
Faster point scalar multiplication on NIST elliptic curves over
GF(p) using (twisted) Edwards curves over GF(p3)

Micha÷WROŃSKI

Institute of Mathematics and Cryptology
Department of Cybernetics

Military University of Technology in Warsaw, Poland
mwronski@wat.edu.pl

Abstract

In this paper we present a new method for fast scalar multiplication on el-
liptic curves over GF (p) in FPGA using Edwards and twisted Edwards curves
over GF (p3). The presented solution works for curves with prime group or-
der (for example for all NIST curves over GF (p)). It is possible because of
using 2-isogenous twisted Edwards curves over GF (p3) instead of using short
Weierstrass curves over GF (p) for point scalar multiplication. This problem
was considered by Verneuil in [1], but in software solutions it is useless, because
multiplication in GF (p3) is much harder than multiplication in GF (p). Fortu-
nately in hardware solutions it is possible to make in FPGA fast multiplication
in GF (p3) using parallel computations. Single multiplication in GF (p3) is still a
little bit slower than in GF (p) but operations on twisted Edwards curves require
less multiplications than operations on short Weierstrass curves. Using these
observations results in that scalar multiplication on twisted Edwards curve may
be in some situations shorter than scalar multiplication on short Weierstrass
curve up to 26%. Moreover, in Edwards and twisted Edwards curves arithmetic
it is possible to use uni�ed formula (the same formula for points addition and
point doubling) which protects us against some kinds of side channel attacks.
We also present full coprocessor for fast scalar multiplication in FPGA using
described techniques.

Keywords. Edwards curves. Twisted Edwards curves. Finite �elds. Point
scalar multiplication.

1 Introduction

We present a new method for fast scalar multiplication on elliptic curves over
GF (p) in FPGA using Edwards and twisted Edwards curves over GF (p3). The
presented solution works for all elliptic curves given by short Weierstrass equa-
tion, especially for all NIST curves over GF (p). In Edwards and twisted Ed-
wards curves arithmetic it is possible to use uni�ed formula. It is well known

1

that uni�ed formulas (the same formula for point doubling and points addi-
tion) exist for some special types of elliptic curves, for example Edwards and
twisted Edwards curves. Unfortunately, till now it was impossible to use such
uni�ed formula for NIST curves over GF (p), because they are not NIST curves
isomorphic to any special kind of elliptic curve for which uni�ed formula exists.
Using Edwards and twisted Edwards curves which are 2-isogenous to short

Weierstrass curves was considered in [1], because it is easy to make transforma-
tions between points on curves which are 2-isogenous. Unfortunately, twisted
Edwards curve which is 2-isogenous to short Weierstrass curve overGF (p) exists
if such short Weierstrass curve has three points of order two. This condition
for most curves does not occur. To avoid this problem, we need to use �eld
extension from GF (p) to GF (p3).

2 Elliptic curve arithmetic

However point scalar multiplication on elliptic curve requires a lot of computa-
tions, it is not computational hard. Often point on elliptic curve is given in a¢ ne
coordinates. Unfortunately, counting scalar multiplication in a¢ ne coordinates
requires counting inversion of element which is the most costly operation. That
is why the other coordinates systems are searched to be used instead of a¢ ne
coordinates. In this case the best is when scalar multiplication is inversion free
and requires small number of multiplications, because multiplication is much
more costly than addition/subtraction. Because of reason described above the
most popular are projective coordinates which allow us to make scalar mul-
tiplication without inversions (instead of the one inversion we often make to
transform point from projective coordinates to a¢ ne coordinates).
There are some special kinds of elliptic curves on which it is possible to make
scalar multiplication much faster than on short Weierstrass curve but they are
useless if we want to use curve which has prime order of points group. The rea-
son of this fact is that order of points group on Edwards curves, Montgomery
curves or twisted Edwards curves and another which allow faster arithmetic is
never prime number. In other words, it is impossible for every short Weierstrass
curve to �nd isomorphic Edwards curves, Montgomery curves or twisted Ed-
wards curves but it is always possible to do it in opposite way.
There is another disadvantage of arithmetic on Weierstrass curve. The points
addition and point doubling must be done using di¤erent formulas what makes
point scalar multiplication vulnerable for side channel attacks. This danger
always exists if we use point scalar multiplication methods similar to double-
and-add method, when for bit equal 0 we make only doubling and for bit equal
1 we make doubling and after that adding. Of course using Montgomery ladder
let us to avoid this problem. Unfortunately if we use this kind of point scalar
multiplication then for every bit of number k for which we compute Q = [k]P
we need to do one point addition and one point doubling. That is why Mont-
gomery ladder is more costly.
Edwards curves and twisted Edwards curves allow us to use uni�ed formula

2

which means that we may use the same formula for points addition and point
doubling. So the question is if it is some possibility to use arithmetic on Ed-
wards or twisted Edwards curves for every short Weierstrass curve, especially
for NIST curves?
Verneuil in [1] showed that we may use arithmetic on Edwards or twisted Ed-
wards curves for every short Weierstrass curve if we use the �eld extension from
GF (p) to GF (p3) for twisted Edwards curves and at least to GF (p6) for Ed-
wards curves then It is possible using 2-isogenous twisted Edwards or Edwards
curves to short Weierstrass curves. We will show that for all NIST curves in-
stead of NIST P-224 it is possible to use Edwards curve arithmetic using �eld
extension from GF (p) to GF (p3).
It is also obvious that arithmetic in GF (p3) or in GF (p6) is much more

costly than in GF (p). That is why using this arithmetic is useless in software
solutions even if the number of operations in points addition or point doubling
on twisted Edwards curve and Edwards curve is much smaller.
The things look much di¤erent if we consider the hardware solutions. In this
case we are able to make parallelization of most of operations which results in
that multiplication in GF (p3) is not much longer than in GF (p).
We present the �rst FPGA coprocessor with uni�ed formula for NIST curves

over GF (p):

2.1 Scalar multiplication on short Weierstrass curve

Lange and Bernstein in [2] present the best formulas for point addition and
point doubling on short Weierstrass curves over GF (p).
Short Weierstrass curve for every �eld with characteristic coprime with 6 is

given by equation:
E : y2 = x3 + ax+ b in a¢ ne coordinates
or E : Y 2Z = X3 + aXZ2 + bZ3 in projective coordinates.
Because if we use a¢ ne coordinates we need to compute inversion of element

after every single point addition or point doubling we use projective coordinates
(or similar) which are inversion-free (there is required one inversion at the end
of all computations) and they are more e¢ cient.
Points addition of P1 = (X1; Y1; Z1) and P2 = (X2; Y2; Z2) in projective coordi-
nates may be computed using formulas:

1. Y 1Z2 = Y1 � Z2

2. X1Z2 = X1 � Z2

3. Z1Z2 = Z1 � Z2

4. u = Y2 � Z2 � Y 1Z2

5. uu = u2

6. v = X2 � Z1 �X1Z2

3

7. vv = v2

8. vvv = v � vv

9. R = vv �X1Z2

10. A = uu � Z1Z2� vvv � 2 �R

11. X3 = v �A

12. Y3 = u � (R�A)� vvv � Y 1Z2

13. Z3 = vvv � Z1Z2

Then P3 = (X3; Y3; Z3) = P1 +P2. In points addition sometimes it is useful
to assume that Z2 = 1. In this case we need not to count Z1Z2 = Z1 � Z2 and
we have one multiplication less.
The doubling of the point P1 = (X1; Y1; Z1) may be computed using formu-

las:

1. XX = X2
1

2. ZZ = Z21

3. w = a � ZZ + 3 �XX

4. s = 2 � Y1 � Z1

5. ss = s2

6. sss = s � ss

7. R = Y 1 � s

8. RR = R2

9. B = (X1 +R)2 �XX �RR

10. h = w2 � 2 �B

11. X3 = h � s

12. Y3 = w � (B � h)� 2 �RR

13. Z3 = sss

Then P3 = (X3; Y3; Z3) = [2]P1
It is easy to see that points addition requires 14 multiplications (12 multipli-
cations and 2 squares) and 7 additions/subtractions (or 6 additions and one
multiplication by 2).
The point doubling requires 12 multiplications (5 multiplications, 6 squares and
1multiplication by constant) and 12 additions/subtractions (7 additions/subtractions,
3 multiplications by 2 and 1 multiplication by 3).

4

3 Edwards curves and twisted Edwards curves

Edwards and twisted Edwards curves are described with many additional details
in [3], [4] and [5]. Below we present only the most important information about
Edwards and twisted Edwards curves.

3.1 Edwards curves

Edwards curve over �eld K with characteristic not equal 2 is given by formula:
Ee : x

2 + y2 = 1 + dx2y2, where d 2 Knf0; 1g
For every Edwards curve exists birationally equivalent short Weierstrass

curve but not for every short Weierstrass curve exists birationally equivalent
Edwards curve. The sum of two points in a¢ ne coordinates (x1; y1); (x2; y2) on
curve Ee is given by:
P +Q = (x1y2+y1x2

1+dx1x2y1y2
; y1y2�x1x2
1�dx1x2y1y2)

It is easy to see that point (0; 1) is the neutral element of addition law.
Points (1; 0) and (�1; 0) have order 4 and point (0;�1) has order 2. Moreover,
the presented addition law is uni�ed: it can be used to double a point and
works also for neutral element. If d is nonsquare in K then addition law is
complete (works for all pairs of inputs). Using Edwards addition law (especially
using inverted coordinates) requires much less multiplications than standard
coordinates systems on short Weierstrass curve (like projective coordinates).

3.2 Twisted Edwards curves

Et : ax
2 + y2 = 1 + dx2y2, where d 2 Knf0; 1g

For every twisted Edwards curve exists birationally equivalent short Weier-
strass curve but not for every short Weierstrass curve exists birationally equiv-
alent twisted Edwards curve. The sum of two points in a¢ ne coordinates
(x1; y1); (x2; y2) on curve Et is:
P +Q = (x1y2+y1x2

1+dx1x2y1y2
; y1y2�ax1x21�dx1x2y1y2)

In [8] it is shown that however for completeness of these formula a must
to be a square in K and d must to be a non-square in K, in some assump-
tions we may suppose that it is complete, especially if K is a �eld of odd
characteristic and we have a given twisted Edwards curve over K then if points
P = (x1; y1); Q = (x2; y2) on this curve are of odd order, then 1�dx1x2y1y2 6= 0
and 1 + dx1x2y1y2 6= 0 and P +Q cannot be in this case point at in�nity.
It means that we need not to worry about if a or d are squares or non-squares

because all NIST curves are de�ned over �eld of odd characteristic and order of
twisted Edwards curve is always even. So any of the points: P;Q; P +Q cannot
be the point at in�nity. It means that we can use twisted Edwards curve for
scalar multiplication points of prime groups without any exceptions.

5

3.3 Arithmetic in inverted coordinates

The fastest formulas for points addition and point doubling have been found for
Edwards and twisted Edwars curves. The best results may be achieved using in
both cases inverted coordinates. They require small amount of multiplication
and they are inversion free.
Let�s consider the point P = (X1; Y1; Z1) in inverted coordinates on the

twisted Edwards curve: (X2 + aY 2)Z2 = X2Y 2 + dZ4 Where X1; Y1; Z1 6= 0
then point in a¢ ne coordinates on curve Et is given by: (Z1X1

; Z1Y1). We show
below the algorithm for point addition

P = (X1; Y1; Z1), Q = (X2; Y2; Z2), R = P +Q = (X3; Y3; Z3).

1. A = Z1 � Z2

2. B = d �A2

3. C = X1 �X2

4. D = Y1 � Y2

5. E = C �D

6. H = C � a �D

7. I = (X1 + Y1) � (X2 + Y2)� C �D

8. X3 = (E +B) �H2

9. Y3 = (E �B) � I

10. Z3 = A �H � I

We can use presented formulas to make addition of points even if P = Q.
We can say that this formula is uni�ed and it requires 12 multiplications (8
multiplications, 1 squaring and 2 multiplications by constants) and 7 addi-
tions/subtractions. Sometimes we can assume that Z1 = 1. Then algorithm
requires 1 multiplication less.
It is possible to speed-up the algorithm using di¤erent formulas for point

addition and di¤erent formulas for point doubling. Unfortunately in this case
the device used for these computations is vulnerable for side channel attacks.
The algorithm for point doubling R = (X3; Y3; Z3) = [2]P , where (d2 = 2�d):

1. A = X2
1

2. B = Y 21

3. U = a �B

6

4. C = A+ U

5. D = A� U

6. E = (X1 + Y1)2 �A�B

7. X3 = C �D

8. Y3 = E � (C � d2 � Z21)

9. Z3 = D � E

The algorithm requires 9 multiplications (3 multiplications, 4 squares, 2
multiplications by constants) and 6 additions/subtractions.
Moreover, in both algorithms if we put a = 1 then we obtain arithmetic

on Edwards curve and algorithm for point doubling and algorithm for points
addition require one multiplication less.

3.4 Isomorphism between Edwards and twisted Edwards
curves

If a or d is square in K, then for twisted Edwards curve we can �nd birational
equivalent Edwards curve.
For given twisted Edwards curve Et : ax2 + y2 = 1 + dx2y2

I. If d is square in K, then we can make transformations (x; y) !
(x0; y0) = (x

p
d; 1=y)

If we make substitution:
x = x0p

d
; y = 1

y0 we get in result:
a
d (x

0)2 + 1
(y0)2 = 1 + (

x0

y0)
2 and then

a
d (x

0)2(y0)2 + 1 = (y0)2 + (x0)2

(x0)2 + (y0)2 = 1 + a
d (x

0)2(y0)2

II. If a is square in K, then:
(x; y)! (x0; y0) = (x

p
a; y)

If we make substitution:
x = x0p

a
; y = y0 we get in result:

(x0)2 + (y0)2 = 1 + d
a (x

0)2(y0)2

These formulas are so useful, because arithmetic on Edwards curves requires
fewer multiplications than arithmetic on twisted Edwards curve. For all NIST
curves instead of NIST P-224 we can use arithmetic on Edwards curve. For
NIST P-224 we use twisted Edwards curve arithmetic because both a and d are
non-squares in K.

7

4 Isogenies

Isogeny is almost the same what isomorphism is. In the case of elliptic curves
two curves over �eld K are isomorphic if and only if they have the same order
of points group and the same torsion subgroups. Isogeny is a little weaker.
Now we present some useful theorems, proofs may be found in [7] and [9].

Theorem 1 Isogeny is homomorphism:
�([k1]P1 + [k2]P2) = [k1]�(P1) + [k2]�(P2)

Because isogeny is homomorphism it always maps point at in�nity into the
point at in�nity: �(O) = �([0]P) = [0]�(P) = O.

Theorem 2 (Tate) Two curves are isogenous if and only if they have the same
order of points group. It means that they may have di¤erent torsion subgroups.

We present below some properties of isogenies that are necessary in our work.

Theorem 3 Number of elements of isogeny kernel is called degree of isogeny
and is denoted by deg(�):

Theorem 4 For every isogeny � exists the dual isogeny �0 such that � � �0 =
�0 � � = deg(�).

It means that for 2-isogeny � � �0 = 2 and then (� � �0)(P) = [2]P . So if we
want to count [k]P using isogenous curves, we need to count (���0)([k

deg(�)]P) =

[k]P . If deg(�) = 2 then we need to count (� � �0)([k2]P) = [k]P .
Basing on these theorems we proved the theorem below:

Theorem 5 Let P1 be the point on E1 and P2 be the point on isogenous curve
E2 then:
If P2 = �(P1) and n2 = Ord(P2); n1 = Ord(P1), then n2jn1:

Proof. Because �([n1]P1) = [n1]�(P1) = [n1]P2 but �([n1]P1) = �(O) = O, so

[n1]P2 = O and then n2 = Ord(P2) � Ord(P1) = n1. Now let�s suppose that

n2 - n1 and m =
j
n1
n2

k
; r = n1modn2. Then �([n2]P1) = [n2]�(P1) = [n2]P2 =

O.
Next:

�([m �n2]P1) = [m �n2]P2 = O and �([n1]P1) = �([m �n2+r]P1) = �([m �n2]P1+
[r]P1) = �([m � n2]P1) + �([r]P1) = O + �([r]P1) = �([r]P1) = O. It cannot be
true because r < n2 but n2 is the smallest number for which [n2]P2 = O. It
means that n2jn1.

Theorem 6 Let P1 be the point on E1 and P2 be the point on isogenous curve
E2 then:
If P2 = �(P1) and n2 = Ord(P2); n1 = Ord(P1), then n2 � deg(�) � n1

8

Proof. �0(�([n2]P1)) = �0([n2]�(P1)) = [n2]�0(�(P1)) = [n2 � deg(�)]P1. But:
�0(�([n2]P1)) = �

0([n2]�(P1)) = �
0([n2]P2) = �

0(O) = O. And �nally:
O = [n2 � deg(�)]P1, which means that n2 � deg(�) � n1.

If n1 6= deg(�) and n1 is prime then n2 = n1 and if we want to use isoge-
nous curve E2 to count [k]P1 then we must count such k0 that �

0(�([k0]P1)) =
�0([k0]�(P1)) = [k

0]�0(�(P1)) = [k
0 � deg(�)]P1 = [k]P1. In other words it means

that torsion subgroups of prime order are isomorphic on isogenous curves. If
n1 is prime, then k0 = k

deg(�) modn1. It is important because in [1] there was

proposition to count k0 using formula k0 = k
deg(�) mod

#E2
4 . We will be looking

for curves 2-isogenous over extension �eld over GF (p3). Curves over GF (p3)
have much bigger order (about p3) than curve over GF (p) (about p). If k is
odd using formula k0 = k=2 mod#E2=4 (as it is proposed in [3]) results that
the given number k0 would be about three times longer than number k and thus
scalar multiplication of point would be also about three times longer. If we use
formula k0 = k

deg(�) modn1 then k
0 will be always about the same bitlength as

k.

5 Isogenies between curves

In [3] and then also in [1] it is described how we can �nd 2-isogenous curves. If
p � 1(mod 4) every curve with three points of order 2 is birationally equivalent
to a twisted Edwards curve. Unfortunately, this is not true if p � 3(mod 4) if
considered curve does not have any point of order 4. In both cases we are able
to construct 2-isogenous twisted Edwards curve. The proof of this theorem may
be found in [3]. Finally, to construct twisted Edwards curve to the given short
Weierstrass curve we need to make transformations shown below:
Firstly we need to �nd roots of polynomial x3+ax+b = (x�r0)(x�r1)(x�r2):
The transformation will be easier if one of the roots is equal 0. Let�s suppose
that:
R0 = 0
R1 = r1 � r0
R2 = r2 � r0
Now we are able to construct curve E2 which is isomorphic to curve E1:
E2 : y

2 = x3 � (R1 + R2)x2 + R1R2x with point on this curve P2 = (x2; y2) =
(x1 � r0; y1)
Now we are able to construct curve E3 which is 2-isogenous to the elliptic curve
E2:
E3 : y

2 = x3 + 2(R1 + R2)x
2 + (R1 � R2)2x with point P3 = (x3; y3) =

((
y22
x22
); y2(R1R2�x22)

x22
)

Now we will show the short proof of this fact:
Because y2 = x3 � (R1 +R2)x2 +R1R2x then y2 + (R1 +R2)x2 = x3 +R1R2x

9

and (y2 + (R1 +R2)x2)2 = (x3 +R1R2)2x2. After that we get:
y4 + 2(R1 + R2)y

2x2 + (R1 + R2)
2x4 = (R21R

2
2 + 2R1R2x

2 + x4)x2 and y4 +
2(R1 +R2)y

2x2 + (R1 +R2)
2x4 � 4R1R2x2 = (R21R22 � 2R1R2x2 + x4)x2. Now

if we multiply both sides by 1
x4 we get:

y4

x4 + 2(R1 +R2)
y2

x2 + (R1 �R2)
2 =

(R2
1R

2
2�2R1R2x

2+x4)
x2

and if we now multiply both sides by y2

x2 :
y6

x6 + 2(R1 +R2)
y4

x4 + (R1 �R2)
2 y

2

x2 =
y2(R2

1R
2
2�2R1R2x

2+x4)
x4

And �nally:
(y

2

x2)
3 + 2(R1 +R2)(

y2

x2)
2 + (R1 �R2)2(y

2

x2) = (
y(R1R2�x2)

x2)2

It means that point P2 = (x2; y2) on curve E2 is mapped into point P3 =

((
y22
x22
); y2(R1R2�x22)

x22
) on curve E3. It is obvious that we cannot do this transfor-

mation for point (0; 0) which belongs to curve E2. It means that point (0; 0)
on E2 will be mapped into point O on curve E3. But we know that point O
on curve E2 is also mapped into point O on curve E3. It means that points
O; (0; 0) belongs to the kernel of isogeny and it means that it is 2-isogeny.

Now we may construct Montgomery curve E4 which is isomorphic to curve
E3 by formula
E4 :

1
R1�R2

y2 = x3 + 2(R1+R2)
R1�R2

x2 + x with point P4 = (x3
R1�R2

; y2
R1�R2

)

In [3] it is also proved that every Montgomery curve is birationally equivalent
with twisted Edwards curve E5 : 4R1x2 + y2 = 1 + 4R2x

2y2 with point P5 =
(x4y4 ;

x4�1
x4+1

)
If we want to use arithmetic on Edwards curve instead of arithmetic on

twisted Edwards curve, we need to make one more transformation:
E6 : x

2 + y2 = 1 + 4R1

R2
x2y2 with point P6 = (x5

p
d; 1y5) if d is square in K

or E6 : x2 + y2 = 1 + 4R2

R1
x2y2 with point P6 = (x5

p
a; y5) if a is square in K.

If both a and d are not squares in K then we need to use arithmetic on
twisted Edwards curve.

5.1 Field extension

Elliptic curve has three points of order 2 if and only if equation:
x3+ax+b = 0 has three roots (y-coordinate of point of order 2 is always equal 0).
If elliptic curve in short Weierstrass does not have three points of order 2 we need
to consider curve with the same coe¢ cients (inGF (p)) but with roots inGF (p3).
Then we may be sure that there are always three roots of equation considered
above. Because of this fact mapping from E1 to E5 will be considered for
curves over GF (p3) (but coe¢ cients of E1 still belong to GF (p)). Then of course
coe¢ cients of E5 belong to GF (p3) and point on E1 : P1 = (x1; y1); x1; y1 2
GF (p) is mapped into point on E5 : P5 = (x5; y5); x5; y5 2 GF (p3). Of course
if we count the point scalar multiplication on E5 and map this point from E5
to E1 using dual isogeny �

0, the given point on E1 will be given by coordinates

10

x; y 2 GF (p). Unfortunately, all operations on E5 must be done in GF (p3)
which is harder than in GF (p). However addition in GF (p3) is not much more
complicated, unfortunately there are some problems to speed-up in GF (p3)
multiplication and inversion. In software solutions it is very hard to speed up
these operations but in FPGA, using parallel computations, it is much easier.

5.2 FPGA coprocessor for fast scalar multiplication

We create full FPGA implementation of coprocessor for fast scalar multiplica-
tion. Because we use twisted Edwards curve 2-isogenous to the short Weierstrass
curve we need �rstly to �nd out parameters of this curve and generator. For-
tunately, for given curve we need to make such computations only once, so we
can give these all parameters as constants. After that we need to count the
value of k � 2�1mod(r), where r is the order of torsion subgroup in which we
operate (this is the same number as order of points group on short Weierstrass
curve). Of course if k is even we can just shift the number k one place right (but
we will not do that because it gives additional information during side channel
attack). If k is odd we need to know the value of 2�1mod(r). After these all
preparations we are able to make the scalar multiplication of generator.
Of course the result we achieve will be the point on twisted Edwards curve over
GF (p3). Moreover, we use the twisted inverted coordinates because they require
the least multiplying operations. So at the end we need to transform the given
point on twisted Edwards curve over GF (p3) into point on short Weierstrass
curve over GF (p3) (but because r is prime we can assume that we get the point
on short Weierstrass curve over GF (p)). The transformations are given by for-
mulas:

If we use twisted Edwards curve arithmetic, we begin from
E5 : 4R1x

2 + y2 = 1 + 4R2x
2y2 with point P5 = (x5; y5)

Then the rest of operation is the same while using Edwards and twisted
Edwards curve arithmetic:

E4 :
1

R1�R2
y2 = x3 + 2(R1+R2)

R1�R2
x2 + x with point P4 = (

1+y5
1�y5 ;

1+y5
x5(1�y5))

E3 : y
2 = x3 + 2(R1 + R2)x

2 + (R1 � R2)2x with point P3 = (x3; y3) =
(x4(R1 �R2); y4(R1 �R2))

E2 : y
2 = x3�(R1+R2)x2+R1R2x with point on this curve P2 = (x2; y2) =

(y3
2

4x32
;
y3((R1�R2)

2�x32)
8x33

)

E1 : y
2 = x3 + ax+ b with point on this curve P1 = (x1; y1) = (x2 + r0; y2)

Because it is always possible to use twisted Edwards curve arithmetic (to
use Edwards curve arithmetic a or d must be non-square in K) we present
transformations for this arithmetic.

11

It is easy to see that transformation from E5 to E1 requires 4 inversions,
9 multiplications and 13 additions/subtractions. Moreover, these computations
must be done always at the end of point scalar multiplication.
Of course the biggest problem is too much inversions we need to count to get
the point on E1. If we analyze these all formulas more carefully, we will see
that (now we consider that on curve E5 we have the point in inverted twisted
coordinates: P5 = (u5; v5; z5)):
x1 =

u5
2

4z52
+ r0

y1 =
u5v5(R2�R1)

2(z5�v5)(z5+v5)
Using simultaneous inversion we are able to count x1; y1 using only 1 inversion,
9 multiplications and 5 additions/subtractions.

We should remember that if we use Edwards curve arithmetic, at �rst we
need to count:
If d is square in K we have:
E6 : x

2 + y2 = 1 + 4R1

R2
x2y2 with point P6 = (x6; y6) and then we obtain

E5 : 4R1x
2 + y2 = 1 + 4R2x

2y2 with point P5 = (x5; y5) = (x6pd ;
1
y6
)

or if a is square in K we have:
E6 : x

2 + y2 = 1 + 4R2R1x
2y2 with point P6 = (x6; y6) and then we obtain:

E5 : 4R1x
2 + y2 = 1 + 4R2x

2y2 with point P5 = (x5; y5) = (x6pa ; y5).
Using Edwards curve arithmetic also need only 1 inversion and similar number

of multiplications and additions.
If R0 = R2�R1 where R1 and R2 are constant and we have the constant r0,

then:

1. Z = 2z5

2. A = z5 � v5

3. B = z5 + v5

4. C = A �B

5. D = 2 � C

6. E = u5 � v5

7. F = E �R0

8. G = F � Z

9. H = D � Z

10. H 0 = H�1

11. y1 = G �H 0

12

12. I = u5 �D

13. J = I �H 0

14. K = J2

15. x1 = K + r0

We are able to obtain similar formulas in the case when we use Edwards
curve arithmetic. It will require additionally a few multiplications.

6 Multiplication in GF (p3)

Operations in extended �elds are computed by making operations modulo ir-
reducible polynomial. The best are irreducible polynomials that have most of
coe¢ cient equal to 0. Then we look for polynomials that have most of coef-
�cients equal to 1. Then for all non-zero and non-one coe¢ cient we try �nd
the smallest integer, for which the given polynomial is irreducible. We consider
the polynomials of form x3 + x + c. We can also consider polynomials of form
x3+ ax2+1; x3+ bx+1; x3+ x2+ c; x3+ c. The best for our purpose are poly-
nomials of form x3 + c, but unfortunately this form of irreducible polynomial
does not exist for all NIST curves.

NIST curve x3 + x+ c x3 + c
NIST P-192 x3 + x+ 7 Not exist
NIST P-224 x3 + x+ 8 x3 + 2
NIST P-256 x3 + x+ 13 x3 + 2
NIST P-384 x3 + x+ 3 Not exist
NIST P-521 x3 + x+ 4 x3 + 3

Table 1: Irreducible polynomials of form
x3 + x+ c for NISTcurves.

The table shows number of additional processor cycles necessary for multi-
plication in GF (p3) comparing to multiplication in GF (p) for irreducible poly-
nomial x3 + x + c (using interleaved multiplier): for example for NIST P-192
multiplication in GF (p3) using irreducible polynomial of form x3+x+7 require
198 processor cycles (199 if we count also initialization cycle) instead of 192
(193 if we count also initialization cycle) in GF (p).

13

NIST curve x3 + x+ c x3 + c
NIST P-192 +6 Not exist
NIST P-224 +6 +4
NIST P-256 +7 +4
NIST P-384 +5 Not exist
NIST P-521 +5 +5

Table 2: Number of additional processor cycles
using multiplication in GF (p3) instead of multiplication in GF (p).

If we use multiplication algorithm in GF (p) by which we are able to make
multiplication by number of 4 bits length in one processor cycle, then for irre-
ducible polynomials we consider multiplication in GF (p3) will require 4 addi-
tional processor cycles comparing to multiplication in GF (p).
In this paper we present the solution using polynomials of form x3 + x + c

but we should always �nd the best for us solution just for given prime number
p. The multiplication by constant need at most as many processor cycles as bits
the number have. Sometimes (especially if the constant is power of 2) we may
count the multiplication by this number with one processor cycle less.

6.1 Multiplication in GF (p3) using irreducible polynomial
of form F (x) = x3 + x+ c

For all NIST curves overGF (p) we found irreducible polynomials of form F (x) =
x3 + x + c. Using such polynomial we are able to multiply two elements A =
a2x

2 + a1x+ a0; B = b2x
2 + b1x+ b0 where A;B 2 GF (p3) using formula:

A �B = x2(�M + L+ U) + x(�c �M �R+ S)� c �R+N
Where:

1. L = a1 � b1

2. M = a2 � b2

3. N = a0 � b0

4. O = (a1 + a2)(b1 + b2)

5. P = (a0 + a1)(b0 + b1)

6. R = O � L�M

7. S = P �N � L

8. T = (a0 + a2)(b0 + b2)

9. U = T �M �N
These all operations require 6 multiplications in GF (p), 2 multiplications
by c which is small integer and 17 additions/subtractions in GF (p)

14

Figure 1: The scheme of FPGA implementation of multiplication in GF (p3).

7 Counting inversions in GF (p3)

It is obvious that we are able to count for A 2 GF (p3) its inversion A�1 using
formula:
A�1 = Ap

3�2

We can use also extended Euclidean algorithm. In both cases counting inversion
requires three times more steps than counting inversion for element from GF (p).
Moreover, every step requires making operations in GF (p3) instead of GF (p)
which are still a little bit slower.
It is possible for A 2 GF (p3) to count its inversion A�1 by count one inver-
sion of element from GF (p). The method for irreducible polynomial of form
F (x) = x3+ c may be found in [6]. We use very similar methods for irreducible
polynomial F (x) = x3 + x + c. Of course the same methods may be used for
any other irreducible polynomials. Let�s write:

A =

24a2a1
a0

35, and A�1 =
24b2b1
b0

35.

If M =

24 (a0 � a2) a1 a2
�(c � a2 + a1) (a0 � a2) a1
�c � a1 �c � a2 a0

35 then
M �

24b2b1
b0

35 =
24 (a0 � a2) a1 a2
�(c � a2 + a1) (a0 � a2) a1
�c � a1 �c � a2 a0

35 �
24b2b1
b0

35 =
2400
1

35
Coe¢ cients in matrix M may be taken from general form of element C =

A �B.

15

Now we can transform it into:24b2b1
b0

35 =
24 (a0 � a2) a1 a2
�(c � a2 + a1) (a0 � a2) a1
�c � a1 �c � a2 a0

35�1 �
2400
1

35 =M�1 �

2400
1

35
Now we can do as follow: the determinant of matrix M is equal to:
det(M) = 2a2a1c(a0 � a2) + (a2c+ a1)(a22c+ a1a0)� a13c+ a0(a0 � a2)2
Then:
M�1 = 1

det(M) �

�

24 a1a2+a0(a0�a2) �a22�a0a1 a21�(a0�a2)a2
a0(a2�c+ a1)� a

2
1�c a1a2�c+ a0(a0�a2) �a2(a2�c+ a1)� a1(a0�a2)

a1(a0�a2) � c+ a2�c(a2�c+ a1) (a0�a2)a2zcdotc� a
2
1�c (a0�a2)

2
+a1(a2�c+ a1)

35
And24b2b1

b0

35 = 1
det(M) �

24 a1
2 � (a0 � a2)a2

�a2(a2c+ a1)� a1(a0 � a2)
(a0 � a2)2 + a1(a2 � c+ a1)

35
We can count these using formulas:

1. A = a0 � a2

2. B = a2 � c

3. C = B + a1

4. D = 2 � a1

5. E = D �B

6. F = E �A

7. G = a2 �B

8. H = a1 � a0

9. I = G+H

10. J = C � I

11. K = a21

12. L = �K � a1

13. M = L � c

14. N = A2

15. P = N � a0

16. Q = F + J

17. R =M + P

16

18. S = Q+R

19. Ŝ = S�1

20. T = a2 �A

21. U = K � T

22. W = �a1 �A

23. X = �a2 � C

24. Y =W +X

25. Z = a1 � C

26. O = N + Z

27. b2 = UŜ

28. b1 = Y Ŝ

29. b0 = OŜ
These operations require 1 inversion, 18 multiplications and 10 addi-
tions/subtractions.

8 FPGA implementation of presented solution

8.1 Project assumptions

In literature we can �nd many fast solutions for point scalar multiplication in
FPGA (see [10], [15], [16]). Unfortunately used techniques strongly depends on
the �eld size, used type of multiplication, inversion and scalar multiplication
method (binary, NAF, wNAF etc.). Moreover, the best solution for device
invulnerable for side channel attack may be constructed using much di¤erent
techniques than the best solutions for device vulnerable for side channel attack.
Because our main aim was to show idea of using (twisted) Edwards curve over
GF (p3) to count point scalar multiplication for NIST curves in FPGA, we made
assumptions:
- multiplication is counted using interleaved multiplier (multiplication of two

L� bit numbers requires L+ 1 processor cycles - L cycles for multiplication +
one initialization cycle)
- inversion is counted using fast exponentiation, because we need to count

it only once and other algorithms (for example extended Euclidean algorithm)
require much more components which means that we would require much more
resources.
- point scalar multiplication is counted using binary (double-and-add) method
- every operation that require access to the RAM memory require one more

processor cycle for initialization

17

Of course devices made using these assumptions are not the fastest, but they
clearly show the presented ideas. The presented ideas may be used to get better
solution using di¤erent project assumptions but it is not the main objective of
presented work.
One of the most important things to speed up the scalar multiplication

is choosing multiplication algorithm. We chose interleaved multiplier to show
advantages of using twisted Edwards curves over GF (p3). In other cases we
should careful choose how to implement point scalar multiplication and what
multiplication algorithm inGF (p) would be the best. If multiplication algorithm
in GF (p) requires at least 30-40 processor cycles then using twisted Edwards
curves over GF (p3) for point scalar multiplication may be very good idea.

8.2 Fast implementation of multiplication in GF (p3) using
FPGA

It is easy to see that multiplication on GF (p3) requires much more operations
than multiplication inGF (p). In software solutions this fact makes using twisted
Edwards curves over GF (p3) absolutely useless. The things look di¤erent if
we consider hardware solutions, for example FPGA. In FPGA we are able to
make parallel computations which decrease time needed to make multiplication
in GF (p3). Moreover, because points addition and point doubling on twisted
Edwards curve in inverted coordinates is much faster than the same operations
on short Weierstrass curve, in some cases the time required for scalar point
multiplication may be much shorter using twisted Edwards curves over GF (p3)
than short Weierstrass curves over GF (p). The scheme of multiplication is
shown below:

8.3 FPGA coprocessor

In this article we present a FPGA implementation of working coprocessor for
fast scalar multiplication using twisted Edwards curves. We need to get in result
point Q = [k]P . Scalar multiplication is divided into three main steps:

1. Counting k0�1mod(r), where r is the order of generator G (G is point on
short Weierstrass curve and is mapped by 2-isogeny � into point Gt which
is generator of subgroup of order r on (twisted) Edwards curve).

2. Counting Qt = [k0]Gt, where Qt is the point on twisted Edwards curve in
inverted coordinates e element

3. Transformation from Qt to Q (including counting inversion)

The �rst step is counted using component for multiplication in GF (p) which
on the scheme is described Mul_GF (p). This device has two modes: the �rst
mode is used to count a � bmod(p), the second mode to count a � bmod(r). So if
we want to count k0�1mod(r) the Mul_GF (p) device must be set to mode 1.

18

In other case (especially when we count inversion of element in GF (p3) using
inversion in GF (p)) the mode must be set for 0.
The second step is counted using components: RAM_L, ADD_GF (p^3),

MUL_GF (p^3), where L is the bitlength of p.
RAM_3L is RAM memory consisted of 14 registers of 3L bitlength each.

This is necessary because every element from GF (p3) for p which is L bits
length consists from three elements each of L bitlength. The element A =
a2x

2 + a1x+ a0 is written in memory as concatenation of coe¢ cients: a2ja1ja0.
Component ADD_GF (p^3) is used for addition or subtraction of elements

from GF (p3). If the mode is set on 0 then component is used for addition, if
mode is set on 1 then component is used for subtraction. ComponentMUL_GF (p^3)
is used for multiplication of elements from GF (p3). It is the most complex ele-
ment of all components.
Transformation of point from E5 to E1 is made by using almost all compo-

nents because most of operations are made for elements from GF (p3) but for
counting inversion we use components RAM_L, ADD_GF (p), MUL_GF (p)
which all are used for making operations in GF (p).
However, the presented solution requires more steps than traditional scalar

multiplication, the fact of using faster arithmetic on twisted Edwards curves
results in that the time of presented solution is shorter.

Compilation results for STRATIX IV using twisted Edwards curve arith-
metic (because di¤erences between using twisted Edwards curve arithmetic and
Edwards curve arithmetic are very small then the hardware requirements are
almost the same and we will not present this case):

NIST curve #ALUTs #REGISTERS #RAM #PINs Max frequency [MHz]
NIST P-192 27559 12398 21504 165 85.11
NIST P-224 31026 13389 25088 165 81.16
NIST P-256 33777 15206 28672 165 78.44
NIST P-384 53469 22301 43008 165 59.14
NIST P-521* 72545 30257 58352 165 40.84

Table 3: Compilation results for STRATIX IV
using twisted Edwards curve arithmetic.

*For NIST P-521 compilation was not successful on STRATIX IV device.
The values for this case have been approximated.

We made comparison of given solution in two di¤erent ways. Firstly we
compared solutions which are vulnerable for side channel attack and we use in
both cases: for short Weierstrass curve and (twisted) Edwards curves di¤erent
formulas for point addition and point doubling (we use not uni�ed formulas).

19

Figure 2: The scheme of FPGA implementation of coprocessor using presented
techniques.

20

Then we compared solution which should be invulnerable for side channel
attack. We made assumptions that for short Weierstrass curve we use Mont-
gomery ladder and for (twisted) Edwards curve we use uni�ed formula.
Number of processor cycles (including additional and initialization cycles)

using short Weierstrass curve arithmetic (SWC) and using twisted Edwards
curve arithmetic (TEC):

NIST curve SWC GF (p) TEC GF (p3) not uni�ed TEC GF (p3) not unified
SWC GF (p) [%]

NIST P-192 728930 636536 87.32
NIST P-224 975794 846472 86.75
NIST P-256 1258498 1089837 86.60
NIST P-384 2747714 2336003 85.02
NIST P-521 4976978 4204204 84.47

Table 4: Number of processor cycles for devices
vulnerable for side channel attacks (for TEC).

NIST curve SWC GF (p) Ladder TEC GF (p3) uni�ed TEC GF (p3) unified
SWC GF (p) ladder [%]

NIST P-192 934082 770648 82.50
NIST P-224 1254562 1028024 81.94
NIST P-256 1622146 1326893 81.80
NIST P-384 3563522 2860931 80.28
NIST P-521 6476416 5166230 79.77

Table 5: Number of processor cycles for device
unvulnerable for side channel attacks (for TEC).

Number of processor cycles (including additional and initialization cycles)
using Edwards curve arithmetic (EdC):

NIST curve SWC GF (p) EdC GF (p3) not uni�ed EdC GF (p3) not unified
SWC GF (p) [%]

NIST P-192 728930 579224 79.46
NIST P-224* - - -
NIST P-256 1258498 988461 78.54
NIST P-384 2747714 2111363 76.84
NIST P-521 4976978 3792353 76.20

Table 6: Number of processor cycles for devices
vulnerable for side channel attacks (for EdC).

21

NIST curve SWC GF (p) Ladder EdC GF (p3) uni�ed EdC GF (p3) unified
SWC GF (p) ladder [%]

NIST P-192 934082 713336 76.37
NIST P-224* - - -
NIST P-256 1622146 1225517 75.55
NIST P-384 3563522 2636291 73.98
NIST P-521 6476416 4754380 73.41

Table 7: Number of processor cycles for devices
unvulnerable for side channel attacks (for EdC).

*For NIST P-224 we cannot use Edwards curve arithmetic using our solution
because a and d are non-squares in K.

We compared the FPGA implementations of coprocessor for scalar multi-
plication on twisted Edwards curve over GF (p3) using presented techniques to
coprocessor for scalar multiplication on short Weierstrass curve over GF (p),
which uses similar techniques and components.
The table below shows comparison:

Curve Field Max frequency [MHz]
TEC NIST P-192 78.04
SWC NIST P-192 82.71

Table 8: Maximal processor frequency for devices
using twisted Edwards curves and short Weierstrass curves.

9 Protection against side channel attacks

It is well known that using Montgomery ladder protects against most types of
side channel attacks. It is also easy to see that using uni�ed formula brings
similar protection against side channel attacks. If we use Montgomery ladder to
count Q = [k]P then for �elds of bitlength L we must always count L additions
of points and L point doublings. So it is impossible to guess any information
about the number k.
If we use uni�ed formula, doubling and addition are indistinguishable. The

only information we can get, is (for example if we use binary method for scalar
multiplication) the Hamming weight of the number k which we denote asW (k).
Using this information we can see that:

Probability that W (k) = m is (
L
m)
2L
. Even if know the number W (k) = m,

then the expected number of possibilities we need to check is (
L
m)
2 . So for random

number k the expected number of possibilities we need to check is:

U(L) =
LX
i=0

(Li)
2

2L+1
=

LX
i=0

(Li)
2

2L+1
=
(2LL)
2L+1

22

In the case of using Montgomery ladder the expected number of possibilities
we need to check is M(L) = 2L�1. So we can see that using Montgomery

ladder is a little bit save than using uni�ed formula, because (
2L
L)

2L+1
� 2k�1 and

U(L)
M(L) =

(2LL)
22L

NIST curve L U(L)
M(L) � 100%

NIST P-192 192 4.07
NIST P-224 224 3.77
NIST P-256 256 3.52
NIST P-384 384 2.88
NIST P-521 521 2.47
Table 9: Comparison of security

Montgomery ladder and uni�ed formula.

So we can see that using uni�ed formula instead of Montgomery ladder in the
case of side channel attack is less save at most for only from

�
log2

100
4:07

�
= 5 bits

(when we use NIST P-192) to
�
log2

100
2:47

�
= 6 bits (when we use NIST P-521).

Knowing Hamming weight of number k for which we make scalar multiplication
does not decrease the security of device so much in the case of side channel
attack.

10 Conclusion

Presented solution is much faster than traditional point scalar multiplication in
GF (p) when multiplication requires many processor cycles (at least 30-40) which
is very frequent in hardware implementations. Unfortunately the presented
device requires much more logic elements than traditional solutions. Because
of that we always need to choose method for point scalar multiplication very
carefully.

10.1 Improvements and advantages

In this work we made some improvements due to previous articles about this
topic:
- We made �rst FPGA device for point scalar multiplication using uni�ed for-
mula which protect this device against side channel attacks
- The presented solution uses fast operations on (twisted) Edwards curve over
GF (p3) which we can use to speed-up point scalar multiplication for NIST
curves in some cases.
- Presented solution is faster than classic solutions up to 23% if we consider
device vulnerable for side channel attacks and up to 26% if we consider device
invulnerable for side channel attacks
- For all NIST curves we found irreducible polynomials of special form F (x) =

23

x3 + x+ c to increase the e¢ ciency of operations in GF (p3).
- We showed that if a or d is square in K then we can �nd Edwards curve
birationally equivalent to the given twisted Edwards curve and thus we can
use Edwards curve arithmetic which require less multiplications than twisted
Edwards curve arithmetic. Moreover, in this case we can count point scalar
multiplication for all points of odd order using �eld extension GF (p3) and it is
not necessary to use �eld extension GF (p6) as it was proposed in [1].
- We present full working device for point scalar multiplication for NIST curves
using 2-isogenous twisted Edwards curves. The longer the single multiplication
is, the more time we are able to save.

10.2 Disadvantages

Unfortunately, this solution has some disadvantages and limits. The main dis-
advantages are:
- The presented solution should be considered only if multiplication requires
more than 30-40 processor cycles (average case)
- The FPGA structure of presented solution requires about three to four times
more elements than traditional solutions
- The clock speed is a little bit slower because of using operations in GF (p3)
instead of using operations in GF (p)
- If �eld is big number (for example NIST P-521) the solution for such �eld
requires too many resources to use it in practice.

11 Further work

In our opinion we should consider to use standard short Weierstrass curves or
Edwards or twisted Edwards curves de�ned over GF (p3) with prime order (for
short Weierstrass curve) or order equal to 4q, where q is prime number. Using
such curves we would be able to count multiplication and inversion much faster
than now and because order of points group would be prime number close to p3,
then the security of this solution would be similar to the security while using
curve over GF (t), where t is three times longer (in bits) prime than p. Using
Edwards curves arithmetic we would be able to get in hardware solutions from
3 times faster (if we need not protection against side channel attacks) to even
more than 4 times faster (if we need protection against side channel attacks).
This is the result that multiplication and inversion in GF (p3) (which is needed
only if we want to get point in a¢ ne coordinates) would be about three times
faster than in GF (t) and additionally using Edwards curve arithmetic require
less multiplications. We are also able to count inversion much faster, because
inversion in GF (p3) may be counted using one inversion in GF (p) and some
additional multiplications and additions/subtractions. Moreover, the presented
in this article FPGA implementation of coprocessor may be used to that after
few small changes. Of course there are known some index calculus methods for

24

curves over �eld extension and we should study all advantages and disadvantages
of every possible solution very carefully.

References

[1] V. Verneuil. "Elliptic Curve Cryptography on Standard Curves Using the
Edwards Addition Law.�Yet Another Conference on Cryptography. 2008.

[2] �http://www.hyperelliptic.org/.�.

[3] P. Birkner, M. Joye, T. Lange, Ch. Peters, D. Bernstein. "Twisted Edwards
Curves.�eprint.iacr.org (2008).

[4] T. Lange, D. Bernstein. "Faster addition and doubling on elliptic curves.�
Cryptology ePrint Archive, 2007.

[5] D. Bernstein, P. Birkner, T. Lange, Ch. Peters. "ECM using Edwards
curves." Cryptology ePrint Archive, 2008.

[6] H. Cohen, G. Frey. "Handbook of Elliptic and Hyperelliptic Curve Cryp-
tography." New York: Chapman & Hall/CRC, 2006.

[7] I. Blake, G. Seroussi, N. Smart. "Elliptic curves in cryptography". Cam-
bridge University Press, 1999

[8] H. Hisil, K. Koon-Ho Wong, G. Carter, E. Dawson. "Twisted Edwards
Curves Revisited". ASIACRYPT 2008

[9] J. Silverman. The arithmetic of elliptic curves, Second edition. Nowy Jork:
Springer, 2009.

[10] N. Guillermin. �A high speed coprocessor for elliptic curve scalar multipli-
cations over Fp.�

[11] D. Genkin, A. Shamir, E. Tromer. �RSA Key Extraction via Low-
Bandwidth Acoustic Cryptanalysis.�Cryptology ePrint Archive 2013, wyd.
Report 2013/857.

[12] B. Smith. Mappings of elliptic curves. Eindhoven: INRIA, 2008.

[13] P. Kocher, J. Ja¤e, B. Jun. �Di¤erential power analysis.� Advances in
Cryptology - Crypto 99 Proceedings. Lecture Notes In Computer Science
1999.

[14] M. Neunhö¤er. Module MT 5826 Finite Fields. RWTH Aachen University.
Aachen, 2007.

[15] Yu-Shiang WANG, Chih-Tsun HUANG Jyu-Yuan LAI. �High-Performance
Architecture for Elliptic Curve Cryptography over Prime Fields on FP-
GAs.�Interdisciplinary Information Sciences 2012.

25

[16] Zongbin Liu, Wuqiong Pan, Jiwu Jing Yuan Ma. �A High-Speed Elliptic
Curve Cryptographic Processor for Generic Curves over GF(p).�2013.

26

