.
Since we consider asynchronous communication, where we assume that all messages between honest clients
are eventually delivered but has no upper bound on the communication delay, we can only hope for this
consensus to eventually arise, which is exactly what our protocol achieves.

5 Acknowledgements

The authors are partially supported by the European Research Commission Starting Grant 279447 and The
National Science Foundation of China (grant 61061130540) for the Sino-Danish Center for the Theory of
Interactive Computation. The first author is supported by The Danish Council for Independent Research
Starting Grant 10-081612. The third author is supported by The Danish Council for Independent Research
(DFF) Grant 11-116416/FTP.

6 [0] can be made by first letting any worker Wi do [c]← Input(Wi, c). Then run c← Open([c]) and have all workers
verify that c = 0.

18

References

[BCD+09] Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler, Thomas P. Jakobsen, Mikkel
Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter, Michael I. Schwartzbach,
and Tomas Toft. Secure multiparty computation goes live. In Financial Cryptography, pages 325–343,
2009.

[BDO14] Carsten Baum, Ivan Damg̊ard, and Claudio Orlandi. Publicly auditable secure multi-party computation.
SCN 2014. Available as Cryptology ePrint Archive, Report 2014/075, 2014. http://eprint.iacr.org/.

[BDOZ11] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic encryption and
multiparty computation. In EUROCRYPT, pages 169–188, 2011.

[BFR13] Michael Backes, Dario Fiore, and Raphael M. Reischuk. Verifiable delegation of computation on out-
sourced data. In ACM Conference on Computer and Communications Security, pages 863–874, 2013.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast privacy-preserving
computations. In ESORICS, pages 192–206, 2008.

[BSCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. Snarks for c:
Verifying program executions succinctly and in zero knowledge. In CRYPTO (2), pages 90–108, 2013.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard) lwe.
In FOCS, pages 97–106, 2011.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS,
pages 136–145, 2001.

[CDF+08] Ronald Cramer, Yevgeniy Dodis, Serge Fehr, Carles Padró, and Daniel Wichs. Detection of algebraic
manipulation with applications to robust secret sharing and fuzzy extractors. In EUROCRYPT, pages
471–488, 2008.

[CLT14] Henry Carter, Charles Lever, and Patrick Traynor. Whitewash: Outsourcing garbled circuit generation
for mobile devices. Cryptology ePrint Archive, Report 2014/224, 2014. http://eprint.iacr.org/.

[CMF+14] Koji Chida, Gembu Morohashi, Hitoshi Fuji, Fumihiko Magata, Akiko Fujimura, Koki Hamada, Dai
Ikarashi, and Ryuichi Yamamoto. Implementation and evaluation of an efficient secure computation
system using ‘r’ for healthcare statistics. Journal of the American Medical Informatics Association, pages
amiajnl–2014, 2014.

[CMTB13] Henry Carter, Benjamin Mood, Patrick Traynor, and Kevin Butler. Secure outsourced garbled circuit
evaluation for mobile devices. In Proceedings of the 22nd USENIX conference on Security, pages 289–304.
USENIX Association, 2013.

[DKL+13] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P. Smart. Practical
covertly secure mpc for dishonest majority - or: Breaking the spdz limits. In ESORICS, pages 1–18, 2013.

[DO10] Ivan Damg̊ard and Claudio Orlandi. Multiparty computation for dishonest majority: From passive to
active security at low cost. In CRYPTO, pages 558–576, 2010.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from some-
what homomorphic encryption. In CRYPTO, pages 643–662, 2012.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement. SIAM J.
Comput., 12(4):656–666, 1983.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178, 2009.
[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: Outsourcing

computation to untrusted workers. In CRYPTO, pages 465–482, 2010.
[GHRW14] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Outsourcing private RAM computation.

IACR Cryptology ePrint Archive, 2014:148, 2014.
[HL10] Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols: Techniques and Constructions.

Springer-Verlag, 2010.
[HLP11] Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the web: Computing without

simultaneous interaction. In CRYPTO, pages 132–150, 2011.
[KMR11] Seny Kamara, Payman Mohassel, and Mariana Raykova. Outsourcing multi-party computation. IACR

Cryptology ePrint Archive, 2011:272, 2011.
[KMR12] Seny Kamara, Payman Mohassel, and Ben Riva. Salus: a system for server-aided secure function evalu-

ation. In ACM Conference on Computer and Communications Security, pages 797–808, 2012.
[KMRS14] Seny Kamara, Payman Mohassel, Mariana Raykova, and Saeed Sadeghian. Scaling private set intersection

to billion-element sets. In Financial Crypto, 2014.
[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free xor gates and applications.

In ICALP (2), pages 486–498, 2008.

19

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty computation on the
cloud via multikey fully homomorphic encryption. In STOC, pages 1219–1234, 2012.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new ap-
proach to practical active-secure two-party computation. In CRYPTO, pages 681–700, 2012.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical verifiable
computation. In IEEE Symposium on Security and Privacy, pages 238–252, 2013.

[PTK13] Andreas Peter, Erik Tews, and Stefan Katzenbeisser. Efficiently outsourcing multiparty computation
under multiple keys. IEEE Transactions on Information Forensics and Security, 8(12):2046–2058, 2013.

20

