
Robust Authenticated Encryption
and the Limits of Symmetric Cryptography?

Christian Badertscher1, Christian Matt1, Ueli Maurer1,
Phillip Rogaway2, and Björn Tackmann3

1 Department of Computer Science, ETH Zurich, Switzerland
{badi, mattc, maurer}@inf.ethz.ch

2 Department of Computer Science, University of California, Davis, USA
rogaway@cs.ucdavis.edu

3 Department of Computer Science & Engineering,
University of California, San Diego, USA

btackmann@eng.ucsd.edu

Abstract. Robust authenticated encryption (RAE) is a primitive for
symmetric encryption that allows to flexibly specify the ciphertext expan-
sion, i.e., how much longer the ciphertext is compared to the plaintext.
For every ciphertext expansion, RAE aims at providing the best-possible
authenticity and confidentiality. To investigate whether this is actually
achieved, we characterize exactly the guarantees symmetric cryptography
can provide for any given ciphertext expansion. Our characterization
reveals not only that RAE reaches the claimed goal, but also, contrary to
prior belief, that one cannot achieve full confidentiality without cipher-
text expansion. This provides new insights into the limits of symmetric
cryptography.
Moreover, we provide a rigorous treatment of two previously only infor-
mally stated additional features of RAE; namely, we show how redundancy
in the message space can be exploited to improve the security and we
analyze the exact security loss if multiple messages are encrypted with
the same nonce.

1 Introduction

Authenticity and confidentiality are arguably among the most important crypto-
graphic objectives. Authenticated encryption is a symmetric primitive that aims
to achieve both at the same time, allowing efficiency gains and reducing the risk of
misuse compared to combined schemes. Several notions of authenticated encryp-
tion have emerged over a series of works [2,3,5,7,8,13], including authenticated
encryption with associated data [4,12] and misuse-resistant authenticated encryp-
tion [14]. In this development, robust authenticated encryption (RAE), introduced
by Hoang, Krovetz, and Rogaway [6], is the latest and most ambitious notion.
? This is the full version of a paper due to appear at the 15th IMA International
Conference on Cryptography and Coding (2015). The final publication will be available
at link.springer.com.

mailto:badi@inf.ethz.ch
mailto:mattc@inf.ethz.ch
mailto:maurer@inf.ethz.ch
mailto:rogaway@cs.ucdavis.edu
mailto:btackmann@eng.ucsd.edu

2 C. Badertscher, C. Matt, U. Maurer, P. Rogaway, and B. Tackmann

Robust authenticated encryption allows to specify the ciphertext expansion λ
that determines how much longer ciphertexts are compared to the corresponding
plaintexts. Its self-declared goal in [6] is to provide the best-possible authenticity
and confidentiality for every choice of λ. This raises the question of what best-
possible authenticity and confidentiality is, and whether RAE actually achieves it.
We provide a formal model that allows us to investigate this question and answer
it in the affirmative. We further show how to use verifiable redundancy to improve
security, and we show what security guarantees remain if values intended as
nonces are reused. Both questions were addressed in [6] but not proven formally.

1.1 Robust Authenticated Encryption

An RAE scheme consists of a key distribution K, a deterministic encryption algo-
rithm E , and a deterministic decryption algorithm D. The encryption algorithm
takes as input a key K, a nonce N , associated data A, the ciphertext expansion λ,
and a message M . It outputs a ciphertext C. The decryption algorithm takes
as input K, N , A, λ, and C, and returns the corresponding message M (or ⊥ if
C is an invalid ciphertext). In [6], the security of an RAE scheme is defined via
a game in which an adversary has access to two oracles and has to distinguish
between two possible settings. In the first setting, the oracles correspond to
the encryption and decryption algorithm of the RAE scheme, where the key is
fixed in the beginning and chosen according to K. In the second setting, the
first oracle chooses for each N , A, λ, and message length ` an injective function
that maps strings of length ` to strings of length `+ λ. On input (N,A, λ,M),
the oracle answers by evaluating the corresponding function. The second oracle
corresponds to the partially defined inverse of that function that answers ⊥ if
the given value has no preimage. An RAE scheme is secure if these two settings
are indistinguishable for efficient adversaries. While this seems to be a strong
guarantee, it is not clear which security such a scheme actually provides in a
specific application and whether it is best-possible.

1.2 Security Definitions and Constructive Cryptography

Since game-based security definitions only capture what an adversary can do in
a specific attack-scenario, they inherently fall short of providing guarantees that
hold in any possible application of the scheme. To capture what RAE schemes
achieve, we formulate our results using the constructive cryptography framework
by Maurer and Renner [9,10]. The central idea of this framework is that the
resources available to the parties, such as communication channels or shared
randomness like cryptographic keys, are made explicit. The goal of a cryptographic
protocol is then to construct, from certain existing resources, another resource that
can again be used by higher-level protocols or applications. For example, the goal
of an authentication scheme can be formalized as constructing an authenticated
channel from a shared secret key and an insecure channel. The insecure channel
allows a sender, say Alice, to send messages to a receiver, say Bob, but entirely
leaks the transmitted messages to the adversary and additionally allows the

Robust AE and the Limits of Symmetric Cryptography 3

adversary to delete messages and inject arbitrary messages; an authenticated
channel still leaks the messages but only allows the adversary to delete messages
and to deliver the messages originally sent. A conventional encryption scheme
is supposed to construct a secure channel from a shared secret key and an
authenticated channel, where the secure channel restricts the leakage to the
length of the transmitted messages. The composition theorem of constructive
cryptography guarantees that if two protocols achieve these constructions, the
composed protocol constructs a secure channel from two shared secret keys and
an insecure channel, i.e, the security of the overall construction follows from the
security of the individual construction steps. On the other hand, authenticated
encryption directly achieves the overall construction.

1.3 Our Contributions

In the vein of [1] and accounting for the associated data RAE schemes support,
we formalize the goal of RAE as constructing an augmented secure channel (ASC)
from a shared secret key and an insecure channel. An ASC takes as input from
the sender a tuple (A,M), leaks A and the length of M to the adversary, and
allows the adversary to either deliver the pair (A,M) or to terminate the channel.
This channel provides authenticity for both A and M , but confidentiality is
only guaranteed for the message M . The value A can for example be used to
authenticate non-private header information; see [1] for an application of ASC in
the context of TLS 1.3.

Uniform random injection resource. Instead of directly constructing chan-
nels from a shared secret key and an insecure channel, we introduce an intermedi-
ate system URI (uniform random injection) that provides the sender and receiver
access to the same uniform random injections and their inverses chosen as follows:
For each combination of N , A, λ, and message length `, an injective function
that maps strings of length ` to strings of length ` + λ is chosen uniformly at
random.

As we shall see, this resource can be constructed from a shared secret key
using an RAE scheme in a straightforward manner. We then construct several
channels from URI and an insecure channel. The advantage of this approach is
that all further constructions in this paper are information-theoretic, i.e., we do
not have to relate the security of each construction step to the RAE security
game. Instead, we can rely on the composition theorem to guarantee the security
of the overall construction.

Random injection channel. We show that one can construct a channel we call
RIC (random injection channel) from URI and an insecure channel by fixing λ
and using a counter as the nonce. RIC can be seen as a further intermediate step
towards constructing ASC, that in addition allows us to analyze best-possible
security.

4 C. Badertscher, C. Matt, U. Maurer, P. Rogaway, and B. Tackmann

The channel RIC takes as input a pair (A,M) from the sender and leaks A
and the length of M to the adversary. The adversary can deliver the pair (A,M),
and further at any point in time try to inject a new message of length ` and
some value A. The probability with which such an injection is successful depends
on λ and `. In case of a success, an almost uniform message of length ` from
the message space together with A is delivered to the receiver. If an injection
was successful and the tuple (A,M) was received, and if the sender subsequently
sends exactly the pair (A,M), then the adversary is notified about this repetition.

Best possible authenticity and confidentiality. If ASC is considered as
the ultimate goal of RAE and authenticated encryption in general, the only
shortcomings of RIC are that it is possible to inject messages with positive
probability and that, if an attempted message injection was successful, the
channel leaks a certain repetition to the adversary. While the first shortcoming
is a lack of authenticity, the second one is a lack of confidentiality. While the
type of leakage violating confidentiality might seem artificial, we describe an
application in which such leakage might be problematic. Briefly, the leakage can
reveal hidden information flow from the receiver to the sender.

We then analyze whether RAE really achieves the best-possible authenticity
and confidentiality by bounding the probabilities of successful message injections
and of leaking this particular repetition pattern for arbitrary schemes for achieving
authenticity and confidentiality. While it is straightforward to see that authenticity
requires redundancy and therefore a large ciphertext expansion, one might hope
that the repetition leakage can be avoided. We prove that this is not the case,
i.e., we show that the probability of an adversary being able to observe such a
repetition is at least as high as in RIC, no matter what scheme is used or which
setup assumptions are made.

To illustrate this lack of confidentiality for a concrete scheme, consider the
following scenario in which the one-time pad is used over an insecure channel:
Assume the attacker injects a ciphertext to Bob who decrypts it using the
shared secret key and outputs the resulting message. Further assume Alice
afterwards sends a message to Bob which results in the attacker seeing the same
ciphertext. In that case, the attacker learns the fact that the message sent by
Alice equals the message output by Bob. This contradicts the understanding of
confidentiality as revealing nothing except the length of the transmitted message.4
Our results generalize this observation to arbitrary schemes. We thereby refine
the understanding of what symmetric cryptography can and cannot achieve by
showing that confidentiality, quite surprisingly, also requires redundancy in the
ciphertexts when only insecure channels and an arbitrary setup are assumed,
even if the protocol can keep state.

4 This also contradicts a prior result in [11] that claims that the one-time pad constructs
a certain (fully) confidential channel, a so-called XOR-malleable channel, from an
insecure channel and a shared key. The proof in that paper is flawed in that the
simulation fails if more ciphertexts are injected than messages sent.

Robust AE and the Limits of Symmetric Cryptography 5

Augmented secure channels and message redundancy. Since the prob-
ability of successful message injections decreases exponentially with λ, RIC is
indistinguishable from ASC for large λ. We further provide a construction that
incorporates an idea from [6] to exploit the redundancy in messages to achieve a
better bound. Our construction reveals the exact trade-off between ciphertext
expansion and redundancy to achieve a required security level.

Nonce-reuse resistance. It was claimed in [6] that reusing nonces only results
in leaking the repetition pattern of messages, but does not compromise security
beyond that. However, the claim was neither formalized nor proven. We fill this
gap by introducing the channel resource RASC (Repetition ASC) that, aside
of the length of each message, leaks the repetition pattern of the transmitted
messages to the adversary. Furthermore, the adversary can deliver messages out-
of-order and arbitrarily replay messages. We show that RASC can be constructed
from URI and an insecure channel if the used nonce is always the same. This
confirms the informal claim from [6] and makes explicit that some authenticity is
lost by allowing the adversary to reorder messages.

2 Preliminaries

2.1 Notation for Systems and Algorithms

We describe our systems with pseudocode using the following conventions: We
write x← y for assigning the value y to the variable x. For a distribution X over
some set, x� X denotes sampling x according to X . For a finite set X, x� X
denotes assigning to x a uniformly random value in X.

We denote the empty list by [] and for a list L, L ‖ x denotes the list L with
x appended. Furthermore, |L| denotes the number of elements in L and the ith
element in L is denoted by L[i] for i ∈ {1, . . . , |L|}. For a FIFO queue Q, we
write Q.enqueue(x) to insert x into the queue and Q.dequeue() to retrieve (and
remove) the element of the queue that was inserted first among all remaining
elements.

For n,m ∈ N, Inj (Σn, Σm) denotes the set of injective functions Σn → Σm.
For an injective function f : X → Y , we denote by f−1 the function Y → X∪{⊥}
that maps y to the preimage of y under f if existing, and to the distinct element ⊥
otherwise.

Typically queries to systems consist of a suggestive keyword and a list of
arguments (e.g., (send,M) to send the message M). We ignore keywords in
writing the domains of arguments, e.g., (send,M) ∈M indicates that M ∈M.

2.2 Constructive Cryptography

Constructive cryptography makes statements about constructions of resources
from other resources. A resource is a system with interfaces via which the resource
interacts with its environment and which can be thought of as being assigned to

6 C. Badertscher, C. Matt, U. Maurer, P. Rogaway, and B. Tackmann

parties. All resources in this paper have an interface A for the sender (Alice), an
interface B for the receiver (Bob), and an interface E for the adversary (Eve). In
our security statements, we are interested in the advantage of a distinguisher D
in distinguishing two resources, say R and S which is defined as

∆D (R,S) = Pr [DR = 1]− Pr [DS = 1] ,

where Pr [DR = 1] denotes the probability that D outputs 1 when connected to
resource R. More concretely, DR is a random experiment, where the distinguisher
repeatedly provides an input to one of the interfaces A, B, or E and observes the
output generated in reaction to that input before it decides on its output bit.

Converters are systems that can be attached to an interface of a resource to
change the inputs and outputs at that interface, which yields another resource. A
converter is a system with two interfaces: the inner interface in is connected to an
interface of a resource and the outer interface out, becomes the new connection
point of that resource towards the environment. The protocols of the honest
parties and simulators correspond to converters.

We directly state the central definition of a construction of [9] and briefly
explain the relevant conditions.

Definition 1. Let R and S be resources and let noAtckR and noAtckS be con-
verters that describe the default behavior at interface E when no attacker is
present. Let ε be a function that maps distinguishers to a value in [−1, 1] and
let sim be a converter (the simulator). A protocol, i.e., a pair (conv1, conv2) of
converters, constructs resource S from resource R within ε and with respect to
the pair (noAtckR, noAtckS) and the simulator sim, if for all distinguishers D,

∆D
(
conv1

Aconv2
BnoAtckR

E R, noAtckS
E S
)
≤ ε(D) (Availability)

∆D
(
conv1

Aconv2
B R, simE S

)
≤ ε(D). (Security)

The first condition ensures that the protocol implements the required func-
tionality if there is no attacker. For example, for communication channels, all
sent messages have to be delivered when no attacker interferes with the protocol.

The second condition ensures that whatever Eve can do with the assumed
resource, she could do as well with the constructed resource by using the simula-
tor sim. Turned around, if the constructed resource is secure by definition, there
is no successful attack on the protocol.

The notion of construction is composable, which intuitively means that the
constructed resource can be replaced in any context by the assumed resource
with the protocol attached without affecting the security. This is proven in [9].

2.3 Robust Authenticated Encryption

Let Σ be an alphabet (a finite nonempty set). Typically an element of Σ is a bit
(Σ = {0, 1}) or a byte (Σ = {0, 1}8). For a string x ∈ Σ∗, |x| denotes its length.
We define the syntax of a robust authenticated encryption scheme following [6].

Robust AE and the Limits of Symmetric Cryptography 7

Initialization
for (N,A, λ, `) ∈ N ×A× N× N do

fN,A,λ,` � Inj
(
Σ`, Σ`+λ

)
Interface X ∈ {A,B}

Input: (fun, N,A, λ, x) ∈ N ×A× N×M
output fN,A,λ,|x|(x) at X

Input: (inv, N,A, λ, y) ∈ N ×A× N× C
output f−1

N,A,λ,|y|−λ(y) at X

Resource URI

Fig. 1. Uniform random injection resource. Interface E remains inactive.

Definition 2. A robust authenticated encryption (RAE) scheme Π = (K, E ,D)
consists of a key distribution K, a deterministic encryption algorithm E that maps
a key K ∈ K, a nonce N ∈ N , associated data A ∈ A, ciphertext expansion λ ∈ N,
and a message M ∈ M to a ciphertext C ∈ C, and a deterministic decryption
algorithm D that maps (K,N,A, λ, C) to an element in M∪ {⊥}. We assume
the domains N , A,M, and C are equal to Σ∗. We write EN,A,λK and DN,A,λK for
the functions E(K,N,A, λ, ·) and D(K,N,A, λ, ·), respectively. We require that
DN,A,λK

(
EN,A,λK (M)

)
= M for all K,N,A, λ,M .

3 Shared Uniform Random Injections and RAE Security

In this section, we describe the resource URI that grants access to shared uniform
random injections and their inverses at interfaces A and B, and no access at
interface E. We then use URI to define the security of RAE schemes and show
that any RAE scheme that satisfies this definition can be used to construct URI
from a shared secret key. Though syntactically different, it is easy to see that
our definition is equivalent to the security definition from [6]. We recall that
definition and prove the equivalence in Appendix A.

We first give a definition for the uniform random injection system URI.

Definition 3. The resource URI has interfaces A, B, and E and takes inputs of
the form (fun, N,A, λ, x) and (inv, N,A, λ, y) at interfaces A and B for N ∈ N ,
A ∈ A, λ ∈ N, x ∈ M, and y ∈ C. Any input at interface E is ignored. We
assume the domains N , A,M, and C are equal to Σ∗. On input (fun, N,A, λ, x)
at interface A or B, it returns fN,A,λ,|x|(x) at the same interface. On input
(inv, N,A, λ, y), it returns f−1

N,A,λ,|y|−λ(y) if |y| > λ, and ⊥ otherwise. The func-
tion fN,A,λ,` is chosen uniformly at random from the set Inj

(
Σ`, Σ`+λ

)
when

needed for the first time and reused for later inputs. See Fig. 1 for pseudocode.

8 C. Badertscher, C. Matt, U. Maurer, P. Rogaway, and B. Tackmann

Initialization
output getKey at interface in
let k be the returned value from SKK
K ← k

Interface out

Input: (fun, N,A, λ, x)

y ← EN,A,λK (x)
output y at out

Input: (inv, N,A, λ, y)

x← DN,A,λK (y)
output x at out

Converter raeΠ

Initialization
k � K

Interface A

Input: getKey
output k at A.

Interface B

Input: getKey
output k at B.

Resource SKK

Fig. 2. Protocol that constructs URI from a shared secret key (left) and the shared
secret key resource (right). For the shared key resource, interface E remains inactive.

3.1 Definition of RAE Security and Construction of URI

We define a shared key resource SKK for some key distribution K. The resource
initially chooses a key according to K and outputs this key to interfaces A and
B while interface E remains inactive, see Fig. 2. Slightly abusing notation, we
will also refer to the key space by K whenever no confusion can arise. We further
define the converter raeΠ that is based on an RAE scheme Π = (K, E ,D). First,
raeΠ requests the key from SKK. For any input at the outer interface, it evaluates
E or D using that key (and the arguments provided in the input) and returns
the result. The code is given in Fig. 2.

We consider an RAE scheme secure if all efficient distinguishers have poor
advantage with respect to the following definition.

Definition 4. The advantage of a distinguisher D for an RAE scheme Π is
quantified as

Advrae
Π (D) := ∆D

(
raeΠ

A raeΠ
B SKK,URI

)
.

It is straightforward to see that the definition implies the following construction
statement, where the converters sim and noAtck are defined as the converter that
blocks any interaction at the interface it is connected to.

Lemma 1. The protocol (raeΠ , raeΠ) constructs URI from SKK within Advrae
Π

with respect to (noAtck, noAtck) and simulator sim defined above.

Proof. Since interface E of SKK and URI are inactive, the converters sim and
noAtck have no effect when connected to that interface, i.e., noAtckE SKK = SKK
and noAtckE URI = simE URI = URI. Thus, both the availability and the
security condition of the construction are equivalent to

∆D
(
raeΠ

A raeΠ
B SKK,URI

)
≤ Advrae

Π (D)

for all distinguishers D, which trivially holds by definition of Advrae
Π . ut

Robust AE and the Limits of Symmetric Cryptography 9

Initialization
Q ← empty FIFO queue

Interface A

Input: (send,M) ∈ Σ∗
Q.enqueue(M)
output M at interface E

Interface E

Input: deliver
if |Q| > 0 then

M ← Q.dequeue()
output M at interface B

Input: (inject,M) ∈ Σ∗
output M at interface B

Resource IC

Fig. 3. The insecure channel resource.

4 Random Injection Channels: Security for any
Expansion

The goal of the current section is to examine the exact security achieved by
RAE schemes when used to protect communication. We present constructions of
specific secure channels from insecure channels and resource URI where each type
of secure channel precisely captures the amount of leakage to an eavesdropper
and the possible influence of an adversary interfering with the protocol execution.
As an additional result, we are able to answer what best-possible communication
security is and observe that RAE schemes achieve this level of security.

The insecure channel IC allows messages m ∈M to be input repeatedly at
interface A. Each message is subsequently leaked at the E-interface. At interface E,
arbitrary messages (including those that were previously input at interface A)
can be injected such that they are delivered to B. This channel does not give any
security guarantees to Alice and Bob. A formal description is provided in Fig. 3.
For the rest of this paper, the message space of the insecure channel is Σ∗.

4.1 Constructing Random Injection Channels

The constructed channel. The channel we construct in this section is defined
in Fig. 4 and can be roughly described as follows: It allows to repeatedly send
pairs (Ai,Mi) in an ordered fashion from a sender to a receiver. Each pair consists
of the associated data Ai and the message Mi. The attacker is limited to seeing
the associated data Ai and the length of the message |Mi| of each transmitted
pair. Additionally, the attacker learns whether the ith injected pair equals the
one that is currently sent.

The attacker can either deliver the next legitimate pair (Ai,Mi) or try to
inject a pair (A,M) that is different from (Ai,Mi). Such an injection is only
successful with a certain probability. The associated data A and the length ` of
the message are chosen by the attacker and M is a uniformly random message
of length ` if A 6= Ai. Otherwise, M is a uniformly random message M 6= Mi of
length `. If an injection attempt is not successful, the resource does not deliver
messages at interface B any more and signals an error by outputting ⊥. If the

10 C. Badertscher, C. Matt, U. Maurer, P. Rogaway, and B. Tackmann

Initialization
S ← empty FIFO queue
i← 0
R ← []

Interface A

Input: (send, A,M) ∈ A×M
i← i+ 1
if i > |R| then
S.enqueue((A,M))

if i ≤ |R| and R[i] = (A,M) then
output repeat at interface E

else
output (A, |M |) at interface E

Interface E

Input: deliver
if |S| > 0 and halt = 0 then

(A,M)← S.dequeue()
R ← R ‖ (A,M)
output (A,M) at interface B

Input: (inject, A, `) ∈ A× N>0

if halt = 0 then
if |S| > 0 then

(A′,M ′)← S.dequeue()
if A = A′ and ` = |M ′| then

M ← SampleExcl(`, λ,M ′)
else

M ← Sample(`, λ)
else

M ← Sample(`, λ)
if M 6= ⊥ then
R ← R ‖ (A,M)
output (A,M) at B

else
output ⊥ at B
halt← 1

function Sample(`, λ)

B � Bernoulli
(
|Σ|−λ

)
if B = 1 then

M � Σ`

return M
else

return ⊥

function SampleExcl(`, λ,m)

B � Bernoulli

(
|Σ|`−1

|Σ|`+λ−1

)
if B = 1 then

M � Σ` \ {m}
return M

else
return ⊥

Resource RICλ

Fig. 4. Description of RICλ. In the description, Bernoulli(p) denotes the distribution
over {0, 1}, where 1 has probability p and 0 has probability 1− p.

Initialization
i← 0

Interface out

Input: (send, A,M) ∈ A×M
output (fun, i, A, λ,M) to URI
let C be the return value from URI
i← i+ 1
output (send, (A,C)) to IC

Converter sndλ

Initialization
Q ← empty FIFO queue
i← 0
halt← 0

Interface in

Input: (A,C) ∈ A× C (from IC)
if halt = 0 then

output (inv, i, A, λ, C) to URI
let M be the return value from

URI
i← i+ 1
if M 6= ⊥ then

output (A,M) at out
else

output ⊥ at out
halt← 1

Converter rcvλ

Fig. 5. The converters for the sender (left) and the receiver (right) to construct RICλ.

Robust AE and the Limits of Symmetric Cryptography 11

adversary injects the ith message, the legitimate ith message cannot be delivered
anymore.5

The success probability of an injection attempt depends on the expansion λ
and the specified message length ` and whether the sender’s queue S is empty
or not. The exact probabilities are quantified by the two sampling functions
Sample and SamplExcl. The function Sample first samples a bit according to
the probability that a fixed element from Σ`+λ has a preimage under a uniform
random injection Σ` → Σ`+λ. If the bit is 1, a uniform random preimage is
returned. The function SampleExcl essentially does the same, but the domain
and codomain are both reduced by one element.6

Protocol. We construct resource RICλ from [URI, IC] which denotes the
resource that provides at each interface access to the corresponding interface of
both resources. Our protocol specifies a particular but very natural usage of URI
where the nonce is implemented as a counter value.7 We present the protocol
as pseudocode in Fig. 5. The converter for the sender, sndλ, accepts inputs of
the form (send, A,M) at its outer interface. It outputs (fun, i, A, λ,M) at the
inner interface to URI. The nonce is implemented as a counter and λ is the
parameter of the protocol. Once a ciphertext is received as a return value from
URI, it is output together with its associated data at the inner interface for the
insecure channel IC. The receiver converter rcvλ receives ciphertexts together
with the associated data at its inner interface from IC and decrypts C using
parameters A, i and λ. On success, the corresponding plaintext is output at the
outer interface. If decryption fails, the converter stops and signals an error by
outputting ⊥.

Construction statement. In order to show that the protocol (sndλ, rcvλ)
constructs RICλ from [URI, IC], we prove both conditions of Definition 1. For
all channels, the converter noAtck corresponds to the converter dlv that on any
input at its inner interface, outputs deliver to the channel connected to its inner
interface and blocks any interaction at its outer interface.

Theorem 1. Let λ ∈ N. The protocol (sndλ, rcvλ) constructs resource RICλ

from [URI, IC] with respect to (dlv, dlv) and simulator simRIC as defined in
Fig. 6. More specifically, for all distinguishers D

∆D
(
sndAλrcv

B
λdlv

E[URI, IC], dlvERICλ

)
= 0 (1)

and ∆D
(
sndAλrcv

B
λ[URI, IC], simE

RICRICλ

)
= 0. (2)

5 This relates to the security of RAE schemes which ensures that the message cannot
be decrypted using a wrong nonce. In our construction, the nonce is implemented as
the sequence number.

6 This ensures that the injected message is different from the one that the sender
provided.

7 Implementing the nonce as a counter allows to maintain the order of messages.

12 C. Badertscher, C. Matt, U. Maurer, P. Rogaway, and B. Tackmann

Initialization
Q1,Q2 ← empty FIFO queues
R ← []
i← 0
diff ← 0 . invariant: diff = max{|R| − i, 0}

Interface out

Input: (inject, A, C) ∈ A× C
R ← R ‖ (A,C)
if |Q2| = 0 then

diff ← diff + 1
output (inject, A, |C| − λ) at in

else
(A′, C′)← Q2.dequeue()
if A = A and C = C′ then

output deliver at in
else

output (inject, A, |C| − λ) at in

Input: deliver
if |Q1| > 0 then

(A,C)← Q1.dequeue()
execute commands for (inject, A, C)

Interface in

Input: (A, `) ∈ A× N>0

i← i+ 1
if diff > 0 then

diff ← diff − 1
(Ai, Ci)← R[i]
if A = Ai then

C � Σ`+λ \ {Ci}
else

C � Σ`+λ

else
C � Σ`+λ

Q2.enqueue((A,C))

Q1.enqueue((A,C))
output (A,C) at out

Input: Repeat
i← i+ 1
(Ai, Ci)← R[i]
if diff > 0 then

diff ← diff − 1
else
Q2.enqueue((Ai, Ci))

Q1.enqueue((Ai, Ci))
output (Ai, Ci) at out

Converter simRIC

Fig. 6. Simulator for the security condition of the construction of RICλ.

Proof. We first prove the security condition (2) by analyzing the input-output
behavior of both systems involved. To this end, we consider the possible inputs
at each interface.

On the ith input (send, Ai,Mi) at interface A: In sndAλrcv
B
λ[URI, IC], con-

verter sndλ evaluates URI on input (i, Ai, λ,Mi), where the counter i is the
nonce and Ai is the associated data. The associated data is sent together
with URI’s return value Ci over IC. If this is the first query to URI with
parameters i and Ai, then the output Ci is distributed uniformly at random
over Σ|Mi|+λ. If there has been a query (inv, i, Ai, C

′
i) before at interface B of

URI, with |C ′i| = |Mi|+ λ that has generated the output M ′i = Mi, then Ci
is determined to be equal to C ′i. If Mi 6= M ′i , the output is Ci is distributed
uniformly at random over Σ|Mi|+λ \ {C ′i}.
In system simE

RICRICλ, (Ai,Mi) is inserted into the senders queue of RICλ.
If there has already been an ith output (A′i,M

′
i) with A′i = Ai and Mi = M ′i

at interface B, then RICλ outputs repeat at interface E and the simulator
outputs the ciphertext and the associated data that was input before at its
outer interface as the ith injection. Otherwise,RIC outputs the pair (Ai, |Mi|)
to simRIC. The simulator checks whether there exists an ith injected associated
data-ciphertext pair (A′i, C

′
i) with A′i = Ai and |C ′| = |Mi|+λ. If such a pair

exists, which is the case if diff > 0, simRIC generates a uniformly random
string Ci ∈ Σ|Mi|+λ \{C ′i} and outputs (Ai, Ci) at its outer interface. If there
is no such pair, i.e., if diff = 0, simRIC generates a uniformly random string

Robust AE and the Limits of Symmetric Cryptography 13

Ci ∈ Σ|Mi|+λ and outputs (Ai, Ci) at its outer interface. In both cases, simRIC

stores (Ai, Ci) in its own queues for later reference. Q1 simulates the queue of
the insecure channel in the real world (to correctly simulate deliver-queries).
Q2 stores the associated data-ciphertext pairs of the corresponding entries in
the queue S of RICλ. We observe that the case distinctions made by simRIC

correspond exactly to the cases that happen in the real system. Hence, the
output distribution at interface E is identical to above.

On the ith input (inject, Ai, Ci) at interface E: In the following, we assume
that interface B has not output ⊥ already, as otherwise the two systems
behave identically anyway.
In sndAλrcv

B
λ[URI, IC], the converter rcvλ queries URI with (inv, i, Ai, λ, Ci)

to receive the preimage Mi of Ci under parameters (i, Ai, λ). Let us first
assume that there has been an ith input before at interface A (A′i,M

′
i) and

that URI generated the ciphertext C ′i on that input. There are three cases
to consider to determine the output distribution at interface B:
1. If Ai = A′i and Ci = C ′i, then Mi = M ′i holds with probability 1 and

rcvv,λ outputs M ′i .
2. If Ai 6= A′i or |Ci| 6= |C ′i|, URI generates a fresh uniform injection
Σ|Ci|−λ → Σ|Ci| and there is only an output at interface B if Ci has a
preimage under the chosen injection. This is the case with probability∣∣Σ|Ci|−λ∣∣∣∣Σ|Ci|∣∣ = |Σ|−λ.

Given that Ci has a preimage, then the output at interface B is (Ai,Mi),
where Mi is distributed uniformly over Σ|Ci|−λ, since all preimages are
equally likely. If Ci does not have a preimage, rcvv,λ sets halt← 1 and
outputs ⊥.

3. If Ai = A′i, Ci 6= C ′i, and |Ci| = |C ′i|, URI has already generated an
injection f : Σ|Ci|−λ → Σ|Ci| on the ith input (A′i,M

′
i) at interface A

such that f(M ′i) = C ′i, and there is only an output at interface B if Ci
has a preimage under f . Since there are

∣∣Σ|Ci|−λ ∩Mv

∣∣ − 1 possible
preimages different from M ′i and each of them is mapped to one out of∣∣Σ|Ci|∣∣− 1 possible ciphertexts different from C ′i, the probability that Ci
has a preimage is ∣∣Σ|Ci|−λ∣∣− 1∣∣Σ|Ci|∣∣− 1

.

If Ci has a preimage, then the output at interface B is (Ai,Mi), where
Mi is distributed uniformly over Σ|Ci|−λ \ {M ′i}, where M ′i is excluded
due to injectivity and the remaining preimages are equally likely. If Ci
does not have a preimage, rcvv,λ sets halt← 1 and outputs ⊥.

If there has not yet been an ith input (A′i,M
′
i) at interface A (i.e., there are

more messages injected than sent), the behavior is the same as in item 2
above, because URI generates a fresh uniform injection Σ|Ci|−λ → Σ|Ci| for
each counter value i.

14 C. Badertscher, C. Matt, U. Maurer, P. Rogaway, and B. Tackmann

In simE
RICRICλ, let us again first assume that there are more messages sent

than injected, i.e., diff = 0. In that case, simRIC retrieves the front element
of Q2 which contains the simulated pair (A′i, C

′
i) of the front element of S,

say (A′i,M
′
i) (where M ′i is the next message that can be delivered reliably).

If Ai = A′i and Ci = C ′i then simRIC delivers the next element in the sender
queue of RICλ and hence the ith message M ′i is output. This corresponds
to item 1 above. In the other two cases, simRIC outputs (inject, A, |Ci| − λ).
The behavior of RICλ is then as follows: Let ` := |Ci| − λ. If ` = |M ′i | and
Ai = A′i, the output is ⊥ with probability 1− |Σ|`−1

|Σ|`+λ−1
. If the output is not ⊥,

the message is chosen uniformly at random from Σ` \ {Mi}. This behavior
follows from the call to the function SampleExcl(`, λ,Mi). If ` 6= |Mi| or
Ai 6= Ai, RICλ either outputs ⊥ and halts with probability 1 − |Σ|−λ or,
conditioned on not being ⊥, the output at interface B is (Ai,Mi), where Mi

is chosen uniformly at random from Σ`. This behavior follows from the call
to the function Sample(`, λ).
Finally, if there is no element in the sender’s queue S, i.e., if there are at least
as many messages injected as sent, then the output distribution is identical
to the case ` 6= |Mi| or Ai 6= Ai like in the real world.
We conclude that in any case, the outputs are distributed identically for the
systems sndAλrcvBλ[URI, IC] and simE

RICRICλ.
On the ith input (deliver) at interface E: In sndAλrcv

B
λ[URI, IC], the front el-

ement of the sender queue (within IC) is decrypted by rcvλ. This behavior
is perfectly simulated in simE

RICRICλ since the simulator retrieves the front
element (E,C) of its queue Q1 which simulates the real-world sender queue.
Next, the simulator executes the same instructions as for (inject, E, C) which
lets the two systems produce identically distributed outputs.
This concludes the analysis of the security condition.

We now prove the availability condition (1). First, in sndAv,λrcv
B
v,λdlv

E[URI, IC],
the converter dlv is attached at interface E and answers any output produced
by IC with the input (deliver). This essentially converts IC into a reliable
transmission channel: whatever pair (A,C) is given to IC, it is immediately
delivered to rcvv,λ. Therefore, if the ith input at interface A is (send, Ai,Mi) then
the ith output at interface B is (Ai,Mi), since URI is queried with the exact
same parameters. It is obvious that the same holds for the input-output behavior
of system dlvERICλ. ut

4.2 What is Best-Possible Security?

We observe that RICλ has two undesirable properties: messages can be injected
and the output at interface E leaks more than only the length of the payload in
that it reveals whether Alice sends the pair (A,M) that has been output by Bob
upon an adversarial injection. In contrast, a channel that only leaks the message
length is considered fully confidential.

We first illustrate an application in which this lack of full confidentiality is
problematic. The main purpose of our example is to show that one cannot exclude

Robust AE and the Limits of Symmetric Cryptography 15

the existence of an application where exactly this (intuitively small) difference to
full confidentiality yields a security problem.

Second, we show that a successful injection followed by the undesired in-
formation leakage about the repetition is possible for any scheme, even if it is
stateful and uses an arbitrary setup before starting communication, and that the
probability of this is minimized if RICλ is used.

Sample scenario: On the difference to full confidentiality. Assume a
setting in which party A is allowed to send information to party B via a fully
confidential channel but not vice versa. Suppose now that B finds a possibility to
send information to A via a covert channel and the two parties use the confidential
channel for messages from A to B and the covert channel for messages from
B to A. Suppose now that the confidential channel is in fact a channel that
leaks the above repetition event instead of only the message length. This gives
an investigator E a means to test for the existence of a covert channel from B
to A as follows: At some point, E injects a random message M to B. Assuming
information flow from B to A, party B might start a discussion about M with
party A. As part of this conversation, A might send M to B, which would signal
a repetition-event to E. For large message spaces, it is very unlikely that A comes
up with the exact same message that was randomly injected to B before, unless
there is a (hidden) flow of information. The occurrence of the event is therefore a
witness for the existence of a channel from B to A. In contrast, a fully confidential
channel would not reveal the existence of the covert channel.

RIC provides best-possible security. In RICλ, an injection attempt is
successful with probability at most |M||C| = |Σ|−λ and given a successful injection
and that Alice subsequently sends the corresponding output of Bob, the above
described leakage occurs with probability 1. Overall, the total probability that
an undesired property can be observed is bounded by |Σ|−λ.

We show that this probability is optimal and that no protocol can achieve a
better bound. Hence, RICλ maximizes authenticity and confidentiality. We first
prove the following general lemma.

Lemma 2. Let M and C be finite nonempty sets and let E and D be random
variables over functions A×M→ C and A× C →M∪ {⊥}, respectively, such
that

∀m ∈M, a ∈ A : Pr[D(a,E(a,m)) = m] ≥ p

for some p ∈ [0, 1]. We then have for all a ∈ A and any random variable C that
is distributed uniformly over C and independent from E and D,

Pr[D(a,C) 6= ⊥ ∧ E(a,D(a,C)) = C] ≥ p · |M|
|C|

.

16 C. Badertscher, C. Matt, U. Maurer, P. Rogaway, and B. Tackmann

Proof. We have for all a ∈ A

Pr[D(a,C) 6= ⊥ ∧ E(a,D(a,C)) = C]

=
∑
m∈M

∑
c∈C

Pr[D(a, c) = m ∧ E(a,m) = c ∧ C = c]

=
1

|C|
∑
m∈M

∑
c∈C

Pr[D(a, c) = m ∧ E(a,m) = c]︸ ︷︷ ︸
=Pr[D(a,E(a,m))=m] ≥ p

≥ p · |M|
|C|

,

where we used in the second step that C is distributed uniformly over C and
independent from E and D. ut

Lemma 2 can be applied to our usual setting encAλdec
B
λ[SKK, IC] for a generic

protocol (encλ, decλ) in a straightforward manner: we only have to observe that
for the ith input (send, Ai,Mi), for all i ∈ N, converter encλ is characterized by a
probabilistic map A×M→ C, that may depend on previous inputs and outputs
and on the key k. Similarly, the converter decλ is characterized by a probabilistic
map A× C →M∪ {⊥} for any i ∈ N.

Correctness of the protocol implies that if (send, Ai,Mi) is input to encλ as
the ith query and yields ciphertext Ci, then the probability that on the ith
input (Ai, Ci) to decλ, and if decλ has not halted yet, the converter decrypts the
ciphertext to Mi with probability p; note that p = 1 for RAE schemes. Hence,
Lemma 2 implies that the probability that any of the two undesirable properties
can be observed during protocol execution is at least |Σ|−λ.

5 Augmented Secure Channels and Verifiable
Redundancy

Looking at the specification of RICλ, we observe that for large values λ, the
probability of successful injections becomes exponentially small, and so are the
repetition events at interface E. We are particularly interested in the resource that
specifies this abstraction: a channel that allows to securely transmit messages
consisting of an associated data and a payload part such that an attacker is
limited to seeing the associated data and the length of the payload, to deliver the
next message, or to abort the whole communication. This channel abstraction
corresponds to an augmented secure channel. Such channels were introduced in
[1] and shown to be achievable by the AEAD notion of [12]. Not surprisingly,
this confirms that RAE and AEAD achieve the same security goals for large
ciphertext expansion.

Additionally, we formally show how redundancy in messages can be exploited
to improve authenticity, where redundancy restricts the set of valid messages to
a subset ofM = Σ∗.

Robust AE and the Limits of Symmetric Cryptography 17

Initialization
S ← empty FIFO queue
halt← 0

Interface A

Input: (send, A,M) ∈ A×Mv

S.enqueue((A,M))
output (A, |M |) at interface E

Interface E

Input: deliver
if |S| > 0 and halt = 0 then

(A,M)← S.dequeue()
output (A,M) at interface B

Input: terminate
if halt = 0 then

halt← 1
output ⊥ at interface B

Resource ASCMv

Fig. 7. Description of ASC, an augmented secure channel.

The following theorem provides the exact security bound in terms of redun-
dancy in the message space and ciphertext expansion λ. We thereby confirm a
conjecture of [6]. Let v :M 7→ {true, false} be a predicate on the message space.
We define the subsetMv := {M | M ∈ M ∧ v(M)} which we call the set of
valid messages. Following [6], the density ofMv is defined as

dv := max
`∈N

|Σ` ∩Mv|
|Σ`|

.

A similar statement, namely for a specific encryption mode that allows the
attacker to either forward messages or to inject purely random ones into the
channel, and for a specific redundant encoding, has been shown by Rüedlinger [15].

The constructed channel. The augmented secure channel ASCMv
is de-

scribed in Fig. 7. The channel is derived from RICλ by requiring that M ∈Mv

and by removing undesired capabilities that vanish due to the exponentially small
success probability for large λ.

Protocol. The protocol for the sender, sndChkv, accepts inputs of the form
(send, A,M) at its outer interface and forwards the pair to the channel RICλ

if and only if v(M) (and otherwise ignores the request). The receiver converter
rcvChkv, on receiving the pair (A,M) from RICλ, outputs (A,M) at its outer
interface if and only if v(M). If rcvChkv receives ⊥ from RICλ or if ¬v(M), it
outputs ⊥ at its outer interface and halts.

Theorem 2. Let λ ∈ N. The protocol (sndChkv, rcvChkv) constructs ASCMv

from RICλ with respect to (dlv, dlv) and simulator simASC defined in Fig. 8.
More specifically, for all distinguishers D

∆D
(
sndChkAv rcvChkv

BdlvERICλ, dlv
EASCMv

)
= 0 (3)

and ∆D
(
sndChkAv rcvChkv

BRICλ, sim
E
ASCASCMv

)
≤ dv · |Σ|−λ. (4)

18 C. Badertscher, C. Matt, U. Maurer, P. Rogaway, and B. Tackmann

Interface in

Input: (A, `) ∈ A× N>0

output (A, `) at out

Interface out

Input: deliver
output deliver at in

Input: (inject, A, `) ∈ A× N>0

output terminate at in

Converter simASC

Fig. 8. Simulator for the security condition of the construction of ASCMv .

Proof. The availability condition (3) is straightforward to verify. We only prove
the security condition (4). It is easy to see that the two systems behave identically
as long as no injection attempt is successful. This is because successful injections
are necessary for observing repeat: as long as no injection is successful, for any
send-query to RICλ, the condition i ≤ |R| is not satisfied after incrementing i.
We thus only have to bound this probability. We hence consider the event that
in an interaction of a distinguisher with the real system sndChkAv rcvChkv

BRICλ

the first attempt to inject a random message is successful (since in case of an
unsuccessful attempt, both channels stop delivering messages). In any interaction
of D with the resource, the probability of the event is determined by RICλ

as one out of two possibilities, see Fig. 4. For any i ∈ N, if the ith query at
interface E is the first attempt to inject a message, then the probability depends
on whether the specified associated data and the length coincides with the length
of the message and the associated data of the ith input at interface A. Both
probabilities are upper bounded by

max

{∣∣Σ|Ci|−λ ∩Mv

∣∣− 1∣∣Σ|Ci|∣∣− 1
,

∣∣Σ|Ci|−λ ∩Mv

∣∣∣∣Σ|Ci|∣∣
}
≤
∣∣Σ|Ci|−λ ∩Mv

∣∣∣∣Σ|Ci|∣∣
=

∣∣Σ|Ci|−λ ∩Mv

∣∣∣∣Σ|Ci|−λ∣∣ · |Σ|−λ ≤ dv · |Σ|−λ,

where we used x−1
y−1 ≤

x
y for x ≤ y in the first step, and the definition of dv in the

last step. ut

6 Guarantees for Nonce-Reuse

One goal of robust authenticated encryption is to provide resilience to the misuse
when nonces are repeated. While the expected security loss was only informally
stated in [6], we rigorously derive the exact guarantees that can still be expected
in such a scenario. To this end, we consider the extreme case where the nonce is
a constant value.

Repetition ASC. The channel that is achieved if the nonce is repeating is
denoted RASCMv

and its description is given in Fig. 9. There are two differences

Robust AE and the Limits of Symmetric Cryptography 19

to ASCMv
: First, not only the length of the message is leaked at interface E

but also the number i of the first transmitted message that equals the current
message. This leaks the repetition pattern of transmitted values. Second, the
adversary can replay messages and induce arbitrary out-of-order delivery.

Protocol. The protocol, which we denote by (rsnd, rrcv), invokes URI using the
constant nonce 0. Furthermore, the protocol verifies that all messages are from
the setMv. The protocol is specified in Fig. 10.

Theorem 3. Let λ ∈ N. The protocol (rsndλ, rrcvλ) constructs RASCMv
from

[URI, IC] with respect to (dlv, dlv) and simulator simRASC defined in Fig. 11.
More specifically, we have for all distinguishers D

∆D
(
rsndAλrrcv

B
λdlv

E[URI, IC], dlvERASCMv

)
≤ 2dv + q · (q − 1)

2
· |Σ|−λ (5)

and

∆D
(
rsndAλrrcv

B
λ[URI, IC], simE

RASCRASCMv

)
≤ 2dv + q · (q − 1)

2
· |Σ|−λ, (6)

where q is the total number of inputs made by D.

Proof. We prove the security condition (6) in a similar way as in the previous
section.

On the ith input (send, Ai,Mi) at interface A: In rsndAλrrcv
B
λ[URI, IC], sys-

tem URI is queried with (fun, 0, Ai, λ,Mi) to produce ciphertext Ci. Next,
the pair (Ai, Ci) is sent over IC and thus output at interface E. Clearly, if
there exists some j < i s.t. Aj = Ai and Mj = Mi then Cj = Ci (with
probability 1). On the other hand, if Aj = Ai but Mj 6= Mi, then Ci 6= Cj
with probability 1. Otherwise, the distribution of ciphertext Ci is independent
of the distribution of any Cj that is encrypted with different parameters
Aj 6= Ai or |Mj | 6= |Mi| (by definition of URI).
In system simE

RASCRASCMv
, the simulator gets the pair (`, k), where ` =

|Mi| and k is the number of the first input that equals (Ai,Mi). This allows
simRASC to consistently reflect repetitions of ciphertexts. If k = i, i.e., if
the message is new, a uniformly random ciphertext Ci of length ` + λ
is output and stored for future reference. By comparing the behavior to
rsndAλrrcv

B
λ[URI, IC], we observe that the two systems have the same output

distribution, as long as there is no collision to a previous ciphertext Cj that
has been generated on input (Aj ,Mj) with Aj = Ai and |Mi| = |Mj | but
Mi 6= Mj . The probability of such a collision is bounded by

q · (q − 1)

2
· |Σ|−λ. (7)

20 C. Badertscher, C. Matt, U. Maurer, P. Rogaway, and B. Tackmann

Initialization
R ← empty FIFO queue
S ← []; halt← 0

Interface A

Input: (send, A,M) ∈ A×Mv

S ← S ‖ (A,M)
i← min{n ∈ N | S[n] = (A,M)}
output (A, |M |, i) at interface E

Interface E

Input: (deliver, i) ∈ N>0

if |S| ≥ i and halt = 0 then
(E,M)← S[i]
output (A,M) at interface B

Input: terminate
if halt = 0 then

halt← 1
output ⊥ at interface B

Resource RASCMv

Fig. 9. Description of RASC.

Interface out

Input: (send, A,M) ∈ A×Mv

if v(M) then
output (fun, 0, A, λ,M) to URI
let C be return value from URI
output (send, (A,C)) to IC

Converter rsnd

Initialization
halt← 0

Interface in

Input: (A,C) ∈ A× C (from IC)
if halt = 0 then

output (inv, 0, A, λ, C) to URI
let M be return value from URI
if M 6= ⊥ and v(M) then

output (A,M) at out
else

output ⊥ at out
halt← 1

Converter rrcv

Fig. 10. The converters for the sender (left) and the receiver (right).

Initialization
Q ← empty FIFO queue
S ← []

Interface in

Input: (A, `, i) ∈ A× N>0 × N>0

if i = |S|+ 1 then
C � Σ`+λ

else
C ← S[i]

S ← S ‖ (A,C)
Q.enqueue((A,C))
output (A,C) at out

Interface out

Input: (inject, A, C) ∈ A× C
if ∃n ∈ N : S[n] = (A,C) then

i← min{n ∈ N | S[n] = (A,C)}
output (deliver, i) at in

else
output terminate at in

Input: deliver
if |Q| > 0 then

(A,C)← Q.dequeue()
execute instructions for (Inject, A, C)

Converter simRASC

Fig. 11. Simulator for the security condition of the construction of RASCMv .

Robust AE and the Limits of Symmetric Cryptography 21

On the ith input (inject, Ai, Ci) at interface E: In the following, we assume
that interface B has not output ⊥ already, as otherwise the two systems
behave identically anyway.
In rsndAλrrcv

B
λ[URI, IC], rsnd queries URI with input (inv, 0, Ai, λ, Ci). In

the following analysis, Let ` := |Ci| − λ and let denote qAi,`A the total number
of distinct queries (send, Ai,M) with ` = |M | at interface A.
When rrcv decrypts ciphertext Ci of length `+ λ using associated data Ai,
then there are two cases to consider: either URI has already generated a
function mapping messages of length ` to ciphertexts of length `+ λ or URI
has not yet generated such a function yet.
1. If URI has generated an injective function already, then there have

been qAi,`A fixed message-ciphertext pairs (M ′j , C
′
j) generated by URI.

Clearly, if Ci equals one of the C ′j , then the output at interface B is M ′j .
Otherwise, there is only an output at interface B if Ci has a preimage
under the random injection and since there are |Σ`∩Mv|−qAi,`A possible
valid preimages left and each one is assigned to one of |Σ|`+λ − qAi,`A

ciphertexts, the probability that Ci has a preimage (and consequently
that B produces an output) is at most

|Σ` ∩Mv| − qAi,`A

|Σ|`+λ − qAi,`A

≤ |Σ
` ∩Mv|
|Σ|`+λ

≤ dv · |Σ|−λ, (8)

where we used x−d
y−d ≤

x
y for x ≤ y and 0 ≤ d < y in the first step and the

definition of dv in the second step.
2. The second case follows trivially by observing that if URI has not

generated a function yet, then qAi,`A = 0.
In simE

RASCRASCMv
, if the injected pair (Ai, Ci) is equal to a previously

generated pair (Ej , Cj), the simulator outputs (deliver, j) at the inner interface
to instruct the channel to replay the jth message, which generates the output
(Aj ,Mj) at interface B.
On the other hand, if the pair (Ai, Ci) is new, simRASC terminates the channel.
This element is guaranteed to decrypt to ⊥ on any decryption attempt at
interface B.
System simE

RASCRASCMv
reflects the behavior of sndAv,λrcvBv,λ[URI, IC] as

long as the converter rrcvλ does not generate a valid output upon its first
attempt to decrypt an injected associated data-ciphertext pair (A,C) that
has not been generated in reaction to a send-query at interface A. In such
a case, simRASC would always insert an empty element and provoke the
output ⊥. However, the probability of rrcvλ producing a valid output upon
decryption of a new associated data-ciphertext pair is bounded in (8).

On the ith input (deliver) at interface E: In rsndAλrrcv
B
λ[URI, IC], the front

element, say (A,C) of the sender queue (within IC) is output to rrcv that
tries to decrypt the associated data-ciphertext pair. Furthermore, since the
pair is a valid encryption, the message is output at interface B.
In simE

RASCRASCMv
, the simulator retrieves the front element (A,C) of

queue Q which simulates the sender queue of the real execution of the protocol.

22 C. Badertscher, C. Matt, U. Maurer, P. Rogaway, and B. Tackmann

The simulator executes the same instructions as for (inject, A,C) which yields
the same behavior for both systems, since also in this case, the pair (A,C) is
in the simulator’s list of valid associated data-ciphertext pairs.

This concludes the analysis and we can bound the distinguishing advantage
by using inequalities (7) and (8). The analysis of the availability condition (5) is
straightforward and omitted. ut

Acknowledgments. Ueli Maurer was supported by the Swiss National Science
Foundation (SNF), project no. 200020-132794. Björn Tackmann was supported by
the Swiss National Science Foundation (SNF) via Fellowship no. P2EZP2_155566
and the NSF grants CNS-1228890 and CNS-1116800. Much of the work on
this paper was done while Phil Rogaway was visiting Ueli Maurer’s group at
ETH Zurich. Many thanks to Ueli for hosting that sabbatical. Rogaway was also
supported by NSF grants CNS-1228828 and CNS-1314885.

A Equivalence of Security Definitions for RAE

The security of an RAE scheme Π = (K, E ,D) is defined in [6] via the reference
games REALΠ and RAEΠ depicted in Fig. 12. The game REALΠ provides
oracle access to E and D, and RAEΠ provides oracle access to ideal uniform
random injections and their inverses. The advantage of an adversary A is defined
as

Advrae, game
Π (A) := Pr

[
AREALΠ = 1

]
− Pr

[
ARAEΠ = 1

]
.

Initialization
K � K

Oracle Enc

Input: (N,A, λ,M) ∈ N ×A× N×M
return EN,A,λK (M)

Oracle Dec

Input: (N,A, λ, C) ∈ N ×A× N× C
return DN,A,λK (C)

REALΠ

Initialization
for (N,A, λ, `) ∈ N ×A× N× N do

fN,A,λ,` � Inj
(
Σ`, Σ`+λ

)
Oracle Enc

Input: (N,A, λ,M) ∈ N ×A× N×M
return fN,A,λ,|M|(M)

Oracle Dec

Input: (N,A, λ, C) ∈ N ×A× N× C
return

(
fN,A,λ,|C|−λ

)−1(C)

RAEΠ

Fig. 12. Security games for the RAE scheme Π = (K, E ,D) as defined in [6].

The following lemma implies that this definition is equivalent to Definition 4.

Lemma 3. For every distinguisher D there is an adversary A (with essentially
the same efficiency) such that Advrae, game

Π (A) = Advrae
Π (D). Conversely, for

every adversary A there is a distinguisher D (with essentially the same efficiency)
such that Advrae

Π (D) = Advrae, game
Π (A).

Robust AE and the Limits of Symmetric Cryptography 23

Proof. Observe that inputs (fun, ·, ·, ·, ·) and (inv, ·, ·, ·, ·) to raeΠ
A raeΠ

B SKK
correspond to queries in REALΠ to the oracles Enc and Dec, respectively: in
both cases, the resulting outputs are generated by the algorithms E and D for a
uniformly random key. Similarly, the same inputs to the resource URI correspond
to the oracles Enc and Dec in the game RAEΠ since the outputs are in both cases
computed by a uniformly random injection or its inverse. Hence, a distinguisher
can be turned into an adversary with the same advantage and vice versa by
exchanging inputs to the resources with the corresponding oracle queries. ut

References

1. Badertscher, C., Matt, C., Maurer, U., Rogaway, P., Tackmann, B.: Augmented
Secure Channels as the Goal of the TLS 1.3 Record Layer. Cryptology ePrint
Archive, Report 2015/394, 2015

2. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: Advances in Cryptology –
ASIACRYPT 2000, pp. 531–545. Springer Berlin Heidelberg (2000)

3. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: How to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Advances in Cryptology –
ASIACRYPT 2000, pp. 317–330. Springer (2000)

4. Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In: Fast
Software Encryption, pp. 389–407. Springer (2004)

5. Gligor, V., Donescu, P.: Fast Encryption and Authentication: XCBC Encryption and
XECB Authentication Modes. In: Fast Software Encryption, pp. 92–108. Springer
(2002)

6. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption: AEZ and
the problem that it solves. In: Advances in Cryptology – EUROCRYPT 2015, pp.
15–44. Springer (2015)

7. Jutla, C.: Encryption modes with almost free message integrity. In: Advances in
Cryptology – EUROCRYPT 2001, pp. 529–544. Springer (2001)

8. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of
operation. In: Fast Software Encryption, pp. 284–299. Springer (2001)

9. Maurer, U.: Constructive cryptography – a new paradigm for security definitions
and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) Theory of Security and
Applications, Lecture Notes in Computer Science, vol. 6993, pp. 33–56. Springer
(2012)

10. Maurer, U., Renner, R.: Abstract cryptography. In: Chazelle, B. (ed.) The Second
Symposium on Innovations in Computer Science, ICS 2011, pp. 1–21. Tsinghua
University Press (2011)

11. Maurer, U., Rüedlinger, A., Tackmann, B.: Confidentiality and integrity: a con-
structive perspective. In: TCC 2012, pp. 209–229. Springer (2012)

12. Rogaway, P.: Authenticated-encryption with associated-data. In: Proceedings of
the 9th ACM Conference on Computer and Communications Security, pp. 98–107.
ACM (2002)

13. Rogaway, P., Bellare, M., Black, J.: OCB: A block-cipher mode of operation for
efficient authenticated encryption. ACM Transactions on Information and System
Security (TISSEC) 6(3), 365–403 (2003)

14. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap problem.
In: Advances in Cryptology – EUROCRYPT 2006, pp. 373–390. Springer (2006)

24 C. Badertscher, C. Matt, U. Maurer, P. Rogaway, and B. Tackmann

15. Rüedlinger, A.: Restricted types of malleability in encryption schemes. Masters
thesis, ETH Zürich (2011)

	Robust Authenticated Encryption and the Limits of Symmetric Cryptography

