
Analysis of the Kupyna-256 Hash Function

Christoph Dobraunig, Maria Eichlseder, and Florian Mendel

Graz University of Technology, Austria
christoph.dobraunig@iaik.tugraz.at

Abstract. The hash function Kupyna was recently published as the
Ukrainian standard DSTU 7564:2014. It is structurally very similar to
the SHA-3 finalist Grøstl, but differs in details of the round transfor-
mations. Most notably, some of the round constants are added with
a modular addition, rather than bitwise xor. This change prevents a
straightforward application of some recent attacks, in particular of the
rebound attacks on the compression function of similar AES-like hash
constructions. However, we show that it is actually possible to mount re-
bound attacks, despite the presence of modular constant additions. More
specifically, we describe collision attacks on the compression function for
6 (out of 10) rounds of Kupyna-256 with an attack complexity of 270, and
for 7 rounds with complexity 2125.8. In addition, we can use the rebound
attack for creating collisions for the round-reduced hash function itself.
This is possible for 4 rounds of Kupyna-256 with complexity 267 and for
5 rounds with complexity 2120.

Keywords: hash functions · cryptanalysis · collisions · free-start colli-
sions · Kupyna · rebound attack

1 Introduction

Recently, Oliynykov et al. [11] published an English specification of the new
Ukrainian hash standard DSTU 7564:2014, also known as Kupyna. In contrast
to the previous standard GOST 34.311-95, the new hash standard facilitates
more effective software implementations. Of course, it is also intended to offer
improved security compared to the old GOST standard, which has shown weak-
nesses against collision attacks [7]. As Kupyna is a national standard, it is likely
to find wide-spread adoption in the Ukraine. Thus, comprehensive third-party
analysis is necessary to evaluate the resistance of Kupyna against cryptanalytic
attacks.

The Kupyna design aims to achieve a high level of security by relying on well-
known and well-analyzed building blocks. It shares a notable similarity with the
SHA-3 finalist Grøstl [2]. Kupyna’s mode of operation, in particular its com-
pression function, is nearly identical to the one used in Grøstl, and its permu-
tations – though different – follow very similar design ideas. One of Kupyna’s
two permutations employs the wide-trail design strategy [1] of AES. Therefore,
this permutation shares a common basis with Grøstl’s permutations, although
Kupyna uses other constants, S-boxes, rotation values, and a different MDS

c© IACR 2016. This article is the final version submitted by the authors to the IACR and to Springer-
Verlag in April 2016. The version published by Springer-Verlag is available at http://dx.doi.org/
10.1007/978-3-662-52993-5_29

http://dx.doi.org/10.1007/978-3-662-52993-5_29
http://dx.doi.org/10.1007/978-3-662-52993-5_29

matrix. The second Kupyna permutation differs from the first in the constant
addition, which applies addition modulo 264 rather than bitwise xor. This mod-
ular addition serves to differentiate the two permutations, but can also be seen
as a measure to complicate algebraic cryptanalysis. Furthermore, it implies ad-
ditional relations over byte boundaries. As a consequence, the modular addition
leads to a weaker alignment for differential trails, making statements about the
minimum number of active S-boxes in a differential trail more complicated, since
the linear layer no longer achieves an optimal branch number.

Our contribution. In this paper, we provide the first third-party analysis of
the new Ukrainian hash standard Kupyna. We present collision attacks on round-
reduced variants of Kupyna-256 for up to 5 out of 10 rounds, and collisions for
the compression function of Kupyna-256 for up to 7 rounds. A summary of our
results can be found in Table 1.

Table 1. Overview of collision attacks on Kupyna-256.

Hash function Target Rounds Complexity Reference

Kupyna-256
Compression function

6 270

Sect. 3
7 2125.8

Hash function
4 267

Sect. 4
5 2120

Our attacks make use of the capability of rebound attacks [8] to efficiently
generate pairs of values which follow a given truncated differential trail. The
core idea of such a rebound attack is to create many solutions with a low com-
plexity per solution during the inbound phase, and propagate those solutions in
a probabilistic manner during the so-called outbound phase.

To create solutions with a low average complexity during the inbound phase,
the rebound attack takes advantage of the strong alignment of truncated differen-
tial trails and the underlying independence of parts of the cipher. As mentioned
before, one of the two permutations of Kupyna does not provide such a strong
alignment. Hence, it is not trivial to perform the rebound attack for this per-
mutation. However, in this work, we show how to deal with modular constant
additions during the inbound and the outbound phase to be able to perform
rebound attacks on such constructions.

Related work. Due to the high similarity of Kupyna with Grøstl, the funda-
ment of our attacks is the analysis of Grøstl. For Grøstl, the best attacks are
based on the rebound attack and its improvements [3, 5, 6]. Distinguishers for
round-reduced variants of the Grøstl permutation were published in [4]. Rebound
attacks leading to collisions for the highest number of rounds for the compres-

sion function of Grøstl were shown in [9]. An efficient collision attack covering 5
rounds of the hash function Grøstl itself was published in [10].

In the meantime, Zou and Dong [13] independently analyzed the Kupyna
hash function, and observed the applicability of some of the attacks on Grøstl to
Kupyna. They present pseudo-preimage attacks on 6 rounds of Kupyna-256 and
8 rounds of Kupyna-512 with time complexities 2250.33 and 2498.33, respectively,
which are essentially identical to the original Grøstl attacks [12]. Additionally,
they also noted the hash function attack on 5 rounds very similar to Section 4
of this paper.

Outline. The remainder of the paper is organized as follows. First, we start
with a short description of Kupyna in Section 2. Next, we show how to apply
the rebound attack on round-reduced versions of the compression function of
Kupyna-256, to create semi-free-start collisions for 6 and 7 rounds, in Section 3.
Then, we apply a collision attack for 4 and 5 rounds of Kupyna-256 in Section 4.
Finally, we conclude in Section 5.

2 Description of Kupyna

Kupyna [11] is a family of iterated hash functions defined in the Ukrainian
standard DSTU 7564:2014. The design principles of Kupyna are very similar to
the SHA-3 finalist Grøstl [2]. As in Grøstl, the compression function of Kupyna
is built from two distinct permutations T⊕ and T+, which are both based (to a
certain degree) on the AES design principles. In the following, we describe the
components of the hash function in more detail.

2.1 The Hash Function

The Ukrainian standard DSTU 7564:2014 defines two main variants, Kupyna-256
and Kupyna-512, which produce a hash output size of n = 256 and n = 512
bits, respectively (the third recommendation, Kupyna-384, is simply a truncated
version of Kupyna-512). The hash function first pads the input message M and
splits the message into blocks m1,m2, . . . ,mt of ` bits each, with ` = 512 for
Kupyna-256 and ` = 1024 for Kupyna-512. The message blocks are processed via
the compression function f(hi−1,mi), which updates the internal `-bit chaining
value hi, and an output transformation Ω(ht) to produce the final hash value h:

h0 = IV

hi = f(hi−1,mi) for 1 ≤ i ≤ t
h = Ω(ht).

The compression function f is based on two `-bit permutations T⊕ and T+ and
is defined as follows (see also Fig. 1):

f(hi−1,mi) = T⊕(hi−1 ⊕mi)⊕ T+(mi)⊕ hi−1.

T+

T⊕

mi

hi−1 hi⊕ ⊕

Fig. 1. The compression function hi = f(hi−1,mi) of the Kupyna hash function, using
`-bit permutations T⊕ and T+.

The output transformation Ω is applied to ht to give the final hash value h
of size n, where truncn(x) discards all but the most significant n bits of x:

Ω(ht) = truncn(T⊕(ht)⊕ ht).

2.2 The Permutations T⊕ and T+

In the remaining document, we focus our analysis on Kupyna-256. The structure
of the two permutations T⊕ and T+ of Kupyna is very similar to the ones of
Grøstl. As in Grøstl-256, each Kupyna-256 permutation updates an 8× 8 state
of 64 bytes in 10 rounds. In each round, the round transformation updates the
state by means of the sequence of transformations

MixBytes ◦ RotateBytes ◦ SubBytes ◦ AddConstant.

In the following, we briefly describe the round transformations of T⊕ and T+ in
more detail. Note that the Kupyna specification [11] refers to the transforma-

tions as ψ, τ (`), π′, and κ
(`)
i /η

(`)
i , respectively, but we use the more commonly

understood AES-like transformation names in the remaining document.

AddConstant (AC). In this transformation, the state is modified by combining
it with a round constant. This is the only transformation where the two permu-
tations differ. While T⊕ combines the round constant with each column with
bitwise xor (⊕), T+ applies column-wise modular addition mod 264 (+). The
round constants for T⊕ are defined as follows for round r, 1 ≤ r ≤ 10, and
column j, 0 ≤ j < 8:

ω
(r)
j = ((j � 4)⊕ r, 00, 00, 00, 00, 00, 00, 00)>.

The (round-independent) round constants for T+ for column j are given by:

ζ
(r)
j = (F3, F0, F0, F0, F0, F0, F0, (7− j)� 4)>,

where the first byte F3 and the first row of the state serve as the least significant
bytes for the addition. This modular addition performed in T+ is also the main

difference of Kupyna compared to Grøstl from a cryptanalytic point of view. Note
that this modular addition destroys the columnwise optimal branch number of
the linear layer. We give an example with only 6 (rather than 9) active S-boxes
over 2 rounds in Appendix A.

SubBytes (SB). The SubBytes transformation is the same for T⊕ and T+. It
is a permutation consisting of S-boxes applied to each byte of the state (with 4
different S-boxes, depending on the row index). The 8-bit S-boxes are designed
to provide good cryptographic properties against differential and linear attacks.
For a detailed description of the S-boxes, we refer to the specification [11]. Note
that the SubBytes transformation is the only non-linear transformation of the
permutation T⊕.

RotateBytes (RB). The RotateBytes transformation is a byte transposition that
cyclically shifts the bytes of each state row by different offsets: row j is shifted
rightwards by j byte positions, 0 ≤ j < 8. This transformation is the same
for both permutations T⊕ and T+. This is also in contrast to Grøstl, where
two different sets of rotation constants are defined for the two permutations,
in order to diversify between the two. In Kupyna, this role is solely played by
AddConstant.

MixBytes (MB). The MixBytes transformation is a permutation operating on
the state column by column. To be more precise, it is a left-multiplication by an
8 × 8 circulant MDS matrix over F28 . The coefficients of the matrix are deter-
mined in such a way that the branch number of MixBytes (the smallest nonzero
sum of active input and output bytes of each column) is 9, which is the maxi-
mum possible for a transformation with these dimensions. This transformation
is the same for both permutations T⊕ and T+.

3 Semi-free-start Collisions for 6 and 7 Rounds

In this section, we mount a collision attack on 6 rounds of the compression func-
tion of the Kupyna-256 hash function. The attack described here is based on the
rebound attacks on Grøstl [9] using SuperBox matches [3,5,6]. Hence, the high-
level attack strategy to create pairs following differential truncated trails stays
the same. Due to the round-constant addition modulo 264 in the permutation
T+, a straightforward application of the Grøstl attack is not possible, and some
additional considerations are required.

Finally, in Section 3.5, we also show how to extend the collision attack to 7
rounds of the compression function, also based on rebound attacks on Grøstl [9].

3.1 Attack Strategy

We target differential trails similar to those in [9]. The core idea of this attack
is to use the same truncated differential trail in both permutations T⊕ and T+.

If the differences at the input and the output match, we get a semi-free-start
collision. Note that the differences are introduced by the message block mi,
whereas the chaining value hi−1 is free of differences, but can also be chosen
arbitrarily. A high-level view of this attack is illustrated in Fig. 2.

S0
AC
SB
RB
MB

S1
AC
SB
RB
MB

S2
AC
SB
RB
MB

S3
AC
SB
RB
MB

S4
AC
SB
RB
MB

S5
AC
SB
RB
MB

S6

S0
AC
SB
RB
MB

S1
AC
SB
RB
MB

S2
AC
SB
RB
MB

S3
AC
SB
RB
MB

S4
AC
SB
RB
MB

S5
AC
SB
RB
MB

S6

mi

hi−1 hi⊕ ⊕

Fig. 2. Collision attack on 6 rounds of the Kupyna-256 compression function.

To find matching trails, we use the rebound attack strategy introduced in [9].
This strategy consists of an inbound and an outbound phase. During the inbound
phase, solutions for the core of the trail are deterministically created with a com-
plexity close to 1 per solution, whereas the propagation through the outbound
phase is done in a probabilistic manner. This, combined with the fact that we
have to match the input and output differences of the independently created
trails for T⊕ and T+, suggests a truncated differential target trail which is dense
in the middle and gets sparse towards the ends, with the following numbers of
active bytes (S-boxes):

8
r1−→ 8

r2−→ 64
r3−→ 64

r4−→ 8
r5−→ 8

r6−→ 64. (1)

3.2 Finding Pairs for T⊕

The permutation T⊕ follows the wide-trail design strategy. Even though T⊕ uses
different SubBytes, RotateBytes and MixBytes layers than Grøstl, the differential
behaviour on byte level is almost identical, so those changes have a very lim-
ited influence on the way a rebound attack is applied (e.g., due to the different
rotation constants, slightly different truncated trails are used). Hence, the re-
bound attack on T⊕ can be done very similarly to the Grøstl permutation [9].
Below, we repeat the essential parts of this attack. We use the same notation
to denote intermediate states: S0 is the initial state, Si denotes the state after
round i (1 ≤ i ≤ r), and the intermediate states after AddConstant, SubBytes,
RotateBytes, and MixBytes of round i are labelled SAC

i , SSB
i , SRB

i , and SMB
i = Si,

respectively.

The Inbound Phase. For the inbound phase, we use the SuperBox based
technique described by Mendel et al. [9]. This phase covers the round transfor-
mations of 2.5 rounds, beginning with MixBytes of round 2 (input state SRB

2),
and ending with MixBytes of round 4 (output state S4). The detailed truncated

differential trail for the inbound phase is shown in Fig. 3. The attack works as
follows:

1. First, we start backwards from state S4, which has 8 active bytes. We enu-
merate all 28·8 possible bitwise difference patterns at S4, and deterministi-
cally propagate them backwards through the linear MixBytes◦RotateBytes
to SSB

4 . The resulting 264 difference patterns for SSB
4 are stored in a table

D1.
2. Next, we choose a random difference pattern for state SRB

2 and determin-
istically propagate forward through MixBytes to state S2.

3. Finally, we have to connect the inputs of 8 S-boxes of state S2 belonging
to one SuperBox to its corresponding output in state SSB

4 . We can do this
for each of the 8 SuperBoxes independently in the following way:
(a) Enumerate all possible 264 value pairs for the SuperBox at state S2

and propagate forward to state SSB
4 .

(b) Store the resulting 264 value pairs at state SSB
4 in a table D2.

(c) To find solutions for this SuperBox, filter D2 with the possible dif-
ferences in table D1.

SRB
2

MB

S2
AC

SAC
3

SB
RB
MB

S3
AC

SAC
4

SB

SSB
4

RB
MB

S4

step 1step 2 step 3

Fig. 3. Inbound phase for T⊕, SuperBox in black

Now we have to determine how many solutions we get for the inbound phase.
From a high-level point of view, we have generated 264·8 pairs of values at state
S2. All those pairs are filtered with the truncated differential of state S4. Here,
56 bytes need to be zero. Thus, we expect 264·8−56·8 = 264 valid solutions (pairs)
for the inbound phase. The computational complexity for the inbound phase is
264 round function calls for creating these 264 solutions with a complexity of
264 in memory for storing the tables. The inbound phase can be repeated up to
264 times with other difference patterns at state SRB

2 , leading to a maximum of
2128 solutions with 2128 complexity in time. Hence, the amortized complexity of
finding one solution in the inbound phase is 1.

The Outbound Phase. During the outbound phase, the created solutions from
the inbound phase have to be probabilistically propagated, first from state SRB

2

back to S0 and then from S4 to S6. Both times, they have to follow the pattern of

the truncated trail: 8
r1←− 8

r2′←−− 8 (r2′ = RB◦SB◦AC) in the backward direction,

and 8
r5−→ 8

r6−→ 64 in the forward direction. Since both trails have a probability
very close to one, this phase has only negligible influence on the complexity.

3.3 Finding Pairs for T+

As for T⊕, we also need to find pairs of values for T+ which follow the given
truncated differential trail. However, the modular constant addition of T+ on
each column of the state can cause difference propagations between bytes, which
are impossible in T⊕. Therefore, we cannot rely on the byte alignment of the
truncated differential trails anymore. In the following, we show how to handle
such uncertainties and how to apply the rebound attack on T+, although its
trails are not strongly aligned. Note that we still target the same truncated trail
for T⊕ and T+ (Fig. 2), and the input/outbound phases cover the same steps
(Fig. 3).

The Inbound Phase. The round transformations covered by the inbound
phase (states SRB

2 to S4) include two constant additions AC: one between state
S2 and SAC

3 , and one between S3 and SAC
4 , both corresponding to step 3 of this

phase (see Fig. 3). The other steps 1 and 2 are not influenced by the constant
additions and thus, our considerations do not change for them.

The constant addition between S3 and SAC
4 is aligned with each SuperBox.

Hence, it only influences each of the 8 SuperBoxes individually. Therefore, the
constant addition taking place between state S3 and SAC

4 can be integrated into
the SuperBoxes and does not influence our considerations negatively. Unfortu-
nately, this is not the case for the second constant addition.

During step 3, we want to propagate values and differences per SuperBox
from its inputs to its outputs. At state SAC

3 , the inputs of the SuperBox are
represented by bytes in the diagonals of the state. Hence, we cannot integrate
the column-wise constant addition that happens before SAC

3 into our SuperBoxes
anymore. Unfortunately, this constant addition creates a dependence between
the 8 SuperBoxes via the carry. To be able to treat the SuperBoxes independently
again, we only start with values at state S2 so that the addition of one of these
values with the constant definitely results in a carry for the next byte. By doing
so, we can always expect a carry at the input of the bytes for the constant
addition (except for the LSB, of course). In this way, we can treat every SuperBox
separately and the rest of the attack works as described for T⊕.

Since we have restricted the number of possible values in step 3 to values that
generate a carry, we have to determine how many solutions we get. First consider
the least significant byte (byte 0), corresponding to constant F3 and an element
x from the first state row. To generate the carry, we require that x+F3 > FF, so
243 (out of 256) values for x are valid. For the following bytes 1–6, we assume an
input carry, so we require that x+ 1 +F0 > FF, which has 241 solutions. Finally,
for byte 7, we have no requirements. If we assume that the required bitwise
difference for a value pair is uniformly random, then the expected number of
valid value pairs for byte 0 is 256 · (1 − 2 · 13

256 + (13
256)2) ≈ 230.6. Similarly,

for bytes 1–6, the expected number of valid pairs is ≈ 226.8. The results are
summarized in Table 2.

By using the numbers of Table 2, we see that on average, the number of
valid pairs we can create per SuperBox is (230.6) · (226.8)6 · 256 ≈ 262.8. As we

Table 2. Number of byte values and average number of value pairs (for fixed bitwise
difference) that produce a carry on modular addition with Kupyna’s round constants.

Byte position Valid values Valid pairs (average)

Byte 0 243 230.6
Byte 1–6 241 226.8
Byte 7 256 256

have the same filter criterion as for T⊕, we can create 262.8·8−56·8 = 254.4 valid
solutions for the inbound phase. These solutions are obtained with a complexity
of 243 · 2416 · 256 = 263.4, since only this is the number of values per SuperBox
that result in carries per byte. We can repeat the inbound phase 264 times to
create up to 2118.4 pairs with a complexity of 2127.4. In other words, finding one
solution in the inbound phase has an amortized complexity of 29.

The Outbound Phase. In the outbound phase, the pairs created during the
inbound phase are propagated in a probabilistic manner. Since we have to con-
sider the effects of the modular constant addition, the success probability of this
phase is reduced compared to T⊕.

First, we want to consider the propagation from state SRB
2 back to S0. Here,

we have to follow the truncated trail 8
r1←− 8

r2′←−− 8, where r2′ = RB ◦ SB ◦ AC.
For the first constant addition between state S1 and SAC

2 , the 8 active bytes lie
within one column. Thus, the constant addition will not change the activeness of
the bytes with overwhelming probability. The second constant addition occurs
between state S0 and SAC

1 , where the active bytes are on the diagonal of the
state. Therefore, the constant addition may lead to difference propagation from
an active byte to a formerly inactive byte (if one value of the pair produces a
carry and the other value does not). Assuming that none of the active bytes
receives an input carry (worst case), the probability that none of the 8 active
bytes propagates a difference to its neighbouring byte is (1−2 · 13

256 ·
243
256) · (1−2 ·

16
256 ·

240
256)6 · 1 ≈ 2−1.225. Summarizing, the probability that a value pair follows

the differential trail from SRB
2 to S0 is about 2−1.225.

For the propagation from state S4 to S6, we have another two constant
additions, one of which is aligned with the SuperBox. Again, the probability
that a pair follows this truncated differential is 2−1.225. So the probability that a
pair created during the inbound phase follows the truncated differentials implied
by the outbound phase is 2−2.45. Combining the inbound and the outbound
phase, we can create 254.4−2.45 = 251.95 pairs that follow the 6-round truncated
differential trail with a complexity of 263.4. Hence, one solution that follows the
truncated trail for T+ can be constructed with an amortized complexity of 211.45.

3.4 Results for 6 Rounds

In the last two subsections, we have discussed how to create valid pairs that
follow the truncated differential trails for permutations T+ and T⊕. To get a

collision for the compression function, we have to find pairs of values for T+

and T⊕ such that the input differences and the output differences match. At the
input, we have 8 active bytes and therefore 64 bitwise conditions to match. At the
output, we can match the state before the linear MixBytes operation, resulting in
another 64 bitwise conditions. Due to the birthday paradox, we expect a match
on these 128 conditions after creating 264 pairs for T+ and for T⊕.

The complexity for creating 264 pairs that follow the truncated trail in T⊕ is
264. Creating 264.95 pairs which follow the trail in T+ has a complexity of 276.4,
settling the total complexity of the attack. A better attack complexity can be
achieved by applying an unbalanced birthday attack. Creating 270 pairs for T⊕

with complexity 270 and 258.55 pairs for T+ with complexity 270 allows us to find
a semi-free-start collision for 6 rounds with a total attack complexity of about
270 (time and memory).

Overall, the introduction of the modular addition only increased the attack
complexity from 264 to 270 (compared to a variant where T+ and T⊕ are essen-
tially identical. Thus, this approach is significantly less effective at preventing
this type of rebound attacks than that of Grøstl, namely, using different rotation
values in T+ and T⊕ to prevent this type of truncated trails from matching at
the ends. Note that the low increase of complexity is also due to the special
choice of round constants in Kupyna. In particular, our experiments show that

if the round constant bytes of ζ
(r)
j were randomly selected, the probability that

this kind of attack could succeed with complexity 270 or less is less than 1 in
10 000 (if the constants are still the same for all rounds and columns, as is the
case for Kupyna – otherwise, even less).

3.5 Extending the Attack to 7 Rounds

We now extend the previous collision attack from 6 to 7 rounds of the compres-
sion function. The attack is based on a closely related truncated differential trail
with the following sequence of active S-boxes:

8
r1−→ 8

r2−→ 64
r3−→ 64

r4−→ 8
r5−→ 1

r6−→ 8
r7−→ 64. (2)

Up to round 5 (state S4 in Fig. 4), this trail is identical to the 6-round attack.
Consequently, the whole inbound phase works identically as before, and we only
need to adapt the outbound phase in the attack on 7 rounds.

First, we want to determine the probability that a solution created during
the inbound phase follows the truncated differential trail for permutation T⊕.
The outbound phase from state SRB

2 back to S0 is the same as for 6 rounds and
thus works with a probability of 1. The target trail from state S4 to S7 has
8

r5−→ 1
r6−→ 8

r7−→ 64 active S-boxes. The transitions of 1
r6−→ 8 and 8

r7−→ 64
active S-boxes have a probability close to 1. The transition of 8

r5−→ 1 active
S-boxes has a probability of 2−56, which also determines the total probability of
the outbound phase for T⊕.

For the permutation T+, we have to consider the additional probability that
the constant addition does not change the pattern of the truncated differential

S0
AC
SB
RB
MB

S1
AC
SB
RB
MB

S2
AC
SB
RB
MB

S3
AC
SB
RB
MB

S4
AC
SB
RB
MB

S5
AC
SB
RB
MB

S6
AC
SB
RB
MB

S7

S0
AC
SB
RB
MB

S1
AC
SB
RB
MB

S2
AC
SB
RB
MB

S3
AC
SB
RB
MB

S4
AC
SB
RB
MB

S5
AC
SB
RB
MB

S6
AC
SB
RB
MB

S7

mi

hi−1 hi⊕ ⊕

Fig. 4. Collision attack on 7 rounds of the Kupyna-256 compression function.

trail. The probability that the patterns stay the same is 2−1.225 for the constant
addition after S0 and S4, and 1 for the constant addition after S1, S5 (active
byte at the MSB of the constant addition), and S6. Thus, the probability that
the trail during the outbound phase is followed is 2−58.45 for T+.

By repeating the attack on T⊕ 2s times, s ≤ 64, we are able to generate up
to 2s+64−56 = 2s+8 pairs following the truncated differential trails for T⊕ with a
complexity of 2s+64, and with 2t repetitions for T+, up to 2t+54.4−58.45 = 2t−4.05

pairs with a complexity of 2t+63.4. Additionally, we still have to match an 8-byte
condition at the input of the permutations and an 8-byte condition at the output
of the permutation. In total, an unbalanced birthday attack with s ≈ 61.8 and
t ≈ 62.4 gives the best complexity. For T⊕, we generate 269.8 solutions with
a complexity of 2125.8, and for T+ 258.35 solutions with a complexity of 2125.8.
Since 269.8 · 258.35 > 2128, we expect a match with high probability. This results
in a semi-free-start collision over 7 rounds with a total complexity of about 2125.8

and 270 memory.

4 Collision Attacks on the reduced Hash Function

In this section, we describe collision attacks on Kupyna-256 reduced to 4 and
5 rounds. The attacks are a straight-forward application of the rebound attack
on the reduced Grøstl-256 hash function [10] to Kupyna-256. To simplify the
description of the attack, we use the alternative description of the hash function,
similar to the attacks on round-reduced Grøstl in [10].

4.1 Alternative Description of Kupyna

Let T̂⊕ and T̂+ denote the permutations T⊕ and T+ without the final application
of MixBytes. Consider the following alternative description of Kupyna:

ĥ0 = MB−1(IV)

ĥi = T̂⊕(MB(ĥi−1)⊕mi)⊕ T̂+(mi)⊕ ĥi−1 for 1 ≤ i ≤ t

h = Ω(MB(ĥt))

This description of Kupyna is equivalent to the original one by letting hi
be MB(ĥi). Just the final MixBytes transformation of the permutations changes

place with the xor operation of the feed-forward. With this modified description,
the limited set of differences at the output of the compression function becomes
more clearly visible in the attack.

4.2 Attack Strategy

The essential idea of the hash function attack on reduced Kupyna-256 is to have
a multi-block attack, but such that all message blocks except the first have no
differences. This way, we can concentrate on the trails through T̂⊕, and use the
freedom of the message blocks to successively cancel all differences in the internal
chaining values.

The first message block can be selected arbitrarily, we only require a differ-
ence in the message. This way, we start from some arbitrary difference in the
chaining variable for the second block, and want to convert it into an output dif-
ference equal to zero after 8 more compression function calls. The corresponding
8 message blocks are fully controlled by the attacker and must not contain any
differences. Then, each of the 8 message blocks is used to cancel one eighth of
the differences at the output of the compression function to result in a collision
at the end (see Fig. 5).

The trails used in our collision attack on 4 and 5 rounds start from a fully
active input state and map it to 8 active bytes at the output of T̂⊕:

4-round collision: 64
r1−→ 64

r2−→ 8
r3−→ 8

r4−→ 8, (3)

5-round collision: 64
r1−→ 64

r2−→ 8
r3−→ 1

r4−→ 8
r5−→ 8. (4)

The trails for T̂⊕ are similar to the trails used in Section 3 and Section 3.5,
though this time, just covering the inbound phase and the outbound phase com-
puted in forward direction. Hence, valid pairs can be created using the same
methods. For a given input difference, we can construct 264 or 28 pairs following
trail (3) or trail (4), respectively, with a complexity of 264 using the rebound
attack.

4-Round Collision Attack. As shown in Fig. 5, the idea of this attack is to
cancel the differences in 8 bytes in each iteration. The probability that 8 bytes
match is 2−64, and so 264 pairs following the truncated differential trail for a
given input difference have to be generated. The 4-round attack then works as
follows:

1. Choose arbitrary message blocks m1,m
∗
1 such that ĥ1 is fully active.

2. Use a right pair of message blocks m2,m
∗
2 for the trail of (3) to cancel 8

bytes of the difference in the state ĥ2 (see Fig. 5).
3.–9. Repeat step 2 for message blocks mi,m

∗
i , 3 ≤ i ≤ 9, with rotated variants

of the trail to cancel another 8 bytes each (see Fig. 5), so that we finally

get a full collision in ĥ9.

m1 T̂+(m1)

m2 T̂+(m2)

m3 T̂+(m3)

m4 T̂+(m4)

m5 T̂+(m5)

m6 T̂+(m6)

m7 T̂+(m7)

m8 T̂+(m8)

m9 T̂+(m9)

MB

AC
SB
RB
MB

AC
SB
RB
MB

AC
SB
RB
MB

AC
SB
RB

ĥ0 ĥ1

⊕ ⊕

MB

AC
SB
RB
MB

AC
SB
RB
MB

AC
SB
RB
MB

AC
SB
RB

ĥ1 ĥ2

⊕ ⊕

MB

AC
SB
RB
MB

AC
SB
RB
MB

AC
SB
RB
MB

AC
SB
RB

ĥ2 ĥ3

⊕ ⊕

MB

AC
SB
RB
MB

AC
SB
RB
MB

AC
SB
RB
MB

AC
SB
RB

ĥ3 ĥ4

⊕ ⊕

MB

AC
SB
RB
MB

AC
SB
RB
MB

AC
SB
RB
MB

AC
SB
RB

ĥ4 ĥ5

⊕ ⊕

MB

AC
SB
RB
MB

AC
SB
RB
MB

AC
SB
RB
MB

AC
SB
RB

ĥ5 ĥ6

⊕ ⊕

MB

AC
SB
RB
MB

AC
SB
RB
MB

AC
SB
RB
MB

AC
SB
RB

ĥ6 ĥ7

⊕ ⊕

MB

AC
SB
RB
MB

AC
SB
RB
MB

AC
SB
RB
MB

AC
SB
RB

ĥ7 ĥ8

⊕ ⊕

MB

AC
SB
RB
MB

AC
SB
RB
MB

AC
SB
RB
MB

AC
SB
RB

ĥ8 ĥ9

⊕ ⊕

Fig. 5. Hash collision for 4 rounds.

With the help of the rebound attack, the construction of a right pair for
one T̂⊕ has a complexity of 264. The differences have to be canceled iteratively
8 times starting from ĥ2 to ĥ9. Thus, the overall attack complexity for the
collision for 4-round Kupyna-256 is 8 times constructing one right pair, which is
8 · 264 = 267.

5-Round Collision Attack. To extend the attack to 5 rounds, we use the
truncated differential trail in (4). However, for this trail, we can construct only
28 pairs following the trail, and thus each step of the attack on 5 rounds succeeds
only with a probability of 2−56. Luckily, this can be compensated by using more
message blocks in each step of the attack, as already pointed out in [10]. To cancel
8 bytes of differences in one step, 256 additional blocks (new starting points) are
needed. This leads to an attack complexity of 8 · 264+56 = 2123 and a length
of 8 · 256 = 259 blocks for the colliding message. However, as discussed in [10],
the length of the colliding message pair can be significantly reduced again to 65
message blocks, by using a tree-based approach. Furthermore, the complexity of
the attack can be slightly reduced to 2120.

5 Conclusion

In this work, we evaluated the security of Kupyna-256 against rebound at-
tacks. Based on rebound attacks on Grøstl, we mounted collision attacks for
up to 5 rounds of the Kupyna-256 hash function and for up to 7 rounds of
the Kupyna-256 compression function. This was possible despite the presence
of modular constant additions in one of the permutations. These constant addi-
tions break the strong alignment of differential trails, leading to more confusion
in the propagation of differences. Nevertheless, we were able to adapt the in-
bound phase of the rebound attack to create a sufficient amount of valid pairs
to perform a collision attack. Surprisingly, our results show that the modular
constant addition in one permutation does not provide much additional security
against rebound attacks, it just complicates the analysis. In the case of Kupyna,
the unfortunate choice of round constants for modular addition further decreases
the effectivity of the additions. Combined with the lack of other countermeasures
(such as different rotation constants), this makes Kupyna an easier target for
rebound attacks than the otherwise similar Grøstl hash function. Moreover, the
weak alignment of differential trails introduced by the modular constant addition
makes it more complicated to bound the minimum number of active S-boxes and
might introduce new attack paths. This analysis shows that modular additions
inside the permutation are not an optimal choice to diversify similar building
blocks, and introduce new problems of their own.

Acknowledgments

The research leading to these results has received funding from the
European Union’s Horizon 2020 research and innovation programme
under grant agreement No 644052 (HECTOR).

Furthermore, this work has been supported in part by the Austrian Science Fund
(project P26494-N15).

A Observation on the Branch Number

Kupyna was clearly designed with the wide-trail strategy in mind. It features the
classic AES-like construction with the linear MixBytes function that multiplies
each column of the state with an MDS matrix. This function has a differential
branch number of 9, meaning that any input column with a > 0 active bytes
is mapped to an output with at least 9 − a active bytes. Though the Kupyna
specification features no proofs, this property is usually used to derive bounds
on the minimum number of active S-boxes for the primitive.

The other linear functions of each round – in particular the constant and/or
subkey xor-addition – do not change this property in AES-like designs. With
the modular addition of Kupyna, however, this is no longer true. In particular,
this modular addition can lead to carry propagation across byte borders, which
also allows propagation of differences across byte borders. This means that the
number of active S-boxes over 2 rounds is no longer lower-bounded by 9.

Consider the following example, illustrated in Fig. 6. We investigate the num-
ber of active S-boxes over 2 rounds of T+. For simplicity, we only state the value
pair (x1, x2) for the first column of state SRB

1 through SAC
2 ; all other columns have

zero difference (and RotateBytes does not change the number of active S-boxes).

Using the MixBytes matrix M ∈ F8×8
256 and AddConstant constant ζ

(0)
0 ∈ Z264 ,

M =

01 01 05 01 08 06 07 04

04 01 01 05 01 08 06 07

07 04 01 01 05 01 08 06

06 07 04 01 01 05 01 08

08 06 07 04 01 01 05 01

01 08 06 07 04 01 01 05

05 01 08 06 07 04 01 01

01 05 01 08 06 07 04 01

, ζ

(1)
0 =

F3

F0

F0

F0

F0

F0

F0

70

,

we get

x1: (00 00 00 00 00 00 00 00)>
MB7−−→(00 00 00 00 00 00 00 00)>

AC7−−→(F3 F0 F0 F0 F0 F0 F0 70)>,

x2: (00 00 00 00 00 00 00 FF)>
MB7−−→(DB C7 38 AB FF 24 FF FF)>

AC7−−→(CE B8 29 9C F0 15 F0 70)>,

∆: (00 00 00 00 00 00 00 FF)>
MB7−−→(DB C7 38 AB FF 24 FF FF)>

AC7−−→(3D 48 D9 6C 00 E5 00 00)>.

SB

SSB
1

RB

SRB
1

MB

S1
AC

SAC
2

SB

Fig. 6. Example with 6 instead of 9 active S-boxes over 2 rounds of T+.

References

1. Daemen, J., Rijmen, V.: The wide trail design strategy. In: Honary, B. (ed.) Cryp-
tography and Coding – IMA 2001. LNCS, vol. 2260, pp. 222–238. Springer (2001)

2. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl – a SHA-3 candidate. Submission to NIST
(January 2009), available online: http://www.groestl.info

3. Gilbert, H., Peyrin, T.: Super-Sbox cryptanalysis: Improved attacks for AES-like
permutations. In: Hong, S., Iwata, T. (eds.) Fast Software Encryption – FSE 2010.
LNCS, vol. 6147, pp. 365–383. Springer (2010)

4. Jean, J., Naya-Plasencia, M., Peyrin, T.: Improved rebound attack on the finalist
Grøstl. In: Canteaut, A. (ed.) Fast Software Encryption – FSE 2012. LNCS, vol.
7549, pp. 110–126. Springer (2012)

5. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound
distinguishers: Results on the full Whirlpool compression function. In: Matsui, M.
(ed.) Advances in Cryptology – ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143.
Springer (2009)

6. Lamberger, M., Mendel, F., Schläffer, M., Rechberger, C., Rijmen, V.: The rebound
attack and subspace distinguishers: Application to Whirlpool. J. Cryptology 28(2),
257–296 (2015)

7. Mendel, F., Pramstaller, N., Rechberger, C., Kontak, M., Szmidt, J.: Cryptanal-
ysis of the GOST hash function. In: Wagner, D. (ed.) Advances in Cryptology –
CRYPTO 2008. LNCS, vol. 5157, pp. 162–178. Springer (2008)

8. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound attack:
Cryptanalysis of reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) Fast Soft-
ware Encryption – FSE 2009. LNCS, vol. 5665, pp. 260–276. Springer (2009)

9. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: Rebound attacks on
the reduced Grøstl hash function. In: Pieprzyk, J. (ed.) Topics in Cryptology –
CT-RSA 2010. LNCS, vol. 5985, pp. 350–365. Springer (2010)

10. Mendel, F., Rijmen, V., Schläffer, M.: Collision attack on 5 rounds of Grøstl. In:
Cid, C., Rechberger, C. (eds.) Fast Software Encryption – FSE 2014. LNCS, vol.
8540, pp. 509–521. Springer (2014)

11. Oliynykov, R., Gorbenko, I., Kazymyrov, O., Ruzhentsev, V., Kuznetsov, O., Gor-
benko, Y., Boiko, A., Dyrda, O., Dolgov, V., Pushkaryov, A.: A new standard of
Ukraine: The Kupyna hash function. Cryptology ePrint Archive, Report 2015/885
(2015), http://eprint.iacr.org/2015/885

12. Wu, S., Feng, D., Wu, W., Guo, J., Dong, L., Zou, J.: (pseudo) preimage attack
on round-reduced Grøstl hash function and others. In: Canteaut, A. (ed.) Fast
Software Encryption – FSE 2012. LNCS, vol. 7549, pp. 127–145. Springer (2012)

13. Zou, J., Dong, L.: Cryptanalysis of the round-reduced Kupyna hash function. Cryp-
tology ePrint Archive, Report 2015/959 (2015), http://eprint.iacr.org/2015/
959

http://www.groestl.info
http://eprint.iacr.org/2015/885
http://eprint.iacr.org/2015/959
http://eprint.iacr.org/2015/959

	Analysis of the Kupyna-256 Hash Function

