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Abstract. In the paper about the cryptosystem MST3, Svaba and Trung pro-
posed a way to build a cryptosystem based on the concept of logarithmic signa-
tures, and they choose Suzuki’s group, which is not abelian for implementing.
Recently, to reason why these methods cannot be applied to abelian groups; Sv-
aba, Trung and Wolf developed some algorithms to factorize the fused transver-
sal logarithmic signatures (FTLS). Their attacks can be avoided by some mod-
ifications, which is the aim of this paper, where we will use the weakness of the
discrete logarithm problem (DLP) to propose two cryptosystems. The first one
is based on the new concept about quasi-logarithmic signature of finite solvable
groups, which is the generalization of logarithmic signatures. The second is
built on the logarithmic signatures of finite cyclic 2-groups, which include two
interesting examples on Pell’s curves and elliptic curves over finite fields.

Keywords. logarithmic signatures, quasi-logarithmic signatures, cyclic 2-group,
elliptic curves

Contents

1. Introduction 2
2. Preliminaries 2
3. Quasi-logarithmic signatures 3
4. The DLP on finite cyclic 2-groups 6
5. Examples 7
5.1. Cyclic 2-groups on Pell’s curves 7
5.2. Cyclic 2-group on elliptic curves 8
6. A cryptosystem based on the ease of the DLP 9
6.1. FTLS of finite abelian groups 9
6.2. A proposed cryptosystem 10
6.3. Security Issues 12
6.4. Implement 13
7. Conclusion 13
References 14

1 Faculty of Information Technology, University of Sciences, Ho Chi Minh City, Viet Nam.
2 Faculty of Mathematics and Applications, Saigon University, Ho Chi Minh City, Viet Nam.

1



2 THUONG T. DANG 1, TRI T. TON 2, VAN H. DANG 1, THUC D. NGUYEN 1

1. Introduction

The DLP is one of the fundamental problems of cryptography, which is stated
“Let G be a cyclic group generated by g. Given x ∈ G, can we find k ∈ Z in
polynomial time such that: gk = x?” If G has larger prime order, in general, there
is no known algorithm in polynomial time to solve this problem. Otherwise, if the
order of G can be factorized into products of small primes, then the DLP of G can
be solved in polynomial time, as we will discuss later. The raised question is “Can
we use the ease of the DLP on such groups to build other cryptosystems, which
are still secure?” The ideas from logarithmic signatures can be applied to give the
answer of this question.

In the next section, we will recall some basic concepts about logarithmic signatures,
and some cryptographic aspects, including the result of Svaba et al. about factor-
ization of FTLS on abelian group [10]. The third section will be devoted to intro-
duce the generalized concept of logarithmic signatures, named quasi-logarithmic
on finite abelian groups (or more general cases: on solvable groups) to avoid this
attack, and to reduce the storage of trapdoor information of MST3 cryptosystem.
Then we will use the logarithmic signatures to give an algorithm to solve the weak
DLP on cyclic 2-group in the fourth section, and this method can be used to solve
the DLP on any cyclic group, whose order consist of small prime factors. Some
nontrivial examples are given in Section 5. Then, the last section will be devoted to
introduce the other cryptosystem based on the concept of logarithmic signatures,
and designed to avoid the attack of Svaba et al.

2. Preliminaries

In this section, we briefly describe the definition and properties of logarithmic
signatures used by Svaba and Trung [9].

Definition 2.1. Let G be a finite group, and A1, A2, ..., As be subsets of G. For
each g ∈ G, if we can express g = a1,k1a2,k2 ...as,ks where ai,ki ∈ Ai in exactly one
way, then the set α = {A1, A2, ..., As} is called the logarithmic signatures of G.

The simplest way to build such a logarithmic signature can be done as follows:
if G be a finite group, then there exists a series of subgroup of G

G0 = G ≥ G1 ≥ ... ≥ Gs = 1

where Gi+1 is the subgroup of Gi(0 ≤ i ≤ s−1). We denote Ai = {ai,1, ..., ai,ri} the
coset representatives of Gi+1 in Gi, then α = {A0, ..., As−1} is the logarithmic sig-
nature of G. In [10], the authors call such α the transversal logarithmic signatures
(TLS) of G. According to the definition of logarithmic signatures, there exists a
bijective map

ᾰ : Zr1 × ...× Zrs → G
(k1, ..., ks) 7→ a1,k1 ...as,ks
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If ᾰ−1 can be computed efficiently, α is called tame (or factorizable). Here is the
important definition that transforms a tame logarithmic signatures to a not tame
(or wild) logarithmic signatures.

Definition 2.2. Given a logarithmic signature α = {A1, ..., As}, the following
transformations are called fused operations on α

(1) Block permutation. Permutes the block Ai’s of α.
(2) Element permutation. Permutes the elements within blocks Ai of α.
(3) Block replacement. Replaces block Ai with Aig for some g ∈ G,Ai ∈ α.
(4) Block mix. Replaces two blocks Ai and Aj with a single block AiAj =
{xy|x ∈ Ai, y ∈ Aj}.

Consequently, we obtain the following proposition.

Proposition 2.3. Applying a finite number of four transformations defined above
to a given logarithmic signatures α, the obtained result β is also a logarithmic
signatures.

Such β in Proposition 2.3 is called fused transversal logarithmic signatures (FTLS),
and the finite number of transformations (1), (2), (3), (4) to transform α to β is
called trapdoor information.

In [10], the authors developed some algorithms to factorize the FTLS of finite
abelian groups. Their main idea is trying to find the group structure in the FTLS.
Note that As = Gs−1/Gs, and for all i, the mixed block AsAi always contains a
group as a subset, because Ai have the identity element. Although we can use the
fused operations to break its group structure, we can normalize it, that means,
making it have the identity element in each block. By this way, Svaba et al. de-
veloped a way to factorize the FTLS on abelian groups.

To avoid this factorizing, we propose two ways. The first one is to completely
break the group structure, even in As. But to do this, we have to modify the log-
arithmic signatures structure and it leads us to the concept of quasi-logarithmic
signatures, which is the generalization of logarithmic signatures. And the other
way is to hide the FTLS, and to consider it trapdoor information also. These ideas
will be discussed in detail in our next sections.

3. Quasi-logarithmic signatures

We turn to the generalized definition of logarithmic signatures.

Definition 3.1. LetA1, A2, ..., As be subsets of a groupG. We call α = {A1, ..., As}
quasi-logarithmic signatures (QLS) if for any g ∈ G we can uniquely choose
Ag1 , ..., Agi(1 ≤ g1 < ... < gi ≤ s) from α such that:

g = (a1,k11 ...a1,k1u1 )(a2,k2 ...a2,k21,u2 )...(ai,ki1 ...ai,kiui )

in exactly one way, where aj,kjv ∈ Agj(1 ≤ j ≤ i, 1 ≤ v ≤ uj)
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In the definition of logarithmic signatures, it is only possible for us to choose one
element in each Ai for the factorization of g ∈ G. Therefore, if α is a logarithmic
signatures of G, then it is QLS. For QLS, to factorize an element of G, we can
uniquely choose several or no element from a certain block. We will discuss a
way to construct such a QLS. If G is a finite solvable group, then there exists a
composition series of G

G = G0 ≥ G1 ≥ ... ≥ Gs = {1}
such that: Gi−1/Gi are cyclic groups, whose prime orders, which are denoted pi.
That means, there exists a generator āi = aiGi in Gi−1/Gi, and for every element
ḡ = gGi in Gi−1/Gi, there exists an integer ki such that 1 ≤ ki ≤ pi and āi

ki = ḡ,
Then we can express ki in base 2

ki = bi,0 + bi,12
1 + ...+ bi,dlog2 pie2

dlog2 pie

where dxe is the ceiling function. Hence,

ḡ = āi
ki = (āi)

bi,0(āi)
bi,12

1
...(āi)

bi,dlog2 pie2
dlog2 pie(bi,j ∈ {0, 1})

That means, there exists gi ∈ Gi such that:

g = (ai)
bi,0(āi)

bi,12
1
...(ai)

bi,dlog2 pie2
dlog2 piegi

Using this method, we can prove the following

Proposition 3.2. If G is a finite solvable group, then there exists a QLS of G.

Proof. We can denote the composition series of G as above, and āi−1 = aiGi is the
generator of Gi−1/Gi. Then for any g in G, there exists g1 in G1, such that:

g = (a0)
b0,0 ...(a0)

b0,dlog2 p0e2
dlog2 p0eg1

Similarly, there exists g2 ∈ G2 such that

g1 = (a1)
b1,0 ...(a1)

b1,dlog2 p1e2
dlog2 p1eg2

This process will end after s steps, and we can express:

gs = (as)
bs,0 ...(as)

bs,dlog2 pse2
dlog2 pse

Now, if we denote Ai = {ai, a2i , ...a
dlog2 pie
i } then α = {A1, ..., As} is the QLS. �

Actually, at each step to express g, we have to solve the DLP on the group
Gi−1/Gi, whose prime order. And it can be done very fast if we choose Gi−1/Gi

having small order, and an elementary abelian group, whose order is pn, where p
is a small prime, can be applied for this case. We call such QLS constructed by
this way transversal quasi-logarithmic signature(TQLS).

Now, we can see that the group structure in the TQLS is completely broken,
because As is not a group anymore. Besides, our TQLS did not contain the
identity element. And hence, the attack applied to TLS may not be applied to
TQLS, including the algorithms of Svaba et al. in [10]. In terms of the storage cost,
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for TLS, we need to keep pi elements, which are representatives of the quotient
group Gi−1/Gi, but for TQLS, we just need to save O(log2 pi) elements.

To make QLS become fused quasi-logarithmic signatures (FQLS), which is similar
to the way of building FTLS from given logarithmic signatures, we assume that
G is a group and α = A1, ..., As is the QLS of G, such that: Ai ∩ Aj = ∅, for all
i 6= j. We can do this easily from the different choices of coset representatives of
TQLS. Let us define the actions on α, which are also called fused operations.

(1) Block concatenation. Replace two blocks Ai, Aj by their union Ai ∪Aj.
(2) Element permutation. Permute elements within block Ai.
(3) Block separation. Divide a blockAi into disjoint smaller blockAi,1, ..., Ai,k

and ∪kj=1Ai,j = Ai.
(4) Block replacement. Replace block Ai with gAi where g is an element of

G, such that: gAi ∩ Aj = ∅, for all i 6= j.

There are some differences between fused operations of logarithmic signature and
QLS. For logarithmic signature, we used the block mix in their fused operations,
that means, replacing Ai, Aj with AiAj = {aiaj|ai ∈ A, aj ∈ Aj}, because by this
way, it preserves the logarithmic signatures structure, i.e. after applying finite
fused operation, we will obtain another logarithmic signature β. But for QLS, we
need to use the disjoint union of sets to preserve the QLS structure as the follow-
ing proposition points out. And from this, the block permutation in logarithmic
signatures is not necessary for the fused operations of QLS, because a permutation
of blocks A1, ..., As is actually a specific case of permutation of elements within the
block ∪ki=1Ai. Instead of block permutation, we propose another operation, that is
block separation. Finally, the block replacement is also modified to be suitable for
the structure of QLS, because we need to keep the condition Ai ∩ Aj = ∅, for the
next round (if necessary). Note that the choice of such g in the fourth operation
is possible, because the size of each block Ai is very small compared to G (about
log log |G|). To see how these operations preserve the QLS structure, let us prove
the following proposition.

Proposition 3.3. Given a QLS α of an abelian group G, then β obtained after
applying finite fused transformations is also QLS.

Proof. The proposition is obvious to the fused operations (2) and (3) because we
do nothing but renumbering our blocks and elements. For operation (1), if the
factorization of h by QLS α contains some elements from Ai, and some elements
from Aj, then we can choose these elements in the union Ai∪Aj, because Ai∩Aj =
∅, and this choice is unique. Hence,

β = {A1, ..., Ai−1, Ai ∪ Aj, Ai+1, ..., Aj−1, Aj+1, ..., As}
is also a QLS. About operation (4), for any h ∈ G, we can express g−1h uniquely
by the QLS α, that means, we can uniquely express h by β = {A1, ..., gAi, ..., As}.
Therefore, β is also QLS. �
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In the proposition above, for simplicity, we just consider the case G is an abelian
group. If G is not abelian, we will change a little bit the block replacement, which
replaces Ai with giAig

−1
i+1, as long as giAig

−1
i+1 ∩ Aj = ∅ for all i 6= j. The proposi-

tion also lets us know that after applying finite fused operations on TQLS α, we
also obtain a QLS β, which is called fused transversal quasi-logarithmic signatures
(FTQLS). As mentioned earlier, we can build such QLS easily from the composi-
tion series of elementary abelian groups. And with the similar ideas to logarithmic
signatures in [9], we can build such a cryptosystem based on the concept of QLS.
The main advantage of this concept is that we can avoid known attacks for cryp-
tosystems on logarithmic signatures, and reduce the storage cost. For brute force
attack, the attacker has to know at a very least the permutation at our first fused
operations, and it takes O((log |G| log log |G|)!). Our next sections will be devoted
to discuss another ideas, which is based on the logarithmic signatures on cyclic
2-groups with some interesting examples.

4. The DLP on finite cyclic 2-groups

Let G be a finite group and α = {A1, ..., As} is the TLS of G. With the same
notations in section 2, where we built such TLS, in [10], under the assumption
“There exists an algorithm in polynomial time such that for any gi ∈ Gi, we can
find ai,ki ∈ Ai such that gi ∈ ai,kiGi+1” the authors pointed out any transversal
logarithmic signatures are tame.

Theorem 4.1 (10-Theorem 3.1). Let G be a finite abelian group, then any
transversal logarithmic signatures are tame.

Generally, it is not easy to satisfy the condition the authors assume above be-
cause it is equivalent to deciding whether a−1i,kigi ∈ Gi+1 or not, i.e. it is the
membership problem, which has not been solved in general cases [10]. However,
we can choose some specific groups in which this assumption is easy to satisfy,
such as groups, whose orders consist of small prime factors, and cyclic 2-groups
are examples. We first prove the following

Proposition 4.2. Let G be a cyclic 2-group, whose order is 2s, and g is the
generator of G, then the set α = {A0, ..., As−1} is the TLS of G, where Ai =

{1, g2i}(i = 0, ..., s− 1)

Proof. Let Gi = 〈g2i〉, then it is easy to see that

G = G0 ≥ G1 ≥ ... ≥ Gs−1 = {1}

is the normal series of G and Gi/Gi+1 = Gi+1, g
2iGi+1. Applying the result from

the first section, we can see that α is the transversal logarithmic signatures of
G. �
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Based on Proposition 4.2, for any x ∈ G, we can express x uniquely in the form

(1) x =
s−1∏
i=0

gai2
i

where ai = 0 or 1. If we can know exactly the value of ai, then we can solve the
DLP on this group. It can be stated in the following theorem

Theorem 4.3. Let G be a cyclic group of order 2s. Then the DLP of G can be
solved in polynomial time.

Proof. Let g be the generator of G and x ∈ G. We now find k ∈ Z such that
gk = x. Based on equality (1), we can express x in the form

x =
∏s−1

i=0 g
ai2

i
= ga0ga12...gas−12s−1

(ai ∈ {0, 1})
Firstly, to determine a0, we have to know whether x ∈ 〈g2〉 or not. By basic facts

from algebra, it can be checked when we compare x2
s−1

to 1. If x2
s−1

= 1, then
x ∈ 〈g2〉, and a0 = 0. Otherwise, a0 = 1.

From the expansion of x, we can see x
ga0

is in 〈g2〉, and x
ga0

lies either in 〈g4〉
(when a1 = 0) or g2〈g4〉 (when a1 = 1). Because G is cyclic, this can be checked

by comparing ( x
ga0

)2
s−2

to 1.

Similarly, to determine ai from known values a0, ..., ai−1, we need to compute

( x

ga0ga12...gai−12
i−1 )2

s−(i+1)
and then comparing it to 1. If the equality holds, then

ai = 0. Otherwise, ai = 1.

Continuing this step to i = s − 1, we can obtain the value of k =
∑s−1

i=0 ai2
i.

Each of the step can be done in polynomial time. Therefore, the DLP on such
groups can be solved efficiently. �

It is worth noting that our proof implies an algorithm and we can use this
method to solve the DLP on groups whose order consist of small prime factors.
And in the next section, we will give non-trivial examples of cyclic 2-groups, that
can be used for our proposed cryptosystem in the last section.

5. Examples

5.1. Cyclic 2-groups on Pell’s curves. The Pell’s curves that we mention here
is the set of all roots of the Pell’s equation over finite fields. In [5-Theorem 6], the
authors proved that the DLP on Pell’s curves over finite fields can be reduced to
the DLP on finite fields in polynomial time. We will prove that the DLP on Pell’s
curves over Fp where p is a Mersenne prime can be solved in polynomial time,
because they are cyclic 2-groups, as theorem 4.3 pointed out. We first recall the
definition and properties of Pell’s curves over finite fields.
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Definition 5.1. Let p be a prime, and D in Fp is non-quadratic residue modulo
p, then the Pell’s curve over Fp is the set

P (Fp) = {(x, y) ∈ F2
p|x2 −Dy2 = 1}

It is easy to see that (1, 0) ∈ P (Fp). For all (xi, yi) ∈ Fp(i = 1, 2), the addition
law in P (Fp) can be defined as follows.

(x1, y1) + (x2, y2) = (x1x2 +Dy1y2, x1y2 + x2y1)

Under this addition, P (Fp) forms an abelian group whose (1, 0) is neutral element.
In [5-Theorem 5], the authors pointed out that P (Fp) ∼= Zp+1. When p = 2s−1(s >
2) is a Mersenne prime, we have P (Fp) ∼= Z2s , that means, it is a cyclic 2-group.
According to Theorem 4.3, we can infer following theorem.

Theorem 5.2. Let p > 3 be a Mersenne prime, and D is non-quadratic residue
modulo p, then the DLP on the Pell’s curve can be solved in polynomial time.

5.2. Cyclic 2-group on elliptic curves. The use of elliptic curves over finite
fields in cryptography was first introduced by N. Koblitz [4] and V. Miller [5], who
proposed a cryptosystem based on the DLP on the elliptic curves.

Definition 5.3. Let Fq be the finite field, char(Fq) 6= 2, 3, and a, b ∈ Fq such that
4a3 + 27b2 6= 0. An elliptic curve over Fq is the set

E(Fq) = {(x, y) ∈ F2
q|y2 = x3 + ax+ b} ∪ {∞}

where ∞ is the point at infinity.

With the addition law defined in [11-Theorem 2.1], E(Fp) forms an abelian
group, whose neutral element is ∞. According to the addition law, the point of
order 2 of E(Fq) has the form (x, 0).

In 1991, Menezes-Okamoto and Vanstone [6] introduced a algorithm to reduce
the DLP on supersingular elliptic curves to the DLP on finite fields by Weil pair-
ings. An elliptic curve we mention here is also a supersingular elliptic curve, which
play an important role in cryptography and it is often used in applications relat-
ing to pairing-based cryptography (the readers can refer [2] or [1-Chapter 5]). Let
p > 3 be prime and p ≡ 3 (mod 4), we consider the elliptic curve

E(Fp) : y2 = x3 + x

It is a supersingular elliptic curve, which means #E(Fp) = p+ 1 [3-Table 1]. This
curve has only one point of order 2 as the following lemmas points out.

Lemma 5.4. The equation x2 + 1 = 0 has no solution on the field Fp where p ≡ 3
(mod 4).

Proof. It is obvious from the Euler’s criterion. �

Lemma 5.5. There exists only one point of order 2 on the elliptic curve defined
above.
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Proof. The point of order 2 will have the form (x, 0), i.e. they are roots of the
equation x3 + x = 0. And it is equivalent to x(x2 + 1) = 0. If x = 0, the point
(0, 0) has order 2 on the curve. On the other hand, according to Lemma 5.4, the
equation x2 + 1 = 0 has no solution on Fp. Hence, there exists only one point of
order 2 on this curve. �

Additionally, from the result of Schoof [8- Theorem 4.8], we know either E(Fp) ∼=
Z2 ⊕ Z p+1

2
or E(Fp) ∼= Zp+1. In the first case, E(Fp) has more than one point of

order 2, and it contradicts to the Lemma 5.5. Therefore, E(Fp) ∼= Zp+1, and it
is a cyclic group. In particular, when p > 3 is a Mersenne prime, we can write
p = 2s − 1, and E(Fp) ∼= Z2s Thus, it is a cyclic 2-group. Again, using theorem
4.3, we have the following theorem.

Theorem 5.6. Let p > 3 be a Mersenne prime and p = 2s − 1, then the DLP on
the elliptic curve E(Zp) : y2 = x3 + x can be solved efficiently.

6. A cryptosystem based on the ease of the DLP

In this section, we will propose a cryptosystem on a finitely cyclic 2-group, where
the DLP is easy. The idea is based on the cryptosystem MST3 mentioned in [9].

6.1. FTLS of finite abelian groups. We first prove the following

Theorem 6.1 (10-Theorem 4.5). Let β = {B0, B1, ..., Bt} be the FTLS con-
structed from TLS α = {A0, A1, ..., As} of an abelian group G using four operations
in Definition 2.2, then β is tame if the trapdoor information is known.

Remark. We will give the independent proof, which implies an algorithm we
use in the decryption process of the cryptosystem proposed below.

Proof. From α we can use four fused operations mentioned in section 2 to ob-
tain its FTLS β. Denote α = {A0, A1, ..., As}, β = {B0, B1, ..., Bt}, where Ai =
{ai,1, ..., ai,ri}, Bj = {bj,1, ..., bj,sj}.

Given g ∈ G, we can uniquely factorize g = a0,k0 ...as,ks where ai,ki ∈ Ai. Our task
is to give the factorization of G by FTLS β when four fused operations are known.
We now consider four cases, which corresponds to four transformations of α.

Case 1. If we permute s block of α by the permutation π in Ss to obtain β,
where Ss is the permutation of a set whose s elements, i.e. Bi = Aπ(i) then ai,ki is
actually bπ−1(i),ki .

Case 2. If the elements within a block Ai is permuted to obtain a block Bi, then
there exists a permutation φ of the set {1, ..., ri} such that

Ai = {ai,1, ..., ai,ri} → Bi = {ai,φ(1), ..., ai,φ(ri)} = {bi,1, ..., bi,ri}
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That means bi,j = ai,φ(j). Hence, ai,j will be replaced with bi,φ−1(j) in the factor-
ization of g.

Case 3. Replace a block Ai with Bi = Aih, where h ∈ G, then we can express
gh−1 as follows

gh−1 = a0,k′0 ...ai,k′i ...as,k′s ⇒ g = a0,k′0 ...(ai,k′ih)...as,k′s

And we can replace aj,kj with aj,k′j(= bj,k′j)(j 6= i), and ai,ki with ai,k′ih(= bi,k′i).

Case 4. Replace two block Ai, Aj(i < j) with a single block Bi = AiAj = {xy|x ∈
Ai, y ∈ Aj}, and remove both blocks Ai, Aj to obtain β. Then we can see that the
number of blocks will be reduced 1. Because G is an abelian group, we have

g = a0,k0 ...ai,ki ...aj,kj ...as,ks =
a0,k0 ...ai−1,ki−1

(ai,kiaj,kj)ai+1,ki+1
...aj−1,kj−1

aj+1,kj+1
...as,ks =

b0,k0 ...bi−1,ki−1
(ai,kiaj,kj)bi+1,ki+1

...bj−1,kj−1
bj+1,kj+1

...bs,ks

That means, we can replace au,ku with bu,ku(0 ≤ u ≤ i− 1, i+ 1 ≤ u ≤ j− 1), av,kv
with bv−1,kv(j + 1 ≤ v ≤ s) and replace ai,kiaj,kj with bi,t in Bi where t can be
obtained by suitable numbering.

Through four cases, we can see that any FTLS of α are tame if α is tame and the
information about transformations are known. �

From proposition 4.2 and theorem 6.1, we obtain the following

Corollary 6.2. Let G be a finite cyclic 2-group, whose order 2s, and g is the
generator of G, then any FTLS of α is tame if the trapdoor information is known,
where α = {A0, ..., As−1}, Ai = {1, g2i}.

6.2. A proposed cryptosystem. Based on theorem 6.1, we know that if the
trapdoor information is not given, then the FTLS obtained from a TLS by applying
four transformations is not tame. And to avoid the attack from [10], we can
also hide the information about the FTLS. Using this remark, we will propose a
cryptosystem as follows.

Key generation
Step 1. Alice will public a large Mersene prime and an elliptic curve

E(Fp) : y2 = x3 + x

From Section 5.2, we know that E(Fp) is a cyclic group of order 2s.

Step 2. She chooses the generator P of E(Fp) and obtain the TLS

ρ = {P0, ..., Ps−1} where Pi = {Pi,1, Pi,2} = {∞, 2iP}
Step 3. At this step, she uses four fused operations defined in Definition 2.2 to
obtain the FTLS of ρ, called α, where

α = {A0, ..., At} where Ai = Ai,1, ..., Ai,ri



SOME REMARKS ON THE LOGARITHMIC SIGNATURES OF FINITE ABELIAN GROUPS11

Step 4. Alice chooses Bi ⊂ E(Fp) randomly such that |Bi| = |Ai| = ri(i = 0, ..., t)
and points of Bi are denoted Bi,j(j = 1, ..., ri). Let β = {B1, ..., Bt} and she defines

the map β̆ as follows

β̆ : Zr0 × ...× Zrt → B0 +B1 + ...+Bt

(k0, ..., kt) 7→ B0,k0 +B1,k1 + ...+Bt,kt

Step 5. Alice chooses (t+ 2) points Ti ∈ E(Fp)(i = 0, ..., t+ 1) secretly.

Step 6. She then chooses Gi ⊂ E(Fp)(0 ≤ i ≤ t) such that |Gi| = |Bi| = |Ai| = ri
and Gi consists of ri points Gi,j(j = 1, ..., ri) that satisfy

Gi,j = (Ti − Ti+1) +Bi,j + Ai,j

and the map

γ̆ : Zr0 × ...× Zrt → G0 +G1 + ...+Gt

(k0, ..., kt) 7→ G0,k0 +G1,k1 + ...+Gt,kt

After six steps, she will

• Public the information (E(Fp), β, β̆, γ, γ̆)
• Keep (ρ, α, Ti) secret together with the trapdoor information.

Encryption
Step 1. Bob wants to encrypt data M ∈ E(Fp).
Step 2. He chooses r = (k0, ..., kt) ∈ Zr0 × ...× Zrt and then compute

C1 = β̆(r) +M,C2 = γ̆(r) +M

Step 3. He sends (C1, C2) to Alice.

Decryption
Step 1. Alice computes

C = C2 − C1 = γ̆(r)− β̆(r) = T0 − Tt+1 +
∑t

i=0Ai,ki

Step 2. Alice then compute

D = C − T0 + Tt+1 =
∑t

i=0Ai,ki

Step 3. She uses the ease of the DLP (theorem 4.3) to recover D from the TLS ρ

D =
∑s−1

i=0 Pi,ki

Step 4. By Corollary 6.2 and the algorithm implied in the proof of Theorem 6.1,
she can obtain the factorization of D into TLS α by using trapdoor information

D =
∑t

i=0Ai,ki

and obtain the value r = (k0, .., kt) ∈ Zr0 × ...× Zrt .
Step 5. She can recover M by computing

M = C1 − β̆(r)
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6.3. Security Issues. The reason why we choose the cyclic 2-group on elliptic
curves is that the addition law in these curves is much more complicated than
that in Z2s , but the computing time for point addition is acceptable. The security
of our scheme is discussed in more details in [9], where the author first use the
concept of logarithmic signatures to build a cryptosystem based on Suzuki’s 2-
groups. We will briefly mention some similar cases here, because our contribution
is to strengthen the security in the abelian cases, and take advantage of the ease
of the DLP and the tameness of FTLS for designing trapdoor information.

For brute force attack, the attacker Eve has to know about the TLS α, but
at least, it will require the complexity time of O(s!) (if we only use the first
transformation when permuting s blocks). Another attempt is trying to guess P
or ρ is also impossible, because we have 2n−1 generators for a cyclic group of order
2n.

Our β is chosen randomly, and each Bi has the same element as Ai. Hence, there
is no relation between them. In contrast, there are some connections between Bi,j,
Ai,j and Gi,j through the system of equations

Gi,j −Bi,j = Ti − Ti+1 + Ai,j(0 ≤ i ≤ t, 1 ≤ j ≤ ri)

The values of all Gi,j and Bi,j are public, hence to recover Ti and Ai,j, Eve must
solve a system of (r0 × ... × rt) equations and (r0 × ... × rt) + (t + 2) unknowns.
Hence, it is infeasible to recover Ti and Ai,j from Bi,j and Gi,j.

To read message M , he can get started from the pair (C1, C2), and he can
compute the point C = C2 − C1 = T0 − Tt+1 +

∑t
i=0Ai,ki , but for next steps, he

cannot know the two points T0 and Tt+1 because of the reasons mentioned above.
In the worst case, if he know the information about T0 and Ti+1, then he will

know the point D =
∑t

i=0Ai,ki . It is worth mentioning that our decryption process
is done via the diagram:

Sum of 2iP

D ∈ E(Fp) Sum of Ai,j

trapdoor inf.ea
se

of
D

LP

That means, if Eve want to read M , he must find another ways to recover the
generator P or Ai,j. The diagram above also visualize the one-way function in
our case, because compute sum of Ai,j is easy, but for the converse, one has to
meet much more difficulty. And to avoid attack from [10], because the logarithmic
signatures ρ is easy to realize, we have to use four transformations secretly to make
it fused and also hide the obtained FTLS α.
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6.4. Implement. For implementing, we choose p = 2527 − 1 is a Mersenne prime
and the curve:

E(Fp) : y2 = x3 + x

We also run the proposed cryptosystem along with two versions of the RSA cryp-
tosystems, RSA-1024 and RSA-2048, and compare the execution time of three
systems in three phases: key generation, encryption, and decryption.

Computer Configuration
Processor: Intel(R) Core(TM) i5- 2430M CPU@ 2.40GHz.
RAM: 4.00 GB(2.98 usable).
System type: 32-bit Operating System.
OS: Windows 7 Ultimate, SP1.

Virtual Machine
Oracle VM Virtual Box 4.2.18˙ SAGE- 5.11.
OS: Fedora.
Base Memory: 512 MB.
Storage: 7.81 GB.

Execution time
The table below shows the execution time of our proposed system.

Key generation Encryption Decryption
Proposed-system 14.1740s 0.0730s 15.7800s

The decryption phase is often slower than the encryption, because our proposed
system has to solve a weak DLP in Step 3, and in Step 4, we have to recover
the indexes from trapdoor information. And by the implement experiments, our
proposed system above can be applied to the system of digital signatures in which
verifications are performed more frequently.

7. Conclusion

In this paper, we have generalized the definition of logarithmic signature to give
a concept of quasi logarithmic signatures in section 3, and from this, defining the
new operations to preserve the QLS structure. These ideas can be applied to build
a new cryptosystem, which is similar to the concept of MST3, and probably avoid
the known attacks on cryptosystems based on logarithmic signatures, including
the factorization of abelian groups from [10] and to reduce the storage memory of
trapdoor information. Besides, using the concepts of logarithmic signatures, we
have proposed an algorithm to solve the DLP on cyclic 2-groups efficiently. This
can be generalized for cyclic groups whose orders are products of small primes.
We have also pointed out two nontrivial groups, including cyclic 2-group on Pell’s
curves and elliptic curves, as feasible examples of our result. And using the ease of
the DLP on such cyclic 2-groups, we have proposed a cryptosystem based on the
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concept of logarithmic signatures, and that can also avoid the attack from [10].
The security for our scheme is also discussed in this paper. For implementing, we
choose an elliptic curve of y2 = x3 +x over Fp, where p = 2527−1, and the running
speed is acceptable.
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