
Analysis of Gong et al.’s CCA2-Secure Homomorphic Encryption?

Hyung Tae Lee, San Ling, and Huaxiong Wang

Division of Mathematical Sciences
School of Physical & Mathematical Sciences
Nanyang Technological University, Singapore

{hyungtaelee, lingsan, hxwang}@ntu.edu.sg

Abstract. It is a well-known result that homomorphic encryption is not secure against adaptive chosen
ciphertext attacks (CCA2) because of its malleable property. Very recently, however, Gong et al. pro-
posed a construction asserted to be a CCA2-secure additively homomorphic encryption (AHE) scheme;
in their construction, the adversary is not able to obtain a correct answer when querying the decryption
oracle on a ciphertext obtained by modifying the challenge ciphertext (Theoretical Computer Science,
2016). Because their construction is very similar to Paillier’s AHE, it appeared to support an additively
homomorphic property, though they did not specify an evaluation algorithm for the scheme in their
paper.
In this paper, we present a simple CCA2 attack on their construction by re-randomizing the challenge
ciphertext. Furthermore, we look into an additively homomorphic property of their construction. To
do this, we first consider a typical candidate for an addition algorithm on ciphertexts, as provided
for previous AHE constructions, and establish that it does not function correctly. Subsequently, we
provide plausible evidence for the hardness of achieving an additively homomorphic property with
their construction. According to our analysis, it seems hard to preserve an additively homomorphic
property of their construction without any modification.
In addition, as a minor contribution, we point out a flaw in the decryption algorithm of their construc-
tion and present a rectified algorithm for correct decryption.

Keywords: additively homomorphic encryption, adaptive chosen ciphertext attack, malleability

1 Introduction

Because homomorphic encryption allows computations on encrypted data, it has various applica-
tions, e.g., secure multiparty computation [2,6], cloud computing [9], and electronic voting [4]. The
security of such applications is directly affected by that of the homomorphic encryption employed,
which has led to the question of what level of security homomorphic encryption can achieve. There
have been several studies [1, 7, 8] demonstrating that encryption schemes with supporting homo-
morphic operations can be secure against non-adaptive chosen ciphertext attacks (CCA1), i.e.,
lunch time attack. On the other hand, Bellare et al. [3] have demonstrated that no homomorphic
encryption scheme can be secure against adaptive chosen ciphertext attacks (CCA2) because of its
malleable property.

Very recently, Gong et al. [5] presented quite a surprising result when they proposed a construc-
tion asserted to be an additively homomorphic encryption (AHE) scheme secure against CCA2.
In seeking to achieve CCA2 security, they constructed an encryption scheme such that a message
is located in the exponent to the base gab, where g is a generator of the underlying group, a is
a fixed integer chosen by the key generation algorithm, and b is a random integer chosen by the
encryption algorithm. They maintained that a polynomial-time adversary could not know the exact
value of gab for the challenge ciphertext and therefore could not generate a suitable ciphertext that

? Published in Theoretical Computer Science (DOI: 10.1016/j.tcs.2016.06.014).

contributes to guessing the message corresponding to the challenge ciphertext. Hence, their con-
struction seems secure against CCA2. Furthermore, their construction is very similar to Paillier’s
AHE scheme [10], so it seems to allow additions on encrypted data, though they did not specify an
evaluation algorithm in their paper.

In this paper, however, we present a simple CCA2 attack on their construction. Our attack is
designed as follows: Assume that the challenge ciphertext C = (C1, C2, C) of a hidden message m
is given. Then, C has the form gab(m+a) · A for a generator g of the underlying group G, some
element A ∈ G, and integers a and b. The adversary chooses a random integer s (6= 0, 1) and
computes Cs = (Cs1 , C

s
2 , C

s). Then, Cs can be transformed into the form gabs(m+a) ·As, and so Cs is
still a valid ciphertext of the message m. Hence, when the adversary queries the decryption oracle
on Cs, it returns the message m.

Furthermore, we investigate an additively homomorphic property of their construction. To
this end, we first present a typical candidate for an evaluation algorithm on ciphertexts, which
is defined by component-wise group operations between ciphertexts. That is, for given ciphertexts
Ĉ = (Ĉ1, Ĉ2, Ĉ) and Č = (Č1, Č2, Č), an evaluated ciphertext is defined as C = (Ĉ1 ·Č1, Ĉ2 ·Č2, Ĉ ·Č).
Then, we establish that this computation does not preserve the additively homomorphic property.

Subsequently, we provide plausible evidence that it is impossible to provide an addition algo-
rithm for Gong et al.’s construction. To this end, we first simplify the problem of providing an
addition algorithm for it with Paillier’s AHE scheme P.Enc. As a result, we obtain the following
problem: Denote a ciphertext of Paillier’s scheme of a message m by P.Enc(m). For any hidden
integers m̂, m̌, α, and β and a fixed hidden value a, when P.Enc(α), P.Enc(α(m̂ + a)), P.Enc(β),
and P.Enc(β(m̌ + a)) are given, generate P.Enc(γ(m̂ + m̌ + a)) and P.Enc(γ) for some nonzero
scalar γ.

By using the additively homomorphic property of Paillier’s scheme, we can generate ciphertexts
of the form

P.Enc(αX1(m̂+ a) + αX2 + βY1(m̌+ a) + βY2 + Z) (1)

for some scalars X1, X2, Y1, Y2, and Z. In order that the above ciphertext has the form P.Enc(γ(m̂+
m̌+ a)), an evaluation algorithm should find a solution of the following system of equations:{

αX1 = βY1 6= 0

aαX1 + αX2 + βY2 + Z = 0.

However, because a, α, and β are hidden values, it is impossible to find a pair (X1, X2, Y1, Y2, Z)
satisfying the above system of equations except with a negligible probability. Therefore, it seems
hard to provide an addition algorithm for Gong et al.’s construction.

As a minor contribution, we also point out a flaw in the decryption algorithm of their original
construction and provide a rectified algorithm for correct decryption.

Organization of the Paper. In Section 2, we provide Paillier’s AHE scheme and Gong et al.’s
recent construction. In Section 3, we demonstrate that the decryption algorithm of Gong et al.’s
construction does not work correctly and provide a corrected version to accomplish the decryption.
Section 4 presents our CCA2 attack on Gong et al.’s scheme. Finally, we discuss about an additively
homomorphic property of their construction in Section 5.

2

2 Gong et al.’s Proposed CCA2-Secure Additively Homomorphic Encryption

In this section, we present some basic definitions related to public-key encryption. Then, we in-
troduce Paillier’s AHE scheme, which is the key foundation of Gong et al.’s construction and will
be utilized in our discussion about an additively homomorphic property of their construction in
Section 5. We also provide the description of Gong et al.’s scheme.

2.1 Public Key Encryption and CCA2 Security

A public key encryption scheme consists of the following three algorithms:

– KeyGen(κ): This takes a security parameter κ as an input and outputs a public key pk and a
secret key sk.

– Enc(pk,m): This takes the public key pk and a message m as inputs and outputs a ciphertext C.

– Dec(sk, C): This takes the secret key sk and a ciphertext C as inputs and outputs a message m′.

We say that a public key encryption scheme is correct if for all messages m and security pa-
rameters κ,

Dec(sk,Enc(pk,m)) = m,

where pk and sk are outputs of the algorithm KeyGen(κ).
The security of a public key encryption scheme is defined by the following game between a

challenger and an adversary:

– Setup: The challenger obtains the public key pk and the secret key sk by running KeyGen(κ)
for the security parameter κ and sends pk to the adversary.

– Phase 1: The adversary generates ciphertexts and sends them as queries to the decryption
oracle, which outputs the plaintext message corresponding to the input ciphertext.

– Challenge: The adversary sends two messages m0 and m1 of equal length. The challenger
randomly selects β from {0, 1} and sends the adversary Cβ obtained by running Enc(pk,mβ).

– Phase 2: The adversary generates ciphertexts and sends them as queries to the decryption
oracle. Note that he cannot send the challenge ciphertext Cβ as a query.

– Guess: The adversary outputs β′ ∈ {0, 1}.

The advantage of the adversary in the above game is defined to be |Pr[β = β′] − 1
2 |. We say that

a public key encryption scheme is CCA2-secure if there is no polynomial-time adversary whose
advantage in the above game is non-negligible in the security parameter κ.

2.2 Paillier’s Additively Homomorphic Encryption

In 1999, Paillier [10] proposed three public key encryption schemes based on a new assumption,
called the Decisional Composite Residuosity (DCR) assumption. These schemes have been widely
utilized in various applications because they are very efficient and allow additions on encrypted
data.

Here we provide a description of the first scheme among them.

– P.KeyGen(κ): This takes a security parameter κ as an input and performs as follows:

3

1. Select η(κ)-bit random primes p and q, and set n = pq.

2. Compute λ = lcm(p− 1, q − 1).

3. Select an element g of order n in the multiplicative group Z∗n2 .

4. Output the public key pk = (n, g) and keep the secret key sk = λ private.

– P.Enc(pk,m): Given the public key pk and a message m ∈ Zn, this performs as follows:
1. Select a random integer r from Z∗n.

2. Compute C = gmrn mod n2 and output C.

– P.Dec(sk, C): Given the secret key sk and a ciphertext C, this computes

m =
L(Cλ mod n2)

L(gλ mod n2)
mod n,

where L is a function defined by L(y) =
y − 1

n
for y < n2. Then, it outputs m.

2.3 Gong et al.’s Scheme

Based on Paillier’s encryption scheme, Gong et al. [5] proposed a construction asserted to be a
CCA2-secure AHE scheme. The description of their construction is as follows:

– G.KeyGen(κ): This takes a security parameter κ as an input and performs as follows:
1. Select η(κ)-bit random primes p and q, and set n = pq.

2. Compute λ = lcm(p− 1, q − 1).

3. Compute a nontrivial factor t of λ and λ/t.

4. Select random numbers a, k, z1, and z2 from Z∗n.

5. Compute g = 1 + kn, y = ga mod n2, y′ = za1g
a2 mod n2, and y′′ = za1z

tn
2 mod n2. We note

that g has order n in the multiplicative group Z∗n2 .

6. Output the public key pk = (y, y′, y′′, z1, n) and keep the secret key sk = (a, t, λ/t, λ) private.

– G.Enc(pk,m): Given the public key pk and a message m ∈ Zn, this performs as follows:
1. Select random numbers r, r1, and b from Z∗n.

2. Compute Bx = yb mod n2, B′x = (y′)b mod n2, C1 = z
b(r+1)
1 mod n2, C2 = ybrn1 mod n2,

and C = Bm
x B

′
x(y′′)br mod n2.

3. Output a ciphertext C = (C1, C2, C).

– G.Dec(sk, C): Given the secret key sk and a ciphertext C,
1. Parse C as (C1, C2, C).

2. Compute

m =

(
L((C · Ctn−a1)λ/t mod n2)

L(Cλ2 mod n2)
mod n

)
− a mod n, (2)

where L is a function defined by L(y) =
y − 1

n
for y < n2.

3. Output m.

4

In an effort to achieve CCA2 security, Gong et al. attempted to prevent the adversary from
launching CCA2 by not enabling him to obtain a correct answer when he queries the decryption
oracle on a ciphertext obtained by modifying the challenge ciphertext. More precisely, in their
construction, a message m is defined in the exponent to the base gab, where a is chosen by the key
generation algorithm and b is chosen by the encryption algorithm. Here, an independently random
b is chosen for each ciphertext, and they claimed that the adversary cannot succeed in CCA2
unless he finds gab corresponding to the challenge ciphertext, which is infeasible in polynomial
time. However, this feature not only prevents their construction from supporting an additively
homomorphic property, but is also insufficient for achieving CCA2 security. We will present our
CCA2 attack on their construction in Section 4 and discuss its additively homomorphic property
in Section 5.

Before moving on to the next section, we remark on relationships between ciphertexts in Pail-
lier’s AHE scheme and those in Gong et al.’s construction to facilitate the reader’s understanding. In
fact, parts of a ciphertext in Gong et al.’s construction can be interpreted as ciphertexts in Paillier’s
encryption scheme with the public key pk = (n, g = 1 + kn). For a valid ciphertext C = (C1, C2, C)
in Gong et al.’s encryption,

C2 = ybrn1 = gabrn1 mod n2.

Hence, C2 can be regarded as a ciphertext P.Enc(pk, ab) when r1 is a random element chosen by
Paillier’s encryption algorithm. Furthermore,

C = Bm
x B

′
x(y′′)br mod n2

= (yb)m(y′)b(y′′)br mod n2

= (gab)m(za1g
a2)b(za1z

tn
2)br mod n2

=
(
gab(m+a)(zbrt2)n

)
· zab+abr1 mod n2, (3)

and hence C can be regarded as a multiplication of ciphertext P.Enc(pk, ab(m + a)) and zab+abr1 ,
where zbrt2 is a corresponding random element to generate a ciphertext P.Enc(pk, ab(m+ a)). That
is,

C = P.Enc(pk, ab(m+ a)) · zab+abr1 mod n2

when zbrt2 is a randomly chosen element by the Paillier encryption algorithm. We will use these
relationships in Section 5 to look into the impossibility of achieving an additively homomorphic
property of Gong et al.’s construction.

3 Correction to the Decryption Algorithm of Gong et al.’s Scheme

In this section, we show that the decryption algorithm of Gong et al.’s construction does not
function correctly and provide a rectified algorithm for correct decryption. Then, we present a toy
example of Gong et al.’s construction with our rectified decryption algorithm.

3.1 Our Modification of Gong et al.’s Scheme for Correct Decryption

Incorrect Decryption of Gong et al.’s Scheme. We first demonstrate that Gong et al.’s
decryption algorithm works incorrectly. Let C = (C1, C2, C) be a valid ciphertext. Then, we can

5

represent the components as

C1 = z
b(r+1)
1 mod n2, C2 = ybrn1 mod n2, and C = Bm

x B
′
x(y′′)br mod n2,

where Bx = yb mod n2, B′x = (y′)b mod n2, and b, r, and r1 are integers randomly chosen from Z∗n
in the encryption phase. Furthermore, the public keys satisfy y = ga mod n2, y′ = za1g

a2 mod n2,
and y′′ = za1z

tn
2 mod n2, where g = 1 + kn for some k ∈ Z∗n, and a, z1, and z2 are randomly chosen

integers from Z∗n. Let t be a nontrivial factor of λ in the secret key. Then,

(C · C(tn−a)
1)λ/t =

(
Bm
x B

′
x(y′′)br(z

b(r+1)
1)(tn−a)

)λ/t
mod n2

=
(

(yb)m(y′)b(y′′)br(z
b(r+1)
1)(tn−a)

)λ/t
mod n2

=
(

(gab)m(za1g
a2)b(za1z

tn
2)br(z

b(r+1)
1)(tn−a)

)λ/t
mod n2

= (gab)(m+a)λ/t(z
b(r+1)tn
1 ztnbr2)λ/t mod n2

= (gab)(m+a)λ/t(z
b(r+1)
1 zbr2)nλ mod n2

= (gab)(m+a)λ/t mod n2

= (1 + kn)ab(m+a)λ/t mod n2

= 1 + kab(m+ a)(λ/t)n mod n2 (4)

and

Cλ2 = (ybrn1)λ = gabλ mod n2

= (1 + kn)abλ = 1 + kabλn mod n2. (5)

We note that the sixth equality in Equation (4) and the second equality in Equation (5) hold
because the multiplicative order of each element in Z∗n2 is a factor of nλ. Hence,(

L((C · Ctn−a1)λ/t mod n2)

L(Cλ2 mod n2)
mod n

)
− a mod n

=

(
L(1 + kab(m+ a)(λ/t)n mod n2)

L(1 + kabλn mod n2)
mod n

)
− a mod n

=

(
kab(m+ a)(λ/t)

kabλ
mod n

)
− a mod n

= t−1(m+ a) mod n− a mod n.

Therefore, the decryption algorithm does not return the correct message corresponding to the
ciphertext.

Modification for Correct Decryption. We can easily fix the decryption algorithm by multiply-
ing the secret value t and the first term on the right side of Equation (2) as follows: For a ciphertext
C = (C1, C2, C), define a decryption algorithm by

G.Dec′(sk, C) =

(
t · L((C · Ctn−a1)λ/t mod n2)

L(Cλ2 mod n2)
mod n

)
− a mod n. (6)

6

Then, we obtain the correct message corresponding to the ciphertext, because(
t · L((C · Ctn−a1)λ/t mod n2)

L(Cλ2 mod n2)
mod n

)
− a mod n

= t(t−1(m+ a)) mod n− a mod n = ((m+ a)− a) mod n

= m mod n.

3.2 Toy Example of Gong et al.’s Scheme with Our Modification

Now, we provide an example of Gong et al.’s construction with artificially small parameters.

Key Generation. A user A chooses primes p = 113 and q = 71, and computes n = pq = 8023,
n2 = 64368529, and λ = lcm(p− 1, q − 1) = 560. A selects t = 7 and computes λ/t = 560/7 = 80.
Then, A chooses a = 4942, k = 3090, z1 = 5391, and z2 = 7980, and computes

g = 1 + kn = 1 + 3090 · 8023 = 24791071,

y = ga mod n2 = 247910714942 mod 64368529 = 24157254,

y′ = za1g
a2 mod n2 = 53914942 · 2479107149422 mod 64368529 = 3934277,

y′′ = za1z
tn
2 mod n2 = 53914942 · 78907·8023 mod 64368529 = 48494224.

A’s public key is the pair (y, y′, y′′, z1, n) = (24157254, 3934277, 48494224, 5391, 8023), while A’s
secret key is (a, t, λ/t, λ) = (4942, 7, 80, 560).

Encryption. To encrypt a message m = 3513, a user B chooses r = 4163, r1 = 8013, and b = 4067,
and computes

Bx = yb mod n2 = 241572544067 mod 64368529 = 21172698,

B′x = (y′)b mod n2 = 39342774067 mod 64368529 = 11136620,

C1 = z
b(r+1)
1 mod n2 = 53914067(4163+1) mod 64368529 = 24863970,

C2 = ybrn1 mod n2 = 241572544067 · 80138023 mod 64368529 = 13207654,

C = Bm
x B

′
x(y′′)br mod n2 = 211726983513 · 11136620 · 484942244067·4163 mod 64368529 = 17168130.

A ciphertext C is a pair (C1, C2, C) = (24863970, 13207654, 17168130) and B sends C to A.

Decryption. To decrypt C = (C1, C2, C) = (24863970, 13207654, 17168130), A computes(
t · L((C · Ctn−a1)λ/t mod n2)

L(Cλ2 mod n2)
mod n

)
− a mod n

=

(
7 · L((17168130 · 248639707·8023−4942)80 mod 64368529)

L(13207654560 mod 64368529)
mod 8023

)
− 4942 mod 8023

=

(
7 · L(51339178)

L(12900985)

)
− 4942 mod 8023

=

(
7 · 6399

1608
mod 8023

)
− 4942 mod 8023

= (7 · 6399 · (1608−1 mod 8023)− 4942) mod 8023

= (7 · 6399 · 2360− 4942) mod 8023 = 3513.

7

Remark 1. On the other hand, we note that Gong et al.’s original decryption algorithm outputs(
L((C · Ctn−a1)λ/t mod n2)

L(Cλ2 mod n2)
mod n

)
− a mod n

= 6399 · (1608−1 mod 8023)− 4942 mod 8023

= (6399 · 2360− 4942) mod 8023 = 5435 6= 3513

for the ciphertext C = (C1, C2, C) = (24863970, 13207654, 17168130). This illustrates that their
decryption algorithm is incorrect.

4 Adaptive Chosen Ciphertext Attack on Gong et al.’s Scheme

In this section, we provide our CCA2 attack on Gong et al.’s construction and give an example of
our attack with small parameters.

4.1 Our CCA2 Attack

We present our CCA2 attack on Gong et al.’s construction. Our attack is very straightforward and
consists of a simple re-randomization by computing an exponentiation of the challenge ciphertext
using an exponent that is a randomly chosen element in a set Zn\{0, 1}. The result of this re-
randomization is still a valid ciphertext of the same message as the challenge ciphertext. Therefore,
the adversary can recover the exact message of the challenge ciphertext by querying the decryption
oracle on the re-randomized ciphertext.

Let us explain our CCA2 attack more precisely. After the challenge phase of the CCA2 security
game in Section 2.1, assume that the adversary receives the challenge ciphertext C = (C1, C2, C)
from the challenger. Then, the challenge ciphertext of the message mβ for β ∈ {0, 1} can be
represented as

C1 = z
b(r+1)
1 mod n2, C2 = ybrn1 mod n2, (7)

and

C = (yb)mβ (y′)b(y′′)br mod n2, (8)

where b, r, and r1 are integers randomly chosen from Z∗n by the encryption algorithm.
At this point, the adversary randomly selects an element s from Zn\{0, 1} and computes Cs :=

(Cs1 , C
s
2 , C

s). Then,

Cs1 = z
(bs)(r+1)
1 mod n2, Cs2 = y(bs)(rs1)n mod n2,

and

Cs = (y(bs))mβ (y′)(bs)(y′′)(bs)r mod n2.

Hence, we can see that Cs is obtained by substituting b and r1 with bs and rs1 in Equations (7)
and (8), respectively. Thus, Cs is also a valid ciphertext of the message mβ, and the adversary can
obtain the challenge message mβ by querying the decryption oracle on Cs in Phase 2 of the security
game. Therefore, by our attack, Gong et al.’s construction is not CCA2-secure.

8

4.2 Toy Example of Our Attack

Now, we describe an example of our CCA2 attack against Gong et al.’s construction. For conve-
nience, we exploit the same parameters of Gong et al.’s scheme in Section 3.2. In the CCA2 security
game, the adversary performs as follows:

– Setup: The challenger generates the public parameter pk = (y, y′, y′′, z1, n) = (24157254,
3934277, 48494224, 5391, 8023) and the secret parameter sk = (a, t, λ/t, λ) = (4942, 7, 80, 560),
and passes pk to the adversary. We note that n2 = 64368529.

– Phase 1: This step is not necessary for our attack.

– Challenge: The adversary sends two messages m0 = 3512 and m1 = 3513 to the challenger.
We assume that the challenger selects m1 = 3513 and generates the challenge ciphertext

C = (C1, C2, C3) = (24863970, 13207654, 17168130)

by selecting r = 4163, r1 = 8013, and b = 4067 as in Section 3.2. The challenger forwards C to
the adversary.

– Phase 2: This phase is a main part of our attack. Once the adversary receives C, he takes s = 2,
computes

Cs1 = C2
1 mod n2 = 248639702 mod 64368529 = 23819165,

Cs2 = C2
2 mod n2 = 132076542 mod 64368529 = 63430208,

Cs = C2 mod n2 = 171681302 mod 64368529 = 34772378,

and queries C2 = (C2
1 , C

2
2 , C

2) to the decryption oracle. Then, the decryption oracle may return
3513 to the adversary, because(

t · L(((C2) · (C2
1)(tn−a))λ/t mod n2)

L((C2
2)λ mod n2)

mod n

)
− a mod n

=

(
7 · L((34772378 · 238191657·8023−4942)80 mod 64368529)

L(63430208560 mod 64368529)
mod 8023

)
− 4942 mod 8023

=

(
7 · L(38309826)

L(25801969)

)
− 4942 mod 8023

=

(
7 · 4775

3216
mod 8023

)
− 4942 mod 8023

= (7 · 6399 · (3216−1 mod 8023)− 4942) mod 8023

= (7 · 6399 · 1180− 4942) mod 8023 = 3513.

– Guess: The adversary outputs 1 using the above result.

Because the message of the challenge ciphertext is m1 = 3513, our CCA2 attack succeeds.

5 On the Additively Homomorphic Property of Gong et al.’s Scheme

In this section, we look into Gong et al.’s assertion of an additively homomorphic property for
their scheme. In their original paper [5], the authors did not provide an addition algorithm on

9

ciphertexts. Hence, we first present a typical candidate for an addition algorithm by considering
existing AHE schemes defined over multiplicative groups and show that it does not preserve an
additively homomorphic property. Thereafter, we provide plausible evidence for the impossibility
that their construction preserves an additively homomorphic property.

Throughout this section, we assume that two valid ciphertexts Ĉ = (Ĉ1, Ĉ2, Ĉ) and Č =
(Č1, Č2, Č) under the same public key are given and that they satisfy the following relationships: Let
pk be (y, y′, y′′, z1, n), where g = 1+kn, y = ga mod n2, y′ = za1g

a2 mod n2, and y′′ = za1z
tn
2 mod n2

for integers a, k, z1, z2 ∈ Z∗n. Then, there exist b̂, b̌, r̂, ř, r̂1, and ř1 in Z∗n such that

Ĉ1 = z
b̂(r̂+1)
1 mod n2, Ĉ2 = yb̂r̂n1 mod n2, Ĉ = (yb̂)m̂(y′)b̂(y′′)b̂r̂ mod n2

and

Č1 = z
b̌(ř+1)
1 mod n2, Č2 = yb̌řn1 mod n2, Č = (yb̌)m̌(y′)b̌(y′′)b̌ř mod n2.

Typical Candidate for an Addition Algorithm. A typical candidate for an addition algorithm
on ciphertexts of AHE defined over multiplicative groups is to multiply ciphertexts component-wise.
Let us define C = (C1, C2, C) as a component-wise multiplication between two ciphertexts Ĉ and
Č. That is,

C1 = Ĉ1 · Č1, C2 = Ĉ2 · Č2, and C = Ĉ · Č.

Then,

C · Ctn−a1 = (Ĉ · Č) · (Ĉ1 · Č1)tn−a mod n2

=
(

(yb̂m̂+b̌m̌)(y′)b̂+b̌(y′′)b̂r̂+b̌ř
)
·
(
z
b̂(r̂+1)+b̌(ř+1)
1

)tn−a
mod n2

=
(

(ga(b̂m̂+b̌m̌))(za1g
a2)b̂+b̌(za1z

tn
2)b̂r̂+b̌ř

)
·
(
z
b̂(r̂+1)+b̌(ř+1)
1

)tn−a
mod n2

=
(

(ga(b̂m̂+b̌m̌)) · ga2(b̂+b̌)
)
·
(
z
b̂(r̂+1)+b̌(ř+1)
1 zb̂r̂+b̌ř2

)tn
mod n2

=
(
ga(b̂m̂+b̌m̌)+a2(b̂+b̌)

)
·
(
z
b̂(r̂+1)+b̌(ř+1)
1 zb̂r̂+b̌ř2

)tn
mod n2

and hence

L((C · Ctn−a1)λ/t mod n2) = L(((1 + kn)a(b̂m̂+b̌m̌)+a2(b̂+b̌))λ/t mod n2)

=
1 + k(a(b̂m̂+ b̌m̌) + a2(b̂+ b̌))(λ/t)n− 1

n

= k
(
a(b̂m̂+ b̌m̌) + a2(b̂+ b̌)

)
(λ/t) mod n.

The first equality in the above equation holds because the multiplicative order of each element in
Z∗n2 is a factor of nλ. Moreover, the following holds:

L(Cλ2 mod n2) = L(((yb̂)r̂n1 (yb̌)řn1)λ mod n2)

= L(((y)b̂+b̌(r̂1ř1)n)λ mod n2)

10

= L(((g)a(b̂+b̌)(r̂1ř1)n)λ mod n2)

= L((1 + kn)(a(b̂+b̌))λ mod n2)

=
1 + ka(b̂+ b̌)λn− 1

n

= ka(b̂+ b̌)λ mod n.

Therefore, our modified decryption algorithm in Equation (6) outputs
b̂m̂+ b̌m̌

b̂+ b̌
mod n, not

m̂+ m̌ mod n, by the following computation:

G.Dec′(sk, C) =

(
t
L((C · Ctn−a1)λ/t mod n2)

L(Cλ2 mod n2)
mod n

)
− a mod n

= t
k
(
a(b̂m̂+ b̌m̌) + a2(b̂+ b̌)

)
(λ/t)

ka(b̂+ b̌)λ
mod n− a mod n

=
b̂m̂+ b̌m̌

b̂+ b̌
mod n. (9)

Here, the receiver who decrypts ciphertexts cannot know a meaningful relation between b̂ and
b̌, because they are randomly chosen by the encryption algorithm. Hence, the receiver cannot

recover m̂ + m̌ mod n from
b̂m̂+ b̌m̌

b̂+ b̌
mod n. Therefore, an additively homomorphic property of

Gong et al.’s construction cannot be preserved by using this typical candidate.

Discussion on the Impossibility of Preserving Additively Homomorphic Property in
Gong et al.’s Scheme. Now, we provide plausible evidence for the impossibility of providing an
addition algorithm for Gong et al.’s construction. To do this, we will first simplify the problem of
providing an addition algorithm for their construction by replacing their ciphertexts with Paillier’s
and then examine the hardness of this simplified problem.

As seen in Section 2.3, parts of the ciphertexts in Gong et al.’s scheme can be regarded as
ciphertexts in the Paillier encryption. Hence, we can replace Ĉ = (Ĉ1, Ĉ2, Ĉ) and Č = (Č1, Č2, Č)
with

(Ĉ1,P.Enc(pk, ab̂),P.Enc(pk, ab̂(m̂+ a)) · zab̂+ab̂r̂1 mod n2) (10)

and

(Č1,P.Enc(pk, ab̌),P.Enc(pk, ab̌(m̌+ a)) · zab̌+ab̌ř1 mod n2), (11)

respectively, where pk is (n, g = 1 +kn). Here, the role of C1 in a ciphertext C = (C1, C2, C), where
C =

(
gab(m+a)(zbrt2)n

)
· zab+abr1 mod n2 in Equation (3), is to remove zab+abr1 from the value of C

for correct decryption. Hence, we can regard C1 as having no effect on the message in the case
of a valid ciphertext, and we may ignore the C1 component and zab+abr1 in the C component for
constructing an evaluation algorithm.

Since an evaluation algorithm should take only public parameters and ciphertexts as inputs, by
replacing ab̂ and ab̌ with α and β in Equations (10) and (11), respectively, we can define the problem

11

of providing an addition algorithm for Gong et al.’s construction as follows: Let P.Enc be Paillier’s
encryption algorithm. For any hidden m̂, m̌, α, β ∈ Zn and a fixed value a ∈ Z∗n, when P.Enc(pk, α),
P.Enc(pk, β), P.Enc(pk, α(m̂ + a)), and P.Enc(pk, β(m̌ + a)) are given, generate P.Enc(pk, γ) and
P.Enc(pk, γ(m̂+ m̌+ a)) for some nonzero integer γ.

Because Paillier’s encryption supports only an additively homomorphic property, a solver of the
above problem allows only scalar multiplications and additions on ciphertexts. Hence, he can only
obtain ciphertexts of the form

P.Enc(pk, αX1(m̂+ a) + αX2 + βY1(m̌+ a) + βY2 + Z)

= P.Enc(pk, αX1(m̂+ a) + βY1(m̌+ a) + αX2 + βY2 + Z) (12)

by computing

P.Enc(pk, α(m̂+ a))X1 × P.Enc(pk, α)X2

×P.Enc(pk, β(m̌+ a))Y1 × P.Enc(pk, β)Y2 × P.Enc(pk, Z)

for some scalars X1, X2, Y1, Y2, and Z.
To generate a ciphertext of the form P.Enc(pk, γ(m̂+ m̌+ a)) from ciphertexts of the form (12)

for any m̂ and m̌, a tuple of scalars (X1, X2, Y1, Y2, Z) should be a solution of the following system
of equations: {

αX1 = βY1 = γ 6= 0 mod nλ

aαX1 + αX2 + βY2 + Z = 0 mod nλ
(13)

where n is a part of the public key and λ is a part of the secret key. This is so because if the above
is satisfied, then the following holds for any m̂ and m̌:

(12) = P.Enc(pk, αX1(m̂+ a) + βY1(m̌+ a) + αX2 + βY2 + Z)

= P.Enc(αX1(m̂+ m̌+ a) + aαX1 + αX2 + βY2 + Z)

= P.Enc(γ(m̂+ m̌+ a)).

However, it is infeasible to solve the above system of equations because a, α, and β are hidden.
Therefore, it seems hard to provide an addition algorithm for Gong et al.’s construction without
any modification.

On Simple Modification Using a Fixed b. One may think that Gong et al.’s scheme can preserve
an additively homomorphic property in the case where b̂ = b̌ because the decryption algorithm with

input given in Equation (9) outputs
b̂m̂+ b̌m̌

b̂+ b̌
mod n and it is equal to

m̂+ m̌

2
mod n when b̂ = b̌.

Hence, one may attempt to modify their scheme so that an encryption algorithm utilizes a fixed b
(and so b̂ = b̌ always holds) by including it into the public key in the key generation algorithm.

Now, we discuss an additively homomorphic property of the modified scheme with a fixed b.
First, consider the problem of providing an addition algorithm to Gong et al.’s scheme. We have to
find a solution of the system of equations in (13). If b is fixed, then α = β = ab. Hence, the system
can be transformed into{

X1 = Y1 = γ 6= 0 mod nλ

aX1 +X2 + Y2 + ((ab)−1 mod nλ)Z = 0 mod nλ

12

where n is a part of the public key and λ is a part of the secret key. However, it is still infeasible to
find a solution of the above system, because a, being a part of the secret key, is unknown. Therefore,
it seems hard to provide a proper evaluation algorithm without some additional modification, even
after fixing b in their encryption algorithm.

Next, we attempt to modify Gong et al.’s scheme further to provide a proper addition algorithm.
Consider a typical candidate for an evaluation algorithm and assume that three ciphertexts Ĉ1 =
(Ĉ1, Ĉ2, Ĉ), Č = (Č1, Č2, Č), and C̄ = (C̄1, C̄2, C̄) for messages m̂, m̌, and m̄, respectively, are given.
Let C be a result of the typical evaluation algorithm for three ciphertexts, i.e., C = (C1, C2, C) = (Ĉ1·

Č1·C̄1, Ĉ2·Č2·C̄2, Ĉ ·Č ·C̄). Then, the decryption algorithm, on input C, outputs
m̂+ m̌+ m̄

3
mod n,

since

G.Dec′(sk, C) =

(
t
L((C · Ctn−a1)λ/t mod n2)

L(Cλ2 mod n2)
mod n

)
− a mod n

= t
k
(
ab(m̂+ m̌+ m̄) + 3a2b

)
(λ/t)

3kabλ
mod n− a mod n

=
m̂+ m̌+ m̄

3
mod n.

More generally, let Ci be a ciphertext of a message mi for 1 ≤ i ≤ ` and let C be the outcome of

additions of all ` ciphertexts Ci’s. Then, the decryption algorithm, on input C, outputs

∑`
i=1mi

`
mod

n. Hence, we need to multiply by ` to decrypt correctly. Thus, we need to know ` to perform
decryption correctly.

Considering the above facts, we modify Gong et al.’s construction. We first modify the en-
cryption algorithm so that it outputs (C, `) with ` = 1 in this case. Define an addition algorithm
by

Add((C1, `1), (C2, `2)) = (C1 · C2, `1 + `2),

where C1 · C2 is the ciphertext obtained by a component-wise multiplication between ciphertexts C1

and C2. We modify the decryption algorithm as follows:

G.Dec′′(sk, (C, `)) = ` · G.Dec′(sk, C) mod n.

Then, we obtain an additively homomorphic encryption scheme.
It appears that the modified scheme is secure against chosen plaintext attacks under the DCR

assumption, where the adversary is not allowed access to the decryption oracle in chosen plaintext
attacks. However, further detailed analysis does not seem necessary since even though we may ob-
tain a proper modification that preserves an additively homomorphic property as above, it has no
advantage over Paillier’s AHE schemes in terms of both computational efficiency and parameter
sizes. Paillier’s first scheme, for example, requires 2 exponentiations for both encryption and decryp-
tion and its ciphertext consists of one element in Zn2 . On the other hand, the above modification
requires 6 and 3 exponentiations for encryption and decryption, respectively, and its ciphertext
consists of 3 elements in Zn2 and one (small) integer.1 In addition, the achievable security level and
the assumption needed are the same as those in Paillier’s AHE scheme. In conclusion, it may be
difficult to exploit it as an alternative to Paillier’s scheme.

1 In fact, we can further improve the efficiency of the modification by removing redundant and repeated parts from
the current version, but they do not bring any advantage over Paillier’s scheme. Hence, we do not consider the
details in this paper.

13

6 Conclusion

Very recently, Gong et al. proposed a construction asserted to be a CCA2-secure AHE scheme [5].
In this paper, we first identified that their decryption algorithm does not function correctly and
provided the rectified algorithm for correct decryption. Subsequently, we provided a simple CCA2
attack on their construction by re-randomizing the challenge ciphertext with a randomly chosen
exponent in Zn\{0, 1}. We also pointed out that their construction seems hard to support an ad-
ditively homomorphic property by considering a typical candidate for an addition algorithm and
providing plausible evidence for achieving an additively homomorphic property with their construc-
tion. As a result, we conclude that their construction is in fact not a CCA2-secure homomorphic
encryption scheme.

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful comments. This work
were supported by Research Grant TL-9014101684-01 and the Singapore Ministry of Education
under Research Grant MOE2013-T2-1-041. Huaxiong Wang was also supported by NTU under
Tier 1 grant RG143/14.

References

1. F. Armknecht, S. Katzenbeisser, and A. Peter. Group homomorphic encryption: characterizations, impossibility
results, and applications. Des. Codes Cryptography, 67(2):209–232, 2013.

2. G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs. Multiparty computation
with low communication, computation and interaction via threshold FHE. In D. Pointcheval and T. Johansson,
editors, Advances in Cryptology - EUROCRYPT 2012, volume 7237 of LNCS, pages 483–501. Springer, 2012.

3. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for public-key
encryption schemes. In H. Krawczyk, editor, Advances in Cryptology - CRYPTO 1998, volume 1462 of LNCS,
pages 26–45. Springer, 1998.

4. I. Damg̊ard, M. Jurik, and J. B. Nielsen. A generalization of Paillier’s public-key system with applications to
electronic voting. Int. J. Inf. Sec., 9(6):371–385, 2010.

5. L. Gong, S. Li, Q. Mao, D. Wang, and J. Dou. A homomorphic encryption scheme with adaptive chosen ciphertext
security but without random oracle. Theoretical Computer Science, 609(1):253–261, 2016.

6. L. Kissner and D. X. Song. Privacy-preserving set operations. In V. Shoup, editor, Advances in Cryptology -
CRYPTO 2005, volume 3621 of LNCS, pages 241–257. Springer, 2005.

7. H. Lipmaa. On the CCA1-security of Elgamal and Damg̊ard’s Elgamal. In X. Lai, M. Yung, and D. Lin, editors,
Inscrypt 2010, volume 6584 of LNCS, pages 18–35. Springer, 2011.

8. J. Loftus, A. May, N. P. Smart, and F. Vercauteren. On CCA-secure somewhat homomorphic encryption. In
A. Miri and S. Vaudenay, editors, Selected Areas in Cryptography (SAC) 2011, volume 7118 of LNCS, pages
55–72. Springer, 2012.

9. A. López-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty computation on the cloud via multikey
fully homomorphic encryption. In H. J. Karloff and T. Pitassi, editors, Symposium on Theory of Computing
Conference (STOC) 2012, pages 1219–1234. ACM, 2012.

10. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In J. Stern, editor, Advances
in Cryptology - EUROCRYPT 1999, volume 1592 of LNCS, pages 223–238. Springer, 1999.

14

