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Abstract. An Authenticated Encryption scheme (AE) is deemed secure if ciphertexts both look like random
bitstrings and are unforgeable. One shortcoming of AE as commonly understood is its idealized, all-or-nothing
decryption: if decryption fails, it will always provide the same single error message and nothing more. Reality
often turns out differently: encode-then-encipher schemes often output decrypted ciphertext before verification
has taken place, whereas pad-then-MAC-then-encrypt schemes are prone to distinguishable verification failures
due to the subtle interaction between padding and the MAC-then-encrypt concept. Three recent papers provided
what appeared independent and radically different definitions to model this type of decryption leakage.
To reconcile these three works, and indeed the literature in general, we define an expressive “clean slate”
framework that allows us to compare and contrast the previous notions within a systematic naming scheme.
We then extend this by allowing for (deterministic) decryption leakage from invalid queries, providing a ref-
erence model of security we term Subtle Authenticated Encryption (SAE). Then, we thoroughly describe this
landscape by translating classical results (where applicable) and extending them to encompass our new notions.
Finally, with SAE as a reference point, we compare the three noted works. We find that, at their core, the
previous notions are essentially equivalent: their key differences stem from definitional choices independent of
the desire to capture real world behaviour.
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1 Introduction

Nowadays, Authenticated Encryption (AE) is understood to mean that ciphertexts both look like random
bitstrings (which we term IND–CPA, following recent literature [3, 31]) and are unforgeable (INT–
CTXT). Moreover, the customary syntax of AE considers encryption as deterministic and stateless,
instead accepting a nonce (number-used-once) and associated data to ensure that repeated encryption
of the same message does not lead to repeated ciphertexts. Security is expected to hold as long as each
nonce is used at most once for encryption, and preferably security degrades gracefully even when nonces
are repeated. AE, thus defined, is more flexible and considerably stronger than the traditional notion
of probabilistic, left-or-right indistinguishable symmetric encryption under chosen ciphertext attacks
(LOR–CCA, or IND–CCA2 in older literature [10]). Indeed, for length-regular schemes and with nonces
chosen uniformly from a sufficiently large domain, IND–CPA and INT–CTXT together imply textbook
LOR–CCA security.

The ongoing CAESAR competition [16] has served as a catalyst to strengthen the security models
used in AE even further. One particular shortcoming is the traditional reliance on an idealised, all-or-
nothing decryption: if decryption fails, it will only ever provide a single error message. For various
reasons, this is not a realistic assumption. Especially MAC-then-encrypt schemes (or rather, decrypt-
then-verify) are prone to real-world security flaws, on the one hand due to distinguishable verification
failures and on the other due to the need to output (or at least store) decrypted ciphertext before verifi-
cation has taken place.

Three recent works improve the “robustness” of AE schemes by considering how well their security
guarantees hold up under incorrect usage or when implemented non-ideally.1 Boldyreva et al. [19] in-
vestigated the effect of multiple decryption errors for both probabilistic and stateful encryption (BDPS).
Later, Andreeva et al. [3] moved to a nonce-based setting, introducing a framework to capture the Re-
lease of Unverified Plaintexts (RUP). Concurrently, Hoang et al. [29] coined an alternative notion, Robust
Authenticated Encryption (RAE), which they claimed radically different from RUP.

On the surface, these papers take very different approaches, with quite different goals in mind.
Their decryption functions all have a different syntax, and they all use different methods to characterise
valid or invalid ciphertexts. BDPS concentrates on decryption errors and does not consider nonce-based
encryption. RUP extends AE by syntactically adding explicit, fixed-size tags and considering separate
verification and decryption algorithms. It models the leakage of candidate plaintexts, with an eye on
both the online and nonce-abuse settings. Finally, RAE considers schemes with variable, user-specified
stretch as authentication mechanism, and decryption is given a much richer syntax, extending semantics
for ciphertexts not generated by the encryption algorithm. This raises the natural questions how these
models relate to each other and how well each captures real-world decryption leakage.

Our contribution. Inspired by the above works, we provide a framework combining the best of all
worlds, where our overarching goal is to bring together all the recent developments towards a strength-
ened AE notion within a single unified formalisation. In doing so, we are able to reconcile RUP and
RAE with BDPS, both notationally and conceptually. Our framework allows us to draw parallels and
highlight where the works agree or differ, while ensuring any goals described can be easily interpreted
and compared to the scenarios they purport to model.

We begin by defining a broad reference game that models adversarial access, and provide a system-
atic naming scheme for all the associated security notions. Within this, we define “Subtle Authenticated
Encryption” (SAE) as the strongest security goal relevant to (deterministic) decryption leakage. The
term subtle highlights that security in the real-world is very much dependent of the subtleties of how de-
cryption is implemented. As illustration, we describe a natural yet insecure implementation of AEZ [29],
refuting its robustness.

1 The term “implemented non-ideally” is not meant to suggest any fault on behalf of the implementer, but to acknowledge
that, in the real world, “ideal” implementations are not always feasible.
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With this reference game in place, we provide a comprehensive study of the implications and sep-
arations between the notions, including (reassuringly) recovering the classical IND–CPA + INT–CTXT
composition result, and observing that IND–CCA with passive integrity also achieves AE. We discuss
the concept of simulatable leakage and introduce the goal of “error simulatability” to formally measure
of how significant leakage is, allowing us to generalise this decomposition into the subtle case. Finally,
we compare results from the three noted papers, using SAE as a reference point. After clarifying some
(misconceived) terminology, we find that for schemes with fixed stretch the notions essentially coincide.

The fundamental difference between the models is philosophical: Is Authenticated Encryption pri-
marily a primitive like a blockcipher, whose security should be measured with reference to the ideal
object of the given syntax and where the authentication level might be set to zero, corresponding to
RAE’s variable stretch—expecting sufficiently savvy users to use the “right” stretch for their purposes;
or is it a means to authenticate and encrypt where security should be measured against a—possibly
unobtainable—ideal, but with little room for misunderstanding by users?

2 Security Games for the Real World

2.1 Standard Syntax of Authenticated Encryption

Current understanding of authenticated encryption is the culmination of many years of work (see Ap-
pendix A for an overview). Modern AEAD schemes take a number of standard inputs and produce a
single output. The corresponding spaces are named after the elements they represent: the key space K,
the message space M, the nonce space N, the associated data space A, and finally the ciphertext space
C. Each of these spaces is a subset of {0, 1}∗, but we make no assertions over their sizes.

An authenticated encryption (AE) scheme is a pair of deterministic algorithms, E for encryption and
D) for decryption, satisfying

E : K× N× A×M→ C
D : K× N× A× C →M ∪ {⊥} .

We use subscripts for keys, superscripts for public information (nonce and associated data) and put
content data in parentheses.

To be correct, decryption must be a left inverse of encryption: if C = EN,Ak (M) then DN,Ak (C) =

M . Conversely, a scheme is tidy if decryption is a right inverse: ifDN,Ak (C) = M 6=⊥ then EN,Ak (M) =
C. Together then, correctness and tidiness imply encryption and decryption are inverses. For schemes
that are both correct and tidy, Ek uniquely determines Dk, which implies that security can be regarded
as a property of Ek only [42].

The stretch measures the amount of ciphertext expansion (or redundancy). We require that the stretch
τ(M) = |EN,Ak (M)| − |M | depends only on the length of the message (for all k,N,A and M ). We call
such schemes τ -length-regular, extending the accepted term length-regular to describe how the length is
regulated, and henceforth restrict ourselves to length-regular schemes. Almost all modern schemes are
length-regular and a significant portion even have constant stretch τ (to minimise ciphertext expansion).
The syntax above is standard, but deviations exist. On the one hand, RUP uses an equivalent formulation
with explicit tag space in addition to the ciphertext space (see Section 3.2). On the other hand, RAE uses
an explicit input of the encryption indicating what size of tag is desired. In Section 3.3 we discuss the
implication of user-defined tag-sizes and why we omit these from our framework.

2.2 Syntax of Subtle Authenticated Encryption

Just as a plan seldom survives contact with the enemy, so it goes with authenticated encryption: several
provably secure schemes have fallen when implemented in practice. Especially for the decryption of
invalid ciphertexts, it is challenging to ensure that an adversary really only learns the invalidity of the
ciphertext, and not some additional information. Additional information that has been considered in the
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past (and we will encounter again shortly) are multiple error symbols and unverified plaintext. Both can
be classified as leakage, leading to our new notion of a subtle authenticated encryption (SAE) scheme.

An SAE scheme is a pair of deterministic algorithms (E,Λ), where Λ corresponds to leakage from
the decryption function. Closely associated to it is the decryption function D induced by E, and so at
times we will consider the scheme as a triple (E,D,Λ). We restrict ourselves to leakage functions that
are deterministic functions on their inputs and only provide leakage to invalid decryption queries. Thus
the leakage function

Λ : K× N× A× C→ {>} ∪ L

is such that the leakage space L can be any non-empty set not containing>, and the distinguished symbol
> refers to a message that is valid. So, for any (N,A,C), either DN,Ak (C) = ⊥ or ΛN,Ak (C) = >, but
not both: a message is either valid (and so decryption returns the plaintext but there is no leakage) or
is invalid (and so decrypts to ⊥ and leakage is available). The generality of L caters for any type of
leakage when presented invalid ciphertexts, including schemes with multiple errors [19], those which
output candidate plaintexts [3] or return arbitrary strings [29], or indeed the classical case where nothing
is leaked.

Explicitly separating Λ from D emphasises that leakage is a property of the decryption implemen-
tation, rather than of the decryption function. Consequently, security (for correct and tidy schemes)
becomes a property of both the encryption function and the decryption implementation’s leakage. A
scheme may be proven secure for some leakage model Λ, but such a result is only meaningful as long as
Λ accurately reflects the actual leakage as observed in practice. Even minor optimizations of the same
decryption function can change the associated implementation so much that the scheme goes from being
provably secure under some robust security definition to trivially insecure. We show how AEZ is affected
by implementation choices in Appendix E. From this perspective, security becomes a subtle rather than
robust affair, hence the name subtle authenticated encryption, inspired by the SubtleCrypto interface of
the WebCryptoApi [53].

Comparison with the traditional model. There is a canonical mapping from any SAE scheme (E,D,Λ)
to a more traditional one (E,D) simply by removing access to the leakage oracle: correctness and tidi-
ness of the subtle scheme clearly imply correctness and tidiness of the traditional one. Note that many
distinct SAE schemes map to the same traditional form, implying that the canonical mapping induces
an equivalence relation on SAE schemes. One could turn a traditional scheme (E,D) into a subtle form
by inverting the above canonical map, for which the obvious preimage is setting ΛN,A(C) = ⊥ if
DN,Ak (C) = ⊥ and otherwise >, again preserving correctness and tidiness. This corresponds to the
SAE scheme whose implementation does not leak at all, so we expect our security notion to match the
traditional one in this case (and it does).

Contrast with leakage resilience. Our separation into D and Λ is possible because decryption is de-
terministic, stateless, and its inputs, the triple (N,A,C), may be provided to Λk. Within the leakage re-
silience community [25], leakage is generally characterised as an auxiliary output from the original
algorithm (often supported by an auxiliary input to control the type of leakage); moreover one would
expect both encryption and decryption to leak. This integrated perspective reflects the real world more
closely (as leakage results from running some algorithm) and is more expressive. For example, if the
decryption function were probabilistic, the leakage may require access to the internal randomness, or if
the scheme is stateful it may require the correct state variables. Some of these issues could be overcome
by (for example) assuming the adversary always calls Dk directly before calling Λk, and that Λk has
access to the previous internal state (from which it can deduce the operation of Dk if required).

Ultimately which syntax works best depends on the context. We feel that, in the context of capturing
subtle implementation differences for modern authenticated encryption (where decryption is stateless
and deterministic), separating leakage and decryption is a useful abstraction. Our work could be recast
into a form more closely aligned with the leakage resilience literature, but the notation would become
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more cumbersome, especially when an adversary can only observe the leakage (corresponding to the
sPAS scenario in the next section).

2.3 Authentication and Encryption Security Games

In most modern AE definitions, an adversary is given access to a pair of oracles claiming to implement
encryption and decryption. They are either real, and act as claimed, or ideal, returning the appropriate
number of random bits for encryptions and rejecting all decryption attempts. To win the game, the
adversary must decide which version it is interacting with. Certain queries would lead to trivial wins,
for example asking for the decryption of a message output by the encryption oracle. These queries are
forbidden (or their output suppressed).

This contrasts with the original definition of AE as LOR–CPA + INT–CTXT, where in both con-
stituent games an adversary only has access to a single, real encryption oracle (and no decryption ora-
cle); moreover, classically in the LOR–CPA game only a single challenge ciphertext is present and for
INT–CTXT only a single ciphertext needs to be forged. At first sight the two definitions may appear
quite different, yet they are known to be equivalent. Where does this difference stem from and should
one be preferred over the other?

We argue that both definitions can be cast as simplifications of a single reference game. This ref-
erence game is itself a distinguishing game where an adversary has access to two sets of oracles: one
set of oracles will be used to capture the goal of the adversary, whereas the other matches the powers
of the adversary. For instance, to capture AE an adversary has access to four oracles: the two oracles
from the modern definition (implementing either the real or ideal scenario) and the two oracles from the
traditional LOR–CCA definition (namely true encryption and decryption oracles).

Starting from the reference game one can use a hybrid argument to show that, from a theoretical
perspective, two types simplifications are possible. Either the true encryption and/or decryption oracles
are superfluous; or restriction to a single query to each challenge oracle suffices. One cannot, however,
make both simplifications simultaneously. It has become customary to only study some simplified game,
yet we posit that our approach using a reference game (with up to five oracles) has several advantages:

1. Generality: Hybrid arguments and composition results—the techniques implicitly underlying the
standard definition—do not always hold when enriching the security model to take into account
real-world phenomena such as key dependent messages or leakage (e.g. [23]). In these cases, one
typically undoes certain simplifications; relying on our reference game instead is more transparent.

2. Granularity: Because adversarial goal and power are clearly separated, one can immediately identify
a natural lattice of security notions and argue about possible equivalences depending on the context.

3. Intuition: The simplified games are less intuitive when considering real-world scenarios. For in-
stance, even if an adversary has seen a number of true plaintext–ciphertext pairs, for any set of fresh
purported plaintext–ciphertext pairs it should be clueless as to its validity. This statement follows
directly from our reference game, yet for the simplified games one would need a hybrid argument.

4. Tightness: In real world scenarios, obtaining challenge ciphertexts versus known ciphertexts might
carry different costs, which can be more easily reflected in our reference game (as the queries go
to different oracles). A security analysis directly in our game is potentially more tight than one in a
simplified game (whose results subsequently need to be ported to the more fine-grained real-world
setting).

Notation. We refer to games in the form GOAL–POWER, clearly separating the adversary’s objective
from its resources. The complete lists of powers and goals are represented in Figure 1, and described be-
low. Security of scheme (E,Λ) in game X against an adversaryA is written as an advantage AdvX

E,Λ(A)
and captures the adversary’s ability to distinguish between two worlds. In both worlds the adversary
has oracle access that depends on the scheme (initiated using some random and secret key k←$ K);
the oracles corresponding to the goal differ between the worlds, whereas the oracles corresponding to
the power will be identical. Without loss of generality, oracles will not be called on elements outside of
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Enc Dec AE

Enc – IND

– Dec CTI

—

CCA Ek Dk

CPA Ek –

CDA – Dk

PAS – –

(s)

Λk

Possible access to leakage

Fig. 1: A representation of the 24 = 3 · 4 · 2 games. The challenge oracles Enc and Dec specify the
adversary’s goal: they either implement honest encryption and decryption or their idealised versions,
where Enc samples responses randomly and Dec returns ⊥ to all queries. The honest oracles Ek and
Dk capture the adversary’s power. Each game corresponds to a 5-bit bitstring vwxyz, with for example
CTI–CPA (equivalent to INT–CTXT) being 01100, and IND–sCCA (i.e. IND–CCA with decryption
leakage) as 10111.

the appropriate spaces. A scheme is deemed X secure if AdvX
E,Λ is sufficiently small for all reasonably

resourced adversaries.

Goals. The goal oracles Enc and Dec either implement the true scheme or an idealised version. If b = 0,
we are in the real world, where Enc and Dec implement Ek and Dk respectively, whereas if b = 1 we
are in the ideal world, where they implement $ and ⊥, respectively.

The oracle ⊥ matches the syntax of Dk but returns ⊥ in response to any queries. The oracle $ is a
random function: for each nonce–associated-data pair, it samples an element $N,A uniformly at random
from the set of all τ -length-regular functions f : M → C.2 When queried, $(N,A,M) := $N,A(M).
Ignoring repeated queries, this corresponds to uniformly and freshly sampling |M | + τ(|M |) random
bits for each query.

The goal is defined based on which oracles an adversary is given access to. We code this access
using 2-bit strings (vw), where the first bit is set in the presence of an Enc oracle, leaving the second
bit for Dec. This leads to three possible goals (it does not make sense to have no challenge oracle):
indistinguishability (IND, 10); authenticated encryption (AE, 11); and ciphertext integrity (CTI, 01).

Two small notes on nomenclature are in order. Firstly, indistinguishability from random ciphertexts
was originally introduced [48] as IND$, with IND itself used to denote LOR (left or right) security.
Since the LOR game is hardly ever used in modern literature, like others before us (e.g. [3]) we have
repurposed IND to denote what used to be IND$. We are less enthused about the use of the term “priv”
(shorthand for privacy) to denote what was IND$–CPA (see e.g. [31,32,37,40]) as it neither captures the
attack–goal concept, nor does it acknowledge that privacy extends beyond data confidentiality. Whereas
confidentiality protects just the content of a message, privacy ought to hide the context in which a
message is sent (often referred to as “metadata”) as well [56].

Secondly, we use the abbreviation CTI for ciphertext integrity as a goal (so we can still attach a
power to it), as opposed to the commonly encountered INT–CTXT as shorthand for ciphertext integrity
incorporating both goal and power.

2 Formally, the $N,A are defined adaptively, to avoid the issue of uniformly sampling from an infinite set. whenever they are
queried with an input (N,A,M) such that N,A or m = |M | is new, the injection $N,A,m is sampled uniformly from all
functions from m to τ(m) bits. The function then returns $(N,A,M) := $N,A,m(M).
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Ideal versus attainable. Our ideal encryption oracle responds with random bitstrings for fresh calls.
This corresponds to security as one would expect it to hold; it can be considered as a computational
analogue of Shannon’s notion of perfect security, where the uncertainty of a ciphertext given a message
should be maximal. Similarly, the ideal decryption oracle is unforgiving, implying (traditional) integrity
of ciphertexts.

Consequently, for some classes of constructions the advantage cannot be small. For instance, when
nonces are repeated in so-called online schemes, it will be easy to distinguish real encryption from
random by looking at prefixes. One can bypass these impossibilities by adapting the ideal oracles ac-
cordingly [2,30]. As another example, for schemes with insufficient stretch, a randomly chosen bitstring
is likely a valid ciphertext (leading to a forgery). Hoang et al. [29] suggest to use attainable security as
the benchmark instead, see Section 3.3 for further discussion.

Powers. Traditionally, an adversary’s powers describe what access they are given to honest encryption
and decryption oracles, with which to learn about the scheme. Again, we identify these with 2-bit strings
xy, visualised in Figure 1. The standard notions are a passive attack (PAS, 00), a chosen plaintext attack
(CPA, 10), and a chosen ciphertext attack (CCA, 11). Access to only a decryption oracle is known as
(DEM) CCA in the KEM–DEM setting (e.g. [21, 22]), we will refer to it as a chosen decryption attack
(CDA, 01).3 Unless overall encryption access is restricted as in the DEM scenario, the CDA scenario is
of limited relevance (see Section 2.4).

The leakage oracle. We add a third honest oracle implementing Λk, that models how schemes behave
when subject to imperfect decryption implementations. Again, we use a bit (z) to indicate whether a
game provides an adversary access or not, appending it to the string of power oracles. If not, the standard
notions arise, but presence leads to a range of new notions, which we will call the “subtle” variants. The
name is chosen to emphasise that security critically depends on implementation subtleties.

As an example, power 101 stands for “subtle Chosen Plaintext Attack”, or sCPA in short (note the
“s” prefix). The power 001 corresponds to an adversary who cannot make decryption queries, yet it
can observe leakage from them. This seeming contradiction makes sense when recalling that Λk yields
information when queried with invalid ciphertexts. For instance, an adversary might be able to learn how
long it takes for ciphertexts to be rejected, but not what plaintexts correspond to valid ciphertexts. Given
the implied validity checking of this notion, it has been referred to as a Ciphertext Validity Attack [7,19]
(CVA). In favour of internal consistency, we term it the sPAS attack, which can be thought of as passively
observing leakage.

The role of nonces. The more control an adversary has over the nonces when it makes a query, the
stronger the security notion. Usually an adversary has full control over the nonces used by decryption
(corresponding to the traditional view where the nonce is considered part of the ciphertext), but for
encryption there are various degrees. Rogaway and Shrimpton [51] and later Namprempre et al. [42]
describe three options: for IV-based schemes, the game randomly selects a fresh nonce for each encryp-
tion query; for nonce-based encryption, the adversary selects the nonce, but respects unicity (so indeed
only uses each nonce once); finally for deterministic encryption, the adversary has full control over the
nonce. An adversary is termed nonce-respecting if he does not query (N,A′,M ′) to either Enc or Ek if
he has already queried either of them with (N,A,M) for some A and M .

These notions can each be formalized either in terms of adversarial behaviour or, alternatively, en-
forced by the game (e.g. by returning E to suppress encryption queries that repeat a nonce). Suppressing
queries potentially gives a stronger (and more meaningful) security notion, for instance in a stateful
setting, where an invalid query might still advance the state. However, in the nonce-based context we
consider the formalisations are equivalent and defining security by ranging over the appropriate class of
adversaries is—in our opinion—easier and more intuitive to deal with.

3 In the context of public key encryption, CDA has been used for chosen distribution attacks [9], which is a completely
different concept (and irrelevant when considering nonce-based symmetric primitives).
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Consequently, when defining a security notion, we will provide a single game independent of how
nonces are treated, which subsequently leads to two flavours of the notion depending on the type of
adversaries allowed: if it is nonce-respecting we get nonce-based security and, finally, if the adversary
is potentially nonce-abusing then deterministic encryption (often called “misuse resistant”) emerges.
Henceforth we will concentrate on the nonce-respecting scenario, as for any reduction one has to show
it preserves nonce-respecting behaviour. Since nonce-abusing behaviour is automatically preserved, all
our results apply equally to the more desirable deterministic or misuse-resistant scenario.

At this point, it would be tempting to assert that our work will hold in the IV-based scenario as well.
If the adversary is nonce-randomizing (i.e. samples a uniform random ‘nonce’ just before sending an
encryption query) one might expect to obtain IV-based encryption, except that it does not quite. In the
next paragraph we will introduce prohibited and pointless queries and we’ll see that the more control
an adversary has over the input the more restrictions are required to avoid trivial wins. In particular,
in the IV-based case, an adversary has no control over nonces used during encryption queries, whereas
an adversary gains control when moving to a nonce-based setting. The result is that certain encryption
queries that are acceptable when considering random IVs, become prohibited in the nonce-based setting.

We will address the surprising consequences of this difference between IV-based and nonce-based
security in Appendix B. In many cases, one can still apply our results to the IV-based scenario at the cost
of an additional term of ∼q2/|N | to bound the possibility of collisions on the IV space.

‘Prohibited’ and pointless queries. With unfettered oracle access, certain (sequences of) queries would
lead to easily distinguishable behaviour between the real and ideal worlds, giving rise to trivial wins. For
instance, sending a true ciphertext (obtained from Ek) to Dec will always output⊥ in the ideal world, yet
never in the real one. We call this forwarding a query from Ek to Dk, and, to avoid trivial wins, we must
somehow prevent the adversary from utilizing this. We do so by letting the game artificially suppresses
the output of the (in this case) problematic Dec query, outputting E instead. For reasons that will become
apparent shortly, we call these queries prohibited. On the other hand, some queries are harmless but
pointless for an adversary to make. For instance, repeating a decryption query will simply give the same
result again.

In the reference game, the adversary may make any queries; it is the game’s responsibility to suppress
outputs to prevent trivial wins. However, in our games the adversary can always tell in advance whether a
query will be suppressed, moreover the query does not change the state of the game. Hence, without loss
of generality, rather than suppressing the query’s output we could prohibit the adversary from making
it in the first place. We stress that when adapting our framework in other contexts (e.g. for leakage
resilience) one should initially suppress outputs and ensure that any simplification to the effective game
does not limit the adversary (cf. [12]).

When adversaries refrain from making prohibited and pointless queries, we arrive at the effective
security game. Figure 2 gives an overview of both prohibited and pointless queries as explained below.

Prohibited queries. Any inputs (N,A,M) repeated between the two encryption oracles will distinguish
the Enc oracle. Similarly, attempting to decrypt the output of Enc will allow the adversary to immediately
determine whether Enc is random. Attempting to decrypt the output of the honest encryption oracle
Ek will also trivially identify whether Dec is real or idealised. We also prohibit the adversary from
forwarding any output from their Dk oracle to the encryption challenge oracle Enc, because the tidiness
property implies that in the real world Enc(Dk(C)) = C, yielding a trivial distinguisher. This final
restriction is commonplace in the nonce-based paradigm, following key previous papers such as the
original nonce-based IND–CCA definition of Rogaway [48, §6] (there termed IND$–CCA), but is not
made in the probabilistic world. The effect of this discrepancy is discussed further in Appendix B.

The same prohibitions are in place for the inputs to Λk as for Dk; however we do not place any
restrictions on the output of Λk. Any seemingly trivial wins that might occur from forwarding Λk’s
output should be considered a weakness of (the implementation of) the scheme and demonstrate that
this particular Λk cannot be secure.
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Challenge
Oracles

Honest
Oracles

Encrypt:
M→ C

Enc Ek

Decrypt:
C→ M∪{⊥} Dec Dk

Leakage:
C→ {>} ∪ L

Λk

Key:

Prohibited Queries

Pointless Queries

Entangled Oracles

An arrow A → B means that
queries made to A restrict queries
to B. Arrows within the same row
mean inputs cannot be repeated,
those from one row to another mean
the output of A cannot later be used
as input to B.

Fig. 2: Prohibited queries are those that allow the adversary trivial wins, and so must be suppressed.
Pointless queries are those that cannot help an adversary win the game. In the reference game, the
output of prohibited queries is suppressed; in the effective game, adversaries refrain from making either
prohibited or pointless queries. The oraclesDk and Λk are entangled as they both correspond to (different
aspects of) the decryption algorithm and its implementation: it would not make sense to block queries
between them.

Pointless queries. Sending the output of Ek to Dk is pointless since by correctness the answer is already
known. Similarly, tidiness implies the opposite: output from Dk need not be sent to Ek. As soon as Dec
outputs something other than ⊥, the adversary can distinguish it as the real case, and so might as well
terminate: this means no outputs from Dec need ever be queried to the encryption oracle(s). Finally,
since the game is deterministic and stateless there is no point in repeating queries (this restriction is not
displayed in the diagram).

2.4 Equivalences and Separations

Since there are 24 possible games (3 goals times 8 possible powers), the obvious question is how they
relate to each other. Certainly for the classical setting (i.e. in the absence of a leakage oracle) various
relations are known already, but not necessarily using modern notation (e.g. results may have initially
been proven for the case of probabilistic encryption [10]).

We provide a comprehensive overview, writing X =⇒ Y to signify that security in game X implies
security in game Y, meaning that for any adversary A against game Y there is an adversary B against
game X who uses similar resources and wins with similar probability.

Proposition 1 lists three (classes of) implications, which allows us to reduce the 24 games to only
10 interesting ones in Corollary 3 (5 games with or without leakage) . We present our results in terms of
the corresponding bitstring, where v, w, x, y, and z signify bits that may (but need not) be set.

Proposition 1 (Effective Games). We may assume the adversary is deterministic and makes no point-
less or prohibited queries. Against such an adversary, several games are trivially related:

1. Adding extra oracles never makes the adversary weaker.
2. 1w0yz⇐⇒ 1w1yz: an encryption oracle does not help if an Enc challenge oracle is present.
3. v1x0z⇐⇒ v1x1z: a decryption oracle does not help if a Dec challenge oracle is present.

Proof. Consider a probabilistic adversary A as being a deterministic Turing machine with access to
some finite randomness tape. Since the advantage is averaged across all possible tapes, there exists some
tape that is at least as successful as the average A. By fixing to this particular random tape, we arrive at
a deterministic adversary with advantage at least that of A.
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For any adversary making pointless or prohibited queries, there is an equivalent one who does not,
since they already know what the answer will be. Henceforth, we assume adversaries are self-censoring
and refer to such adversaries as effective (corresponding to our notion of effective games).

Adding extra oracles never weakens an adversary, since they may simply ignore the ones they are
not interested in. This immediately takes care of the⇒ direction for points 2 and 3. We now show that,
in these specific cases, the added oracles do not help either, namely that security in the case with fewer
oracles implies security even with the additional oracles. Point 2 asserts that an honest Dk oracle is not
helpful if a Dec challenge oracle is available, and Point 3 gives the corresponding result for Ek and Enc.

Let A be an adversary against the game 1w1yz, then, mildly abusing notation, we can write

Adv1w1yz
E,Λ (A) = ∆Ek,Dk,Ek,Dk,Λk$ ,⊥ ,Ek,Dk,Λk(A)

with the understanding that only the Enc and Ek oracles (corresponding to the first respectively third
oracles in the sequences above) are necessarily available to the adversary, since the presence of the
others depends on wyz. The triangle inequality yields that:

∆Ek,Dk,Ek,Dk,Λk$ ,⊥ ,Ek,Dk,Λk(A) ≤
(I)︷ ︸︸ ︷

∆Ek,Dk,Ek,Dk,Λk$ ,⊥ , $ ,Dk,Λk(A) +

(II)︷ ︸︸ ︷
∆$,⊥, $ ,Dk,Λk

$,⊥,Ek,Dk,Λk(A).

We claim that there are adversaries B and C against Adv1w0yz
E,Λ such that B’s advantage corresponds to

the (I) term above and that of C’s to (II). Moreover, the running time of both adversaries is comparable
to that ofA as they runA as black box and simulate its environment by appropriate calling and forwaring
to their own oracles. Specifically, B answers A’s Ek queries using his own Enc oracle and forwarding
all other queries, whereas C answers A’s Enc queries by sampling randomly, Ek queries using their own
Enc oracle and forwarding any other queries.

It is important to observe that neither B nor C make prohibited or pointless queries. Any query A
makes to his Ek oracle can be made by B to his Enc oracle, since if the Ek query was allowed, it must
also be allowed for Enc. Conversely, any queries prohibited or pointless due to a previous Enc query are
also prohibited or pointless if the equivalent query has been made to Ek. (A prohibited query by A may
become a pointless query for B or vice versa, but this detail doesn’t worry us as effective adversaries
make neither.) Thus any query that is prohibited or pointless for B was already prohibited or pointless
for A. The exact same argument shows C does not make prohibited or pointless queries.

Thus B simulates game (I) and C simulates (II): B wins if an only if A wins game (I), and C wins if
and only if A wins game (II). Overall then,

Adv1w1yz
E,Λ (A) ≤ Advv1x0z

E,Λ (B) + Advv1x0z
E,Λ (C) ≤ 2 · Adv1w0yz

E,Λ ,

showing that, at the cost of a factor of 2, the additional Ek oracle does not help.
The proof of the decryption result is equivalent, using the intermediate world (Ek,⊥, Ek,⊥,Λk). Let

A be an adversary against the game v1x1z, where only the Dec andDk oracles are necessarily available
to the adversary, with access to the others dependent on vxz. By triangle inequality,

Advv1x1z
E,Λ (A) = ∆Ek,Dk,Ek,Dk,Λk$ , ⊥ ,Ek,Dk,Λk(A) ≤

(I)︷ ︸︸ ︷
∆Ek,Dk,Ek,Dk,Λk$ , ⊥ ,Ek, ⊥ ,Λk(A) +

(II)︷ ︸︸ ︷
∆$,⊥,Ek, ⊥ ,Λk

$,⊥,Ek,Dk,Λk(A).

Let B and C be adversaries against Advv1x0z
E,Λ who reach their answer by running A and forwarding

A’s answer on as their own (and therefore running within similar resources to A). This time, B answers
A’s Dk queries using his own Dec oracle and forwarding all other queries, whereas C answers A’s Dec
queries with ⊥, Dk queries using their own Dec oracle and forwards any other queries. Since the same
restrictions on prohibited or pointless queries apply to both Dec and Dk, B and C both respect these
requirements because A did.

Thus B simulates game (I) and C simulates (II), and so the advantage of A is at most twice that of
the optimal adversary against game 1w0yz. Thus, at the cost of a factor of 2, the additional Dk oracle
does not help the adversary. ut
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AE–CCA AE–CPA

AE–CDA AE–PAS

IND–CCA

IND–CDA

IND–CPA

IND–PAS
CTI-CCA CTI–CPACTI–CDA CTI–PAS

Thm 6:1

Thm 6:2

2:1
2:2 2:32:4

Fig. 3: The relations and equivalences between the 12 notions of leakage-free security. Each separation
(red) is labelled with the appropriate sub-result of Lemma 2 that proves it. The horizontal implications
(yellow) are given by Proposition 1:1, vertical equivalences (green) by 1:2, and horizontal equivalences
(blue) by 1:3. The two methods for proving AE security are proven in Theorem 6. The separations
between the subtle notions are equivalent, with the subtle and non-subtle worlds completely separated.

The implications given in Proposition 1 when restricted to classical scenario without leakage are
visualised in Figure 3, along with two composition results from Theorem 6 and four basic separations
(Lemma 2). Together, these results provide a complete characterization of the classical notions. An
identical figure could be drawn for our subtle notions, where the subtle notions imply their non-subtle
counterpart (Proposition 1) but not the other way around (Lemma 2).

Many of the separations are trivial or well known, with origins in folklore or the literature in the
probabilistic LOR paradigm. In that setting, the equivalent of Lemma 2:3 is described as folklore by
the original CPA paper [10] and that of Lemma 2:1 and 2:2 is assumed in the paper introducing INT–
CTXT [14]. Finally, an equivalent to Lemma 2:4 was provided by Bellare and Namprempre [14, Section
3].

Separations are typically proven by assuming the existence of a scheme meeting the weaker notion
and then adapting this scheme into one that still meets the weaker notion, yet is demonstrably insecure
under the stronger notion. However, not every counterexample from the probabilistic LOR world carries
over into the nonce-based formalisation with an ideal reference world that we are interested in. For ex-
ample, we will later look at compound notions (Theorem 6) and see that the addition of passive integrity
suffices to transform a nonce-based IND–CCA scheme into secure nonce-based AE scheme, despite the
existence of an explicit counterexample in the probabilistic LOR–CCA setting [14]. For completeness,
we therefore provide a comprehensive list of counterexamples defined within our framework.

For practical relevance, separations should employ counterexamples that are both tidy and length-
regular. Our separations meet this criterium, unlike for instance the counterexample to Lemma 2:4 as
provided by Bellare and Namprempre [14, Section 3] (0 has multiple encryptions).

From a theoretical perspective, separations ideally use the weakest possible assumption with coun-
terexamples leaving all input spaces and the stretch invariant [50]. Our separations will be sloppy in the
sense that we use the existence of a secure AE scheme as underlying assumption (which is stronger than
necessary) and will not always leave input spaces or stretch invariant.

Lemma 2. There are no generic implications between notions beyond those given in Propositon 1. In
particular,

1. CTI–PAS 6=⇒ CTI–CPA;
2. CTI–CPA 6=⇒ AE–PAS;
3. IND–PAS 6=⇒ IND–CCA;
4. IND–CCA 6=⇒ AE–PAS.

Proof. Since leakage could be trivial, separations in the leak-free case immediately extend to the subtle
setting. Conversely, since the leakage could be catastrophic (e.g. Λk = k) even for an otherwise secure
scheme, games with a leakage oracle cannot be generically equivalent to their non-leaky counterpart.
Thus, given known implications, providing the four explicitly stated separations suffices.
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Let E be a tidy, length-regular, secure AE scheme, then for each separation, we will build a related
tidy and length-regular scheme that is secure under the weaker notion, yet insecure under the stronger
notion. Assume that K ⊆ M, let 0 = 0|k| be a string of zeros the same length as k, 1 = 1τ(k) a string of
ones the same length as E0,0k (k) and assume that 0 ∈ N,A and 1 ∈ C. (If this is not the case alternative
strings can be used, there is nothing special about 0 or 1.)

(1) CTI–PAS 6=⇒ CTI–CPA. Consider the scheme ẼN,Ak (M) := M ||k. A CTI–CPA adversary has
access to an encryption oracle from which they can immediately recover the secret key and then trivially
distinguish the challenge oracle. However, a CTI–PAS adversary only has their challenge oracle, which
only returns ⊥ until queried with a valid (N,A,C) triple. So, until they win the game, the adversary
learns nothing from his oracle, and thus can only create a valid (N,A,C) by guessing the key, with
probability 1/|K| (per query). Thus the scheme is CTI–PAS secure but not CTI–CPA.

(2) CTI–CPA 6=⇒ AE–PAS. Define ẼN,Ak (M) := 1||EN,Ak (M). In the AE–PAS game, an adversary
can make a single Enc query and returne the first bit of the oracles response as his answer, to distinguish
with probability 1/2. In the CTI–CPA game, no Enc oracle is provided and any attack against Ẽk implies
one against Ek: Ẽk can be perfectly simulated with access to Ek, and similarly D̃ec with access to Dec.
Thus CTI–CPA security of E implies the same level of CTI–CPA security of Ẽ, meaning that Ẽ separates
CTI–CPA and AE–PAS.

(3) IND–PAS 6=⇒ IND–CCA. We will take a secure scheme E, and modify it to form Ẽ by using
a second key l to construct (for each key k) two special points that can be discovered and exploited by
an adversary with access to D̃k||l (e.g. under IND–CCA). They will use the first special point to learn an
unusual property of Ẽ, and the second to validate if this was correct or not. However, these points will
be defined in a way that an adversary with access only to Ẽk||l cannot detect them, preserving IND–PAS
security.

Let l←$ K, and define Ẽk by

ẼN,Ak||l (M) :=





0|1| (N,A,M) = (0,0, l)

1 (N,A,M) = (0,0, l ⊕ 1)

γk (N,A,M) = (0,0, αk), αk 6=⊥
δk (N,A,M) = (0,0, βk), βk 6=⊥
EN,Ak (M) Otherwise

,

where αk, βk, γk, δk are chosen for each key to ensure the function is injective, and thus correct. Explic-
itly, let αk = D0,0

k (0|1|), βk = D0,0
k (1), γk = E0,0k (l) and δk = E0,0k (l ⊕ 1). Then, if αk = l ⊕ 1 or

βk = 1, swap the values of γk and δk. This makes Ẽ a well defined function between the appropriate
spaces, tidy and correct, and thus an AE scheme.

Consider first the IND–CCA case, and adversary A who acts as follows. First, A makes a single
decryption query to learn l ← D̃0,0

k||l(0
|1|). Having done so, they then query Ẽnc0,0(l ⊕ 1) and return 1

if this output is 1. In the real case, A will always output 1, and in the ideal case they will output 1 with
probability 1/2τ(k), which is small (else an adversary against the IND–PAS security of E could simply
guess the key). Thus A distinguishes Ẽ under the IND–CCA game.

However, in the IND–PAS setting (where an adversary has access to just an Ẽnc oracle) the scheme
inherits security from E. Since Ẽ only differs from E on a few specific inputs, the adversarial advantage
in distinguishing between E and Ẽ is at most the probability of querying one of these 4 inputs. So, for
each of these special points we now bound this probability, assuming the adversary has not previously
queried any of the others to upper bound the overall advantage.

As l is sampled uniformly and independently of k, the probability of an adversary querying Ẽk||l0,0(l)

or Ẽ0,0k||l (l ⊕ 1) is at most q/2|k|−1 for an adversary making q queries. To bound the probability of an
adversary querying αk or βk, we will instead bound the probability that these special points exist at
all. Consider the adversary B against the AE security of E that makes two queries: D̃ec0,0(0|1|) and
D̃ec0,0(1). If both are ⊥, B returns 0, and otherwise B returns 1. Thus B returns 1 if either αk or βk is
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not ⊥, and so the probability of these special points existing is bounded by that of B winning the AE
game against E.

So, together these events bound the difference between Ek and Ẽk||l, meaning that

P
[
AẼk||l → 1

]
−P
[
AEk → 1

]

≤ P
[
AẼk||l queries (0,0, l) or (0,0, l ⊕ 1)

]
+ P

[
AẼk||l queries (0,0, α) or (0,0, β)

]

≤ q/2|k|−1 + AdvAE
E (B) .

So,
AdvIND–PAS

Ẽ (A) ≤ AdvIND–PAS
E (A) + q/2|k|−1 + AdvAE

E (B).

Since E was (by assumption) AE secure, these terms are all small, implying the IND–PAS security
of Ẽ.

(4) IND–CCA 6=⇒ AE–PAS. We will define Ẽ to be an IND–CCA scheme with double the keyspace
of E and interpret this double-length key as k||l. Then define αk := D0,0

k (1) and βk := E0,0k (l).

ẼN,Ak||l (M) :=





1 (N,A,M) = (0,0, l)

βk (N,A,M) = (0,0, αk) ∧ αk 6=⊥
EN,Ak (M) Otherwise

So, for each key, Ẽ is the same as E except with the preimages of 1 and β exchanged under nonce-
associated data pair (0,0). Clearly (0,0,1) is a valid ciphertext for any key, and thus in the AE–PAS
game the scheme is trivially distinguishable by testing (0,0,1) at the Dec oracle. However, as we will
now show, the scheme remains secure in the IND–CCA game.

Let A be an adversary against Ẽ in the IND–CCA game making at most q queries. Using the same
logic as for the previous case, there exists an adversary B against E who wins the AE game if αk 6=⊥,
and so we restrict ourselves to the case αk =⊥. With this restriction, Ẽ acts identically to E unless A
queries Enc(0,0, l) or Dec(0,0,1). Note that he cannot make both of these queries since, after making
the first, the second is prohibited.

Making a query Enc(0,0, l) corresponds to guessing l, and so occurs with probability at most q/|K|.
An adversary who queries Dec(0,0,1) learns l. However, knowledge of l does not assist the ad-

versary in distinguishing the scheme, since l is sampled uniformly at random, independent from k, and
does not affect any other elements of Ẽk beyond those already queried or now prohibited. So, as long as
αk =⊥ and the adversary does not query Enc(0,0, l), the probability of the adversary winning is simply
that of A winning the AE game against E.

Over all,

AdvIND–CCA
Ẽk,D̃k

(A) ≤ P [αk 6=⊥] + P
[
AẼ queries Enc(0,0, l)

]
+ AdvIND–CCA

Ek,Dk (A)

≤ AdvAE
Ek,Dk(B) + q/|K| + AdvIND–CCA

Ek,Dk (A)

each of which is small because E was a secure AE scheme.
ut

Recovering classical notions. Reassuringly, the classical setting can be recovered by setting the fifth
bit (leakage) to be zero, thereby simply ignoring the leakage oracle.

Our IND–CPA and IND–PAS notions are equivalent; the latter is the common definition for chosen-
plaintext confidentiality in the modern literature, where it is often referred to as IND–CPA or even just
CPA (e.g. [4]). Similarly, our IND–CCA definition and IND–CDA are equivalent, with the latter match-
ing the original nonce-based IND$–CCA definition [48]. That said, the relationship between IND$–CCA
and LOR–CCA is rather complex, especially for tidy schemes, a topic discussed further in Appendix B.
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To formalize integrity of ciphertexts, both the CTI–CCA notion and the equivalent CTI–CPA have
appeared in the past (e.g. [31] or [1] respectively); it was already known that for ciphertext integrity the
two notions coincide, though not for plaintext integrity [11].

The strongest authenticated encryption notion is AE–CCA which, as there is no benefit for the adver-
sary in having the additional honest oracles, is equivalent to AE–PAS. Following Rogaway and Shrimp-
ton [51], the modern definition of Authenticated Encryption has been precisely AE–PAS, and so we
follow the literature in referring to all the AE goals (but particularly AE–PAS) simply as AE.

Concluding, our framework (re)confirms the use of existing definitions, providing a seemless exten-
sion to incorporate (deterministic) decryption leakage.

Simplified games and adversaries. Proposition 1 and Lemma 2 demonstrate that a number (but not all)
of the games are equivalent. For each equivalence class there is a unique game with the least amount of
oracle access to an adversary; we refer to this as the simplified game. Thus we can restate the previous
results in the following corollary:

Corollary 3. The simplified games are just 1100z, 1000z, 1001z, 0110z, and 0100z (where z signifies
a bit that might or might not be set). These correspond to AE–PAS, IND–PAS, IND–CDA, CTI–CPA,
and CTI–PAS, along with their subtle variants.

Henceforth, we will consider only simplified games under effective adversaries (i.e. those that do
not make any pointless queries). In the simplified games an adversary is effectively presented with (at
most) three oracles, with access to (at most) one oracle following the syntax of encryption, decryption
or leakage. We use the notation ∆O1,O2,O3

Oa,Ob,Oc as short-hand for the adversarial advantage in distinguishing
between oracles 1, 2, 3 and oracles a, b, c. Here the first oracle will always correspond to encryption, the
second to decryption, and the third to leakage. We use ∅ to denote that an oracle is not available. Although
what constitute pointless and prohibited queries does not follow from the notation, the concepts are still
captured as we only consider effective adversaries (obviously, in reductions we will check ‘effectiveness’
preservation as appropriate).

2.5 Security of Subtle Authenticated Encryption

Recall that we defined an SAE scheme as a pair (E,Λ) (along with appropriate spaces), or equivalently
the triple (E,D,Λ). When we talk of a secure SAE scheme, we mean that the AE–sCCA advantage is
sufficiently small. In other words, even if the adversary has access to honest encryption and decryption
oracles as well as clearly specified leakage from the decryption function, she can neither distinguish
real from random ciphertexts (distinct from those output by the honest encryption oracle) nor forge
ciphertexts. This characterisation closely matches the real-world perspective, where an adversary might
have adaptive access to both encryption and leaky decryption functionalities, yet it gains no advantage
over any ciphertexts not trivially compromised.

In Section 3 we will provide a comparison of secure SAE and the earlier BDPS, RUP, and RAE
definitions. In particular, the inspiration for the remainder of this section will become a lot clearer—we
are especially indebted to the BDPS and RUP papers.

While AE–sCCA (or 11111) is the strongest goal describable within our framework, due to Proposi-
tion 1, it suffices from the designer’s point of view to demonstrate that the scheme is AE–sPAS (11001),
restricted to adversaries who make neither pointless nor prohibited queries. There are many ways one
may approach proving SAE security, and one of the most intuitive is to reduce the problem to the
leakage-free case. That is, (i) prove that the scheme is a secure AE scheme in the absence of leakage
and then (ii) show leakage is ‘computationally independent’ of the key against adversaries with access
to honest encryption and decryption oracles. Before providing such a decomposition result (Theorem 6),
we formalise what we mean by (ii) above.



16 Guy Barwell, Daniel Page, and Martijn Stam

Error simulatability. So far, all the games begin by picking a key k←$ K, and provide the adversary
with access to some subset of an honest encryption oracle Ek, honest decryption oracle Dk, or honest
leakage oracle Λk. All these oracles use the same key k. To argue that the leakage is harmless, we
compare this set of oracles with one where the leakage is based on an independently, randomly sampled
key l←$ K instead. Thus, we define the goal ERR (for Error Simulatability) as that of distinguishing
Λk from Λl, where k and l are sampled independently. The name and abbreviation ERR was inspired by
the error invariance notion (INV–ERR) introduced by BPDS (see Section 3.1), while the game borrows
from RUP’s decryption independence (DI) (see Section 3.2).

As always, this goal can be paired with any set of powers (PAS, CPA, CDA, CCA), where the
encryption and decryption oracles always use k (never l). The strongest such security notion then is
ERR–CCA:

AdvERR–CCA
E,Λ := ∆Ek,Dk,ΛkEk,Dk,Λl

The adversary cannot forward an output triple from the encryption oracle to the leakage oracle, since the
real leakage oracle would return>, whereas the simulated version would almost certainly not. That is, if
they have previously queried Ek(N,A,M) = C, they may not query Λ(N,A,C). Any other sequence
of queries is allowed, although clearly repeating queries between Ek and Dk would be pointless. It is
important to note that the adversary against SAE meets this requirement, thus upper bounds on the error
invariance of a scheme can be used towards proving overall security.

Simulator-free definitions. At first sight, our choice of simulator may appear unnecessarily specific:
why not use a definition with regards to an arbitrary simulator and then leave it to the designer of the
scheme to come up with a good one? Well, as Lemma 4 shows, if there exists any good simulator,
then Λl is one as well. A similar observation was made in RUP, where PA2 is shown equivalent to
DI [3, Thms. 8,9]. The benefit of fixing the simulator to Λl is that security is completely described
by (E,D,Λ)—or even (Ek,Λk) as Dk is wholly defined by Ek—rather than requiring an additional
quantification over or dependence on some simulator. Obviously to simplify a proof, one could still use
an alternative simulator.

Lemma 4. Let S be an arbitrary stateful simulator (without oracle access). Then

AdvERR–CCA
E,Λ ≤ 2 ·∆Ek,Dk,ΛkEk,Dk, S

moreover there exists a simulator S with ∆Ek,Dk,ΛkEk,Dk, S = AdvERR–CCA
E,Λ .

Proof. Since the simulator S has no oracle access, it is necessarily independent of the game’s key k. So,
the adversarial advantage in distinguishing between S and Λk is precisely the same as that from S to Λl:
the difference is merely a relabelling. That is, ∆Ek,Dk, SEk,Dk,Λl = ∆∅,∅,Λl∅,∅, S = ∆∅,∅,Λk∅,∅, S , and thus

AdvERR–CCA
E,Λ := ∆Ek,Dk,ΛkEk,Dk,Λl ≤ ∆Ek,Dk,ΛkEk,Dk, S + ∆Ek,Dk, SEk,Dk,Λl

= ∆Ek,Dk,ΛkEk,Dk, S + ∆∅,∅,Λk∅,∅, S ≤ 2 ·∆Ek,Dk,ΛkEk,Dk, S .

The inverse result is trivial, since we may choose S := Λl. ut

Initial observations on error simulatability. Let’s consider briefly how hard these new goals are to
achieve. We immediately have that AdvERR–PAS

E,Λ = 0, as the adversary is bereft of any guaranteed access
to the real key k to compare the challenge oracle Λk vs. Λl against. In other words, any scheme is
perfectly ERR–PAS secure.

Since we do not prohibit the adversary from making the same query to both their leakage and de-
cryption oracles, there exists a forgery-based attack against the ERR–CCA (or ERR–CDA) game. The
adversary creates a forgery, which they then send to both their decryption and leakage oracles. If the
forgery if valid, Dk will output a message rather than ⊥. Then, if the leakage oracle is Λk it will output



Rogue Decryption Failures: Reconciling AE Robustness Notions 17

>, whereas Λl will almost certainly output some ⊥i ∈ L, distinguishing the real from the simulated
leakage.

Indeed, one may wonder whether the notions do not overlap, whether ERR–CCA implies some CTI
notion, but this is not the case as summarized in Lemma 5. Using the implications of Proposition 1,
it follows that the error invariance notions neither imply nor are implied by the non-subtle integrity or
confidentiality notions. Nonetheless, in Section 2.6 we will see that ERR–CCA is likely to be achieved
alongside some integrity notion.

Lemma 5 (Separating ERR notions from AE). ERR–CCA implies neither CTI–PAS nor IND–PAS,
and AE implies neither ERR–CPA nor ERR–CDA.

Proof (sketch). (ERR–CCA 6=⇒ CTI–PAS) Consider a scheme for which every ciphertext is valid.
This scheme is ERR–CCA secure and yet CTI–PAS insecure: winning the CTI–PAS game is trivial, yet
the ERR–CCA advantage is zero (since the two worlds that need distinguishing are identical).

(ERR–CCA 6=⇒ IND–PAS) Consider the scheme where Ek(M) := 0||M and Λk = 0. Then
Λk = Λl, yet ciphertexts are clearly distinguishable from random. Thus the scheme is ERR–CCA secure
but not IND–PAS.

(AE 6=⇒ ERR–CPA/CDA) Consider a secure AE scheme, and suppose that Λk := k. The subtle
scheme will still be AE-secure, but trivially insecure under the ERR–CPA or ERR–CDA games. ut

2.6 Decomposing SAE security

The separations of Lemmas 2 and 5 suggest a sort of ‘orthogonality’ between the goals of indistin-
guishability, ciphertext integrity, and error invariance. In Figure 4 we visualise this as a cube, where each
vertex corresponds to a world with which an adversary may be interacting, with the front-bottom-left
corresponding with the real world, and the back-top-right corresponding to a fully idealised world. An
edge between two vertices corresponds to the distinguishing advantage between the two corresponding
worlds.

The three goals IND, CTI, and ERR each correspond to an axis in the diagram, such that the parallel
edges represent the same goal, but under a different set of powers. Moving away from the front-bottom-
left corresponds to removing adversarial access to one or more oracles. So any parallel edges in this
direction represent the same notion except with fewer powers, and thus security of the second is implied
(Proposition 1:1). The front face contains the new subtle notions, whereas the aft face corresponds to the
traditional, leak-free view of authenticated encryption.

Diagonals in the cube represent compound notions such as AE and SAE. Since security notions
are defined in terms of the difference between two possible worlds, these can instead be written as a
sequence of security notions representing any alternative path over the cube from begin to end vertex (of
the compound notion). This approach immediately visualizes possible composition results; their validity
can easily be verified through use of the triangle inequality (and a check that effectiveness of adversaries
is indeed preserved).

So, Figure 4 visualises the security notions and relations between them. Security of a notion on an
edge implies security for any notions on parallel edges that are right, above or behind it. Any path yields
a decomposition result for the compound notion defined by its endpoints, which we can prove with
the triangle inequality. Moreover, since providing access to additional real oracles can only assist the
adversary, for any path in which each node is closer to the ideal world than its predecessor, the converse
also holds. Pulling these observations together, we form Theorem 6. The proofs for the enumerated
examples are intuitive, and provided in their own short proofs.
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Fig. 4: A “cube” of notions, visualising SAE security as distances in 3-dimensional space. Each vertex
denotes a world with which the adversary may be interacting, with edges representing security notions.
The 12 edges of the cube are the CTI, IND and ERR notions, with diagonal edges denoting compound
notions such as SAE: alternative paths between two nodes indicate a possible composition result. The
highlighted paths represent useful decompositions of SAE (blue) and AE (green). The dotted lines denote
RUPAE and the combination of CTI-sCPA+DI, notions associated with RUP (see Section 3.2).

Theorem 6 (Cube Theorem). Consider the cube in Figure 4. Any path yields a decomposition result
for the notion defined by its endpoints. For any path in which each node is closer to the ideal world than
its predecessor the converse also holds, and security of the compound notion implies security of the two
constituent notions. In particular,

1. AE ⇐⇒ IND–CPA + CTI–CPA
2. AE ⇐⇒ IND–CCA + CTI–PAS
3. SAE ⇐⇒ ERR–CCA + AE ⇐⇒ ERR–CCA + CTI–CPA + IND–CPA
4. ERR–CCA + CTI–CPA ⇐⇒ CTI–sCPA + ERR–CPA.

Proof (Of Theorem 6:1 and 6:2). By Proposition 1, AE security implies CTI-PAS and IND-CPA secu-
rity. Then, applying the triangle inequality:

AdvIND–CCA
E,Λ = ∆Ek,Dk,∅$ ,Dk,∅ ≤ ∆Ek,Dk,∅$ , ⊥ ,∅ + ∆$, ⊥ ,∅

$,Dk,∅ ≤ AdvAE
E,Λ + AdvCTI–PAS

E,Λ ≤ 2 · AdvAE
E,Λ

AdvCTI–CPA
E,Λ = ∆Ek,Dk,∅Ek, ⊥ ,∅ ≤ ∆Ek,Dk,∅$ , ⊥ ,∅ + ∆ $ ,⊥,∅

Ek,⊥,∅ ≤ AdvAE
E,Λ + AdvIND–CPA

E,Λ ≤ 2 · AdvAE
E,Λ

AdvAE
E,Λ = ∆Ek,Dk,∅$ , ⊥ ,∅ ≤ ∆Ek,Dk,∅$ ,Dk,∅ + ∆$,Dk,∅

$, ⊥ ,∅ ≤ AdvIND–CCA
E,Λ + AdvCTI–PAS

E,Λ

AdvAE
E,Λ = ∆Ek,Dk,∅$ , ⊥ ,∅ ≤ ∆Ek,Dk,∅Ek, ⊥ ,∅ + ∆Ek,⊥,∅$ ,⊥,∅ ≤ AdvCTI–CPA

E,Λ + AdvIND–CPA
E,Λ

ut

Proof (Of Theorem 6:3). Having first made the immediate simplifications of Proposition 1, we proceed
by triangle inequality:

AdvSAE
E,Λ = ∆Ek,Dk,Λk$ , ⊥ ,Λk ≤ ∆Ek,Dk,ΛkEk,Dk,Λl + ∆Ek,Dk,Λl$ , ⊥ ,Λl + ∆$,⊥,Λl

$,⊥,Λk
= AdvERR–CCA

E,Λ + AdvAE
E,Λ + AdvERR–PAS

E,Λ
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Since the ERR–PASS game is perfectly secure, security in the AE and ERR–CCA games implies
SAE security. Conversely,

AdvAE
E,Λ = ∆Ek,Dk,∅$ , ⊥ ,∅ ≤ ∆Ek,Dk,Λk$ , ⊥ ,Λk ≤ AdvSAE

E,Λ

AdvERR–CCA
E,Λ = ∆Ek,Dk,ΛkEk,Dk,Λl ≤ ∆Ek,Dk,Λk$ , ⊥ ,Λk + ∆$,⊥,Λk

$,⊥,Λl + ∆ $ , ⊥ ,Λl
Ek,Dk,Λl

= AdvSAE
E,Λ + AdvERR–PAS

E,Λ + AdvAE
E,Λ ≤ 2 · AdvSAE

E,Λ

where again we have used that AdvERR–PAS
E,Λ = 0. ut

Proof (Of Theorem 6:4). Immediately, we have that CTI–CPA is implied by CTI–sCPA, and ERR–CPA
by ERR–CCA. The other two implications can be shown by triangle inequality:

AdvCTI–sCPA
E,Λ = ∆Dk,Ek,Λk⊥ ,Ek,Λk ≤ ∆Dk,Ek,ΛkDk,Ek,Λl + ∆Dk,Ek,Λl⊥ ,Ek,Λl + ∆⊥,Ek,Λl⊥,Ek,Λk

≤ ∆Ek,Dk,ΛkEk,Dk,Λl + ∆Dk,Ek,∅⊥ ,Ek,∅ + ∆Dk,Ek,ΛlDk,Ek,Λk
= 2 · AdvERR–CCA

E,Λ + AdvCTI–CPA
E,Λ

AdvERR–CCA
E,Λ = ∆Ek,Dk,ΛkEk,Dk,Λl ≤ ∆Ek,Dk,ΛkEk, ⊥ ,Λk + ∆Ek,⊥,ΛkEk,⊥,Λl + ∆Ek, ⊥ ,ΛlEk,Dk,Λl

= AdvCTI-sCPA
E,Λ + AdvERR–CPA

E,Λ + AdvCTI–CPA
E,Λ

≤ 2 · AdvCTI–sCPA
E,Λ + AdvERR–CPA

E,Λ ut

3 Comparison of Recent AE Notions

Three recent papers introduced strengthened AE notions to capture distinguishable decryption fail-
ures [19], releasing unverified plaintext [3], and “robust” authenticated encryption [29]. In every case
the encryption oracle can be cast as

E : K× N× A×M→ C

but their respective authors make slightly different definitional choices depending on which aspect of the
implementation they had in mind when developing the notion. The main differences are how decryption
and its leakage are defined, when a ciphertext is considered valid, and what security to aim for. A quick
comparison of the syntactical choices is provided in Table 1.

In this section we will show how these three notions relate our framework. With the appropriate
syntactical modifications, it turns out that each of these three notions can be cast into our framework,
allowing us to conclude that the respective security notions are all broadly equivalent to our more general
SAE notion. As an obvious corollary, the three existing notions turn out to be less radically different than
initially suggested.

3.1 Distinguishable Decryption Failures (BDPS, [19])

The accepted notions of encryption typically only allow decryption to fail in one way, captured by the
single error symbol ⊥ [10, 33, 51]. Yet several provably LOR–CCA secure schemes have succumbed to
practical attacks as a result of different decryption failures being distinguishable, both in the public key
and symmetric settings [17, 57]. Boldyreva et al. [19] initiated a systematic study of the effects of sym-
metric schemes with multiple decryption errors. They emphasised probabilistic and stateful schemes,
omitting a more modern nonce-based treatment. Below we describe the nonce-based analogues of their
syntax and security notions.

A nonce-based, multi-error AE scheme a la BDPS, is a pair (E,D),

E : K× N× A×M→ C
D : K× N× A× C →M ∪ L
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SAE (Section 2.5) BDPS [19] RUP [3] RAE [29]
Dk Λk Dk Dk Vk Π−1

Valid Ciphertext, C = Ek(M) M ∈ M > M ∈ M M ∈ M > M ∈ M

Invalid Message, c ∈ C \ im(Ek) ⊥ ⊥i ∈ L ⊥i ∈ L ⊥i ∈ L = M ⊥ ⊥i ∈ L = M,

|⊥i| 6= |c| − τ
Table 1: Syntax for decryption leakage chosen by this and three previous works.

Our notion IND–CPA CTI–CPA CTI–sCPA IND–sCCA IND–sPAS
Simplified bitstring 10000 01100 01101 10011 10001
BDPS notion IND$–CPA INT–CTXT* INT–CTXT IND$–CCA IND$–CVA
Reference (in [19]) Def. 5 Def. 7 Def. 7 Def 5. Def. 5
Direct translation 10000 01110 01111 10011 10001
RUP notion IND–CPA INT–CTXT INT–RUP
Reference (in [3]) Def 1. Def. 4 Def. 8
Direct translation 10000 01100 01111

Table 2: Notions from BDPS and RUP that directly translate into our framework.

satisfying the classical definition of correctness. The idea is that if decryption fails, it may output any
error symbol from L. (BDPS stipulate finite L, but this restriction appears superfluous and we omit it.)

To cast a (nonce-based) BDPS scheme into our SAE syntax, we observe the obvious (invertible)
mapping from a scheme (E,D) by setting Ek = Ek, Dk(C) = Dk(C) whenever Dk(C) ∈ M or
otherwise ⊥, and Λk(C) = Dk(C) whenever Dk(C) ∈ L or otherwise >.

Notions. BDPS define a number of notions, including confidentiality notions following both the LOR
and probabilistic IND$ concepts. Once adapted to a nonce-based setting, several of their notions di-
rectly translate into our framework, as listed in Table 2. Additionally, BDPS define error invariance [19,
Def. 8], which (roughly) says that it should be hard for an adversary with access to honest encryption and
decryption oracles to achieve any leakage other than a particular value. This notion, INV–ERR, implies
that an adversary cannot learn anything from decryption leakage and can be thought of as a special case
of ERR–CCA since the simulator need just return this common value.

Error invariance is strictly stronger than leakage simulatability: To see this, consider a scheme that
is INV–ERR, then there is a simple variant that upon triggering an error returns ⊥0 or ⊥1 depending on
the first ciphertext bit (instead of always returning the same ⊥). Such a scheme is still ERR–CCA but
no longer INV–ERR. We consider this a weakness of error invariance, rather than a benefit: effectively
the definition has become so restrictive that it, in a roundabout way, again rules out multiple decryption
errors.

The strongest goal defined by BDPS is IND$–CCA3 [19, Def. 19], which incorporates multiple
errors to the classical authenticated encryption notion. It is characterised by two oracles: an adversary
has to distinguish between (Ek,Dk) (real) and ($,⊥) (ideal), where the error ⊥ is a parameter of the
notion. Thus, despite the desire to capture multiple errors, in the ideal case the adversary is still only
presented with a single error symbol. This curious artefact results from using INV–ERR rather than
ERR–CCA to characterise “acceptable” leakage. Consequently, the reference definition that does not
model the real-world problem satisfactorily; for instance it fails to capture the release of unverified
plaintext.

Implications and separations. BDPS provide several implications and separations between their no-
tions. Although originally stated and proven for probabilistic and stateful schemes, the results easily
carry over to a nonce-based setting. Using our naming convention, BDPS show that IND–sPAS + CTI–
sCPA =⇒ IND–sCCA, yet IND–sPAS + CTI–CPA 6=⇒ IND–sCCA. This immediately implies a
separation between CTI–sCPA and CTI–CPA. They also prove that AE and INV–ERR jointly are equiv-
alent to their IND$–CCA3 notion [19, Theorem 20], which itself implies IND–sPAS and CTI–sCPA.
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Since INV–ERR implies ERR–CCA, this means IND$–CCA3 implies SAE. Moreover, the sepa-
ration between ERR–CCA and INV–ERR carries over when comparing IND$–CCA3 and SAE. For
completeness, we give the following theorem, which is a direct result of combining BDPS’s Theorem
20 (after incorporating nonces) with the observation that INV–ERR is more restrictive than ERR–CCA,
then applying Theorem 6:3.

Theorem 7. The IND$–CCA3 notion of BDPS implies SAE, differing only with respect to the (overly
restrictive) notion of error invariance. That is,

IND$–CCA3 ⇐⇒ AE + INV–ERR =⇒ AE + ERR–CCA ⇐⇒ SAE.

3.2 Releasing Unverified Plaintext (RUP, [3])

Andreeva et al. [3] set out to model decryption more accurately for schemes that calculate a candidate
plaintext before confirming its validity. In practice, such a candidate plaintext often becomes available
(including to an adversary), even if validation fails. Examples include all schemes that need to decrypt
before integrity can be checked (covering MAC-then-encrypt, MAC-and-encrypt, and encode-then-
encipher) as well as schemes sporting online decryption (for instance single-pass CBC-then-MAC de-
cryption). Andreeva et al. provide a large number of new definitions, covering security under decryption-
leakage for both confidentiality and integrity.

Syntactical differences. The RUP paper models decryption using a decryption oracle D that always
prepares a purported plaintext and a verification oracle V that determines whether the ciphertext was
valid or not. The idea is that in honest implementations the output of D is only released if verifica-
tion passes, yet security should hold even if the output of D is leaked before verification takes place
(corresponding to “releasing unverified plaintext”).

The RUP framework includes an explicit tag T as output of encryption (and input to decryption).
However the tag and ciphertext terms are always used together, allowing us to consider the ciphertext
as (C, T ) instead. This pair can be injectively mapped into C, e.g. by C ′ := C||T if the stretch is fixed.
With this modification in mind, the RUP algorithms D and V satisfy

D : K× N× A× C→ M = L

V : K× N× A× C→ {>,⊥} .

When called with a valid ciphertext, Dk returns the plaintext, and Vk returns >. Conversely, when
called with an invalid ciphertext, Dk will return some leakage information (nominally, the eponymous
“unverified plaintext”) and Vk will return ⊥.

By changing perspective, we can cast a RUP scheme into the SAE framework: let Dk(C) = Dk(C)
if Vk(C) = > (otherwise Dk(C) = ⊥) and Λk(C) = Dk(C) whenever Vk(C) = ⊥ (otherwise
Λk(C) = >). Then, (E,D,Λ) is an SAE scheme (where E = E), with leakage space L = M (see also
Table 2). For the remainder of this section, we will abuse the ∆ notation defined previously to describe
access to three oracles matching the syntax of Ek,Dk and Vk respectively.

Security notions. Andreeva et al. refer to the traditional “encryption-only” notions of confidentiality
and integrity under their modern names IND–CPA and INT–CTXT (our CTI–CPA). When decryption
comes into play, a large number of new notions are suggested, typically defined in terms of adversarial
access to their Dk and Vk oracles.

For integrity, the adversary is given full access to all three honest oracles (Ek,Dk, and Vk), and chal-
lenged to make a forgery, a notion dubbed INT–RUP for integrity under release of unverified plaintext.
Since access to both Dk and Vk is equivalent to access to (our) Dk and Λk, INT–RUP directly translates
into our framework: it corresponds to CTI-sCCA (itself equivalent to CTI–sCPA). This makes Andreeva
et al.’s INT–RUP equivalent to BDPS’s INT–CTXT notion. These observations are presented in Table 2.
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RUP Privacy Notion IND–CCA IND–CCA’ PA1 PA2 DI
Reference (in [3]) Def. 2 Def. 3 Def. 5 Def. 6 Def. 7

Game ∆
Ek,Dk,∅
$ ,Dk,∅

∆
Ek,Dk,∅
$ ,Dk,∅

∆
Ek,Dk,∅
Ek, S ,∅ ∆

Ek,Dk,∅
Ek, S ,∅ ∆

Ek,Dk,∅
Ek,Dl ,∅

Comments Full domain separa-
tion required

S is a stateful simu-
lator with access to
query history of Ek

S is a stateful simu-
lator

l←$ K, named for
“Decryption Inde-
pendence”

Table 3: RUP confidentiality notions that do not readily translate into our framework. In each case,
domain separation requires we do not forward queries from Enc to Dec to prevent trivial wins.

For most of the RUP confidentiality notions the verification oracle is missing. This makes translation
into our syntax cumbersome as any direct method would implicitly provide access to Vk functionality.
Table 3 lists five RUP confidentiality notions in their original syntax and nomenclature.

As far as combined notions are concerned, RUP defines the overall goal as achieving the triple of
INT–RUP, DI and IND–CPA. They also define AE–RUP2, which aims to fulfil a similar purpose to
ERR–CCA.

Implications and separations.. Andreeva et al. show that their PA2 and DI are equivalent [3, Theorems 8
and 9] and imply PA1 [3, Theorem 1]. Moreover, when combined with IND–CPA, PA2 provides a
meaningful increase in security [3, Theorems 2 and 3], whereas PA1 does not [3, Theorems 4 and 5].
They provide an alternative proof that CTI–sCPA is strictly stronger than CTI–CPA [3, Theorem 10].

Critique. The RUP model restricts any decryption leakage to the message space. This is unnecessarily
restrictive: it does not directly cover multiple decryption errors; moreover a scheme may conceivably
leak some internal variable (say a buffer) that is not in the message space.

For the myriad of RUP’s confidentiality notions, an adversary is—for whatever reason—not provided
with a verification oracle. For instance, RUP provides two versions of IND–CCA security. Each gives the
adversary access to a challenge Enc oracle and the honest decryption/leakage function Dk, but neither
provides access to Vk, with the difference between them being whether the adversary may forward
queries from Dk to Ek or not.

This restriction is similar to those we discuss in Appendix B and raises the question whether either of
RUP’s IND–CCA notions imply traditional LOR–CCA once the leakage is ignored. If the scheme is tidy,
the RUP decryption and encryption oracles together suffice to implement the decrypt-verify oracle, and
this can be used to show that IND–CCA’ security even implies AE security. However, RUP’s IND–CCA
prevents this inter-use of oracles, and in fact it appears that it does not imply traditional LOR–CCA.
These claims are stated in Lemma 8 and Lemma 9, proofs of which can be found in Appendix C.

Lemma 8. RUP’s IND–CCA’ implies AE.

Lemma 9. RUP’s IND–CCA does not imply either our IND–CCA or traditional LOR–CCA

Authenticated encryption definition. Andreeva et al. suggest that an authenticated encryption should
meet the combined goals of IND–CPA and PA for confidentiality, and INT–RUP (our CTI-sCPA) for
integrity [3, §8].

Having to satisfy three separate notions may appear needlessly complicated and lacks the elegance a
single notion can provide. We propose RUPAE as a natural and neater way of defining Andreeva et al.’s
final objective, where we use (the equivalent) DI instead of the less direct PA:

AdvRUPAE
E,Λ := ∆Ek,Dk,Vk

$ ,Dl , ⊥

This goal may originally have been envisaged by the authors, yet it was not explicitly alluded to (let
alone defined). Providing a single succinct security goal is only worthwhile if it properly captures the
the compound notions, which we show in Theorem 10. The proof is intuitive, based around liberal use
of the triangle inequality.
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Theorem 10. The single term RUPAE notion is equivalent to the triple of goals originally proposed.
That is,

RUPAE ⇐⇒ CTI–sCPA + DI + IND–CPA ⇐⇒ INT–RUP + PA + IND–CPA.

Proof. The second equivalence is simply a renaming, so we must just prove the first.

AdvRUPAE
E,Λ = ∆Ek,Dk,Vk

$ ,Dl , ⊥ ≤ ∆Ek,Dk,Vk
Ek,Dk, ⊥ + ∆Ek,Dk,⊥

Ek,Dl ,⊥ + ∆Ek,Dl,⊥
$ ,Dl,⊥

= ∆Ek,Dk,Vk
Ek,Dk, ⊥ + ∆Ek,Dk,∅

Ek,Dl ,∅ + ∆Ek,∅,∅
$ ,∅,∅

= AdvCTI–sCPA
E,Λ + AdvDI

E,Λ + AdvIND–CPA
E,Λ

Thus if these three advantages are small so is the RUPAE advantage, and the scheme is secure. Con-
versely,

AdvIND–CPA
E,Λ = ∆Ek, ∅ ,∅

$ , ∅ ,∅ ≤ ∆Ek,Dk,Vk
$ ,Dl , ⊥ ≤ AdvRUPAE

E,Λ

Adv DI
E,Λ = ∆Ek,Dk,∅

Ek,Dl ,∅ ≤ ∆Ek,Dk,Vk
$ ,Dl , ⊥ + ∆ $ ,Dl,⊥

Ek,Dl,⊥
≤ AdvRUPAE

E,Λ + AdvIND–CPA
E,Λ ≤ 2· AdvRUPAE

E,Λ
AdvCTI–sCPA

E,Λ = ∆Ek,Dk,Vk
Ek,Dk, ⊥ ≤ ∆Ek,Dk,Vk

$ ,Dl , ⊥ + ∆ $ ,Dl,⊥
Ek,Dl,⊥ + ∆Ek,Dl ,⊥

Ek,Dk,⊥
≤ AdvRUPAE

E,Λ + AdvIND–CPA
E,Λ + Adv PA

E,Λ ≤ 4· AdvRUPAE
E,Λ

Thus the opposite relation also holds, and if the RUPAE advantage is small so are the CTI–sCPA, DI
and IND–CPA advantages. ut

To relate this to our other notions, we provide the following observation:

Lemma 11. CTI–sCPA + ERR–CPA ⇐⇒ CTI–sCPA + DI

Proof. We must show that given CTI–sCPA, ERR–CPA and DI coincide.
We apply conditional probability to expand out DI, where throughout k, l←$ K. Let F be the event

that A makes a call to his decryption oracle with a valid ciphertext (i.e. he creates and uses a forgery).
If ¬F, A has not been able to create a forgery and so every call to the D oracle returns only values
from the leakage function. Therefore, as long as ¬F, ERR–CPA and DI define the same game. Since the
probability P [F] is precisely the probability an adversary wins the CTI-sCPA game,

∣∣AdvERR–CPA
E,Λ (A)− AdvDI

E,Λ(A)
∣∣ ≤ P [F] ≤ AdvCTI-sCPA

E,Λ (A) .

So, as long as the CTI-sCPA advantage is small, ERR-CPA and DI are equivalent. Thus CTI–sCPA +
ERR–CPA ⇐⇒ CTI–sCPA + DI. ut

Finally then, we have the reassuring result that security within the RUP framework coincides with
our more general definition. To prove it, one simply chains Theorem 6, Lemma 11, and Theorem 10 (in
that order).

Corollary 12. RUPAE security is equivalent to SAE security.

3.3 Robust Authenticated Encryption (RAE, [29])

The proposal of Hoang et al. [29, §3], Robust Authenticated Encryption (RAE), has robustness against
inadvertent leakage of unverified plaintext as one of it goals. A notable difference compared to other
notions of AE is that RAE targets schemes where for each message the intended level of integrity is
explicitly specified by the user. To this end, both encryption and decryption algorithms are provided
with an additional input, called the stretch parameter τ , leading to the syntax:

E : K× N× A× N×M→ C
D : K× N× A× N× C →M .
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Thus, encryption calls are of the form C = EN,A,τk (M): they accept a nonce N , some associated
data A, the stretch parameter τ and a message M , and output some ciphertext C. There is a requirement
that τ is indeed the stretch, namely that |C| = |M | + τ . Decryption calls take a similar format, and
are allowed to “leak” a string not of the correct length when queried with invalid inputs. This length
restriction on the leakage implies that valid ciphertexts can easily be determined from their length. A
ciphertext is deemed valid iff |DN,A,τ

k (C)| = |C|−τ , moreover ifM = DN,A,τ
k (C) with |M | = |C|−τ

then it follows that EN,A,τk (M) = C.

The security game. The RAE security game aims to describe the best possible security for an object
with the given syntax. Comparison to ideal objects is not new: it is the standard notion for blockciphers
(namely a strong pseudorandom permutation [39]) and has appeared previously as an alternative for
deterministic authenticated encryption (in the form of strong pseudorandom injections [51]).

For a given stretch τ , the ideal object is a random element of Inj(τ), the set of all injective functions
whose outputs are always τ bits longer than their input. For τ > 0, strings outside the range of π ∈ Inj(τ)
are deemed incorrect ciphertexts and π cannot be inverted mathematically on these elements. Since
decryption may leak on these incorrect ciphertexts, returning⊥ in that case is no longer an option either.

Hoang et al. solve this problem by introducing a stateful simulator S and its filtered variant Sπ to
answer decryption queries in the ideal world. Here Sπ is the simulator S filtered by (the complement of)
the range of π; it exhibits the following behaviour. If a decryption query is valid (i.e. C ∈ Image(π)),
then the simulator Sπ returns the unique preimage M . (That membership of Image(π) cannot be deter-
mined efficiently is not an issue.) Otherwise, the ciphertext is invalid (C /∈ Image(π)) and Sπ calls S,
which must simulate the decryption oracle without access to the injections π·,·,·. The simulator S will
output a bitstring of any length other than |C| − τ , which the Sπ oracle will simply forward as its own
output.

Security is defined relative to this simulator S and in terms of distinguishing between two worlds:

AdvRAE
Π,S := P

[
k←$ K : AEk,Dk → 1

]
− P

[
πN,A,τ ←$ Inj(τ) : Aπ,Sπ → 1

]
.

The second probability above contains a slight abuse of notation, as the injections πN,A,τ are tweaked
by the nonce, associated data, and stretch τ . A fully formalised, code-based description can be found in
the original paper [29, World RAEΠ,S in Fig. 2].

Ideal versus attainable. Following Rogaway’s definitional papers [47, 48, 51], most recent symmetric
results have been given in terms of indistinguishability from the ideal world ($,⊥): an ideal encryption
oracle that outputs random bits and an ideal decryption oracle that never accepts. Hoang et al. instead opt
for a reference world that corresponds to the “best achievable”, a contrast they emphasize: “Before, AE–
quality was always measured with respect to an aspirational goal; now we’re suggesting to employ an
achievable one.” [29, §1:Discussion]. So, one of the big differences between RAE and the surrounding
literature is that RAE compares a scheme with the achievable world, rather than the ideal one.

One can see the resulting security notions as (ever more complicated) extensions of the pseudoran-
dom permutation notion typical for blockcipher security. This immediately reveals that to some extent,
this choice is one of fixing abstraction boundaries. When purely studying how to transform one prim-
itive to another, it makes sense to use the achievable world as a benchmark, since the results may be
tighter. Yet, for an overall security definition that is both robust and meaningful the reference world
should be ideal, such that the overall bound really does represent the real-world security of the scheme.
When non-experts use a robust AE scheme in larger designs, there should be as few implementation and
configuration pitfalls as possible, and a small adversarial advantage should imply security as intuitively
understood.

Regarding user-defined stretch. The variable, user-defined stretch sets RAE apart from other notions
discussed so far. Hoang et al. insist that all values of stretch, including τ = 0, should be allowed for a
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scheme to be called RAE [29, footnote 9]. Consequently, RAE provides a continuum from authenticated
encryption to unauthenticated enciphering. As Hoang et al. hasten to add, a small stretch makes forging
trivial, rendering a good (generic) upper bound on the CTI–PAS advantage impossible.

While we consider RAE a clever and potent primitive spanning from ciphers to encryption, we find
the terminology “robust authenticated” encryption rather worrying. Robustness characterises the ability
of a construct to be pushed right to the edge of its intended use case (and possibly beyond). How-
ever, robustness resides in the implementation and deployment, not the primitive at hand: in App. E we
demonstrate a natural yet insecure implementation of supposedly RAE-secure primitive AEZ. What is
worse, even if an RAE primitive is properly implemented, exposing its full API to end users is an invi-
tation to end up with unauthenticated encryption, contrary to the name RAE suggesting a strengthened
version of authenticated encryption.

A crucial question when dealing with RAE is therefore who is the intended user who will choose the
stretch. If these are cryptographers designing further primitives (such as SAE) and protocols (such as
secure channels or disk encryption), then the variable stretch introduces expressiveness that might oth-
erwise be missing. It is then up to the primitive and protocol designers to guard users of these constructs
built on top of RAE from ‘bad’ stretches. Inevitably, the larger the user base, the less appreciation for
configuration subtleties.

Fixing the stretch. There is no intrinsic reason to bar a scheme from restricting which values of τ it
supports; the RAE security definition still makes perfect sense for length-regular schemes, where the
stretch is no longer user-defined (but instead depends only on the length of the input message). To ease
comparison with previous security notions, we will depart from Hoang et al.’s insistence on allowing
small stretch. Henceforth we will restrict attention to schemes with fixed stretch τ ∈ N and refer to this
restricted notion as RAE[τ ].

The mapping that takes an RAE[τ ] scheme to an SAE scheme is rather intuitive, and analogous to
that used in Section 3.2. Explicitly, let (E,D) be an RAE[τ ] scheme, and (inspired by RUP) let Vk be
the associated validity function, where VN,A

k (C) = > ⇐⇒ |DN,A,τ
k (C)| − |C| = τ . Then (E,D,Λ) is

an SAE scheme, where EN,Ak (M) := EN,A,τk (M) and

DN,Ak (C) :=

{
DN,A,τ
k (C) if VN,A

k (C) = >
⊥ if VN,A

k (C) 6= >
, ΛN,Ak (C) :=

{
> if VN,A

k (C) = >
DN,A,τ
k (C) if VN,A

k (C) 6= >

RAE[τ ] versus SAE. Having applied the transform (which has no bearing on security), it is not sur-
prising to find RAE[τ ] and SAE security essentially coincide, with the only complication a generic term,
reflecting the difference between ideal and best possible security. In order to provide an explicit relation-
ship between the two notions, we first present a simulator-free version of RAE[τ ] security (an analogue
of Lemma 4).

Lemma 13. Let Λ be the simulator that initializes (once) by sampling a key l←$ K, then evaluates Λl
for each query. Then for any simulator S it holds that AdvRAE[τ ]

Π,Λ (A) ≤ 2 · AdvRAE[τ ]
Π,S (A).

Proof. Consider the image of the ideal world under the map from the RAE[τ ] context to the SAE
framework. Idealised encryption again forwards calls π, idealised decryption now forwards all calls
π−1, and the image of leakage is now simply a call to S. Thus being secure under RAE[τ ] is equivalent
to saying an adversary cannot distinguish between (Ek,Dk,Λk) and (π, π−1, S). So,

AdvRAE[τ ]
Π,Λ (A) = ∆Ek, Dk ,Λk

π ,π−1,Λl
(A)

≤ ∆Ek, Dk ,Λk
π ,π−1, S

(A) + ∆π,π−1, S
π,π−1,Λl

(A)

≤ 2 · AdvRAE[τ ]
Π,S (A)

Thus whenever there is a simulator such that the scheme is RAE[τ ] secure, Λ describes one also. ut
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Theorem 14. RAE[τ] and SAE security are equivalent. Explicitly, for an adversary A making at most
q queries, and using a repeated nonces r times,

∣∣∣AdvRAE[τ ]
Π,Λ (A)− AdvSAE

E,Λ (A)
∣∣∣ ≤ q

2τ−1 + r2+r
2τ+m+1 .

Proof. As discussed in the previous lemma, we may port the RAE[τ ] ideal world into our framework,
and assume that the simulator is Λ. So,

∣∣∣AdvRAE[τ ]
Π,Λl

− AdvSAE
E,Λ

∣∣∣ =
∣∣∣∆Ek, Dk ,Λk

π ,π−1,Λl
−∆Ek,Dk,Λk$ , ⊥ ,Λk

∣∣∣
= ∆$, ⊥ ,Λk

π,π−1,Λl

≤ ∆$,⊥,Λk
$,⊥,Λl + ∆$, ⊥ ,Λl

π,π−1,Λl

The first of these is the ERR–PAS game, which is perfectly secure. So, the only difference between
the schemes is the second term, characterising the choice of ideal world, which is precisely the difference
between the PRI and MRAE security games (since the leakage is miskeyed and thus irrelevant). To reach
an explicit result, we use the concrete security result of Hoang et al. [29, Theorem 1] to bound the PRI–
MRAE switch. ut

4 Conclusion

This paper investigated the effect of deterministic decryption leakage on provably secure authenticated
encryption. Having clarified the formalisation of this, we defined the appropriate notions, and compared
them, both to each other and to some previous works. With hindsight then, the focal point of this paper is
the Cube of notions and relations in Figure 4, which provides a visualisation of the modern nonce-based
world.

We first formalised what it meant to be a Subtle Authenticated Encryption (SAE) scheme (Section 2),
building on previous notions for tidy nonce-based AEAD. This was followed by defining the associated
security notions, where we provide a systematic naming scheme, that is both an intuitive and descriptive,
separating the adversary’s goal from their powers. For goals, we use IND (for INDistinguishability) to
measure a schemes confidentiality, CTI (for CipherText Integrity) to measure authenticity and introduce
ERR (for ERRor simulatability) to describe how significant the leakage is. Our powers follow conven-
tional naming, with CPA,CCA and PAS taking their traditional meanings, while CDA corresponds to
a chosen decryption attack and the subtle variants (e.g. sCPA) are those where the adversary may also
observe leakage. In particular, an SAE scheme is secure if the adversarial advantage in the AE-sCCA
game is sufficiently small. Our study then moved on to demonstrating equivalences, separations and
relations between the different notions. This culminates in the relationships described in the cube (Fig-
ure 4), with one key result being that ERR–CCA precisely describes the difference between AE security
in the absence of leakage and full SAE security.

With the benchmark for security set, we compare it with previous attempted formalisations (Sec-
tion 3). Of these, BDPS [19] provides the most generalised syntax, although the condition that errors
be invariant and the (seemingly unnecessary) requirement of a finite error space limit the applicability
of their results. RUP [3] presents the material in a very practical way, with definitions and models that
clearly describe how decrypt-then-verify schemes behave, but in doing so yield a scheme that does not
readily generalise to handling alternative leakage sources. RAE [29] on the other hand defines a goal
that, at first glance, appears to be the strongest of them all, but upon further inspection is rather more
nuanced. After minor changes, the key definitions of all three papers turn out to be equivalent to our in-
tuitive SAE notion, meaning the three papers have more in common than perhaps originally recognised
by their authors.

To compliment the work, we present an overview of the literature on which this work is built (Ap-
pendix A), and observe that this is slightly more nuanced than one might believe. As an example, we
investigate the case of nonce-based IND–CCA, finding seemingly minor definitional choices yield very
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different notions (Appendix B), and demonstrating how important it is that we treat leakage as a property
of the actual implementation not the abstract functionality (Appendix E).

In this paper we focused on how one should characterise security in the presence of deterministic
decryption leakage, sidestepping the related question of how one should achieve security within such a
framework. It would be interesting for future works to describe classes of scheme that can (or cannot)
achieve subtle security to a meaningful extent. Currently, very few schemes meet these strong definitions
of security. RUP demonstrates that a number of popular schemes cannot possibly do so by providing
attacks, and goes on to prove that certain schemes achieve a weaker version of security (where leaked
plaintext can only be shown harmless by a simulator with access to the query history of the encryption
oracle). However, at the time of writing, the only method known for achieving SAE security is through
the encode-then-encipher paradigm (as proven in RAE).
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A Historical Context

What constitutes authenticated encryption (and how to achieve it) has been widely studied. This section
contains a historical overview, providing the context to interpret our results in terms of traditional no-
tions of symmetric encryption. For consistency with the literature, these notions are presented with their
original names, with Ek denoting an encryption oracle and Dk a decryption oracle. We use the subscript
to denote secret material (the key), superscript to denote public material if there is any, and parenthesis
to denote content to be encrypted or decrypted.

Probabilistic encryption. Initial formalisations of symmetric encryption relied strongly on the seminal
work of Goldwasser and Micali on public key encryption [27]. Symmetric encryption is modelled as a
probabilistic process that depends on a security parameter (typically provided indirectly by means of the
private key). The standard confidentiality notion (cf. [32, Def. 3.30]) is indistinguishability under chosen
plaintext attacks. An adversary with access to an honest encryption oracle throughout, should output
(or find) two messages of equal length and, after receiving a random encryption of one of these, guess
which of the two messages was encrypted by the challenge oracle. The scheme is deemed secure if all
polynomial-time adversaries have a negligible success probability (all in terms of the security param-
eter). Randomness is required to prevent the encryption of equal inputs resulting in equal ciphertexts,
which would clearly leak information about the inputs. This randomness in turn leads to expansion of
the ciphertext.

The definition of security under chosen ciphertext attacks is similar, except that the adversary is
additionally provided with an honest decryption oracle Dk. Historically, two variants were considered
depending on when the adversary may call Dk: CCA1 (or lunch-time attack) refers to a scenario where
the adversary no longer has access to its decryption oracle once it receives the challenge ciphertext,
whereas CCA2 refers to everlasting access to the decryption oracle (which will suppress its output when
given the challenge ciphertext). Nowadays, chosen ciphertext attacks (CCA) default to CCA2 (and the
‘2’ is typically dropped).

For simplicity, the adversary is traditionally restricted to making only one query to its challenge
oracle (resulting in only a single challenge ciphertext). One can easily extend the security notion to one
where the adversary has unlimited access to its challenge oracle. This extension leads to an equivalent
definition from the perspective of asymptotic security: a hybrid argument can be used to show that
security under one notion implies security under the other (using a non-tight reduction).

Concrete security. Asymptotic security leads to a theoretically solid framework, but it poses problems
when applied directly to practice. Most primitives underlying symmetric cryptology, for instance AES or
Rijndael, do not come in infinite families (cf. RSA moduli in the public key setting), but rather only exist
for a few choices of block length and key length. Formally, an asymptotic statement about AES is non-
sensical, moreover a security reduction given purely in asymptotic terms cannot be used to determine the
effect of block and key sizes on the security of a deployed scheme. To harness the hardness of a particular
problem instantiation, an alternative called concrete security [10] is used instead. Security is expressed
as the advantage that a resource-constrained adversary may at most achieve against a specific scheme.
An encryption scheme is formalised as a triple key generation, encryption, and decryption (K, E,D)
and each security experiment begins by generating a key k with K, (which the adversary is not allowed
to see). The advantage can be thought of as the probability an adversary can distinguish between two
possible experiments, or worlds.

Confidentiality. To measure confidentiality, or how hard it is for an adversary to learn the message from
the ciphertext, Bellare et al. [10] define two security notions based on chosen plaintext attacks: left-
or-right (LOR–CPA) and real-or-random (ROR–CPA). For both, the adversary is only provided access
to a challenge encryption oracle. For the LOR–CPA game, the adversary submits a sequence of pairs
(x1,i, x2,i) and must decide whether the oracle has been returning Ek(x1,i) or Ek(x2,i). On the other
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hand, in the ROR–CPA game, the adversary submits a series of messages xi and must decide whether
the oracle returns Ek(xi) or Ek(ri), where ri←$ {0, 1}|xi|. The LOR–CPA and ROR–CPA games are
equivalent to each other up to a small factor in the advantage, and non-tightly to (a concrete variant of)
the security game (as above) with a single challenge ciphertext and access to a true encryption oracle.
These notions are collectively referred to as IND–CPA and are at the base of all modern confidentiality
definitions.4

Authenticity. Bellare and Rogaway [15], as well as Katz and Yung [33], introduced an authenticity notion
for probabilistic schemes, later dubbed INT–CTXT by Bellare and Namprempre [14]. The integrity (or
authenticity) of a message implies the non-malleability goals of Dolev et al. [24], and (informally) means
that the recipient can be confident that every message they receive is as the sender intended. Slightly
more formally, the integrity of the ciphertext (INT–CTXT) convinces the receiver that the ciphertext is
valid. In the INT–CTXT game, an adversary with access to Ek has to come up with a ciphertext C such
that Dk accepts C, yet C was never output by the adversary’s own Ek oracle. This directly implies the
integrity of the plaintext (INT–PTXT), which captures that the decrypted plaintext has not been tampered
with, although the reverse implication does not hold. One subtlety with defining INT–PTXT is that the
presence of a verification oracle can significantly aid an adversary, whereas for ciphertext integrity this
presence does not help that much [11, App. B].

Combining the two. Bellare and Namprempre [14] observe that IND–CPA and INT–CTXT together
imply IND–CCA, often written as IND–CPA + INT–CTXT ⇒ IND–CCA. The reverse is not true
(IND–CCA security is possible for schemes that are not INT–CTXT secure), prompting Bellare and
Namprempre to define authenticated encryption as the combination IND–CPA + INT–CTXT.

Although probabilistic encryption is conceptually neat, it does not (and never really did) capture
practice, where encryption is generally instantiated with a deterministic algorithm that has access to
either some state or to an external source of randomness. These two distinct scenarios are captured using
stateful encryption and “Initialisation Vector” (IV) encryption, respectively. For the latter, security of
the encryption ideally relies as little as possible on the quality of this external randomness, leading to
nonce-based encryption.

Stateful encryption. In stateful encryption, key generation outputs an initial state in addition to the key.
Encryption now takes as input a message, the key, and some state, and it outputs the ciphertext as well as
a new state; decryption works similarly, also operating on a state (as well as taking in key and ciphertext
and outputting a purported message). One key aspect of stateful encryption is that replay and reordering
attacks should be prevented, which typically requires some form of synchronization between encryption
and decryption states. The notion of synchronization also appears in the formalisation of stateful encryp-
tion due to Bellare et al. [13]. They generalise INT–CTXT to INT–sfCTXT by granting the adversary a
win as soon as it makes a valid “out of order” decryption query, while for IND–sfCCA they allow all
decryption queries, but suppress the output as long as the ciphertexts arrive in the exact same order as
output by the (challenge) encryption oracle. They show that IND–CPA + INT–sfCTXT implies IND–
sfCCA, effectively defining stateful authenticated encryption. Note that deterministic stateful schemes
can still use randomness by including (the state of) a pseudorandom generator in the encryption and
decryption states.

IV encryption. Classical encryption modes such as CBC, OFB, CFB, and CTR [44] all rely on an
IV that is chosen anew each time a message is encrypted. While one could consider the IV as part of
the ciphertext (and treat the scheme as a whole a probabilistic one), a formal model treating the IV as
separate input to both encryption and decryption algorithm is preferable, e.g. to capture the very real

4 IND–CPA is often sloppily referred to as semantic security, a notion which intuitively captures that from a ciphertext
an adversary cannot learn anything about the underlying plaintext apart from possibly its length. Although asymptotically
semantic security is equivalent to IND–CPA, formally it is quite a different notion.
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possibility of the IV being transmitted out of band. A suitable syntax was pioneered by Rogaway and
coauthors [47–49], who also introduce so-called associated data: data that should be authenticated but
need not be encrypted, such as packet headers. From a security perspective, the decryption IV is always
assumed to be under adversarial control, but there are three common options depending on how the IV is
chosen for encryption queries. If it is chosen uniformly at random, iv-based encryption emerges; this can
be considered a special case of probabilistic encryption. If the IV is unique but not necessarily random,
it is referred to as a nonce (for “number used once”): an adversary can choose the encryption nonces in
any way, as long as each nonce is used only once (this is called nonce-respecting). The resulting notion,
nonce-based encryption, is strictly stronger than iv-based encryption (for large enough nonce spaces).
Finally, if the adversary is allowed to repeat nonces, effectively rendering encryption entirely determinis-
tic, the concept of Misuse Resistant Authenticated Encryption (MRAE) arises. This notion was explored
by Rogaway and Shrimpton [51]. They defined nonce-based authenticated encryption using a single
game dubbed IND$–CCA3 and proved IND$–CCA3 security is equivalent to security under both the
IND$–CPA (see below) and INT–CTXT games (against nonce-respecting adversaries). By substituting
uniqueness of nonces by uniqueness of the triplet IV–header–message they arrived at MRAE.

Random flavours. Capturing confidentiality, even under chosen plaintext attacks, can be done in es-
sentially three different ways. The classical notion of indistinguishability IND (in its real-or-random
incarnation) compares the encryption of the challenge message with the encryption of a random mes-
sage of the same length.

An alternative definition of confidentiality is indistinguishability from random ciphertexts, or IND$
security. In the IND$ game, an adversary needs to distinguish between a challenge oracle that returns
either the honest encryption or a ciphertexts of corresponding length, but drawn uniformly at random
instead (i.e. a string of random bits of appropriate length). Thus security demonstrates that ciphertexts
look random and so they cannot possibly leak information. For length-regular schemes (where |Ek(M)|
depends on just |M |), IND$–CPA implies IND–CPA, but the converse does not hold.

The final notion of confidentiality does not look at individual ciphertexts, but instead considers
the functionality as a whole. This leads to a security analogue for encryption of what pseudorandom
permutations provide for blockciphers. A nonce-based encryption scheme syntactically is a family of
injections, hence a secure encryption scheme should be indistinguishable from a (family of) truly ran-
dom injections. Rogaway and Shrimpton [51, §8] termed this notion a pseudorandom injection (PRI).
Along with the definition of an online cipher by Bellare et al. [8], this is an early example of a possible
philosophical shift in AE definitions: instead of describing an idealised encryption (as with AE), they
describe the “best possible” (a PRI).

Comparing paradigms. There are persuasive reasons for choosing any of the paradigms discussed
above, both in relation to which syntax to use and what kind of security to aspire to. A brief discussion
of the definitional merits of probabilistic, random-IV and nonce-based schemes is provided by Nam-
prempre et al. [42]. We believe that, to a large extent, the choice depends on where to draw abstraction
boundaries as we explain below.

Probabilistic versus random-IVs. Probabilistic schemes are self-contained and, once associated data is
incorporated, have the most general syntax. Random IV schemes have a more restrictive syntax that bet-
ter models reality, emphasizing that any randomness used for encryption is typically externally generated
and not incorporated implicitly in the ciphertext, but rather sent explicitly (sometimes even out-of-band).
Any random-IV scheme can be considered as a probabilistic scheme by prepending the (fixed-length) IV
to the ciphertext. This transformation preserves security under the classical indistinguishability notions,
converting any random-IV scheme into a similarly secure probabilistic scheme.

Conversely, a probabilistic scheme could be cast as an IV-based scheme, by abstracting out all use
of randomness and declaring it the IV (rendering any randomness explicitly transmitted as part of the ci-
phertext superfluous). For most ‘natural’ secure probabilistic schemes this transformation works, result-
ing in a secure IV-based scheme. However, there are situations where the transformation is problematic,
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either from an efficiency or security perspective (or both). When the randomness is implicit, casting the
scheme to the IV model leads to unnecessary expansion. Consider for example the probabilistic Encode-
then-Encipher scheme that given a secure±prp E, encrypts by sampling some string I of known length v
and outputting ciphertext C ← Ek(I||M ||0τ ) and decrypts by setting I||M ||T ← Dk(C) and returning
M iff T = 0τ . When turning this probabilistic scheme into a random-IV scheme, the ciphertext C can-
not easily be contracted, thus transmission of the random string I creates additional overhead without
clear benefit. In contrived examples, the randomness consumption of a probabilistic scheme might be
message-dependent, or revealing the randomness could compromise security.

Random IVs versus nonces. Many schemes analysed as random-IV or probabilistic scheme require a
truly randomised initial value for security. Once the IV can be predicted or manipulated by an adversary
security could break down completely. CBC mode is a good example of a scheme relying on random IVs.
Since in practice guaranteed true randomness is rare, reliance on true randomness can be problematic.

Nonce-based schemes, which share the same syntax as random-IV schemes, overcome this problem,
as they only require unicity (at the encryption end) of initial vectors (now relabelled a nonce). Nonces are
much easier to implement than uniform randomness, for instance using a counter. Moreover, a nonce-
based scheme can generally be run with a randomised IV anyway, as for sufficiently large nonce spaces,
drawing the IV uniformly at random will rarely lead to colliding nonces (the error term in the reduction
being a standard birthday bound).

Nonces versus states. When implementing a nonce-based scheme using a counter to prevent reoccur-
rence of the nonce, the encryption algorithm necessarily needs to keep track of this counter, making it a
stateful algorithm. However, only when decryption becomes stateful as well does it become appropriate
to refer to Bellare et al.’s stateful security notions. The main difference between stateful security and
nonce-based security is that the former explicitly rules out replay and reorder attacks (bringing it closer
to the expectation of a secure channel [41]).

Nonce-based schemes trivially induce stateful schemes, where the state is initialized to zero during
key generation and incremented each time a message is sent or received. This transformation preserves
security (up to nonce wrap around): since the stateful decryption algorithm (re)computes the relevant
nonces, replays and reordering is not possible.

While any probabilistic or IV scheme could be considered a (probabilistic) stateful scheme (by
simply ignoring the state), it does not render a secure scheme; in particular replays and reordering will
be trivial to achieve by an adversary.

Implications and separations. As we mentioned before, a lot of subtly different formalisations of in-
distinguishability have been proposed (real-or-random, left-or-right). For probabilistic encryption these
notions have been shown equivalent, meaning security under one implies security under the other. How-
ever, they do not imply indistinguishability from random ciphertexts (IND$), which constitutes a sepa-
ration. When implications and separations have been proven in one context (say probabilistic schemes),
some care is required when interpreting them in another (say nonce-based schemes), as there is no a
priori guarantee that all such results carry over (although most do quite straightforwardly), as discussed
in Section 2.4. That said, several modern papers provide context-independent results (e.g. [3]), albeit not
always in a fully formalised framework.

Modern approach. Recent trends in the literature support the view that the merits of a nonce-based treat-
ment outweigh the limitations. For the remainder of this review, we will focus on this setting, where both
encryption and decryption are deterministic and stateless functions of their inputs. This includes most
efficient AE schemes, but rules out for instance stateful decryption [13] or fragmented decryption [18].

Tidiness. Namprempre et al. [42] introduced tidiness to the context of IV- (and thus nonce-) based
encryption, defining a scheme to be tidy if decryption is a true inverse of encryption. That is, they extend
the correctness requirement that DN,Ak (EN,Ak (M)) = M by also requiring that EN,Ak (DN,Ak (C)) = C
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Fig. 5: Diagram of accepted security notions. Each notion is defined in terms of the adversarial advantage
in distinguishing between appropriate pairs of oracles.

wheneverDN,Ak (C) 6=⊥. Although rarely stated as an explicit design criteria, most existing schemes are
tidy.

Thwarting traffic analysis. Traditional confidentiality notions (such as indistinguishability) take it for
granted that any ciphertext will leak the length of its underlying plaintext (for some suitable and often
implicit notion of length). In practice and in a larger context, plaintext lengths can be a valuable source
of metadata that may (for instance) betray browsing behaviour [54]. To this end, two countermeasures,
deployed in the real world, have been formalized.

Length-hiding encryption [46,55] seeks to disguise the length of messages by using variable amounts
of redundancy to pad up to some predefined granularity. This granularity must be provided by entering
the target ciphertext length to the encryption function (and allowing the encryption to fail if the ciphertext
length is not supported given the other inputs). Given a ciphertext, the exact plaintext length can only be
recovered with the decryption key. Length-hiding is a security goal that is seldom addressed by modern
AE models, typically leaving this problem as one to be dealt with at the protocol level. Although length-
hiding schemes need to support variable stretch (the difference between ciphertext and plaintext lengths),
it should not be confused with variable stretch to enable user-defined authentication levels ( [29], see
also Section 3.3) as the latter requires transmitting the stretch with the ciphertext, which would render
the scheme pointless in the length-hiding context.

Boundary-hiding encryption [18] seeks to disguise where one ciphertext ends and another one starts:
ciphertexts arrive in a stream of random looking fragments. Given a sequence of concatenated cipher-
texts, the number of involved plaintexts (let alone their lengths or content) can only be recovered with the
decryption key. Dealing with arbitrarily fragmented ciphertexts leads to definitional challenges beyond
just boundary-hiding [18, 26].

Authenticated Encryption as of 2014. We formally described the generally accepted security goals in
Section 2.4, but briefly recall them here for completeness. Encryption is a deterministic algorithm, which
takes both a nonce and (optional) associated data as input, and outputs a ciphertext. Decryption takes a
nonce, associated data and ciphertext as input, and outputs either a message or a single error symbol.
The tidiness requirement of Namprempre et al. [42] is generally met (and implicitly required for some
results), and so likely to be an explicit requirement demanded of future schemes. The adversary is either
nonce respecting (leading to AE security) or nonce abusing (leading to MRAE security), as defined
by Rogaway and Shrimpton [51]. Security is often shown by separately bounding the IND–CPA and
INT–CTXT advantages. These relations are represented in Fig. 5.

Explicit tag space. An alternative syntax for AE separates the ciphertext space into two components
by splitting off an explicit tag space [2, 3]. We believe that the separation of tag and ciphertext as part
of the syntax only makes sense if there is a clear definitional difference between the two, i.e. an algo-
rithm that takes in one input but not the other or a security definition that assigns different meaning to
the two spaces. For authenticated encryption this is not the case; for instance in the definitions of An-
dreeva et al. [3] the ciphertext and tag always appear side by side. Indeed, there are schemes for which
no meaningful tag space can be defined (in particular schemes that add redundancy first and garble it
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with the message, such as MAC-then-encrypt or encode-then-encipher [15]). For this reason, we do not
include the concept of a tag space as part of our definitions. Of course when considering constructions
it is perfectly reasonable to utilize “tagging” as part of the internal design, as used to great effect by the
encrypt-then-MAC paradigm. Yet, the theoretical success of said paradigm does not justify cluttering
the definitional framework.

B Sorting out the IND–CCA Nonce-sense

Defining a meaningful security notion is a balancing act. The strongest possible security notion contrasts
a scheme with an alternative from which it is patently clear that the no-one could learn anything about the
inputs, and demonstrates that no adversary can differentiate between the two. Yet, in order for the notion
ever to be achieved, certain “unreasonable” adversarial strategies need to be disallowed. In general, the
closer to ideal the reference world is and the more control we allow the adversary over the inputs the
more adversaries, or more correctly the more adversarial behaviours, we must prohibit.

Traditionally, schemes were investigated in the probabilistic, LOR model. However, in this paper we
have worked within a tidy, nonce-based IND$ based model (which we termed IND), and enforced some
restrictions on the adversary not made in the traditional model. In this section, we will address these
issues and confirm that security within our more expressive model does indeed lead to security in the
sense expected by many practitioners. Firstly, we will briefly discuss how, in general terms, nonce-based
IND security (following the IND$ definition of Rogaway [48]) relates to probabilistic LOR security
(as defined by Bellare et al. [10]). Having done so, we will more thoroughly investigate the case of
IND–CCA.

From IND to LOR. As we will state explicitly later in this section, a nonce-based scheme induces
a probabilistic one that is also IND secure, albeit at the cost of a term that covers the probability of
collisions among randomly sampled nonce values. Then, a probabilistic IND notion then implies LOR
security, although the reduction loses a factor of 2 in the security bound. So, combining these two stan-
dard results, security in the nonce-based IND setting implies security in the LOR setting. However, as
will become clear through the remainder of this section, one must be very careful about which sequences
of queries are suppressed.

Prohibited Queries. In terms of experiment-based security definitions, preventing unreasonable adver-
sarial behaviour means that certain sequences of queries must be prohibited (or, more generally, sup-
pressed). One limitation we placed on the adversary (Section 2.3) was that they did not forward queries
made to Dk to their Enc oracle. This means that having made a query M ← Dk(N,A,C), they do not
then query C ′ ← Enc(N,A,M). After all, for tidy schemes EN,Ak (DN,Ak (C)) = C so an adversary
making such a query would trivially distinguish the Enc challenge oracle.

An important notion to which this restriction applies is IND–CCA. The IND–CCA advantage is
equivalent to

AdvIND–CCA
E,Λ (A) = P

[
AEk,Dk → 1

]
− P

[
A$,Dk → 1

]
.

We say a scheme is IND–CCA secure iff AdvIND–CCA
E,Λ is sufficiently small for all (WLOG deterministic)

adversaries A that do not forward queries between their oracles. So, after making a query to their first
(Enc) oracle they do not make the corresponding query to their second (Dk) oracle, nor vice versa.

This second restriction (that adversaries do not forward from Dk to Enc) is standard for IND–CCA
definitions in the nonce-based literature, but is not made in the probabilistic paradigm. Now, any nonce-
based scheme Π induces a random IV (and thus probabilistic) scheme P[Π] by uniformly sampling a
nonce from N. However, as the nonce-based and probabilistic definitions are subtly different, it is unclear
whether security of Π (as a nonce-based scheme) implies security of P[Π] (as a probabilistic scheme).

To resolve this, we will compare some variants of symmetric IND–CCA security relevant to nonce-
based schemes. We will consider four security games, based on whether the (overall) scheme is nonce-
based (n) or probabilistic (r, for random IV), and whether the (underlying) nonce-based scheme allows
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(n,a)-IND–CCA (n,p)-IND–CCA

(r,a)-IND–CCA (r,p)-IND–CCA

AE

Lemma 15:1

Lemma 15:1

Corollary 16

Lemma 15:3

Lemma 15:2 Lemma 15:2

Lemma 17
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Fig. 6: Relation between different formalizations of IND–CCA encryption. The four security games
are (x,y)-IND–CCA, where x ∈ {n, r} denotes whether the scheme is nonce-based or probabilistic
(with a random IV), and y∈{a,p} denotes whether (underlying) nonce-based game allows or prohibits
the adversary from forwarding queries from Dk to Ek. The accepted nonce-based definition is (n,p)
in the top-right, while the accepted probabilistic definition is (r,a) as shown bottom left. In particular,
we observe that security in the nonce-based setting implies the security of the analogous probabilistic
scheme.

(a) or prohibits (p) forwarding queries from Dk to Enc. We denote these as (x,y)-IND–CCA, with
x∈ {n, r} and y∈ {a, p}, and will investigate relations between them. Unless specified otherwise, we
restrict ourselves to tidy, length-regular schemes with sufficiently large nonce-space.

We achieve a number of positive results (Lemma 15) most notably that (n,p)-IND–CCA security of
Π implies the (r,a)-IND–CCA security of P[Π], then move on to investigate why (n,a)-IND–CCA is
not the preferred definition for the nonce-based case (Lemma 17). These results, visualised in Figure 6,
allow us to conclude that (n,p)-IND–CCA is indeed the logical choice of definition for IND–CCA in the
nonce-based setting.

Finally, we note that many modern papers in the nonce-based setting do not consider IND–CCA
directly, preferring to target AE, generally achieving this via the separated definition (e.g. [31, 42]).

Previous work. The definition of probabilistic LOR–CCA (previously CCA2) was introduced to the
concrete, symmetric security setting by Bellare et al. [10, Definition 1]. Here, the adversary is prohibited
from forwarding queries from Enc toDk, and these are the only prohibited queries. All other queries are
allowed, although it is pointless to repeat queries to Dk (since it is deterministic). The same restrictions
are used by Bellare and Namprempre [14, Definition 1] and Boldyreva et al. [19, Definition 5], and this
is the accepted definition for games allowing multiple queries to the challenge oracle. For length-regular
schemes, security under this left-or-right notion is implied by the corresponding indistinguishability
from random bits notion, which is (r,a)-IND–CCA.

The nonce-based AEAD notion and games were refined over a number of papers [15, 47, 49] culmi-
nating at FSE 2004, where Rogaway defined the modern syntax and with it IND$–CCA [48, Section 6],
the notion we term IND–CCA. The adversary (who does not make pointless queries) is forbidden from
forwarding queries from Enc to Dk, and also vice versa: they are prohibited from forwarding queries
fromDk to Enc. In their DAE work, Rogaway and Shrimpton describe (but do not explicitly give) a defi-
nition for IND–CCA [51, Appendix B], by considering it as a weakening of nonce-based AE, but do not
clarify which queries are to be prohibited (our interpretation suggests that no queries can be forwarded
or repeated). The IND$–CCA notion of RUP allows the pointless repeat queries, but prohibits forward-
ing queries between the oracles [3, Definition 2]. Overall, when restricted to the effective adversary, the
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accepted nonce-based definition is that which prohibits any repeating of queries or forwarding between
the two oracles: (n,p)-IND–CCA.

In the public-key setting, Bellare et al. [12] investigated the subtle differences between various for-
malisations of IND–CCA (specifically, different flavours of IND–CCA2), and found they were not equiv-
alent. Our investigation into IND–CCA notions in the symmetric setting is complementary; we look at
different definitional choices as Bellare et al. They focused on a single challenge definition of indistin-
guishability and wondered how and when5 to deal with an adversary wishing to query the decryption
oracle on the challenge ciphertext. Their conclusion is that suppression on-the-fly provides to strongest
notion, but whenever the adversary knows which queries will be suppressed, prohibiting these on-the-fly
is equivalent.

We restrict our study to the multi-challenge setting where we prohibit queries on-the-fly (there exist
alternative formalisations of symmetric CCA that allow just a single challenge, cf. [34, 36]) and con-
centrate on the differences between nonce-based versus probabilistic encryption and allowing versus
prohibiting forwarding decryption outputs.

Relations amongst notions. Having established various definitions of security for both the nonce-
based and probabilistic settings, we will now investigate how they relate to each other. Provided the
nonce-space is large enough, nonce-based security implies probabilistic, moreover in the probabilistic
setting allowing or prohibiting forwarding decryption queries to the challenge encryption oracle leads
to equivalent notions. These fairly straightforward results are summarized in Lemma 15 (with further
concrete advantage statements in the proof), leaving open only the status of (n,a) versus (n,p).

Lemma 15 (Implications between IND–CCA notions). Let Π be a nonce-based AE scheme, with
nonce-space N. Then for x∈{n, r} and y∈{a, p},
1. (x,a)-IND–CCA =⇒ (x,p)-IND–CCA
2. (n,y)-IND–CCA =⇒ (r,y)-IND–CCA
3. (r,p)-IND–CCA =⇒ (r,a)-IND–CCA

In particular, if Π is a secure nonce-based scheme, then the analogous probabilistic scheme P[Π] is
secure, with

Adv(r,a)-IND–CCA
P[Π] (q) ≤ Adv(n,p)-IND–CCA

Π (q) +
qe(q + qd)

2 · |N|
for any adversary making at most q = qe + qd queries.

Proof (Sketch). Point 1 is trivial, since restricting the adversary cannot make him stronger.
Point 2 holds because, until P[Π] samples the same value for a second time, all queries made to Π

have unique nonces, and thus security of Π implies security of P[Π]. Explicitly,

Adv(r,y)-IND–CCA
P[Π] (q) ≤ qe(qe − 1)

2 · |N| + Adv(n,y)-IND–CCA
Π (q).

Point 3 holds for similar reasons. Until the sampler picks a value that the adversary has already
submitted as part of a decryption query, there is no way a query can be forwarded from decryption to
encryption, giving the following explicit bound:

Adv(r,a)-IND–CCA
P[Π] (q) ≤ qe · qd

|N| + Adv(r,p)-IND–CCA
P[Π] (q).

Combining these two bounds yields

Adv(r,a)-IND–CCA
P[Π] (q) ≤ qe · (2 · qd + qe − 1)

2 · |N| + Adv(n,p)-IND–CCA
Π (q)

which, after simplification, yields the stated bound. ut
5 Prohibit versus suppress, resp. on-the-fly versus after the fact.
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As is well-known, for length-regular schemes, (r,a)-IND–CCA security implies (r,a)-LOR–CCA
security, which is the accepted definition of CCA security in the probabilistic LOR setting. Combined
with the explicit bound of Lemma 15, this demonstrates that, if the nonce space is sufficiently large,
IND-CCA security of a scheme in the nonce-based setting implies LOR-CCA security in the traditional
probabilistic setting. For completeness, we state this as the following corollary.

Corollary 16. A secure IND–CCA scheme induces a secure LOR–CCA scheme, provided its nonce-
space is sufficiently large and can be sampled from uniformly.

The case against (n,a)-IND–CCA. As shown by Corollary 16, security in the (n,p)-IND–CCA game is
sufficient to yield security of the associated probabilistic scheme. However, this is at the additional cost
of a collision event between encryption and decryption nonces (as well as the encryption-only collision
required for the generic transformation from nonce-based to probabilistic). Perhaps the stronger (n,a)-
IND–CCA provides a more direct and meaningful measure, that we should switch to instead. However,
it turns out that (n, a)-IND–CCA is equivalent to AE itself (Lemma 17). Hence (n,a)-IND–CCA is
arguably too strong a goal for IND–CCA security, because it leads to a collapse of the accepted hierarchy

Lemma 17. Provided ε is not a valid ciphertext, (n,a)-IND–CCA is equivalent to AE.

Proof. In a moment, we will prove that (n,a)-IND–CCA =⇒ CTI–PAS. Previously, we showed that
(n,a)-IND–CCA =⇒ (n,p)-IND–CCA (Lemma 15:1) and (n,p)-IND–CCA + CTI–PAS ⇐⇒ AE
(Theorem 6:2). Together, these three results demonstrate that (n,a)-IND–CCA =⇒ AE as claimed.
So, we now address the main step of this proof, demonstrating that (n,a)-IND–CCA security implies
CTI–PAS security.

LetA be any adversary against CTI–PAS. We will construct B to be an adversary against (n,a)-IND–
CCA, who runs A and simulates its environment. If A terminates then B also terminates, outputting 0.
Every query A makes must be a Dec query (N,A,C), which B answers by forwarding it on to his own
Dk oracle, which returns either ⊥ or M . If at any point Dk returns some M , B proceeds to ask his
challenge oracle to encrypt (N,A,M), receiving back some C ′. B returns C ?

= C ′ to win the game.
If Enc is real then C ′ is always equal to C, because the scheme was tidy. If Enc is ideal then C ′

was uniformly sampled, and so will only equal C with probability 1/2|C| (encryption is length-regular).
Thus B wins the security game whenever A provides a valid ciphertext triple (N,A,C) and the ideal
world does not “get lucky”. Now, the probability ofA outputting such a triple is precisely the advantage
ofA in the CTI–PAS game, since it is only by making such a query that the worlds can be distinguished.
So, explicitly,

Adv(n,a)-IND–CCA
E,Λ (B) = P

[
BEk,Dk → 1

]
− P

[
B$,Dk → 1

]

= AdvCTI–PAS
E,Λ (A) · 1− AdvCTI–PAS

E,Λ (A) · 2−|C|

= AdvCTI–PAS
E,Λ (A)

(
1− 2−|C|

)
.

Since ε is not a ciphertext, all ciphertexts contain at least one bit, implying 1− 2−|C| ≥ 1/2 or

AdvCTI–PAS
E,Λ (A) ≤ 2 · Adv(n,a)-IND–CCA

E,Λ (B).

Thus security in the (n,a)-IND–CCA game implies security in the CTI–PAS game, and so (n,a)-IND–
CCA is equivalent to AE. ut

In our proof we excluded the empty ciphertext, or phrased differently, assumed that all ciphertexts
contain at least one bit. This is not a novel assumption [34], and, in the context of length-regular schemes,
only prevents the particularly pointless scenario in which we attempt to “encrypt” the empty string with
no expansion. To see that this exclusion is not spurious, let Ek be a secure AE scheme and define

ẼN,Ak (M) =

{
ε M = ε

EN,Ak (M) Otherwise
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So, Ẽk acts identically to Ek, except when called with the empty string ε, which it encrypts to ε.
On the one hand, Ẽk is still a secure IND–CCA scheme: since there is only one permutation from 0

bits to 0 bits (the constant function mapping ε to ε), Ẽk is no more distinguishable from a random length-
regular function than Ek. On the other hand, creating a forgery is trivial (ε is one) and thus winning the
CTI–PAS game is trivial.

The equivalence of (n,a)-IND–CCA and AE implies that former is indeed stronger than (n,p)-IND–
CCA, as stated in the corollary below. Instead of a separate proof, we simply refer to Lemma 2, where
we showed that (n,p)-IND–CCA does not imply AE.

Corollary 18. (n,a)-IND–CCA is strictly stronger than (n,p)-IND–CCA.

The value of tidiness. One might wonder whether in the probabilistic setting a similar approach can be
used to demonstrate that tidiness and (r,a)-IND–CCA imply AE as well. Without tidiness they do not,
as shown by Bellare and Namprempre [14], so such a result would demonstrate that tidiness leads to an
appreciable increase in security.

First, we must define what it means for a probabilistic scheme to be tidy. One reasonable definition
would be to say a scheme is tidy iff whenever DAk (C) = M , C ∈ Support(EAk (M)). An immediate
difference between this probabilistic definition and the nonce- or IV- based one is that in the probabilistic
case tidiness does not imply decryption is a right-inverse of encryption. This means that we can no longer
use the test EAk (DAk (C))

?
= C to detect whether Dk or Ek has been replaced with their idealised version.

In the nonce case, our proof was split into two stages: first we showed IND-CCA implies CTI–
PAS, then a composition result that IND–CCA + CTI–PAS =⇒ AE. In the probabilistic setting, the
composition still holds (assuming the appropriate restriction of queries), but the first implication does not
hold. Our reduction was dependant on the validity-test described above, and without it one can construct
a counterexample through the probabilistic analogue of Lemma 2:4.

Conclusion. Overall, we confirmed Rogaway’s choice to forbid problematic queries. In doing so, nonce-
based IND–CCA emerges as an interesting goal in its own right, preserving the separation that IND–
CCA does not imply Authenticated Encryption, already well known from the probabilistic LOR–CCA
setting [14], rather than causing a collapse in the hierarchy of security notions. We emphasise that IND–
CCA defined thus provides indistinguishability (evidently) and thus confidentiality, yet no integrity (at
least not guaranteed). From a cryptographic designer’s point of view, this separation also means that, for
adversaries that make neither prohibited nor pointless queries, the requirements on Dk and Dec are the
same, neatly mirroring the similarities between Ek and Enc.

One may of course feel this whole discussion is moot, since most nonce-based schemes tend to
avoid such controversy by directly targeting AE, either through a combined notion (in which case the
separation between Enc and Dec is already given) or using the classical decomposition into IND–CPA
and CTI–CPA (in which case it is not relevant). After all, most schemes known to achieve (nonce-based)
IND–CCA security do so as a side effect of achieving AE anyway. In these cases, protection from
the forgery-based attack above is given by an explicit integrity component, rather than as a possible
implication of the confidentiality definition used.

C RUP’s IND–CCA notions

As discussed in Section 3.2, RUP describes two notions of IND–CCA security. In each the adversary is
provided with access to a challenge Enc oracle and the honest decryption/leakage function Dk, but nei-
ther provides access to Vk. The IND–CCA’ game only prohibits the adversary from forwarding queries
from Ek to Dk, while IND–CCA also prohibits the adversary from forwarding queries from Dk to Ek.
Lemma 8 asserted that RUP’s IND–CCA’ implies AE, while Lemma 9 said that but that RUP’s IND–
CCA does not even imply classical LOR–CCA, claims we now justify.
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Alg. 0: Interfaces B provides A
function ENC(N,A,M )

return enc(N,A,M)

function DEC(N,A,C)
M ← Dk(N,A,C)
C ′ ← enc(N,A,M)
if C = C ′ then

return M
return ⊥

Alg. 1: The case enc=Ek
function ENC(N,A,M )

return Ek(N,A,M)

function DEC(N,A,C)
M ← Dk(N,A,C)
C ′ ← Ek(N,A,M)
if C = C ′ then

return M
return ⊥

Alg. 2: The case enc=$
function ENC(N,A,M )

return $(N,A,M)

function DEC(N,A,C)
M ← Dk(N,A,C)
C ′ ← $(N,A,M)
if C = C ′ then

bad← true

return M
return ⊥

Fig. 7: Functionality used in Lemma 8 to simulate the oracles of the AE game when given access to
either Ek,Dk or $,Dk. The first algorithm lists the interfaces presented by B during it’s simulation toA.
The second and third explicitly instantiate this with the two possible functions that Bs enc oracle might
be representing.

Proof (Of Lemma 8). Let A be any AE adversary that does not make prohibited or pointless queries.
We will construct B to be an IND–CCA’ adversary running within similar resources to A. The game
will provide B with access to two oracles. One will be honest access to the Dk oracle, while the other,
‘enc’, will provide access to either Ek or $. B will provide oracles (ENC,DEC) to A, operating them as
described in Algorithm 0. When A has terminated, B will forward the bit as his own answer.

Since A is an AE adversary, he does not repeat any queries or forward any queries between his
oracles, and thus B can answer all queries without breaking his own limitations. We do require B be
able to make enc queries corresponding to his own previous Dk queries, but this is allowed in RUP’s
IND–CCA’ game. So, let us move on to calculating the probability of B winning the game.

In the case enc=Ek, we have that ENC=Ek, which by definition is equal to the encryption function Ek
of the leak-free encryption scheme. Similarly, by tidiness we also have that DEC correctly implements
the combined decrypt-verify function Dk of the encryption scheme. Therefore,

P
[
BEk,Dk → 1

]
= P

[
AEk,Dk → 1

]

In the case enc=$, we have that ENC=$. More interestingly, unless bad is set, DEC=⊥. So, writing
DEC[$] for the oracle DEC instantiated around $ and using β as shorthand for P [bad],

P
[
B$,Dk → 1

]
= (1− β) · P

[
A$,⊥ → 1

]
+ β · P

[
A$,DEC[$] → 1|bad

]
.

While it is unclear quite how one might calculate P
[
A$,DEC[$] → 1|bad

]
, this will not be necessary.

The IND–CCA’ advantage of B is the difference between these two terms, and so,

AdvIND–CCA’
(E,D) (B) = | P

[
AEk,Dk → 1

]
− P

[
A$,⊥ → 1

]
− β · ( P

[
A$,DEC($) → 1|bad

]
− P

[
A$,⊥ → 1

]
) |

= | AdvAE
E (A) − β · ( P

[
A$,DEC($) → 1|bad

]
− P

[
A$,⊥ → 1

]
) |

≥ |AdvAE
E (A)| − β · | P

[
A$,DEC($) → 1|bad

]
− P

[
A$,⊥ → 1

]
|

≥ AdvAE
E (A) − β.

For the penultimate inequality we have used the triangle inequality, and for the final that the difference
between the probabilities must be at most 1.

Consider briefly the adversary C against E under IND–CCA’ that simply asks for the encryption of
messages yielding the shortest ciphertexts6 and looks for a collision in the output. This never occurs

6 One may wonder how C can discover what message length this corresponds to. For all natural length-regulation functions
τ it is trivial to find the minimum value. In the more complex (and highly contrived) case that finding the minima of τ
is hard, it suffices that C ask for the encryption of 0i for 1 ≤ i ≤ 128. Since τ(X) ≥ |X| (or the scheme could not be
correct), this suffices to find any possible ciphertext lengths below 128 bits. If there are no such ciphertexts, the probability
β is sufficiently small anyway not to be a problem.
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Alg. 3: Encryption oracle Ẽk||l

function Ẽk||l(N,M )
if M = Fl(N) then

badPRF ← true

return kN ||01+τ+γ

C ← ENk (00||M)
if C = b||01+τ+γ , b ∈ {0, 1} then

badIND ← true

C ← ENk (10||M)
if C = b||01+τ+γ then

C ← ENk (11||M)

return C

Alg. 4: Separated Decryption oracle D̃k||l

function D̃k||l(N,C)
if C = kN ||01+τ+γ then

return Fl(N)

if C = kn||01+τ+γ then
return Fl(N)

x||y||M ← DN
k (C)

return M

Alg. 5: Combined Decrypt&Verify Oracle D̃k||l
function D̃k||l(N,C)

if C = kN ||01+τ+γ then
return Fl(N)

if C = kn||01+τ+γ then
return ⊥

if VN
k (C) = ⊥ then
return ⊥

x||y||M ← DN
k (C)

if x = 0, y = 0 ∧M 6= Fl(N) then
return M

if x = 1 then
badIND ← 1
C00 ← ENk (00||M)
C10 ← ENk (10||M)
if C00 = b||01+τ+γ , b ∈ {0, 1} then

if y = 0 ∧ C10 6= b̄||01+τ+γ then
return M

if y = 1 ∧ C10 = b̄||01+τ+γ then
return M

return ⊥

Fig. 8: The RUP scheme Ẽ , D̃ , Ṽ . We explicitly give Ẽ and D̃ , and provide the combined decrypt-and-
verify oracle D̃ . The verification oracle Ṽ can be derived from D̃ by running D̃ and returning ⊥ if D̃
did, and > else. The variables b, x, y are all one bit long.

in the Ek case, but may occur in the $ case. Thus the probability of C distinguishing the schemes is
precisely that of bad occurring, and so bounds β. So, rearranging the inequality above and substituting
in the bound for β, we have that

AdvAE
E (A) ≤ AdvIND–CCA’

(Ek,Dk) (B) + β ≤ AdvIND–CCA’
(Ek,Dk) (B) + AdvIND–CCA’

(Ek,Dk) (C) ≤ 2 · AdvIND–CCA’
(Ek,Dk)

Thus IND–CCA’ security implies AE security of the leak-free scheme. ut
Lemma 9 asserted that RUPs IND–CCA notion did not imply traditional IND–CCA. To show this,

we will describe a scheme that is secure under RUP’s IND–CCA notion (henceforth RUP-IND–CCA),
but insecure under classical IND–CCA. We do so under the assumption that there exists a secure RUP-
IND–CCA scheme, and a secure PRF (which can be bootstrapped from the RUP-IND–CCA scheme).
We begin with an informal description of the construction, before providing a more thorough evaluation.

Given an encryption scheme E and a pseudo-random function F, we will construct an encryption
scheme Ẽ taking in two keys k, l that acts very similarly to E, except that Ẽi

k||l(Fl(i)) = ki||01+τ+γ .

In the classical IND–CCA game, requesting D̃ik||l(1||01+τ+γ) will return the ith key bit, meaning after κ
queries the adversary has the whole key and can trivially distinguish the scheme. However, by defining
Λk(ki||01+τ+γ) = Fl(i), we can ensure that in the RUP-IND–CCA setting D̃i

k||l(b||01+τ+γ) = Fl(i)
no matter whether the adversary guesses b = 0 or b = 1. So, this behaviour occurs independent of the
key bit, and so in the RUP case the adversary cannot exploit the weakness, meaning security is inherited
from E.

Stating this result more formally requires additional measures to ensure correctness of the scheme,
and the appropriate security reductions to prove this really is the only weakness that has been added.
These mean the actual counter-example is significantly more cumbersome. Its definition and analysis
are given in the following proof.
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Alg. 6: Oracles OE and O$

function OE , O$(N,M )
C ← ENk (00||M)
C ← $N (00||M)
if M = Fl(N) then

badPRF ← true

if C = b||01+τ+γ , b ∈ {0, 1} then
badIND ← true

return C

Alg. 7: Oracle OD and D̃k||l are identical
function OD(N,C)

if C = b||01+τ+γ , b ∈ {0, 1} then
return Fl(N)

b||c||M ← DN
k (C)

return M

Fig. 9: OracleOE does not contain the boxed code, while OracleO$ does. The pair of oracles (OE ,OD)
are identical-until-bad to (Ẽk||l, D̃k||l). The pair (O$,OD) differ from (OEk ,OD) by at most the RUP-
IND–CCA advantage of an adversary against (E,D).

Proof (Of Lemma 9). Let (E,D,V) be a scheme secure under RUP’s IND–CCA notion, with fixed
stretch τ and K = {0, 1}κ, where |N| > κ. Let F : K× {1, . . . , κ} → {0, 1}γ be a secure PRF (this can
be built from E). Define the RUP scheme (Ẽ , D̃ , Ṽ) as in Figure 8. For conciseness, we will be omitting
associated data from our notation.

Let us consider first the traditional IND–CCA case, in which the adversary has access to an Enc
oracle implementing either Ẽk||l or $, and a decryption D̃k||l oracle. In this case, the scheme is not secure
because the adversary can learn the key through decryption queries. Explicitly, there exists an adversary
A who makes the queries D̃ik||l(1||0τ+1) for each i = 1, . . . , κ. If the ciphertext was invalid (ie D̃k||l
returned ⊥) thenA can conclude ki = 0, and if it was valid then ki = 1. So, after κ queriesA has learnt
the whole key, and can trivially distinguish the scheme.

We move on to RUP-IND–CCA security. In this the adversary is given access to oracles (Ẽk||l, D̃k||l),
but not to (Ṽk||l). Moreover, they are prohibited from forwarding queries between their two oracles. We
will prove the scheme secure for all adversaries making at most q queries. First, with a very simply
identical until bad argument, we will simplify the schemes to form (OE ,OD) given in Figure 9. Next,
we bound the probability of the first bad event, badPRF being set by OE , using the PRF security of Fl.
Then we bound the probability of badIND being set by an adversary interacting with (OE ,OD). To do so,
we appeal to the RUP-IND–CCA security of (Ek,Dk) to swap them for their idealised versions, which
also proves (OE ,OD) secure, completing the proof.

Consider the probability of an adversary interacting with (OE ,OD) setting badPRF. This can only
occur on an encryption query, and requires the adversary to submits a nonce and message such thatM =
Fl(N). The adversary does not repeat queries nor forward queries from his D̃k||l oracle to Ẽk||l, so this
must be the first time he has queried (N,M). In particular, this means he cannot have previously queried
M ← OD(N, b||01+τ+γ) for either b ∈ {0, 1}, and so can learn nothing useful from his decryption
oracle. Thus the most efficient adversary seeking to set badPRF will only interact with the encryption
oracle. Combining this with the fact F is keyed independently from the internal encryption routine E
(they use keys l and k respectively), we can swap out Fl for its idealised version, a random function, at
the cost of AdvPRFF (q). So, the probability of badPRF is clearly bounded by q/2γ .

At the cost of the RUP-IND–CCA advantage against (Ek,Dk), we now switch Ek for its ide-
alised version, $, to form a pair of oracles (O$,OD), where O$ is simply OE after this switch. Now,
P
[
AO$sets badIND

]
≤ q/21+τ+γ , since it is the probability of a random function hitting a single

value. Finally then, we observe that this pair is in fact the ideal world with which we are comparing
(Ẽk||l, D̃k||l).

So, it remains to collect the separate terms to form the final bound:

AdvIND–CCA
(Ẽk||l,D̃k||l)

(q) ≤ AdvPRF
F (q) +

q

2γ
+ AdvIND–CCA

(E,D) (q) +
q

21+γ+τ
.
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As F was a secure PRF and (E,D) secure under the RUP-IND–CCA notion, both these terms are small.
Taking sufficiently large γ, this proves the overall RUP-IND–CCA security of (Ẽ , D̃). ut

D Direct Equivalence of RUP and RAE[τ ]

It is also possible to directly compare the RUP and RAE[τ ] notions. They were clearly designed to quan-
tify robustness for two very different classes of design: whilst the RUP paper focusses on its application
to online schemes, RAE[τ ] expands security notions to cover variable stretch schemes. The two notions
are both applicable to traditional fixed stretch offline schemes, and it is in this context that we can com-
pare them. This then becomes a case of bounding the difference between the ideal worlds, and we find
them to be equivalent.

Translating RAE[τ ] into the RUP syntax. We can re-set the RAE[τ ] security game into the three-
oracle form favoured by RUP. Let (Ek,Dk) be the candidate two-oracle scheme and S the appropriate
simulator. Then define the separation of the scheme to be (Ek,Dk,Vk) and the separation of the ideal
world to be (π,Sπ,Vπ) as shown in Figure 10. This separation is intuitive, being little more than nota-
tional, and similar to the translation used in Section 3.3. It allows us to state the RAE[τ ] advantage in
RUP syntax as

AdvRAE[τ ]
E,Λ := ∆Ek,Dk,Vk

π ,Sπ ,Vπ
.

Real World

EN,Ak (M) := EN,Ak (M)

DN,A
k (C) :=

{
DN,Ak (C) if VN,A

k (C) = >
DN,Ak (C) if VN,A

k (C) = ⊥

VN,A
k (C) :=

{
> if |DN,A

k (C)| = |C| − τ
⊥ if |DN,A

k (C)| 6= |C| − τ

Ideal World

πN,A(M) := πN,A(M)

SN,Aπ (C) :=

{
π−1
N,A(C) if VN,A

π (C) = >
S(N,A, τ, C) if VN,A

π (C) = ⊥

VN,A
π (C) :=

{
> if C ∈ Image(πN,A)

⊥ if C /∈ Image(πN,A)

Fig. 10: Translating an RAE[τ ] scheme and the RAE[τ ] ideal world to the separated AE setting.

Comparing the two notions. In Lemma 13, we showed that if there exists any good RAE[τ ] simulator
then Λk is one. So, the key security objectives of the papers are:

AdvRUPAE
E,Λ := ∆Ek,Dk,Vk

$ ,Dl , ⊥ ≈ AdvRUP
E,Λ + AdvDI

E,Λ + AdvCPA
E,Λ

AdvRAE[τ ]
Π,Λ := ∆Ek,Dk,Vk

π ,Sπ ,Vπ

where $ is a random function, π a random injection, and Vk,Vπ honest verifiers with respect to the key
k or injection π. whilst Sπ is an oracle who forwards queries to either its simulator (i.e. Λ) or to π, as
defined in Figure 10. When written in this form, it is not surprising that they are in fact so similar.

Theorem 19. RUPAE and RAE[τ] security are equivalent. In particular,
∣∣∣AdvRUPAE

E,Λ − AdvRAE[τ ]
Π,Λ

∣∣∣ ≤ ∆∅,∅,Vπ∅,∅, ⊥ + ∆π,∅,∅
$,∅,∅ ≤ 1.5

q

2τ

for any adversaries making at most q queries, where the stretch τ is fixed.

Proof. By the triangle inequality,
∣∣∣AdvRUPAE

E,Λ − AdvRAE[τ ]
Π,Λ

∣∣∣ = ∆π,Sπ ,Vπ
$,Λl , ⊥ ≤ ∆π,Sπ ,Vπ

π,Λl , ⊥ + ∆π,Λl,⊥
$,Λl,⊥
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The first term here is bounded above by ∆π,Λl,Vπ
π,Λl, ⊥ . This is because until the adversary can win this

forging game the output of both simulators is the same, since he has not found a query c ∈ Image(π).
So, the middle oracle does not actually assist him, and because π is random, domain separation means
the π oracle does not help either. Thus this reduces to sampling with no oracles, and hoping to find some
c ∈ Image(π). Within q queries, this is bounded above by q/2τ , and corresponds to the classical “tag
guessing” strategy.

The second term is simply a variable length random injection to random function switch, and
bounded by the PRI–MRAE difference. Alternatively, we can bound it directly. Since a random function
and random injection are indistinguishable until an output collision occurs, we can sum over all possi-
ble message lengths m and the number of queries qm made of that length. Since there are at most 2m

messages of length m, we have qm ≤ 2m and so

∆π
$ (q) ≤

∑

m

qm(qm − 1)

2m+τ+1
=
∑

m

qm
2τ+1

· qm − 1

2m
≤ q

2τ+1

Combining these, ∣∣∣AdvRUPAE
E,Λ − AdvRAE[τ ]

Π,Λ

∣∣∣ ≤ ∆π,Sπ ,Vπ
π, S , ⊥ + ∆π,S,⊥

$,S,⊥

≤ ∆∅,∅,Vπ∅,∅, ⊥ + ∆π,∅,∅
$,∅,∅

≤ 1.5 q
2τ

which is the bound as claimed. ut

E Early–abort AEZ is not RAE Secure

The bulk of this paper has discussed the definitional merits of different ways to describe security in the
presence of leakage from decryption. This appendix is somewhat perpendicular to this objective, but
included to illustrate just how careful one must be when modelling unwanted decryption leakage.

AEZ [29] was the first scheme proven to provide RAE security. This was based around a hybrid
argument: AEZ is a secure ±PRP, and encode-then-encipher around an ±PRP provides RAE security.
However, the implementation section [29, §10] observes that one can reject invalid ciphertexts early,
saving the cost of running the second half of the decryption routine:

Another benefit of AEZ’s two passes is that the second pass is not needed to discover that a
ciphertext is inauthentic, leading to message rejection costing as little as 0.28 cpb on Haswell.
On long messages, approximately 2/5 of AES4 calls are performed during the first pass, which
aligns perfectly with the peak times we’ve observed for encryption and fast-rejection.

In the single error context (i.e. without decryption leakage), it is clear this optimised decryption
algorithm is functionally equivalent to the full algorithm. However, this is not the case when decryption
leakage is allowed. The RAE security claims against which AEZ is tested provide the adversary access
to the final contents of the internal buffer upon an invalid decryption query. If the full AEZ has been run,
the contents of this buffer are randomised and do not leak useful data to the adversary. However, this is
not the case when the scheme is aborted early.

When the scheme early-aborts, the intermediate buffer will contain leakage information. In particu-
lar, for the main bulk of the encryption, it will contain (Yi, Y

′
i ), where Y ′i is the value corresponding to

Yi, but on the other wire.
Against the published version of AEZ referenced above, this observation can be combined with

Leurent’s attack [38] to recover the master key recover if using the AEZ–prf. Later versions of AEZ have
been modified to defend against Leurent’s attack by strengthening the tweakable PRF, but we emphasise
this attack is against the structure of early–abort AEZ itself and thus still applies to the current version
AEZ-v4.1 [28].

The solution to this problem is a simple (yet important) one: the documentation of any potentially
robust Authenticated Encryption scheme must be completely clear as to which claims apply to which
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Fig. 7. Illustrating AEZ enciphering. Rectangles with pairs of numbers are TBCs, the pair being the tweak (the
key, always K, is not shown). Top row: enciphering a message M of (32 or more bytes) with AEZ-core. The diagram
shows processing a string that is (exclude the middle panel) or isn’t (include the middle panel) a multiple of 16 bytes.
Bottom left: AEZ-hash is an xor-universal hash built from AES4. It computes ∆ =

⊕
∆i from a vector-valued

tweak T comprising A, N , and τ . Its i-th component T1 · · ·Tm is hashed as shown. Bottom right: AEZ-tiny, when
operating on a string M = L ‖R of 16–31 bytes. More rounds are used if M has 1–15 bytes.

have already been processed and that |N | ≤ 128 and τ = 128. To reject an invalid ciphertext of
m ≥ 2 blocks: at most 0.4m + 2.4 AES-equivalents (latency 2.8). Same assumptions. To setup an
m block key: 1.2m AES-equivalents (latency 0.4). This assumes that needed constants have been
precomputed. To setup a string-values AD: 0.4m (latency 0.4). To encipher or decipher messages
of 1–15 bytes is somewhat slower: 10, 6.8, and 4.4 AES-equivalents for 1, 2, and 3 bytes.

Parameterized counterparts. For a TBC-parameterized generalization of AEZ, let AEZ[Ẽ]
be identical to AEZ except for using the TBC Ẽ : K × Taez × {0, 1}128 → {0, 1}128 in place of E
(assume the correct tweak-space Taez). The key space of Ẽ is then taken as the key space for the
constructed RAE scheme. Note that AEZ = AEZ[E], with E the algorithm defined by lines 400–416.

Taking the above a step further, given a conventional blockcipher E : K× {0, 1}128 → {0, 1}128
we can define AEZ[E] as AEZ[Ẽ] where Ẽi,j

K (X) = EK(X ⊕ (i + 1)I ⊕ jJ) for I = EK(0) and
J = EK(1). The scheme AEZ[AES] can be regarded as a natural “scaled up” version of AEZ. We
emphasize that AEZ is not AEZ[AES], which is about 2.5 times as slow.

Fig. 11: Diagram of AEZ [29, Figure 7]. The specification observes that having calculated ∆ and Y =
⊕iYi, one can decrypt the final two blocks, and in doing so check the padding and thus validity of
the ciphertext. Computation is then allowed to abort early, meaning the “main branches” will not be
evaluated any further “up” the diagram than Yi.

implementation. To put the corrected statement into our terminology, let Ek,Dk be the encryption and
decryption functions of AEZ, and Λk the leakage function that exposes the final internal state after full
evaluation of the decryption function (the string M1M

′
1 · · ·MxMy). Then (Ek,Dk,Λk) is a secure SAE

or RAE scheme, while (Ek,Dk, ∅) is a secure AE scheme with fast rejections of invalid ciphertexts.

Forgery against AEZ under RAE with early–aborting implementations. From this observation,
there is a very simple recipe to create a forgery:

1. Make query on a message that closely resembles the message you wish to forge. The decryption of
our forged message will be very similar to this message, except for 5 randomised blocks. Call this
ciphertext C.

2. Ask for the decryption of C||0. With overwhelming probability this will fail, but due to the early–
abort, the internal variables will be correct for all the blocks in the main body. This is because the
scheme aborts before propagating the invalidity to the rest of the state.

3. Record the internal variable Y ′i for each of the two pairs of blocks we will randomise in our forgery
(for simplicity, assume Y ′1 , Y

′
2).

4. Let Z = Y ′1 ⊕ Y ′2 , and replace blocks Ci with Ci ⊕ Z for i = 1, 2 to generate a new ciphertext C̃.
5. Submit C̃ as the forgery attempt: it will be valid.

The reason C̃ is a valid forgery is that our replacements of C1 and C2 simply exchanged Y ′1 and
Y ′2 . Thus, Y1 ⊕ Y2 = C ′1 ⊕ C ′2 ⊕ f0,0(Y ′1) ⊕ f0,0(Y ′2) remains unchanged. Similarly, X1 ⊕ X2 =



46 Guy Barwell, Daniel Page, and Martijn Stam

Y ′1 ⊕ Y ′2 ⊕ f2,1(S)⊕ f2,2(S) remains constant. Therefore, the difference never propagates into X or Y ,
and this in turn means the difference does not leave affect any of the other pairs of blocks.

So, with the exception of the four blocks {M1,M
′
1,M2,M

′
2}, the decrypted message will be equal

to that originally queried. In particular, the final two blocks Mx,My will remain unchanged. Since these
will encode the redundancy, the forgery will be accepted. 7

7 Assuming τ ≤ 2n. If this does not hold, the forgery will still be valid as long as the modified blocks are not too near the
end of the message
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