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Abstract. The Ring Learning-With-Errors (RLWE) problem shows great promise for post-quantum
cryptography and homomorphic encryption. We describe a new attack on the non-dual search RLWE
problem with small error widths, using ring homomorphisms to finite fields and the chi-square sta-
tistical test. In particular, we identify a “subfield vulnerability” (Section 5.2) and give a new attack
which finds this vulnerability by mapping to a finite field extension and detecting non-uniformity with
resepect to the number of elements in the subfield. We use this attack to give examples of vulnerable
RLWE instances in Galois number fields. We also extend the well-known search-to-decision reduction
result to Galois fields with any unramified prime modulus q, regardless of the residue degree f of q,
and we use this in our attacks. The time complexity of our attack is O(nq2f ), where n is the degree of
K and f is the residue degree of q in K. We also show an attack on the non-dual (resp. dual) RLWE
problem with narrow error distributions in prime cyclotomic rings when the modulus is a ramified
prime (resp. any integer). We demonstrate the attacks in practice by finding many vulnerable instances
and successfully attacking them. We include the code for all attacks.
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1 Introduction

The Ring Learning-with-Errors (RLWE) problem, proposed in [18], is a variant of the Learning-with-Errors
(LWE) problem, and is an active research area in lattice based cryptography, and a candidate for post-
quantum cryptography. It has drawn increased attention because it can be used for homomorphic encryption
([2,3,4,5,13,17,24]). The problem, which comes in search and decision variants, is based on the geometry of
ideal lattices, in particular the rings of integers of number fields, or their duals.

It is of great importance to understand the security of RLWE. The first piece of the puzzle is provided by
proofs of security [18]. However, it is also important to mount direct attacks on the problem and its variants,
in order to illuminate the protective properties of the provably secure instances, the dangers of deviating
from established parameters, and the practical runtimes for certain parameter sizes. This work is part of that
programme, which has seen much recent interest, e.g. [11,12]. An eprint version of the current paper [8] has
already generated much follow-up work [6,7,9,22]. In this paper we provide a brief overview of past work, and
then present attacks which are novel in their mathematical underpinnings (based on new homomorphisms
to finite fields of higher degree which detect in particular “subfield vulnerabilities”, see Section 5.2). We also
discuss the underlying number theory and geometry of these attacks to provide a framework for future work.

An instance of the RLWE problem is determined by a choice of a number field K and a prime q called
the modulus, along with an error distribution. The authors of [18] proved a reduction from certain hard
lattice problems to an instance of search RLWE involving a continuous Gaussian error distribution modulo
the dual ideal R∨ of the ring of integers R of K. Ducas and Durmus proposed a non-dual variant of RLWE
in the cyclotomic setting and proved its hardness in [10]. Also in [18], a search-to-decision reduction was
proved for RLWE problems in cyclotomic fields and modulus q which splits completely. This reduction was
then generalized in [11] to hold for general Galois number fields where q splits. As an auxiliary result in
this paper, we generalize this search-to-decision reduction to work for the case of unramified modulus q of
arbitrary degree.

The non-dual variant of RLWE generates the error distribution as a discrete Gaussian on the ring of
integers R under the canonical embedding, instead of in the image of the dual ideal. The dual and non-dual



variants are equivalent up to a change in the error distribution (see Section 2). For the non-dual variant of
RLWE, the authors of [12] proposed an attack on the decision RLWE problem. The attack makes use of a
modulus q of residue degree 1, giving a ring homomorphism ρ : R → Fq (so that it could be called a mod q
attack, although it differs from [20,21]). The attack works when, with overwhelming probability, the image
of the RLWE error distribution under the map ρ takes values only in a small subset of Fq. The authors of
[12] then gave an infinite family of examples vulnerable to the attack. Unfortunately, the vulnerable number
fields in [12] are not Galois. Hence, the search-to-decision reduction theorem does not apply, and the attack
can not be directly used to solve the search variant of RLWE for those instances.

In this paper, we generalize the attack of [12] to certain Galois number fields and moduli of higher degree.
As a result, we have an attack on the search RLWE problem and an implementation of the attack on concrete
RLWE instances, including the search-to-decision reduction. Our attack is new in two major ways: first, the
attack considers ring homomorphisms from R→ Fqf , for f > 1, instead of just homomorphisms from R→ Fq
(so it is no longer ‘mod q’); second, the error distribution is distinguished from random (i.e. from the uniform
distribution) using the statistical chi-squared test, instead of relying on the values of the error polynomial
to be small or in a small subset. The attack aims at an intermediate problem used in the search-to-decision
proof of [18], which is to recover the secret modulo a prime ideal (denoted SRLWE(R, q); see Definition 7).
The time complexity of our attack is O(nq2f ), where n is the degree of K and f is the residue degree of q
in K.

Importantly, we also show an attack on prime cyclotomic rings under certain assumptions on the modulus
and error rate, which succeeds with high probability and with surprising efficiency. First, we give attacks for
the decision version of the non-dual variant of RLWE considered in [12], when the modulus q is equal to the
unique ramified prime p. For example, we show that in dimension n = 808, we can attack an RLWE instance
in the cyclotomic ring Q(ζ809) effectively in 35 seconds, where the modulus is 809. This opens up the question
of whether general cyclotomic fields are safe for cryptography, depending on whether modulus switching can
be used to transfer this attack from the ramified modulus to other larger moduli which are used in practice.
In addition, we attack the decision version of the dual RLWE problem on the p-th cyclotomic field with
arbitrary modulus q, assuming that the width r of the error distribution is around 1√

p .

The error widths for which our attacks work are below those required by the security proof of [18], which
requires r = ω(

√
log n). In particular, this work does not affect the hardness results of [18]. On the other

hand, in practice, in implementations of homomorphic encryption systems based on the hardness of RLWE,
it has been common practice to use small errors to improve efficiency for the systems. We show in this work
that for errors in the width range below provably secure but above linear algebra vulnerable (errorless LWE),
the security of RLWE depends in an interesting way on the choice of ring and modulus. To be more specific,
the geometry of the ring of integers and the manner in which certain prime ideals exist as sublattices are
important factors (see Section 5.2). Finally, it is important to note that most implementations of RLWE-
based schemes use exclusively 2-power cyclotomic rings, on which our attacks are not effective. Hence the
impact of our attacks on the security of existing practical implementations of RLWE-based homomorphic
encryption schemes is limited.

Auxiliary results we present include several stand-alone items of possibly independent interest: we prove
a search-to-decision reduction for Galois fields which applies for any unramified modulus q, regardless of the
residue degree of q (this relies heavily on Galois theory and Galois fields are the largest class to which we
expect this to apply). We also present some heuristic arguments as to whether modulus switching techniques
are likely to be successfully combined with our attacks.

We end this section with a table summarizing what is known about the security of RLWE for certain
choices of number fields. The first table deals with the continuous dual version. For comparison, we normalize
the error width: let r̃ = r · |dK |1/2n, where dK is the discriminant of the number field K.
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Table 1. Security of dual RLWE

field modulus r̃ security

Q(ζm) q ≡ 1 mod m, q = poly(m) ω(
√

logn) ·Θ(
√
n) decision is secure [18]

Any q = poly(n) ω(
√

logn) · |dK |1/2n search is secure [18]

Q(ζp) any ∼ 1 decision is not secure (this paper)

The second table deals with the non-dual discrete version. Here we normalize by r̃ = r/|dK |1/2n. The
heuristic expectation is that when r̃ = Ω(

√
n) and q = poly(n), decision RLWE problem should be hard.

Table 2. Security of non-dual RLWE

field modulus r̃ security

Q( n
√

1− q) poly(n) ∼ 1 decision is not secure [12]

Q( n
√

1− q) poly(n) ∼ 1 search is not secure [7]

certain Q(ζm)H poly(n) w. properties ∼ 1 search is not secure (this paper)

Q(ζp) p ∼ 1 decision is not secure (this paper)

certain Q(ζp,
√
d) poly(n) w. properties o(

√
d/p) search is not secure [9]

1.1 Organization

In Section 2, we review some definitions related to the RLWE problems. In Section 3, we prove a search-to-
decision reduction for Galois extensions K and unramified moduli. In Section 4, we introduce an attack on
non-dual RLWE problems based on the chi-square statistical test, which directly generalizes the attack in
[12]. In Section 5, we give examples of subfields of cyclotomic fields vulnerable to our new attack, where the
modulus q has residue degree two. In Section 6, we give attacks on the non-dual RLWE in prime cyclotomic
fields when the modulus is the unique ramified prime and dual RLWE for any modulus, assuming the errors
are sufficiently narrow. In Section 7, we consider the possibility of combining modulus switching with our
attack.

All computations in this paper were performed in Sage [25]. All the relevant code is available and can be
found at https://github.com/haochenuw/GaloisRLWE.
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2 Background

Let K be a number field of degree n with ring of integers R, and let σ1, · · · , σn be the embeddings of K into
the field of complex numbers. We define the adjusted canonical embedding of K as follows: Let r1, r2 denote
the number of real embeddings and conjugate pairs of complex embeddings of K. Without loss of generality,
assume σ1, · · · , σr1 are the real embeddings of K and σr1+r2+j = σr1+j for 1 ≤ j ≤ r2. Then the adjusted
canonical embedding is the following map:
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ι : K → Rn : x 7→



σ1(x)
...

σr1(x)√
2 Re(σr1+1)(x)√
2 Im(σr1+1)(x)

...√
2 Re(σr1+r2)(x)√
2 Im(σr1+r2)(x).


(1)

It turns out that ΛR := ι(R) is a lattice in Rn. Let w = (w1, · · · , wn) be an integral basis for R. The
embedding matrix of w, denoted by Aw, is the n-by-n matrix whose i-th column is ι(wi). Note that the
columns of Aw form a basis for the lattice ΛR.

For σ > 0, define the Gaussian function ρσ : Rn → (0, 1], depending on the usual inner product on Rn,

to be ρσ(x) = e−||x||
2/2σ2

.

Definition 1. For a lattice Λ ⊂ Rn and σ > 0, the discrete Gaussian distribution on Λ with parameter σ
is:

DΛ,σ(x) =
ρσ(x)∑
y∈Λ ρσ(y)

, ∀x ∈ Λ.

Equivalently, the probability of sampling any lattice point x is proportional to ρσ(x).

We follow [12] in setting up the non-dual RLWE problem for general number fields. In particular, the
error distribution we use is a spherical discrete Gaussian distribution on ΛR.

Definition 2. A (non-dual) RLWE instance is a tuple R = (K, q, σ, s), where K is a number field with ring
of integers R, q is a prime, σ > 0 is a positive real number, and s ∈ R/qR is called the secret.

Suppose R = (K, q, σ, s) is an RLWE instance and let R be the ring of integers of K. The error distri-
bution of R is the discrete Gaussian distribution DΛR,σ.

Let Rq denote the quotient ring R/qR; then a (non-dual) RLWE sample is a pair

(a, b = as+ e) ∈ Rq ×Rq,

where the first coordinate a is chosen uniformly at random in Rq, and e is sampled from the error distribution
and considered modulo qR. The reader unfamiliar with this problem should consider this analogous to a
discrete logarithm pair (g, gs) ∈ Fq × Fq, where s is a secret exponent.

Definition 3 (Search RLWE). Let R be an RLWE instance. The search RLWE problem, denoted by
SRLWE(R), is to discover s given access to arbitrarily many independent samples (a, b).

Definition 4 (Decision RLWE). Let R be an RLWE instance. The decision RLWE problem, denoted
by DRLWE(R), is to distinguish between the same number of independent samples in two distributions
on Rq × Rq. The first is the RLWE distribution of R, and the second consists of uniformly random and
independent samples from Rq ×Rq.

Remark 5. As pointed out in [12], when analyzing the error distribution, one needs to take into account the
sparsity of the lattice ΛR, which is measured by its covolume det(ΛR) =

√
|disc(K)|. In light of this, we

define a relative version of the standard deviation parameter: σ0 = σ

| disc(K)|
1
2n
.

Remark 6. There are different approximate algorithms to sample from discrete Gaussian distributions on
lattices. In this paper, we choose to use the sampling algorithm developed in [14].
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We now discuss dual RLWE and its relation to non-dual RLWE. In dual RLWE, the secret s lies in
R∨q := R∨/qR∨, where R∨ is the dual ideal of R, and the error e is sampled from R∨ with discrete spherical

Gaussian distribution with width r =
√

2πσ. Therefore the RLWE samples are of the form

(a, b = as+ e) ∈ Rq ×R∨q .

The dual and non-dual versions of the RLWE problem are very closely related when the dual ideal is
principal: in this case, R and R∨ are related by a scaling factor (which may alter a spherical Gaussian to an
ellipsoidal one). Even when R∨ is not principal, we have R ⊆ k1R

∨ and R∨ ⊆ k2R for some constants k1
and k2, so that a problem in one formulation can be reduced to a problem in the other, with a different error
distribution. Several of the non-dual examples of this paper are known to have principal dual ideal [22]. In
particular, our attack on the ramified prime for cyclotomic fields is translated to the dual situation in Section
6.2. The full class of elliptic Gaussians (not just spherical) is also considered in the security reductions of
[18].

Finally, there is a continuous version of RLWE which is more amenable to security reductions. Since
one can always discretize, the continuous version reduces to the discrete one presented here, which is more
practical for applications.

3 Search-to-Decision Reduction

In [11], the search-to-decision reduction of [18] is extended to RLWE for Galois number fields, where q is an
unramified prime of degree one. The approach is via an intermediate problem, denoted qi-LWE in [18]. In
this section, we extend this result to primes q of arbitrary residue degree. Our intermediate problem, which
we denote by SRLWE(R, q), is the same as qi-LWE, and it amounts to finding the secret modulo the prime
q. The Galois group allows us to bootstrap this piece of information to discover the full secret.

The attack in Section 4 targets SRLWE(R, q) and hence, by the results of this section, will solve Search
RLWE. In Section 5, we demonstrate the attack on Search RLWE in practice.

Definition 7. Let R = (K, q, σ, s) be an RLWE instance and let q be a prime of K lying above q. The
problem SRLWE(R, q) is to determine s (mod q), given access to arbitrarily many independent samples
(a, b)← R.

We recall some facts from algebraic number theory in the following lemma.

Lemma 8. Let K/Q be a finite Galois extension of degree n with ring of integers R, and let q be a prime
unramified in K. Then there exists a unique divisor g of n and a set of g distinct prime ideals q1, · · · , qg of
R such that:

1. qR =
∏g
i=1 qi,

2. the quotient R/qi is a finite field of cardinality qf for each i, where f = n
g ,

3. there is a canonical isomorphism of rings

Rq ∼= R/q1 × · · · ×R/qg, (2)

4. the Galois group acts transitively on the ideals q1, . . . , qg and this action descends to an action on Rq
which permutes the corresponding factors in (2) in the same way.

The number f in the above lemma is called the residue degree of q in K. Note that the prime q splits
completely in K if and only if its residue degree is one.

Theorem 9. Let R = (K, q, σ, s) be an RLWE instance such that K/Q is Galois of degree n and q is
unramified in K with residue degree f . Let A be an oracle which solves SRLWE(R, q) using a list of m
samples modulo q. Let S be a set of m RLWE samples in Rq × Rq. Then the problem SRLWE(R) can be
solved using S by n/f calls to the oracle A , 2mn/f reductions Rq → R/q, and 2mn/f evaluations of a
Galois automorphism on Rq.
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Proof. The Galois group G = Gal(K/Q) acts on the set {q1, · · · , qg} transitively. Hence for each i, there
exists σi ∈ Gal(K/Q), such that σi(q) = qi. Next, remark that σ−1i (S) is itself a set of RLWE samples in
Rq ×Rq, since the action of Galois is an isometry of the Minkowski embedding. (Here it is essential that we
consider only spherical Gaussians.) Furthermore, the secret for this set of samples is σ−1i (s). Then we call
the oracle A on the input (σ−1i (S) (mod q), q). The algorithm will output σ−1i (s) (mod q), from which we
can recover s (mod qi) using σi. We do this for all 1 ≤ i ≤ g = n/f and use (2) of Lemma 8 to recover s.

In particular, if the number of samples m is polynomial in n and the time taken to evaluate Galois
automorphisms on a single sample is also polynomial in n, then Theorem 9 gives a polynomial time reduction
from SRLWE(R) to SRLWE(R, q).

Remark 10. For a proper runtime analysis of the reduction, one must examine the implementation, in par-
ticular with regards to Galois automorphisms. The runtime for evaluating an automorphism depends rather
strongly on the instance and on the way ring elements are represented. For example, for subfields of cyclotomic
fields represented with respect to normal integral bases, the Galois automorphisms are simply permutations
of the coordinates, so the time needed to apply these automorphisms is trivial.

The search-to-decision reduction will follow from the lemma below.

Lemma 11. There is a probabilistic polynomial time reduction from SRLWE(R, q) to DRLWE(R).

Proof. This is a rephrasing of [18, Lemma 5.9 and Lemma 5.12].

Corollary 12. Suppose R is an RLWE instance where K is Galois and q is an unramified prime in K.
Then there is a probabilistic polynomial-time reduction from SRLWE(R) to DRLWE(R).

4 The Chi-square Attack

In this section, we extend the f(1) ≡ 0 (mod q) attack of [11] and the root-of-small-order attack of [12].
These attacks can be viewed as examples of a more general principle, as follows. Suppose one has a ring
homomorphism

φ : Rq → F

where F is a finite field, and where two properties hold:

1. F is small enough that its elements can be examined exhaustively; and
2. the error distribution on Rq, transported by φ to F , is detectably non-uniform.

Then the attack on decision RLWE is as follows:

1. Transport the samples (a, b) in Rq ×Rq to F × F via φ.
2. Loop through possible guesses for the image of the secret, φ(s), in F .
3. For each guess g, compute the distribution of φ(b)− φ(a)g on the available samples. Note that if we let
g∗ = φ(s) denote the true value,

φ(b)− φ(a)g = (φ(b)− φ(a)g∗) + φ(a)(g − g∗) = φ(e) + φ(a)(g − g∗),

which equals φ(e) if the guess is correct, and looks uniform otherwise.
4. If the samples are RLWE samples with secret s and g = φ(s), then this distribution will follow the error

distribution, which will look non-uniform.
5. If all such distributions look uniform, then the samples were uniform, not RLWE, samples.

The fact that φ is a ring homomorphism is essential in guaranteeing that for the correct guess, the
distribution in question is the image of the error distribution. The only ring homomorphisms from Rq to a
finite field are given by reduction modulo a prime ideal q lying above q in R.
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4.1 Chi-square Test for Uniform Distribution

We briefly review the properties and usage of the chi-square test for uniform distributions over a finite set
S. We partition S into r subsets S =

⊔r
j=1 Sj , called bins. Suppose there are M samples y1, . . . , yM ∈ S.

For each 1 ≤ j ≤ r, we compute the expected number of samples in the j-th subset: cj :=
|Sj |M
|S| . Then we

compute the actual number of samples in Sj , i.e., tj := |{1 ≤ i ≤ r : yi ∈ Sj}|. Finally, the χ2 value is
computed as

χ2(S, y) =

r∑
j=1

(tj − cj)2

cj
.

Suppose the samples are drawn from the uniform distribution on S. Then the χ2 value follows the chi-square
distribution with (r − 1) degrees of freedom, which we denote by χ2

r−1. Let Fr−1(x) denote its cumulative
distribution function. For the chi-square test, we choose a confidence level parameter α ∈ (0, 1) and compute
δ = F−1r−1(α). Then we reject the hypothesis that the samples are drawn from the uniform distribution if
χ2(S, y) > δ.

If P,Q are two probability distributions on the set S, then their statistical distance is defined as d(P,Q) =
1
2

∑
t∈S |P (t) − Q(t)|. For convenience, we also define the l2 distance between P and Q as d2(P,Q) =

(
∑
t∈S |P (t)−Q(t)|2)

1
2 . We have the inequality d(P,Q) ≤

√
|S|
2 d2(P,Q).

Remark 13. We chose to use the chi-square test for our attack since we are distinguishing a known distribution
(uniform on R/q) from an unkown distribution (discrete Gaussians mod q). If the latter distribution is
efficiently computable, then one might switch to other statistical tests, e.g., the Neyman-Pearson test, for
better results.

4.2 The Chi-square Attack on SRLWE(R, q)

Let R be an RLWE instance with error distribution DΛR,σ and q be a prime ideal above q. The basic idea of
our attack relies on the assumption that the distribution DΛR,σ mod q is distinguishable from the uniform
distribution on the finite field F = R/q. More precisely, the attack loops through all qf possible values s̄ = s
(mod q), and for each guess s′, it computes the values ē′ = b̄ − ās′ (mod q) for every sample (a, b) ∈ S. If
the guess is wrong, or if the samples are taken from the uniform distribution in (Rq)

2, the values ē′ would
be uniformly distributed in F and it is likely to pass the chi-square test. On the other hand, if the guess
is correct, then we expect the test on the errors ē′ to reject the null hypothesis. Let N := qf denote the
cardinality of F . We remark that as a general rule of thumb for the chi-square test, we need to generate at
least 5N samples.

For the attack to be successful, we need the (N −1) tests corresponding to wrong guesses of s (mod q) to
pass, and the one test corresponding to the correct guess to be rejected. For this purpose, we need to choose
the confidence level α to be close enough to one (a reasonable choice is α = 1− 1

10N ). The detailed attack is
described in Algorithm 1. Let FN−1(x) denote the cumulative distribution function of χ2

N−1.

Remark 14. For simplicity of exposition, we use N bins in Algorithm 1, that is one element per bin. In some
situations, it might be advantageous to choose the bins differently.

The time complexity of the attack is O(nq2f ) since there are qf possible values for s (mod q), each
reduction modulo q takes O(n) to compute, and the number of samples needed is O(qf ). The correctness of
the attack is captured in Theorem 15 below. For λ ∈ R and d ∈ Z, we use Fd,λ(x) to denote the cumulative
distribution function of the noncentral chi-square distribution with degree of freedom d and parameter λ.

Theorem 15. Let R = (K, q, s, σ) be an RLWE instance. Suppose q be a prime ideal in K above q, and
let ∆ denote the statistical distance between the distribution DΛR,σ mod q and the uniform distribution on
R/q. Let M be the number of samples used in Algorithm 1, and let λ = 4M∆2. Let 0 < α < 1 and let
δ = F−1N−1(α). If p is the probability of success of the attack in Algorithm 1, then

p ≥ αN−1(1−FN−1;λ(δ)).

7



Algorithm 1 chi-square attack on SRLWE(R, q)

Input: R = (K, q, σ, s) – an RLWE instance; R – the ring of integers of K; q – a prime ideal in K above q; F = R/q
– the residue field of q; N = qf – the cardinality of F ; S – a collection of M (M = Ω(N)) RLWE samples from R;
0 < α < 1 – the confidence level.

Output: a guess of the value s (mod q), or NOT-RLWE, or INSUFFICIENT-SAMPLES
δ ← F−1

N−1(α), G ← ∅.
for s in F do
E ← ∅.
for a, b in S do

ā, b̄← a (mod q), b (mod q).
ē← b̄− ās.
add ē to E .

end for
χ2(E)←

∑N
j=1

(|{c∈E:c=j}|−M/N)2

M/N
.

if χ2(E) > δ then
add s to G.

end if
end for
if G = ∅ then

return NOT-RLWE
else if G = {g} then

return g
else

return INSUFFICIENT-SAMPLES
end if

Proof. It is a standard fact (see [23], for example) that the chi-square value on samples from DΛR,σ mod q
follows the noncentral chi-square distribution with (N − 1) degrees of freedom and parameter λ0 given by

λ0 = d2(DΛR,σ (mod q), U(R/q))2 ·MN.

Note that we have λ0 ≥ (2d(DΛR,σ mod q, U(R/q))/
√
N)2MN = 4M∆2 = λ. Recall that our attack

succeeds if the “error” set E from each of the (N − 1) wrong guesses of s (mod q) passes the test, and the
true reduced errors fail the test. We assume that the results of these tests are independent of each other. Then
the first event happens with probability αN−1, whereas the second event has probability 1 − FN−1;λ0(δ).
Since this is an increasing function in λ0, we can replace λ0 by λ, and the theorem follows.

Remark 16. One could choose the value of α in Theorem 15 to suit the specific instance. The probability
of success will change accordingly. When we expect the statistical distance ∆ to be large, it is preferable
to choose a larger α to increase the probability of success. For example, if we choose α = 1 − 1

10N , then

αN−1 ≥ e−1/10 = 0.904 · · · .

Figure 1 shows a plot of p versus ∆ for various choices of N , made according to Theorem 15, where we
fix the number of samples to be M = 5N and fix α = 1− 1

10N .

Remark 17. For linear equations with small errors, there is the attack on the search RLWE problem proposed
by Arora and Ge [1]. However, the attack requires solving a linear system in ≈ nd/d! variables. Here d is
the number of possible values for the error: e.g., if the error can take values 0, 1, 2,−1,−2, then d = 5.
Since it requires ≈ nd/d! samples, the attack of Arora and Ge requires ≥ 108 samples when n ≥ 100 and
d ≥ 5, for example. In contrast, the complexity of our attack depends linearly on n and quadratically on q.
In particular, it does not depend on the error size (although the success rate does depend on the error size).

5 Vulnerable Instances among Subfields of Cyclotomic Fields

We searched for instances of RLWE vulnerable to the chi-square attack. For this purpose, we restricted
attention to subfields of cyclotomic fields Q(ζm). Throughout this section, we assume m is a positive integer
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Fig. 1. Success probability versus statistical distance

that is odd and squarefree. The Galois group Gal(Q(ζm)/Q) is canonically isomorphic to G = (Z/mZ)∗. For
a subgroup H of G, let Km,H = Q(ζm)H be the subfield of elements fixed by H. Then the extension Km,H/Q
is Galois with degree n = ϕ(m)

|H| . Also, the residue degree of a prime q in Km,H is equal to the order of q in

the quotient group G/H. Moreover, Km,H has a canonical normal integral basis, as follows. For each integer
i coprime to m, set wi =

∑
h∈H ζ

hi
m . Then w := (wi)i∈G/H is a Z-basis of R. (For a proof of this fact, see

[15, Proposition 6.1]). Thus we have Aw = TA′w, where

T =

Ir1 0 0
0 1√

2
Ir2

1√
2
Ir2

0 −i√
2
Ir2

i√
2
Ir2

 , (A′w)ij =
∑
h∈H

ζhijm , for i, j ∈ G/H.

Remark 18. The field Km,H is totally real if and only if −1 ∈ H, in which case (r1, r2) = (n, 0). Otherwise,
it is totally complex, and (r1, r2) = (0, n/2).

Lemma 19. Suppose R is an RLWE instance such that the underlying field K is a Galois number field and
that q is unramified in K. Then the reduced error distribution DΛR,σ mod q is independent of the choice of
prime ideal q above q.

Proof. From Lemma 8, we may switch from a prime q to q′ via Gal(K/Q). On the other hand, the Galois
group acts on the lattice ΛR by permuting the coordinates. Hence we have a group homomorphism

φ : Gal(K/Q)→ Aut(Λ).

Since permutation matrices are orthogonal, the Galois group action on ΛR given by φ is distance-preserving.
In particular, it preserves any spherical discrete Gaussian distribution on ΛR.

5.1 Searching for Vulnerable Instances

Algorithm 1 allows us to search for vulnerable instances among fields of the form Km,H by generating actual
RLWE samples and running the attack. Success of the attack will indicate vulnerability of the instance. Note
that our field searching requires sampling efficiently from a discrete Gaussian DΛ,σ, for which we use the
efficient algorithm developed in [14].
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In Table 3, we list some instances on which the attack has succeeded. The columns of Table 3 are as
follows. The first two columns specify m and the generators of H, where H is represented as a subgroup of
(Z/mZ)∗; the column labeled f is the residue degree of q. The last column consists of either the runtime for
an actual attack which succeeded, or an estimation of the runtime. Note that we omitted our choice of prime
ideal q, since due to Lemma 19 the choice of q is irrelevant to our attack. The parameters σ0 in Table 3
represent the boundary of the power of our attack, i.e., we tried higher σ0 and the attack failed. Note that
although σ0 is relatively small, in practice it still provides exponentially many error vectors. Intuitively, when
σ0 = 1, our σ is equal to the geometric mean of the lengths of a Gram-Schmidt basis of ΛR. In practice, the
lengths of these basis vectors do not differ by a lot, so we still expect to get at least Ω(2n) error vectors.

Also, in terms of the normal integral basis of R, the coefficients of the error e are of the same size. In
particular, none of the coefficients will be zero with overwhelming probability. Thus a standard linear algebra
attack does not apply to this case.

The rows of Table 3 with “estimated” runtime mean the following. First, we ran the chi-square test on the
correct reduced errors to obtain an estimate ∆̂ of the statistical distance ∆. We then chose α according to ∆̂
and obtained an estimation p̂ of the success probability of our attack, using the formula in Theorem 15. The
corresponding rows in the table all have p̂ > 1 − 2−10, suggesting that the attack is very likely to succeed.
Finally, we ran a few chi-square tests on samples obtained from a few randomly chosen incorrect guesses to
compute the average time t for running one chi-square test. We set the estimated runtime for the attack to
be tN .

Table 3. Attacked sub-cyclotomic RLWE instances

m generators of H n q f σ0 no. samples runtime (in hours)

2805 [1684, 1618] 40 67 2 1 22445 3.49
15015 [12286, 2003, 11936] 60 43 2 1 11094 1.05
15015 [12286, 2003, 11936] 60 617 2 1.25 8000 228.41 (estimated)
90321 [90320, 18514, 43405] 80 67 2 1 26934 4.81
255255 [97943, 162436, 253826, 248711, 44318] 90 2003 2 1.25 15000 1114.44 (estimated)
285285 [181156, 210926, 87361] 96 521 2 1.1 5000 75.41 (estimated)
1468005 [312016, 978671, 956572, 400366] 100 683 2 1.1 5000 276.01 (estimated)
1468005 [198892, 978671, 431521, 1083139] 144 139 2 1 4000 5.72

Remark 20. Castryk et al [7] show that there are even more weaknesses in the weak instances found in [12]
so that one can attack the corresponding search RLWE problem using a standard linear algebra attack
using only a few samples. The approach from [7] using linear algebra will not work on the examples in this
paper. Although each coordinate of the error vector only takes on small integers, it is unlikely that any fixed
coordinate of the error vector will equal to zero. Hence one can not hope to extract exact linear equations
from the samples.

Nonetheless, in [6] Castryck et al. performed an analysis of the instances in our Table 3, and showed
that one can recover a certain number of approximate linear equations from each RLWE sample. One can
certainly run the Arora-Ge attack using these approximate equations. However, a careful analysis shows that
for instances in our table, our attack is more efficient than the Arora-Ge attack.

For example, we take the first instance from Table 3. In Section 5 of [6], it is shown that out of each RLWE
sample, one can recover 20 noisy linear equations in the secret key, with each noise sampled from a Gaussian
of mean zero and standard deviation 0.5381. (In [6], the standard deviation was incorrectly claimed to be
0.5381/

√
2π due to a misunderstanding: they used r = 1 in their analysis but our instance has r =

√
2π.)

First, we try d = 7. In order to run the Arora-Ge attack, we need in the best case (
(
40+7−1

7

)
/20) ≈ 221

RLWE samples, assuming all errors after rounding to integers lies in [-3,3]. If we choose d = 5 instead, then in
the best case we need (

(
40+5−1

5

)
/20) ≈ 54300 RLWE samples. However, to achieve this, we need the rounded

errors in each equation to lie in [-2,2], which happens with probability erf( 2.5√
2·0.5381 )(

40+5−1
5 ) ≈ 0.025. Our
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attack on the other hand requires 22445 samples and succeeds with probability greater than 1/2. Moreover,
the computational complexity of Arora-Ge attack is cubic in the number of samples, while our attack is
linear in the number of samples. Hence we conclude that our attack is more efficient. A similar analysis can
be done for other instances in Table 3.

5.2 Discussion of the Reason for Vulnerability

We searched for vulnerable instances where the modulus has residue degree one or two. It turns out that all
vulnerable instances we found and listed in Table 3 have a modulus of degree two. In this section we give
a heuristic explanation for the existence of examples of higher degree. Let K be a Galois number field and
suppose q is a prime of residue degree f in K. We will give a scenario under which a vulnerability to our
attack may appear.

For the purposes of the thought experiment, we will suppose there exists a “good” integral basis w1, · · · , wn
of the ring of integers R, by which we mean that the vectors ι(wi) and ι(wj) are almost orthogonal and short
for i 6= j; this is only for convenience in the discussion. Fix a prime ideal q above q. Then the images of the
basis under the reduction modulo q map are elements of F := R/q. Now if for some index i, the element wi
lies inside some proper subfield K ′ of K, and if q has residue degree f ′ < f in K ′, then wi (mod q) will lie
in a proper subfield of F . If this occurs for a large number of the basis elements wi, then we could expect
the distribution DΛR,σ mod q to take values in a proper subfield of F more frequently than the uniform
distribution. This would allow us to distinguish it from the uniform distribution on F .

In practice, we found that the above scenario is particularly likely when the field K has a subfield K ′ of
index 2 such that q splits completely in K ′ and has residue degree 2 in K. Since the ring of integers of K ′

is a subring of the ring of integers of K, one has at least n/2 linearly independent vectors in ΛR with the
desired property, i.e., their reduction modulo some prime q above q lie inside Fq instead of Fq2 .

5.3 A Detailed Example

In order to illustrate our discussion above together with the search-to-decision reduction, we present a
vulnerable Galois instance in detail, where we generated RLWE samples, performed the attack, and used
the search-to-decision reduction to recover the entire secret s.

Example 21. Let m = 3003 and H be the subgroup of (Z/mZ)∗ generated by 2276, 2729 and 1123. Then
K = Km,H is a Galois number field of degree n = 30. We take the modulus to be q = 131, a prime of residue
degree 2, and take σ0 = 1. We generate the secret s from the discrete Gaussian DΛR,σ. There are 15 prime
ideals in K lying above q, which we denote by q1, · · · , q15. We then generate 1000 RLWE samples and use
Algorithm 1 and Theorem 9 to recover s (mod qi) for each 1 ≤ j ≤ 15. Then we use the Chinese remainder
theorem to recover s. The attack succeeded in 32.8 hours. The code for this attack is in the appendix.

6 Attacks on the Prime Cyclotomic Fields

6.1 Attacking non-dual RLWE when q = p

Let p be an odd prime and let K = Q(ζp) be the p-th cyclotomic field. Then K has degree (p − 1) and
discriminant pp−2. The prime p is totally ramified in K, so there is a unique prime ideal p = (1− ζp) above
p, and the reduction from R/pR to R/pR ∼= Fp takes all powers of ζp to 1.

We give a heuristic argument that the attack could work: writing the error e as
∑
eiζ

i
m, we have e

(mod p) =
∑
i ei. Since the coefficients ei tend to be small, it may be that e (mod p) takes on small values

with higher probability, making the instance vulnerable to our chi-square attack. Table 4 contains data of
some actual attacks we have done. Note that the parameters σ0 represent the boundary of the power of our
attack in practice, i.e., we tried higher σ0 and the attack failed.
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Table 4. Attacked instances of DRLWE for K = Q(ζp)

q (= p) n σ0 runtime (in seconds)

251 250 0.5 2.62
503 503 0.575 12.02
809 808 0.61 34.38

6.2 Attacking dual RLWE

We adopt our attack to the decision version of dual RLWE for the fieldK = Q(ζp), with no assumptions on the
modulus q. Keep the notations as above, and let R∨ be the dual ideal of R. Let r > 0 be the width parameter.
Then the error e is sampled from the continuous spherical Gaussian distribution of width r, which is denoted
Dr in [18]. Recall that the secret s ∈ R∨/qR∨, and an RLWE sample is (a, b = as+ e) ∈ Rq ×KR/qR

∨.
We start by scaling the second coordinate by p. Then b′ = bp = a(ps) + pe. Using the fact that pR∨ = p,

we see that s′ = ps ∈ p/qp, and e′ = pe ∈ KR/qp. Thus we can regard s′ as the new secret, and e′ as the
new error.

Note that the scaled error e′ = pe is sampled from the continuous spherical Gaussian Dpr. Equivalently,
by [10], we may assume e′ is sampled as

e′ = p · e =

p−1∑
i=0

eiζ
i
p.

where the coefficients ei are i.i.d. one-dimensional Gaussians with width
√
pr.

Recall that our goal is to tell the difference between the above samples and samples chosen uniformly
from Rq ×KR/qp. Let β = ζp − 1. Note that K = Q(β), hence every element in KR can be uniquely written

as
∑p−2
i=0 aiβ

i (ai ∈ R). Consider the map

ρ : KR → R :
∑

aiβ
i 7→ a0. (*)

It is clear that ρ is additive. We examine the image of e′ under the map ρ. We write

e′ =

p−2∑
i=0

εiβ
i, (εi ∈ R).

Then one verfies that ε0 = e0 + · · ·+ ep−2 − (p− 1)ep−1 and we have ρ(e) = ε0.
Now we make two observations: first, since the ideal p is generated by β, we have ρ(p) = pZ; second, we

have as′ = a(p · s) ∈ p/qp. Combining these observations, we see that

ρ(b′) = ρ(as) + ρ(e′) ≡ ρ(e′) ≡ ε0 mod pZ.

We could describe our attack on the decision RLWE as follows: for each scaled sample (a, b′), we compute
ρ(b′). Then we perform a statistical test on the set {ρ(b′) mod pZ} ⊆ R/pZ to distinguish it from the
uniform distribution on the circle R/pZ.

Note that this attack did not involve the modulus q, thus it can be applied to any modulus. This is
in contrast to the previous attack on the non-dual case, where the attack was only performed under the
assumption that q = p is the unique ramified prime.

Remark 22. The search-to-decision reduction for dual RLWE in cyclotomic fields and completely split mod-
ulus is proved in [18]. However, the theorem requires that the error width r ≥ ηε(R

∨) for some negligible
ε = ε(n). (Here ηε(R

∨) is the smoothing parameter defined in [19]. For R = Z[ζp], if we take ε = 2−p+1,
then one sees that ηε(R

∨) ≤ 1, and ηε(R
∨) tends to 1 in the limit as p→∞). Hence the search-to-decision

reduction of [18] essentially requires r ≥ 1, which is above the parameters we can attack (r ∼ 1/
√
p). So in

this particular case, our attack on the decision problem cannot be transferred to an attack on the search
problem using this search-to-decision reduction.

Table 5 records some successful attacks. Note that we have omitted the modulus q since it is irrelevant
to the attack. We used 50∼400 bins for the chi-square tests. We observe from the table that the error width
we can attack is about a constant times 1/

√
p, and that the constant is growing (if slowly) as p grows.
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Table 5. Attacking the dual RLWE in Q(ζp)

p r
√
p no. samples average run time success rate

307 0.82 1535 0.048 second 6 out of 10
507 0.83 2515 0.076 second 8 out of 10
809 0.85 4045 0.134 second 6 out of 10
997 0.86 4985 0.154 second 5 out of 10
1103 0.87 5515 0.192 second 5 out of 10
1201 0.88 6005 0.202 second 2 out of 10

7 Can Modulus Switching be Used?

The modulus switching procedure is a technique to reduce noise in RLWE samples, and has been discussed
extensively in [3] and [16]. We recap the basic ideas of modulus switching. Let R = (K, q, σ, s) be an RLWE
instance. Choose another prime p less than q as the new modulus and consider the instance R′ = (K, p, σ′, s)
for some σ′ > σ. We can “switch modulus” if there exists a map

πq,p : Rq → Rp,

which takes RLWE samples with respect to R to RLWE samples with respect to R′. In what follows, we give
a heuristic argument that our attack will not work in combination with modulus switching under a näıve
implementation, and isolate the key characteristics a successful implementation of the attack would require.

One example of a map πq,p being used in practice is as follows. Let α = p
q and fix a small positive number

τ . For an equivalence class [a] in Rq, we sample a vector a′ from the “shifted discrete Gaussian” DΛR,τ,αa,
defined as follows. For a lattice Λ and a vector c ∈ Rn,

DΛ,τ,c(x) =
ρτ (x− c)∑
y∈Λ ρτ (y − c)

, ∀x ∈ Λ.

Finally, we set πq,p([a]) = a′ (mod pR). Note that the definition of πq,p([a]) is independent of the choice of
representative a, as follows. Suppose we choose another representative a1, then a1 = a+ λq for some λ ∈ R,
hence αa1 = αa+ λp. Finally, observe that the shifted discrete Gaussian behaves well under translating by
a lattice point, i.e., we have DΛ,τ,c+u = DΛ,τ,c + u for any u ∈ Λ.

Put loosely, the map πq,p scales a by p/q and then rounds back into the lattice. It is a natural question
then to ask whether modulus switching can be combined with our attack, to switch from a “strong” modulus
to a “weak” modulus. However, a heuristic argument shows that the naive combination of our attack with
modulus switching will not work.

Let a′′ = αa − a′. By construction, we expect a′′ to be a short vector in Rn, and the point a′ can be
viewed as a “rounding” of the point αa to the lattice ΛR.

We will make two heuristic assumptions:

1. That πq,p takes the uniform distribution on Rq to an almost uniform distribution on Rp.
2. The distribution of b′′ and (sa)′′ is independent modulo q, for s 6= ±1.

Proposition 23. Under the assumption that πq,p takes the uniform distribution on Rq to an almost uniform
distribution on Rp, the reduction of a′′ modulo p will be almost uniformly distributed in R/pR.

Proof. The reduction map R → R/p is a ring homomorphism that can be extended to a homomorphism of
additive groups φ : 1

qR→ R/p by the following chain of maps:

1

q
R

(mod p 1
qR)

−−−−−−−−−→ 1

q
R
/
p

1

q
R
×q−−→ R/pR

×[q]−1

−−−−→ R/pR.

Then the relation a′′ + a′ = αa is preserved by this map. However, φ(αa) = 0 (mod p), so that φ(a′′) ≡
−φ(a′).
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Suppose we have a sample (a, b) and the switched sample (a′, b′) = (πq,p(a), πq,p(b)). Consider the error
e′ := b′ − a′s. Suppose b = as+ e+ λq for some λ ∈ R. Then

e′ = b′ − a′s
= α(b− as)− b′′ + a′′s.

= αe+ λp− b′′ + a′′s.

and therefore, considering this as an additive relation in 1
qR and applying the map of the proof above,

e′ ≡ −b′′ + a′′s (mod p).

By the Proposition above, a′′ and b′′ are uniformly distributed modulo p. Hence, if we assume the a′′ and
b′′ are independent, then the reduced rounding errors a′′ (mod p) and b′′ (mod p) are also independent, and
the new reduced errors e′ (mod p) would follow the uniform distribution. So our chi-square attack will fail
on these modulus-switched samples, even though p might be a “weak” modulus.

Therefore, the best hope of attack is if one of our two assumptions is violated by a map πq,p. The second
is the most likely target. Note that a′′ and b′′ are the rounding errors when we try to round αa and αb to
the lattice ΛR. However, ΛR is a n-dimensional lattice, so there are Ω(2n) options of rounding a vector in
Rn to a moderately close lattice point. Even in the scenario with zero error, i.e., e = 0, an attacker will face
the task of finding a “nice” rounding algorithm, so that the roundings of the two vectors αa and αb = αas
are somehow related.

So far, we are not aware of any such algorithm, unless the secret s is trivial, e.g., s = 1, in which case αa
is almost equal to αb, and one expects that a′′ is close to b′′.
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