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Abstract. We demonstrate a prototype implementation of a provably
secure protocol that supports privacy-preserving mutual authentication
between a server and a constrained device. Our proposed protocol is
based on a physically unclonable function (PUF) and it is optimized for
resource-constrained platforms. The reported results include a full pro-
tocol analysis, the design of its building blocks, their integration into
a constrained device, and finally its performance evaluation. We show
how to obtain efficient implementations for each of the building blocks
of the protocol, including a fuzzy extractor with a novel helper-data
construction technique, a truly random number generator (TRNG), and
a pseudo-random function (PRF). The prototype is implemented on a
SASEBO-GII board, using the on-board SRAM as the source of entropy
for the PUF and the TRNG. We present three different implementations.
The first two execute on a MSP430 soft-core processor and have a secu-
rity level of 64-bit and 128-bit respectively. The third uses a hardware
accelerator and has 128-bit security level. To our best knowledge, this
work is the first effort to describe the end-to-end design and evaluation
of a privacy-preserving PUF-based authentication protocol.

Keywords: Physically Unclonable Function, authentication, privacy-preserving
protocol, implementation

1 Introduction

Physically Unclonable Functions (PUFs) have been touted as an emerging tech-
nology to support authentication of a physical platform. However, the design of
PUF-based authentication protocols is complicated, and many pitfalls have been
identified with existing protocols [10]. First, many protocols are ad-hoc designs.
In the absence of a formal adversary model, one can only hope that no security

? The preliminary version of this paper was presented in CHES 2015 [2].
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holes are left. Second, while theoretical security models may provide assurance
on the achieved level of security, these models typically lack a consideration of
implementation issues. The cryptographic engineering of a PUF-based authen-
tication protocol requires more than a formal proof. Finally, typical PUF-based
protocol designs assume ideal PUF behaviors. They make abstraction of complex
noise effects that come with real PUF. The actual performance of these protocol
designs, and often also their implementation cost, remains unknown.

We believe that these issues can be systematically addressed, by combining a
theoretical basis with sound cryptographic engineering [6]. In this paper, we aim
to demonstrate this for a PUF-based privacy-friendly authentication protocol.

There are many PUF-based protocols that claim privacy [7, 25, 37, 21, 23].
We observed that most of these earlier proposals do not have a formal proof
of security and privacy. In our opinion, a formal basis is required to clarify
the assumptions of the protocol. For example, a recent analysis by Delvaux
et al. [10] showed that only one [37] of these privacy-claiming PUF protocols
actually provides privacy. Furthermore, none of the earlier proposed PUF-based
protocols disclosed an implementation and a performance evaluation. This is
required, as well, because the security and privacy properties of a PUF-based
protocol are directly derived from the PUF design. These two reasons are the
direct motivation for our protocol design, and its evaluation.

A PUF, a central element of our design, returns noisy data and uses a fuzzy
extractor (FE) to ensure a reliable operation. The fuzzy extractor associates
helper data with every PUF output to enable reconstruction of later noisy PUF
outputs. However, the generation of helper data (Gen) and the reconstruction
of a PUF output (Rec) are algorithms with asymmetric complexity: helper data
generation has lower complexity than PUF output reconstruction. Realizing this
property, van Herrewege et al. proposed reverse fuzzy extractors, which place the
helper data generation within the constrained device [38]. However, the original
reverse fuzzy-extractor protocol does not offer privacy. To achieve this objective,
we rely on a protocol design by Moriyama et al. [30]. Assuming that a PUF
is tamper-proof, their design leaves no traceable information within the device.
This is achieved by using a different PUF output at every authentication, and
thus by changing the device credential after every authentication.

Our proposed protocol starts from this design, and adapts it for a reverse
fuzzy-extractor implementation. We maintain the formal basis of the protocol,
but we also provide a detailed implementation and evaluation.

We note that there are contextual elements to privacy that are not addressed
by our protocol. For example, we cannot offer privacy against an adversary
who can physically trace every device in between authentications, or who can
use other (non-cryptographic) mechanisms to identify a device [26]. These are
context-dependent elements which have to be addressed by the application.

Compared to earlier work, we claim the following innovative features:

Novel Protocol. Our protocol merges privacy with a reverse fuzzy-extraction
design, and is therefore suited for implementation on constrained platforms that
also need privacy. Our protocol supports mutual (device-first) authentication.
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End-to-end Design. We demonstrate a complete design trajectory, from prov-
ably secure protocol specification towards performance evaluation. We are not
aware of any comparable efforts for other protocols. While other authors have
suggested possible designs [29, 27, 38], the actual implementation of such a pro-
tocol has, to our knowledge, not yet been demonstrated.
Interleaved Error Correction. We present a novel technique for efficient
helper data generation using an interleaved BCH code, as well as its security
analysis. Our decoding strategy is computationally simple, and enables the use
of a single BCH(63,16,23) primitive while still achieving 10−6 overall error rate.

The end-to-end design of a PUF-based protocol covers protocol design, pro-
tocol component instantiation, architecture design, and finally evaluation of cost
and performance. We build our prototype on top of a SASEBO-GII board, us-
ing the resources available on the board to construct the PUF and the protocol
engine. We use the 2Mbit SRAM on the SASEBO-GII board as the source of
entropy. We construct the following protocol components: an SRAM PUF, an
SRAM TRNG, a pseudorandom function (PRF) design using the SIMON block
cipher, and a fuzzy extractor based on an interleaved BCH error corrector and
a PRF based strong extractor. We provide a design specification at two security
levels, 64-bit and 128-bit.

Next, we implement these protocol components using an MSP430 processor
(mapped as a soft-core on the SASEBO-GII board), an SRAM and a non-volatile
memory. We also design a hardware accelerator to handle all cryptographic steps
of the protocol, including the PRF, message encryption, and PUF output coding.
Then, we implement the server-functionality on a PC connected to the SASEBO-
GII board, and characterize the performance of the implementation under an
actual protocol execution.

The remainder of this paper is organized as follows. Section 2 introduces the
privacy preserving authentication protocol, describing its security assumption
and important features. Section 3 describes the design of the protocol compo-
nents: the SRAM PUF, the SRAM TRNG, the PRF, and the fuzzy extractor.
Section 4 discusses the prototype implementation of the protocol, covering the
system-level (server and device), the device platform, and the accelerator hard-
ware engine. Section 5 presents the results, including implementation complexity
and cost. We conclude the paper in Section 6.

2 Secure and Private PUF-based Authentication Protocol

In this section, we describe the protocol notation, the assumed trust model,
and the flow of the overall PUF protocol. We describe its main features in this
section and security analysis of this protocol including security proof is found in
Appendix A.

2.1 Notation

When A is a set, y
U← A means that y is uniformly selected from A. When A is a

deterministic algorithm, y := A(x) denotes that an output from A(x) with input
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x is assigned to y. When A is a probabilistic machine or an algorithm, y
R← A(x)

denotes that y is randomly selected from A according to its distribution. HD(x, y)
denotes the Hamming distance between x and y. H̄∞(x) denotes the min-entropy
of x. In addition, we use the following notations for cryptographic functions
throughout the paper.

(Truly Random Number Generator) TRNG derives a truly random num-
ber sequence.

(Physically Unclonable Functions) f : K×D → R which takes as input a
physical characteristic x ∈ K and message y ∈ D and outputs z ∈ R.

(Symmetric Key Encryption) SKE := (SKE.Enc,SKE.Dec) denotes the
symmetric key encryption. SKE.Enc takes as input secret key sk and plain-
text m and outputs ciphertext c. SKE.Dec decrypts the ciphertext c using
the same secret key sk to generate plaintext m.

(Pseudorandom Function) PRF,PRF′ : K′ × D′ → R′ takes as input se-
cret key sk ∈ K′ and message m ∈ D′ and provides an output which is
indistinguishable from random.

(Fuzzy Extractor) FE := (FE.Gen,FE.Rec) denotes a fuzzy extractor. The
FE.Gen algorithm takes as input a variable z and outputs randomness r and
helper data hd. The FE.Rec algorithm recovers r with input variable z′ and
hd if HD(z, z′) is sufficiently small. If HD(z, z′) ≤ d and H̄∞(z) ≥ h, the
(d, h)-fuzzy extractor provides r which is statistically close to random in
{0, 1}|r| even if hd is exposed. The fuzzy extractor is usually constructed by
combining an error-correction mechanism and a strong extractor.

2.2 Parties and Trust Model

We make assumptions comparable to earlier work in Authentication Protocols
for constrained devices [30, 37, 38]. A trusted server and a set of num deployed
devices will authenticate each other where devices require anonymous authen-
tication. Before deployment, the devices are enrolled in a secure environment,
using a one-time interface. After deployment, the server remains trusted, but
the devices are subject to the actions of a malicious adversary (which is defined
further).

Within this hostile environment, the server and the devices will authenticate
each other such that the privacy of the devices is preserved against the adversary.
The malicious adversary cannot determine the identity of the devices with a
probability better than the security bound, and the adversary cannot trace the
devices between different authentications.

The malicious adversary can control all communication between the server
and (multiple) devices. Moreover, the adversary can obtain the authentication
result from both parties and any data stored in the non-volatile memory of the
devices. However, the adversary cannot mount implementation attacks against
the devices, cannot reverse-engineer the PUF, nor can the adversary obtain any
intermediate variables stored in registers or on-device RAM. We do not discount
such attacks. For example, PUFs have been broken based on invasive analysis
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[31], side-channel analysis [11, 35, 32] and fault injection [12]. However, these
attacks do not invalidate the protocol itself, and these attacks can be addressed
with countermeasures at the level of the device.

2.3 Secure and Privacy-preserving Authentication Protocol

We propose a new authentication protocol by combining the privacy-preserving
authentication protocol of Moriyama et al. [30] with the reverse fuzzy extractor
mechanism of van Herrewege et al. [38].

The reverse fuzzy extractor works as follows [38]. The verifier sends a chal-
lenge c to a PUF-enabled device. The device applies the challenge as input to a
PUF, and obtains a noisy output z′. The device then computes helper data hd
for this noisy output, and returns the helper data hd and a hash of the output
z′ to the verifier. The verifier, who has previously enrolled the device, knows at
least one output z corresponding to the same challenge. The verifier can thus
reconstruct z′ using the helper data hd and the previous output z. While this
protocol moves the computationally expensive reconstruction phase to the veri-
fier, the protocol does not maintain privacy. The device discloses its identity in
order to allow the verifier to find a previous PUF output z.

Moriyama et al. proposed a PUF-based protocol that provides provably se-
cure and private authentication [30]. Different from the existing PUF-based pro-
tocols, their protocol has a key updating mechanism that changes the shared
secret key between the server and the device after each authentication. Fur-
thermore, the secret key is derived from the PUF output. The Moriyama et al.
protocol however places the PUF output reconstruction in the device.

The proposed protocol combines these two ideas into a merged protocol, illus-
trated in Fig. 1. We claim the same formal properties for the proposed protocol
as for [30]. It works as follows. Each device is represented as a combination of
a secret key sk and a PUF challenge y1. During secure initialization, the server
initializes the secret key sk1 in the device, and extracts the first PUF response z1
from the device. The server keeps two copies of this information for each device
in the database to support resynchronization. An authentication round proceeds
as follows. First, the server sends a nonce to the device. The device extracts a
first PUF output to construct an authentication field c and a key r1. The de-
vice then extracts a second PUF output z′2, which will be used during the next
authentication round. The device encrypts this output (into u1) and computes
a MAC over it (into v1 via PRF). The server will now try to authenticate the
device. Initially, the server reconstructs the key r1 using the reverse fuzzy ex-
traction scheme. The server then performs an exhaustive search over the entire
database in order to find a valid index. In case no match is found, the server will
perform the same exhaustive search over the set of previous PUF outputs. If any
match is found, the server will update its database to the next PUF output, and
acknowledge the device. However, if both searches fail, the server will reply a
random value. In the final step, the device verifies completion of authentication
and updates its key tuple stored in non-volatile memory in case of acceptance.

The key features of the protocol can be summarized as follows.
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Setup Phase
Server Device (f(xi, ·))
(sk, y1)

R← TRNG
sk, y1-

z1
R← f(xi, y1)z1�

Authentication Phase
Server {(z1, sk, zold, skold)}i Device (f(xi, ·), sk, y1)

y′1
R← TRNG y′1 - z′1

R← f(xi, y1)

(r1, hd)
R← FE.Gen(z′1)

c := SKE.Enc(sk, hd)

y′2
R← TRNG

(t1, . . . , t5) := PRF(r1, y
′
1‖y′2)

y2
R← TRNG

z′2
R← f(xi, y2)

u1 := z′2 ⊕ t2
v1 := PRF′(t3, c‖u1)c, y′2, t1, u1, v1�hd := SKE.Dec(sk, c)

r1 := FE.Rec(z1, hd)

(t′1, . . . , t
′
5) := PRF(r1, y

′
1‖y′2)

If t′1 = t1 in 1 ≤ i ≤ num,

If v1 = PRF′(t′3, c‖u1),

z′2 := u1 ⊕ t′2
Update (z1, sk, zold, skold) to

(z′2, t5, z1, sk)

Else, hd1 := SKE,Dec(skold, c)

r1 := FE.Rec(zold, hd1)

(t′1, . . . , t
′
5) := G(r1, y

′
1‖y′2)

...
Else, t′4

R← TRNG t′4 - If t′4 = t4,

(y1, sk) := (y2, t5)

Fig. 1. The proposed PUF-based authentication protocol

Key Derivation via PUF with reverse FE. In the setup phase, the server
stores the PUF output z1 in the database. For each authentication, the

device reads the PUF output z′1
R← f(xi, y1) with physical characteristic

xi and generates helper data as (r1, hd)
R← FE.Gen(z′1). The helper data is

encrypted and sent to the server as c := SKE.Enc(sk, hd). The server decrypts
it and executes verification with the shared secret r1 := FE.Rec(z1, hd).

Mutual Authentication and Authenticated Message Transmission. Af-
ter deriving the shared secret r1, the device and the server generate a random
sequence (t1, . . . , t5). t1 and t4 are exchanged between the server and the de-
vice, and are used to implement mutual authentication. t2 is used for XORed
encryption of the PUF output, and t3 is used as a secret key to generate va-
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lidity check value v1. v1 serves as a MAC and prevents any modifications to
the message (c, u1) since the server checks v1 = PRF′(t′3, c‖u1).

Key Update Mechanism. During the authentication, the device reads the
PUF output twice, for different challenges. The second PUF output will
be used to update the database if the authentication is successful. Upon
verification of the device, the server updates the database with (z′2, t5). The
last secret key (zold, skold) is still kept in the database and used for provision
against the desynchronization attack. Even if t′4 is erased by an adversary,
the reader can still trace and check the tag in the next protocol invocation.

Exhaustive Search. The device does not contain a fixed unique number
of identity. Instead, the server launches an exhaustive search within the
database to find an index i ∈ {1, . . . , num} which corresponds to the de-
vice. This authenticate-before-identify strategy [10] is a widely-known tech-
nique especially for anonymous lightweight authentication protocols (e.g.,
RFID authentication in [22]) to offer privacy. The search should execute in
constant-time to avoid the abuse of a timing side-channel in a realistic usage.
This is not hard to achieve but requires careful implementation of the server.

We have now identified the following protocol building blocks and demon-
strate how to implement them in the next section.

– Physically unclonable function (e.g., z′1
R← f(xi, y1))

– Random number generator (e.g., y′2
R← TRNG)

– Symmetric key encryption (e.g., c := SKE.Enc(sk, hd))

– Pseudorandom function (e.g., (t1, . . . , t5) := G(r1, y
′
1‖y′2))

– Fuzzy extractor (e.g., (r1, hd)
R← FE.Gen(z′1))

3 Instantiation of Protocol Components

The protocol in the previous section assumes a generic security level. In this
section, we discuss the instantiation of the main protocol components, assuming
a security level of 128 bits. Our evaluation (Section 5) will show results for 64-bit
as well as for 128-bit security.

3.1 Architecture Assumptions

Our prototype is implemented on a SASEBO-GII board. Besides the FPGA com-
ponents, we make use of the on-board 2Mbit static RAM (ISSI IS61LP6432A)
and a 16Mbit Flash (ATMEL AT45DB161D). The SRAM is organized as a 64K
memory with a 32-bit output. The Flash memory has an SPI (serial) interface.
These component specifications are neither a requirement nor a limitation of
our proposed design. Rather, we consider them pragmatic choices based on the
available prototyping hardware.
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3.2 Design of SRAM PUF

The source of entropy in the design is an SRAM. We choose the SRAM for
this role as the SRAM PUF is considered to be one of the most cost-efficient
designs among recently proposed PUFs [27, Chapter 4]. It also offers reasonable
noise levels. We are not aware of modeling attacks against SRAM PUF [34], and
the known physical attacks against it are rather expensive [31, 17]. Furthermore,
while we acknowledge the diversity of possible PUF designs for FPGA’s [15, 1, 20,
24], the use of an SRAM PUF with simple power-cycling will yield a prototype
that is less platform-specific. Our first step is to analyze the min-entropy, and
the distribution of the startup values of the SRAM.

Min-entropy of SRAM. The min-entropy of the SRAM determines how many
bytes of SRAM will be needed to construct one PUF output byte. We estimate
the min-entropy of the SRAM empirically as follows. We collected the startup
values of 90 SRAMs, collected from 90 different SASEBO-GII boards, each mea-
sured over 11 power cycles (990 x 2Mbit).

We then analyzed the Shannon Entropy as well as the min-entropy. Given a
source of n symbols with probabilities bi, the efficiency of the source as measured
in Shannon Entropy is computed as

∑n
i=0−bi log(bi)/n × 100. At the bit-level,

we found an efficiency of 34 to 46%, depending on the board. This means that
a bit on the average only holds between 0.34 and 0.46 bit of information, and
indicates significant bias. We confirmed that there was bias according to the
even and odd positions of the SRAM bytes.

We designed our PUF using the min-entropy, which is a worst-case metric.
In this case, the min-entropy rate is computed as n × min{−bi log(bi)}i × 100.
When we analyzed the SRAM data at the byte level, we found a min-entropy
of 5 to 15%, which appeared to be caused by the abundance of the byte 0xaa

at many SRAM locations. We did not investigate the cause of this bias, but we
found that its effect can be considerably reduced by XORing adjacent bytes,
and operation we will call 2-XOR. In this case the worst-case min-entropy rate
becomes 26%4. We designed our PUF based on this value. In other words, we will
use about 8 bytes of SRAM data to obtain one byte of entropy. The min-entropy
estimate accounts for correlation between bits in a byte, which is more accurate
than previous publications that used bit-level min-entropy estimates (e.g., 76%
min-entropy rate in [8]).

Distribution of SRAM Data. A second important factor is the expected
noise level for each SRAM, and the expected average Hamming distance between
different SRAMs. We analyzed our data set over the different measurements per

4 We select the maximum likelihood value within 0x00-0xFF in 2Mbit data and com-
pute the min-entropy for each of the 990 datasets. Though the min-entropy rate we
selected here, 26%, is the lowest value in 990 datasets, our statistical tests showed
that 95% of the datasets provide a min-entropy rate of 80% and a Shannon entropy
rate of 98%.
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Fig. 2. (left) Design of the SRAM-PUF (right) Design of the SRAM-TRNG

SRAM. After applying the 2-XOR operation on the data, we found an average
Hamming distance between same SRAM outputs of about 6.6 bit per word of
64 bit, which translates to a noise level of 10%. When the SRAM outputs from
different boards are compared, we found an average Hamming distance of 31.9
bit between words at the same address.

3.3 Design of SRAM TRNG

During authentication, the device requires a source of randomness. We reuse
the SRAM as a random number generator, in order to minimize the device
implementation cost. To obtain a noisy SRAM output, we XORed SRAM bytes
multiple times. For each level of XORing, the noise level of the data is increased.
We found that, after 8-fold XORing, the SRAM data passes all experiments in
the NIST statistical Test Suite [36]. Hence, to generate a 128-bit random string
from the device, we use 1024 bits of raw SRAM data. We can generate as much
truly random data as there are available SRAM locations. One iteration of our
protocol requires 652 random bits (see Table 1), which are extracted out of 5,216-
bit of SRAM data. Of course, the SRAM needs to be power-cycled after each
iteration of the protocol.

Practical RAM organization. Figure 2 shows how the SRAM is used as a
PUF and as a TRNG. In order to avoid direct correlation between PUF and
TRNG data, we maintain separate address spaces for the PUF and the TRNG.
In the prototype implementation, we allocate the first 256 SRAM words (of 32
bit each) for TRNG, while the remaining 65,280 words are used for the PUF.
This means that the SRAM holds sufficient space for 2,040 PUF outputs (2,040
authentications). The input challenge to the PUF is therefore a 12-bit value y,
which is transformed into a base address for a block of 32 addresses by multi-
plying it with 32 and adding 0x100.

3.4 Symmetric Key Encryption and PRF

Our protocol requires a PRF and a symmetric-key encryption. We designed a
PRF starting from the SIMON block cipher. It has the convenience that both
64-bit and 128-bit key size configurations are supported, and that very efficient
implementations of it are known [4]. We select 128-bit block size for 128-bit
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Fig. 3. PRF based on a block cipher in CBC mode. The variable-length message
x0, .., xn is expanded using a secret r1 into a message of length |y|

security. Using SIMON is neither a limitation nor a requirement of the prototype
and it can be replaced with a secure symmetric-key cipher algorithm (e.g., AES)
which supports the required security level.

Figure 3 shows how a PRF can be created using a block cipher in CBC
mode. We assume SIMON does not provide any bias and the ciphertext is in-
distinguishable from random. An input message x := (x0, . . . , xn) is encrypted
with secret key r1, then expanded into the output sequence y := (y0, y1, . . .)
by encrypting a counter value. The insertion of the output length parameter
|y| ensures that, even when the input and secret is identical, the PRF produces
independent output sequences when the specified output size is different.

3.5 Design of Fuzzy Extractor

In this section, we describe the design of the fuzzy extractor, including the error
correction and the strong extractor.

Error Correction. Various techniques for error correction have been proposed
in recent years, with mechanisms based on code-offset [13], index-based syndrome
coding [39], and pattern matching [33]. We adopt the following code-offset mech-
anism using a BCH(n1, k1, d1) code [13]. The code allows to correct errors up to
b(d1− 1)/2c-bit within a n1-bit block. Two procedures, BCH.Gen and BCH.Dec,
represent encoding and decoding respectively:

Encode(a): δ
R←TRNG ∈ {0, 1}k1 , cw := BCH.Gen(δ) ∈ {0, 1}n1 , hd := a⊕ cw

Decode(a′, hd): cw′ := a′ ⊕ hd, cw := BCH.Dec(cw′), a := cw ⊕ hd
The PUF output a is XORed with a random codeword cw to construct hd.

While hd is not secret, the PUF output a must remain secret. We consider the
complexity of finding a. For a single block, this complexity is 2k1 . For a PUF
output z1 mapped into multiple n1-bit blocks, the complexity is 2k1·|z1|/n1 . It
should be higher than the selected security level of 128 bit.

We use 504 bits of a 512-bit PUF output in 8 blocks of a BCH(63, 16, 23)
code, which gives us the desired security level. The BCH(63, 16, 23) code corrects
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Fig. 4. Helper data construction. A 252-bit field is split into 4 63-bit blocks and encoded
as hdL. Next, each block is left-rotated over 0, 16, 32 and 48 bits respectively. Finally,
4 63-bit columns are encoded to produce hdR. A 504-bit field (needed for the 128-bit
security level) is encoded by applying this construction twice.

up to 17.5% noisy bits, which appears to be above the observed SRAM noise
level of 10.0%. However, this is too optimistic. If we assume that a single bit flips
with a probability of 10.0%, then there is a 2.36% probability that 12 bits or
more will flip in a 63-bit block, and thus produce a non-correctable error. This
translates to a probability of only (1− 0.0236)8 × 100 ≈ 82.6% that 8 blocks of
a 504-bit PUF output can be fully corrected. Therefore, we need a better error
correction mechanism.

We apply an interleaved coding technique as illustrated in Figure 4. A 252-bit
data field is organized as a matrix with fields of {16, 16, 16, 15} bits per row. The
encoding of each 63-bit row yields helper data hdL. Next, each row of the matrix
is rotated over a multiple of 16-bits, such that 63-bit columns are obtained.
The encoding of the columns now yields helper data hdR. The overall helper
data is hdL||hdR. To encode a 504-bit field, we apply this construction twice.
Compared an earlier interleaved-coding design by Gassend [14], our technique
accommodates odd-sized rows and columns.

Error decoding is performed adaptively. We first correct the rows, then decode
remaining faulty bits over the columns. Figure 5 plots the probability of a faulty
output after the error decoding as a function of the error probability of the PUF
output. The residual error rate is 1 − 1.92 × 10−6, which is comparable to the
acceptable error rate for standard performance levels in [27]. Several authors
have proposed techniques to improve the reliability of SRAM PUF with respect
to environmental conditions and aging [9, 28]. These techniques, when applied
to our design, may allow to reduce the complexity of the error correction code.

Security Analysis. The computational complexity to find 252-bit PUF data from
the helper data is 264. The helper data over the rows hdL and columns hdR are
generated using independent random code-words cwL and cwR, respectively.
The BCH encoding function expands the randomness of a 16-bit seed into a
63-bit codeword. The method ensures that XOR combinations of hdL and hdR
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Fig. 5. Probability for a faulty PUF output using the proposed interleaved coding
technique.

do not explicitly leak PUF data, and it employs the working heuristic that
these combinations are ’random enough’. We experimentally verified that the
216 possible BCH code words, parsed into {16, 16, 16, 15}-bit fields, show no
collisions within a field. Thus 216 us the security level per code word5. The
entire matrix is covered by four independent code words over the rows, and four
independent code words over the columns. An attack of 264 complexity, is to
guess four code words and then use the helper data to estimate the PUF output.
Since every element of the matrix holds different PUF output bits, the adversary
must find at least the code words over all the rows, or the code words over the all
columns. That is a lower bound for this attack strategy, because four codewords
over a combination of rows and columns cannot cover the complete matrix, and
therefore cannot recover all PUF output bits. As noted above, the dependency
hdL ⊕ cwL = hdR ⊕ cwR, cannot reduce the complexity of the search below 264,
since every single code word has security level 216, and since the smallest number
of code-words required to recover the PUF output data is four6.

Strong Extractor. The role of strong extractor is to reduce the non-uniform
data (PUF output data) to the required entropy level. We assume the proposed
PRF works as a strong extractor. As discussed earlier, the PRF still uses a

5 One may think that the helper data from a (63, 16, 23)-BCH code decreases the
min-entropy by 63−16 = 47-bit. This means that the PUF’s data must always have
full-entropy (i.e., min-entropy rate is 1) from the view point of information theory.
Instead, we evaluate the computational complexity that the adversary can really
guess the PUF’s original data by observing the helper data.

6 Recently, Becker suggested that this interleaved construction should be improved to
avoid linear equation analysis. Since each bit of the helper data is derived by the
code-offset construction, an adversary can obtain 504 equations whereas the number
of unknown variables are 252 + 8× 16 = 380 [5].
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secret key. The secret key sk′ is pre-shared and updated after every successful
authentication. The strong extractor is a probabilistic function, and requires a
random input rnd. Following H̊astad et al. [16], we select the size of rnd to be twice
the security level. For 128-bit security, |rnd| = 256 is sufficient to derive 128-bit
randomness with input 128-bit min-entropy data (i.e. 504-bit PUF’s output z′1).

3.6 Relevant Data Sizes and Key Lengths in Protocol

From the above analysis and instantiation, we summarize the length for each
variable for 64-bit and 128-bit security in Table 1.

Table 1. Key Length and Data Sizes (in bits) for the proposed protocol

Category Purpose Variables 64-bit 128-bit
security security

Setup Phase Input address y1 12 12
PUF’s output z1 252 504
Stored key sk, sk′ 64 128

Authentication PUF’s output z′1, z
′
2 252 504

Phase Nonce y′1, y
′
2 64 128

Randonmess for FE δ, rnd 128 256
Secret key for PRF r1 64 128
Helper data hd (includes rnd) 632 1,264
Ciphertext c 640 1,280
PUF’s input y2 12 12
Mutual authentication t1, t4 64 128
XORed element t2 252 504
Secret key for PRF′ and MAC t3, s1 64 128
Updated stored key t5 128 256

Communication First message (from server) y′1 64 128
Second message (from device) (c, y′2, t1, u1, s1) 1,084 2,168
Third message (from server) t′4 64 128

Memory Persistent State (NVM) (sk, sk′, y1) 140 268
SRAM area for PUF 504 1,008
SRAM area for RNG 2,656 5,216

4 Architecture Design

In this section, we describe the architecture design of the implementation. We
introduce the overall design, discuss the detailed implementation of the crypto-
graphic accelerator, and finally discuss the prototype evaluation.

4.1 System Design

Figure 6 illustrates the system architecture with the device and the server. They
are emulated with a SASEBO-GII board and a PC respectively. The basis of the
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Fig. 6. System Architecture of the Device and Server

device is an MSP430 Microcontroller mapped as a soft-core into the Crypto
FPGA of the SASEBO-GII board. The design integrates an SRAM, a non-
volatile memory, a UART, and optionally a hardware accelerator. The MSP430
core has its own program memory and data memory; the SRAM is used solely
as a source of entropy. The power source to the device is controlled as part of
the testing environment.

The server manages a database with secret keys and PUF responses. For each
device authenticated through this server, the database stores two pairs of keys
and PUF responses, one for the current authentication (z1, sk), and one from
the previous authentication (zold, skold). The communication between the device
and the server is implemented through a serial connection.

The 16-bit MSP430 microcontroller is configured with 8KByte of data mem-
ory and 16KByte of program memory. We will discuss the detailed memory re-
quirements of the protocol in Section 5. We implement two different versions of
this design. In the first version, the protocol is mapped fully in C and executed
on the MSP430. In the second version, the major computational bottlenecks,
including Fuzzy Extractor Generation (FE.Gen), PRF computation (PRF and
PRF′) and Encryption (SKE.Enc) are executed in the hardware engine. In this
configuration, the MSP430 is used as a data multiplexer between the UART, the
SRAM, the non-volatile memory and the hardware engine.

Protocol Mapping and Execution. The protocol includes a single setup
phase, followed by one or more authentication phases. Before the execution of
each phase, we power-cycle the device to re-initialize the SRAM PUF. This gives
us a real SRAM PUF noise profile. Table 2 shows a detailed description of the
protocol authentication phase on the architecture of Figure 6. The operations are
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shown for the software-only implementation (Ver. 1) as well as for the hardware-
engine enabled implementation (Ver. 2). Table 2 demonstrates the principal data
flows in the architecture. For example, “SPIROM.Read→ MSP430.DM” means that
data is copied from the SPI-ROM to the MSP430 data memory.

Table 2. Principal Data Flows during Execution of the Authentication Protocol on
the Device. Dataflow notation A.a → B.b indicates that data from A (port/method a)
is forwarded to B (port/method b)

Seq Authentication Step MSP430 MSP430 + HW Engine
Fig. 6 Ver. 1 Fig. 6 Ver. 2

1 Receive y′1 UART.Receive → MSP430.DM UART.Receive → MSP430.DM

2 Read sk, sk′, y1 SPIROM.Read → MSP430.DM SPIROM.Read → MSP430.DM

3 z′1
R← f(xi, y1) SRAM.PUF → MSP430.DM SRAM.PUF → MSP430.DM

4 (r1, hd1)
R← FE.Gen(z′1)

MS430.run(PRF)

MS430.run(BCH.Enc)

5 m2
R← TRNG SRAM.TRNG → MSP430.DM SRAM.TRNG → MSP430.DM

y2
R← TRNG

6 (t1, . . . , t5) := PRF(r1, y
′
1‖y′2) MS430.run(PRF)

7 c := SKE.Enc(sk, hd1) MS430.run(Enc)

8 z′2
R← f(xi, y2) SRAM.PUF → MSP430.DM SRAM.PUF → MSP430.DM

9 u1 := z′2 ⊕ t2 MSP430.run(xor)

10 v1 := PRF′(t3, c‖u1) MS430.run(PRF)

11 HW Execution Step
MSP430.DM → HW.SharedMem

HW.run

HW.SharedMem → MS430.DM

12 Send c,m2, t1, u1, v1 MSP430.DM → UART.Send MSP430.DM → UART.Send

13 Receive t′4 UART.Receive → MSP430.DM UART.Receive → MSP430.DM

14 Write y2, t5 MSP430.DM → SPIROM.Write MSP430.DM→ SPIROM.Write

Hardware Engine Integration. The communication between the microcon-
troller and the hardware engine is implemented through a shared-memory. The
microcontroller initializes the input arguments for the hardware engine in the
shared memory, initiates the protocol computation, and waits until a completion
notification of the hardware engine. After completion, the result of the compu-
tation is available in the shared memory. Furthermore, a single execution on the
hardware engine takes multiple steps in the protocol: PRF computation, BCH
Encoding, and SIMON encryption. When the hardware engine is used, the argu-
ments are first collected in the MSP430 data memory, before they are copied to
the shared memory (Table 2 step 11). There is some overhead introduced because
of this particular design, but we will show that the resulting implementation still
significantly outperforms a software-only design.
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Fig. 7. Block Diagram of the Hardware Engine

4.2 Hardware Engine

The purpose of the hardware engine is to accelerate the PRF computation, BCH
encoding, and SIMON encryption. Indeed, our profiling results (discussed fur-
ther, Table 5) show that these operations constitute to 88% of the total execution
time. The protocol can be realized with a small and fixed microprogram so we
applied a micro-coded design methodology. Moreover, since it is efficient to use
a RAM to store the protocol variables, the very same memory can also store the
micro-coded instructions. Although this design is prototyped on FPGAs, it can
also target dedicated hardware. By changing the microprogram, we can extend
this architecture to other protocols as well.

Figure 7 shows the block diagram of the hardware engine. It uses the round-
serial version of SIMON 128/128 for the PRF and encryption operations, and an
LFSR-based implementation of the BCH encoding for the error correction part
of the FE.Gen. Therefore, it takes 68 clock cycles to encrypt one 128-bit block
and 16 clock cycles to encode one 16-bit block.

The shared memory between the MSP430 and the micro-coded hardware
engine is a single memory element which has a word size of 72-bits. The least
significant 64-bits of each word store the data, while the most significant 8-bits
store the micro-coded instruction. Since these instructions are fixed at design
time, this section of the memory is treated as a ROM. After the hardware engine
reads a word from the memory, it decodes the micro-coded instruction. Then
based on the decoded value, the controller selects which operation to run with
the associated data and updates the value of the program counter.

5 Evaluation

In this section, we first discuss the device implementation cost, and then evaluate
the system performance of our protocol. We implemented three different device
configurations, including the 64-bit and 128-bit security level of the software-
only implementation (Fig. 6 Ver. 1), as well as the 128-bit security level of the
hardware-engine enabled implementation (Fig. 6 Ver. 2).
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Table 3. MSP430 Memory Footprint. Data area includes Global and Local Variables
(stack, bss and data).

Category 64-bit 128-bit 128-bit Unit
MSP430 MSP430 HW engine

+
MSP430

Text

HW Abstraction 1,022 1,022 1,398 bytes
Communications 496 644 628 bytes
SIMON PRF 1,604 2,440 0 bytes
BCH Encoding 1,214 1,214 0 bytes
PUF + Fuzzy Extr 562 646 590 bytes
TRNG 396 456 396 bytes
Protocol 1,568 1,682 1,908 bytes

Overall Text 6,862 8,104 4,920 bytes

Data
Variables 424 656 656 bytes
Constants 197 197 73 bytes

Overall Data 621 853 729 bytes

Table 4. Hardware Utilization (Xilinx XC5VLX30-1FFG324 System Clock 1.846 MHz)

Module LUT Registers Block RAM

MSP430 Core 2084 684
MSP430 Program Mem 4
MSP430 Data Mem 2
SRAM Interface 54 30
SPI ROM Interface 45 30
UART 139 106

HW Engine 1221 441
HW Shared Mem 2

Overall 3543 1275 8

5.1 Implementation Cost

Table 3 shows the memory footprint required for each version, including the size
of the MSP430 object code, and the data-memory requirements. We used the
GNU gcc version 4.6.3 to compile C for the MSP430 at optimization level 2.
As our main objective was to demonstrate the implementation of the complete
protocol, we did not use low-level programming techniques. However, the data
indicates that the protocol already fits into a small microcontroller. When the
hardware engine is enabled, the tasks of the MSP430 reduce to interfacing the
SRAM, NVM and UART. We envisage that it is feasible to completely remove
the MSP430 microcontroller by having the hardware engine directly access these
peripherals.

Table 4 lists the hardware requirements for the baseline design, which is
shared among all versions of the protocol. The hardware engine is about half as
big as the MSP430 core.
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Table 5. Implementation Performance in System Clock Cycles.

Protocol Step Implementation 64-bit 128-bit 128-bit w.
Target HW Engine

Fig. 6 Ver. 1 Fig. 6 Ver. 1 Fig. 6 Ver. 2

Read sk, sk′, y1 Read ROM (SPI) 31,356 61,646 61,646

y′2
R← TRNG, y2

R← TRNG SRAM TRNG 11,552 23,341 22,981

z′1
R← f(xi, y1),z′2

R← f(xi, y2) SRAM PUF 4,384 9,082 8,741

(r1, hd)
R← FE.Gen(z′1)

BCH Encoder 268,820 485,094
Strong Extractor 28,691 205,080

(t1, . . . , t5) := PRF(r1, y
′
1‖y′2) PRF 44,355 299,724

c := SKE.Enc(sk, hd) Encryption 39,583 252,829
v1 := PRF′(t3, c‖u1) PRF’ 57,601 394,126

18,597

Overall 486,343 1,730,922 111,965

Write y2, t5 Write ROM (SPI) 76,290 128,829 128,849

5.2 Performance

Table 5 lists the performance of our design, measured in system clock cycles.
We implemented this design at a System Clock of 1.846 Mhz to reflect the
constrained platform for the device. The hardware engine can drastically reduce
the cycle count of the implementation. The cycle count shown for the hardware
engine includes the overhead of preparing data; the actual compute time is only
4,486 cycles.

5.3 Related Work

The comparison of this design to related works is not obvious because previous
publications did not implement an end-to-end demonstrator. Table 6 presents a
comparison of related realizations. We emphasize our design has many advan-
tages (such as flexibility, formal properties, full implementation) that cannot be
expressed as a single quantity.

5.4 Benchmark Analysis

We analyzed our protocol with respect to a recently published benchmark for
PUF based protocols [10]. Our protocol is implemented using a weak PUF. The
protocol requires n+ 1 challenge-response pairs for n authentications. The total
number of PUF responses depends on the anonymity needs of the application.

The protocol supports server authenticity, device authenticity, device privacy,
and leakage resilience. It can use d-enrollments for a perfect privacy use-case
and (∞)-enrollments without token anonymity. The system is noise-robust and
modelling-robust. Mutual authentication provides both server and user authen-
ticity. Moreover, since the protocol does not have an internal synchronization,
it is not susceptible to DoS attacks. Our protocol enables token privacy and the
security proof confirms leakage resilience.



End-to-end Design of a PUF-based Authentication Protocol 19

Table 6. Comparison with previous work

Reference PUFKY [27] Slender [29] Reverse-FE [38] This work

Operation Key generation Protocol Protocol Protocol

Privacy No No No Yes

Security flaws No Major [10] Minor [10] No

Implemented N/A Device Device Device,
Parties Server

Communication Yes: Bus No No Yes: Bus, UART
Interface

Flexibility Low Low Low High

Reconfiguration Redesign Redesign Redesign Modify Software,
Method Hardware Hardware Hardware Update Microcode

Demonstrator FPGA FPGA FPGA FPGA + PC

Security-level 128-bits 128-bits 128-bits 64,128-bits

Execution time 55,310 - - 18,597
(clock cycles)

Logic Cost 210 Slices 144 LUT, 658 LUT, 1221 LUT,
(w/o PUF) 274 Register 496 Register 441 Register

PUF-type Strong-PUF Strong-PUF - Weak-PUF

PUF-instance RO-PUF XOR-Arbiter - SRAM

Hardware Platform XC6SLX45 XC5VLX110T XC5VLX50 XC5VLX30

6 Conclusion

We demonstrated the challenging path from the world of protocol theory to
concrete software/hardware realization for the case of a privacy preserving au-
thentication protocol. We observe that bringing all components of a protocol
together in a single embodiment is a vital and important step to check its feasi-
bility. Furthermore, the formal basis of the protocol is crucial to prevent cutting
corners in the implementation.

Even though we claim this work is the first demonstration of a PUF-based
protocol with a formal basis, there is always room for improvement. First, the
current implementation can be optimized at the architectural level, for through-
put, area, or power [3]. Second, new components and algorithms, such as novel
PUF architectures [19] or novel coding techniques [18], may enable us to revisit
steps within the protocol itself.
Acknowledgements: The project was supported in part by the National Sci-
ence Foundation Grant 1314598 and 1115839. Part of the work of M. Yung was
done when visiting the Simons Institute for Theory of Computing, U.C. Berke-
ley. The authors thank the anonymous reviewers for their comments, discussions
with Mandel Yu and useful comments from Georg T. Becker.



20 Authors Suppressed Due to Excessive Length

References

1. Anderson, J.H.: A PUF design for secure FPGA-based embedded systems. In:
ASP-DAC 2010. pp. 1–6. IEEE (2010)

2. Aysu, A., Gulcan, E., Moriyama, D., Schaumont, P., Yung, M.: End-to-end design
of a PUF-based privacy preserving authentication protocol. In: Güneysu, T., Hand-
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A Security Analysis

A.1 Security Model for Anonymous Authentication Protocols

We follow the security model in [30] and describe the theoretical security and
privacy.

Communication Model. Consider that there is one trustworthy server S and
n devices. We denote a set of device by Dev := {Dev0, . . . ,Devn}. For initial-
ization, the server runs a setup algorithm Setup(1k) and generates public pa-
rameter pp and secret keys sk. In some cases, the server communicates with
devices in a secure environment and transfers the critical information to start
the authentication. When the authentication phase is started, these parties in-
teract in an insecure network and authenticate each other. Finally, the parties
output 1 (acceptance) or 0 (rejection) as the authentication result, respectively.
A communication sequence between them is called a session, and each session is
distinguished by session identifier sid which contains a series of communication
message. We say that a session has a matching session if the communication
messages generated by the server and the device are honestly transferred until
they authenticate each other.

Security. The well-known highest security level for authentication protocols
is the resilience to the man-in-the-middle attack. The authentiation results for
both parties becomes 1 if and only if the communication message is honestly
transferred. In addition to the canonical security requirement for the man-in-
the-middle attack, we allow the adversary can obtain the memory content in the
non-volatile memory before and after the session (authentication) in our model.

In a theoretical level, the security is evaluated by the following experiment
between a challenger and adversary A.

ExpSecΠ,A(k)

(pp, sk)
R← Setup(1k);

(Devi, sid
∗)

R← ALaunch,SendServer,SendDev,Result,Reveal
1 (pp,S,Dev);

b := Result(Devi, sid
∗);

Output b

After the setup phase, the adversary A can interact with the server and device
and obtain several information with the following oracle queries:
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– Launch(1k ): Launch the server to start a new session.
– SendServer(m): Send arbitrary message m to the server.
– SendDev(Devi,m): Send arbitrary message m to the device Devi ∈ Dev.
– Result(P, sid): Output whether the session sid of P is accepted or not where
P ∈ {S,Dev}.

– Reveal(Devi): Output whole information contained in the memory in Devi.

The advantage of adversary A against Π, AdvSecΠ,A(k), is defined by probability

that ExpSecΠ,A(k) outputs 1 on the condition that sid∗ of P has no matching session.

Definition 1. An authentication protocol Π holds the security against man-in-
the-middle attack with key compromise if for any probabilistic polynomial time
adversary A, AdvSecΠ,A(k) is negligible in k (for large enough k).

Privacy. The privacy definition described in [30] is based on the indistinguishability-
based privacy such that the adversary selects two devices and tries to distinguish
the communication derived from one of the two devices. The privacy experiment
between a challenger and adversary A := (A1,A2,A3) is the following:

ExpIND
∗-b

Π,A (k)

(pp, sk)
R← Setup(1k);

(Dev∗0,Dev
∗
1, st1)

R← ALaunch,SendServer,SendDev,Result,Reveal
1 (pp,S,Dev);

b
U← {0, 1},Dev′ := Dev \ {Dev∗0,Dev

∗
1};

π0
R← Execute(S,Dev∗0), π1

R← Execute(S,Dev∗1);

st2
R← ALaunch,SendServer,SendDev,Result,Reveal

2 (S,Dev′, I(Dev∗b), π0, π1, st1):

π′0
R← Execute(S,Dev∗0), π′1

R← Execute(S,Dev∗1);

b′
R← ALaunch,SendServer,SendDev,Result,Reveal

3 (S,Dev, π′0, π′1, st2);

After the setup phase, the adversary issues the oracle queries as the security
experiment and submits (Dev∗0,Dev

∗
1) to the challenger. The challenger flips a

bit b
U← {0, 1} and allows the adversary to interact with Dev∗b in an anonymous

way. This anonymous interaction is accomplished by adding a special identity
I who honestly transfers the communication message between A and Dev∗b . To
avoid a trivial attack in the symmetric key based construction, both Dev∗0 and
Dev∗1 execute a honest session with the server denoted by Execute before and
after the anonymous interaction and its transcripts are sent to the adversary.
The advantage of the adversary is defined as

AdvIND
∗

Π,A (k) := |Pr[ExpIND
∗-0

Π,A (k)→ 1]− Pr[ExpIND
∗-1

Π,A (k)→ 1]|.

Definition 2. An authentication protocol Π holds forward and backward pri-
vacy if for any probabilistic polynomial time (PPT) adversary A, AdvIND

∗

Π,A (k) is
negligible in k (for large enough k).
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A.2 Formal Security Definition for Building Blocks

Toward the provable security, we show the detailed security definition for each
building blocks used in our protocols.

Physically Unclonable Functions (PUFs). f : K × D → R is a physically
unclonable function which takes as input a physical chatacterics implemented

in the device x ∈ K and input message y ∈ D and outputs z
R← f(x, y). To

dinstinguish multiple devices, we denote PUF as f(x1, ·), f(x2, ·), . . .. We say
that the PUF is (n, `, d, h, ε)-secure PUF if the following conditions hold:

1. For any PUF f(x1, ·) and for any input y1 ∈ D,

Pr[HD(f(x1, y1), f(x1, y1)) < d] = 1− ε.

2. For any PUFs f(x1, ·), f(x2, ·) and for any input y1 ∈ D,

Pr[HD(f(x1, y1), f(x2, y1)) > d] = 1− ε.

3. For any PUF f(x1, ·) and for any inputs y1, y2 ∈ D,

Pr[HD(f(x1, y1), f(x1, y2)) > d] = 1− ε.

4. For any PUFs f(x1, ·), . . . , fxn,·) and for any inputs y1, . . . , t` ∈ D,

Pr[H̃∞(f(xi∗ , yj∗){f(xi, yj)}≤n,≤j≤`,i6=i∗,j 6=j∗ > h] = − ε.

These formulations provide that the intra-distance is smaller than d, inter dis-
tance (from two metrics) is larger than d and (conditional) min-entropy of the
PUF is always larger than h.

Definition 3. A PUF satisfies (n, `, d, h, ε)-secure PUF if all the above condi-
tions hold.

Fuzzy Extractor. A (d, h, ε)-fuzzy extractor FE consists of two algorithms: key
generation algorithm FE.Gen and reconstruction algorithm FE.Rec. The FE.Gen
algorithm takes as input a variable z and output a key r and helper data hd. For
correctness, FE.Rec recovers the key r from the input variable z and helper data
hd if the hamming distance between z and z′ is at most d. The fuzzy extractor
satisfies security if the min-entropy of input z is at least h, r is statistically ε-close
to a uniformly random variable in {0, 1}k, even if the helper data is disclosed.

Definition 4. A fuzzzy extractor satisfies (d, h, ε)-fuzzy extractor if the following
conditions hold:

1. Pr[r := FE.Rec(z′, hd) | (r, hd)
R← FE.Gen(z),HD(z, z′) ≤ d] = 1.

2. If H̃∞(z) ≥ h, (r, hd)
R← FE.Gen(z) is statistically ε-close from (r′, hd) where

r′
U← {0, 1}|r|.
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Pseudorandom Function (PRF). A pseudorandom function PRF : {0, 1}k×
{0, 1}∗ → {0, 1}k′ which takes as input a secret key sk ∈ {0, 1}k and input
m ∈ {0, 1}∗ and provides an arbitrary string PRF(sk,m) which is indistinguish-
able from random string. The security of the PRF is defined by the following
experiment between a challenger and adversary A. First, the challenger selects

coin b
U← {0, 1} and secret key sk

U← {0, 1}k. The challenger also prepares a truly
random function RF. The adversary A can adaptively issue a oracle query to the
challenger to obtain a response of a function. When A sends m, the challenger
responds PRF(sk,m) if b = 1. On the other hand, if b = 0, the challenger inputs
m to RF and responds its result. Finally, the adversary outputs a guess b′. If
b′ = b, the adversary wins the experiment. The advantage of the adversary to
win the experiment is defined by AdvPRFA (k) = |2 · Pr[b′ = b]− 1|.

Definition 5. A PRF is ε-secure PRF for any probabilistic polynomial time
adversary A, AdvPRFA (k) ≤ ε holds.

A.3 Security Proof for the Proposed Protocol

Theorem 1. Let PUF f be a (n, `, d, h, ε1)-secure PUF, FE be a (d, h, ε2)-fuzzy
extractor, PRF be a ε3-secure PRF. Then our protocol Π holds security against
man-in-the-middle attack with key compromise. Especially, we have AdvSecΠ,A ≤
`n(ε1 + ε2 + ε3).

Proof. The goal of the adversary A is to violate the security experiment and it
means that the server or the device accepts the session without maching session.
Let Si be the advantage that the adversary wins the game in Game i. We consider
the following game transformations.

Game 0. This is the original game between the challenger and the adversary.

Game 1. The challenger randomly guesses the device Dev∗
U← Dev. If Dev∗

does not participate in sid∗ , the challenger aborts the game.
Game 2. Assume that ` is the upper bound of the sessions that the adversary

can establish in the game. For 1 ≤ j ≤ `, we transform the variables related
to the the session between the server and Dev∗ up to the `-th session as the
following.
Game 2-j-1. The challenger evaluates the output from the PUF imple-

mented in Dev∗ at the j-th session. If the intra-distance is larger than d,
inter-distance is smaller than d or min-entropy of the output is smaller
than d, the challenger aborts the game.

Game 2-j-2. The output from the fuzzy extractor r1 is changed to a
random variable.

Game 2-j-3. The output from the PRF PRF(r1, ·) is derived from a truly
random function.

Game 2-j-4. The output from the PRF PRF(rold, ·) is derived from a truly
random function.

Game 2-j-5. We change the XORed output u1 := t2 ⊕ z′2 to randomly

chosen u1
U← {0, 1}|u1|.
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Game 2-j-6. The output from the PRF PRF′(t3, ·) is derived from a truly
random function.

Lemma 1. S0 = n · S1 (where n is the number of devices).

The violation of security means that there is a session which the server or device
accepts the session while the communication is modified by the adversary. Since
we assume that the number of device is at most n, the challenger can correctly
guess the related session with probability at least 1/n.

Lemma 2. |S1−S2-1-1| ≤ ε1 and |S2-(j−1)-6−S2-j-1| ≤ ε1 for any 2 ≤ j ≤ ` if
the PUF is (n, `, d, h, ε1)-secure PUF.

We now assume that the PUF satisfies (n, `, d, h, ε1)-secure PUF in advance.
This means the intra-distance is less than d, inter-distance is larger than d and
min-entropy of the PUF is always larger than h except the negligible probability
ε. Since S1 and S2-(j−1)-6 assume the condition except the negligible probability
ε and S2-1-1 and S2-j-1 requires the condition with probability 1, respectively,
the gap between them is bounded by ε1.

Lemma 3. ∀1 ≤ j ≤ `, |S2-j-1 − S2-j-2| ≤ ε2 if the FE is a (d, h, ε2)-fuzzy
extractor.

From the proof of Lemma 2, we can assume that the PUF provides enough min-
entropy h. Then the property of the (d, h)-fuzzy extractor guarantees that the
output for the fuzzy extractor is statistically close to random and no adversary
can distinguish the difference between the two games.

Lemma 4. ∀1 ≤ j ≤ `, |S2-j-2 − S2-j-3| ≤ AdvPRFB (k) for a PPT algorithm B.

Lemma 5. ∀1 ≤ j ≤ `, |S2-j-3 − S2-j-4| ≤ AdvPRFB (k) for a PPT algorithm B.

If there is a difference between these games, we construct the algorithm B which
breaks the security or PRF G. B can access the real PRF PRF(r1, ·) or truly
random function RF. B sets up all secret keys and simulates our protocol except

the n-th session. When the adversary invokes the n-th session, B sends y1
U←

{0, 1}k as the output of the server. When A sends y∗1 to a device Devi, B selects
y′2 and issues y∗1‖y′2 to the oracle instead of the normal computation of G. Upon
receiving (t1, . . . , t5), B continues the computation as the protocol specification
and outputs (c, y′2, t1, u1, v1) as the device’s response. When the adversary sends
(y∗2 , t

∗
1, u
∗
1, v
∗
1), B issues y1‖y∗2 to the oracle and obtains (t′1, . . . , t

′
5).

If B accesses the real PRF, this simulation is equivalent to Game 2-j-2. Oth-
erwise, the oracle query issued by B is completely random and this distribution
is equivalent to Game 2-j-3. Thus we have |S2-j-2 − S2-j-3| ≤ AdvPRFB (k).

Lemma 6. ∀1 ≤ j ≤ `, S2-j-4 = S2-j-5.

Since t2 is already changed to the random string, no adversary can find the
difference from u1 := t1 ⊕ z′2 from randomly chosen string.
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Lemma 7. ∀1 ≤ j ≤ `, |S2-j-5 − S2-j-6| ≤ 2 · AdvPRF
′

B (k) for a PPT algorithm
B.

Consider an algorithm B which interacts with PRF PRF′(t3, ·) or random func-
tion RF. B runs setup algorithm and simulates the protocol up to the n-th session.
After computing (c, u1) and issues c‖u1 to the oracle. B generates the other vari-
ables as the previous game and sends (c, y′2, t1, u1, v1) as the device’s output after
it obtains v1 from the oracle. If the server receives (c∗, y∗2 , t

∗
1, u
∗
1, v
∗
1), B checks

that (c∗, y∗2) = (c, y′2). If so, B issues c∗‖y∗1 to the oracle to check whether its
response is identical to v∗1 .

If B accesses the real PRF, this simulation is equivalent to Game 2-j-5. Oth-
erwise, B’s simulation is identical to Game 2-j-6. Thus the difference between
these games are bounded by the security of PRF G′. Similarly, we can evaluate
the gap between PRF′(t′3, ·) and RF.

Since the above game transformation is bounded by certain assumptions
(for PUF, fuzzy extractor and PRFs), we can transform Game 0 to Game 2-`-
6. When we consider Game 2-`-6, it is impossible for the adversary to violate
the security. Consider the case that the server accepts the session which is not
actually derived the device. Assume that the adversary obtains (c, y′2, t1, u1, v1)
from the device. To mount the man-in-the-middle attack, the adversary must
modify at least one of these variables. Even when the adversary issues the reveal
query and obtains (sk, y1) before the session, it only reveals hd1 decrypted by
c and it is hard for the adversary to estimate r1 from the property of the fuzzy
extractor. While the adversary can select arbitrary message hd′ and compute a
ciphertext c′ := SKE.Enc(sk, hd′) which is actually decrypted by the server, it is
hard for the adversary to generate valid v′1 = PRF′(t3, c

′‖u1) without t3 (due to
the pseudorandomness from PRF). Similarly, if the adversary changes y′2 or u1,
the pseudorandom function is already changed to the truly random function and
it is infeasible for the adversary to generate a valid (t1, v1) directly corresponding
to these variables. Therefore, no adversary cannot mount the man-in-the-middle
attack in our protocol. ut

Theorem 2. Let PUF f be a (n, `, d, h, ε1)-secure PUF, FE be a (d, h, ε2)-fuzzy
extractor and PRF be a ε3-secure PRF. Then our protocol holds forward and
backward privacy.

Proof. The proof we provide here is similar to that for Theorem 1. We first
assume that our protocol holds security. Otherwise, the adversary desynchro-
nizes the secret key between the server and gadget over the resynchronization
capability. Then the server continuously reject message came from the gadgets
and the adverary easily distinguishes the server interacts with the ligitimate
or desynchronized device. Since we already proved Theorem ??, this concern is
cleared.

The remained proof strategy is quite similar to the proof of Theorem 1. We
continuously change the communication message for the target devices Dev∗0
Dev∗1. Then the whole message transcripts looks like random strings and no
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biased information which identifies the challenger’s coin is leaked. Again, memory
content (sk, y1) does not provide any information about the target device since
it is generated by PRF or selected from random. The challenger can estimate
(Dev∗0,Dev

∗
1) with probability at least 1/n2 so the game transformation is finished

within a polynomial time. Therefore. we can say that the proposed protocol
satisfies the forward and backward privacy. ut


