Faster ECC over $\mathbb{F}_{2^{571}}$

(Fea. PMULL)

Hwajeong Seo

Institute for Infocomm Research (I2R), Singapore

hwajeong84@gmail.com

Abstract. In this paper, we show efficient elliptic curve cryptography implementations for B-571 over ARMv8. We improve the previous binary field multiplication with finely aligned multiplication and incomplete reduction techniques by taking advantages of advanced 64-bit polynomial multiplication (PMULL) supported by ARMv8. This approach shows performance enhancements by a factor of 1.34 times than previous binary field implementations. For the point addition and doubling, the special types of multiplication, squaring and addition operations are combined together and optimized, where one reduction operation is optimized in each case. The scalar multiplication is implemented in constant-time Montgomery ladder algorithm, which is secure against timing attacks. Finally the proposed implementations achieved 759,630/331,944 clock cycles for random/fixed scalar multiplications for B-571 over ARMv8, respectively.

Keywords: ARMv8, Elliptic Curve Cryptography, Binary Field Multiplication

1 Introduction

Elliptic Curve Cryptography (ECC) is the most popular Public Key Cryptography (PKC) in modern computers. However due to its high complexities, the computations become performance bottleneck in the applications. Particularly, the binary field multiplication is regarded as the most expensive operation so many researchers have studied the high-speed implementation of binary field multiplication in order to improve the availability of applications. The classical binary field multiplication performs the bitwise exclusive-or operation with the operands and the intermediate results when the target bit of operand is set to one [14, 11, 12]. The alternative approach takes advantages of the pre-computed Look-Up Table (LUT). The method constructs the part of results in advance and then the logical operations are replaced into the simple memory access operations [7, 10]. Recently, the modern embedded processors support the advanced built-in polynomial multiplication. ARMv7 architecture supports VMULL.P8 operation which computes eight 8-bit wise polynomial multiplications with single instruction and then outputs eight 16-bit results to the 128-bit NEON register. In [2], Câmara et al. shows that the efficient 64-bit polynomial multiplication
with the VMULL.P8 instruction. Since the VMULL.P8 instruction only provides the outputs in vectorized formats, the author presents nice approaches to align the vectorized into sequential results. After then multiple levels of Karatsuba multiplications are applied to various binary field multiplications ranging from \(\mathbb{F}_{2^{251}} \), \(\mathbb{F}_{2^{283}} \) to \(\mathbb{F}_{2^{571}} \). The advanced ARMv8 architecture supports PMULL instruction which computes the 64-bit wise polynomial multiplication. In CT-RSA’15, Gouvêa and López presented compact implementations of GCM based Authenticated Encryption (AE) with the built-in AES encryption and PMULL instruction [3]. Since the 128-bit polynomial multiplication only needs 4 times of PMULL instructions, the basic multiplication shows better performance than asymptotically faster Karatsuba multiplication. After then the authors evaluate the built-in AES encryption, which improves the performance of GCM by about 11 times than that of ARMv7. In [13], authors evaluated the PMULL based binary field multiplication techniques ranging from 192-bit to 576-bit for ECC. From 256-bit polynomial multiplication, Karatsuba techniques show performance enhancements than traditional approaches. However, the paper does not explore the full implementations of ECC and we found a room to improve the performance further from the work.

In this paper, we present efficient implementation techniques for B-571 on ARMv8. We improve the previous binary field multiplication by introducing finely aligned multiplication and incomplete reduction technique. The proposed technique improves the performance by a factor of 1.34 times than previous Seo et al.’s implementations. For the point addition and doubling, we perform the combined reduction on special types of binary field multiplication, squaring and addition operations. The scalar multiplication is implemented in Montgomery ladder algorithm, which ensures constant timing and security against timing attacks. Finally, we set the speed record for B-571 on ARMv8, which performs the unknown/fixed scalar multiplications within 759,630/331,944 clock cycles, respectively.

The remainder of this paper is organized as follows. In Section 2, we recap the B-571 curve, target ARM processor and previous polynomial multiplication on ARMv8. In Section 3, we propose the efficient ECC implementations on ARMv8. In Section 4, we evaluate the performance of proposed methods. Finally, Section 5 concludes the paper.

2 Related Works

2.1 Elliptic curve over \(\mathbb{F}_{2^{571}} \)

The 571-bit elliptic curve standardized in [1] and the finite field \(\mathbb{F}_{2^m} \) is defined by:

\[
f(x) = x^{571} + x^{10} + x^{5} + x^{2} + 1
\]

The curve \(E : y^2 = xy = x^3 + ax^2 + b \) over \(\mathbb{F}_{2^m} \) is defined by:
\[a = 00000000 \quad 00000000 \quad 00000000 \quad 00000000 \quad 00000000 \quad 00000000 \quad 00000000 \\
00000000 \quad 00000000 \\
00000000 \quad 00000000 \\
00000000 \quad 00000000 \quad 00000000 \quad 00000000 \quad 00000000 \quad 00000000 \quad 00000000 \\
b = 02F40E7E \quad 2221F295 \quad DE297117 \quad B7F3D62F \quad 5C6A97FF \quad CB8CEFF1 \quad CD6BA8CE \\
4A9A18AD \quad 84FFABBD \quad 8EFA5933 \quad 2BE7AD67 \quad 56A66E29 \quad 4AFD185A \quad 78FF12AA \\
520E4DE7 \quad 39BACA0C \quad 7FEFF7F \quad 2955727A \\
\]

and group order is defined by:
\[n = 03FFFFFF \quad FFFFFFFF \quad E661CE18 \quad FF59873 \quad 08059B18 \quad 6823851E \quad C7DD9CA1 \quad 161DE93D \quad 5174D66E \quad 8382E9BB \quad 2FE84E47 \]

2.2 ARM Processor

Advanced RISC Machine (ARM) is an instruction set architecture (ISA) for high-performance embedded applications. ARM architecture supports low-power consumptions and high code density. The most advanced ARMv8 processor supports both 32-bit (AArch32) and 64-bit (AArch64) architectures. Particularly the processor supports a single-instruction multiple-data (SIMD) instruction sets with NEON engine. The processor has 32 64-bit registers (X0–X31) and 32 128-bit NEON registers (V0–V31). Particularly, 64-bit wise polynomial multiplication instructions (PMULL and PMULL2) are available. The PMULL instruction uses the lower 64-bit part in 128-bit register for the input, while the PMULL2 instruction uses the higher 64-bit part in 128-bit register for the input [3].

2.3 Polynomial Multiplication on ARMv8

In [13], authors evaluated the PMULL instructions for the various polynomial multiplications ranging from 192-bit to 576-bit. Particularly, the authors perform the three terms of Karatsuba multiplication for the 576-bit case, which reduces the number of 192-bit wise multiplication from 9 to 6 [8, 15, 6]. The author claims that basic approach for 192-bit case is more efficient than Karatsuba multiplication on the ARMv8 architecture, since additional number of addition operations are larger than optimized multiplication operations. The detailed program codes are drawn in Algorithm 1. The approach requires the 9 64-bit wise polynomial multiplications. The partial products \((A[0] \times B[1], A[1] \times B[0], A[1] \times B[2], A[2] \times B[1])\) are computed and shifted by 64-bit. The shifted results are accumulated to the intermediate results for partial products \((A[0] \times B[0], A[0] \times B[2], A[1] \times B[1], A[2] \times B[0], A[2] \times B[2])\).
Algorithm 1 192-bit Polynomial Multiplication in Program Codes

Require: 192-bit operands $A[2 \sim 0]$ (v0, v1) and $B[2 \sim 0]$ (v5, v6).
Ensure: 384-bit result $C[5 \sim 0] \leftarrow A[2 \sim 0] \times B[2 \sim 0]$ (v10, v11, v12).

1: pmull v10.1q, v0.1d, v5.1d \quad \{ A[0] \times B[0] \}
2: pmull v11.1q, v0.1d, v6.1d \quad \{ A[0] \times B[2] \}
3: pmull2 v28.1q, v0.2d, v5.2d \quad \{ A[1] \times B[1] \}
4: eor.16b v11, v11, v28
5: pmull v28.1q, v1.1d, v5.1d \quad \{ A[2] \times B[0] \}
6: eor.16b v11, v11, v28
8: ext.16b v30, v0, v0, #8
9: pmull2 v29.1q, v30.2d, v5.2d \quad \{ A[0] \times B[1] \}
10: pmull v28.1q, v30.1d, v5.1d \quad \{ A[1] \times B[0] \}
11: eor.16b v29, v29, v28
13: ext.16b v28, v1, v1, #8
15: eor.16b v30, v30, v28
16: ext.16b v28, v31, v29, #8
17: ext.16b v29, v29, v30, #8
18: ext.16b v30, v30, v31, #8
19: eor.16b v10, v10, v28
20: eor.16b v11, v11, v29
21: eor.16b v12, v12, v30

3 Proposed Method

3.1 Optimization for Finite Field Operation

The polynomial addition/subtraction can be performed with bit-wise exclusive-or instructions on both operands. For the 576-bit case, each operand is loaded to the 5 128-bit NEON registers ($5 = \lceil \frac{576}{128} \rceil$) and 5 times of bit-wise exclusive-or operations are performed.

The binary field multiplication is the most expensive operation in the finite field operations. For 576-bit case, Seo et al. proposed the three-term of Karatsuba multiplication [13]. Each term performs the classical 192-bit wise polynomial multiplication (See Algorithm 1). The 192-bit multiplication always outputs the 384-bit results in 3 consecutive 128-bit registers. However, this alignment style requires additional 64-bit wise shift operations to get aligned intermediate results in three steps for 576-bit multiplication (See Step 4, 8, 10 in Algorithm 2). In order to hide these latencies, we used both previous and shifted 192-bit polynomial multiplication. In Algorithm 3, shifted version of multiplication is described. Unlike previous approach described in Algorithm 1, the partial products ($A[0] \times B[0], A[0] \times B[2], A[1] \times B[1], A[2] \times B[0], A[2] \times B[2]$) are shifted by 64-bit. The shifted results are accumulated to the intermediate results for partial products ($A[0] \times B[1], A[1] \times B[0], A[1] \times B[2], A[2] \times B[1]$). The 64-bit shifted results are stored into 4 consecutive NEON registers (v16, v17, v18,
Algorithm 2 Aligned Polynomial Multiplication for 576-bit

Require: 576-bit operands \(A[8 \sim 0]\) and \(B[8 \sim 0]\).

Ensure: 1152-bit result \(C[17 \sim 0] \leftarrow A[8 \sim 0] \times B[8 \sim 0]\).

2: \(B \leftarrow \{B_H, B_M, B_L\} \leftarrow \{(B[8], B[7], B[6]), (B[5], B[4], B[3]), (B[2], B[1], B[0])\}\)
3: \(C_H \leftarrow (A_H \times_{192} B_H) \ll 384\) \hspace{1cm} \{Algorithm 1\}
4: \(C_M \leftarrow (A_M \times_{192} B_M) \ll 192\) \hspace{1cm} \{Algorithm 3\}
5: \(C_L \leftarrow A_L \times_{192} B_L\) \hspace{1cm} \{Algorithm 1\}
6: \(T \leftarrow C_H + C_M + C_L\)
7: \(C \leftarrow T \oplus (T \ll 192) \oplus (T \ll 384)\)
8: \(C_H \leftarrow ((A_H \oplus A_M) \times_{192} (B_H \oplus B_M)) \ll 576\) \hspace{1cm} \{Algorithm 3\}
9: \(C_M \leftarrow ((A_H \oplus A_L) \times_{192} (B_H \oplus B_L)) \ll 384\) \hspace{1cm} \{Algorithm 1\}
10: \(C_L \leftarrow ((A_M \oplus A_L) \times_{192} (B_M \oplus B_L)) \ll 192\) \hspace{1cm} \{Algorithm 3\}
11: \(C \leftarrow C_H + C_M + C_L\)

\(v_{19}\) where the least significant 64-bit of \(v_{16}\) and most significant 64-bit of \(v_{19}\) are set to zero. The detailed 576-bit multiplication is described in Algorithm 2. The 576-bit polynomial multiplication requires 6 192-bit polynomial multiplications in Step 3, 4, 5, 8, 9 and 10. The results are required to be shifted by 192, 384 or 576-bit to the left before intermediate result are accumulated. The 384-bit shift case does not require additional shift operations on the 128-bit register. However, two cases (192 and 576-bit) requires 64-bit wise shift to the left to align the results (Step 4, 8, 10). In this case, we used the shifted 192-bit polynomial multiplication described in Algorithm 3. For the other three cases (Step 3, 5, 9), we used the previous approach described in Algorithm 1. By using shifted approach, we can avoid three times of 64-bit wise shift operations in each multiplication. In instruction set level, 12 times of extraction instructions are optimized.

The polynomial squaring is a linear operation, since the result is obtained by inserting a 0 bit between consecutive bits of operand. By using the 64-bit polynomial multiplication (PMULL) instruction, we can compute the 64-bit wise squaring with single PMULL instruction. In Algorithm 4, the 576-bit wise squaring operation is drawn. The 576-bit operand requires 9 \(\left(\frac{576}{64}\right)\) times of PMULL instructions.

The \(m\)-bit polynomial multiplication/squaring operations produce the values of degree at most \(2m\)-bit, which must be reduced by modulo. When the modulo is smaller than operand size (64-bit) of PMULL instruction, we can perform the multiplication on higher parts (\(> m\)) by modulo. The modulo of binary field \(F_{2^{11}}\) is defined by \(f(x) = x^{571} + x^{10} + x^5 + x^2 + 1\), which is only 11-bit modulo so we can use PMULL instruction for computations. However, 571-bit modulo is not efficient over the 64-bit machine since this requires 5-bit wise shift operations to align the results. Alternatively, we choose the 64-bit machine friendly modulo \((f(x) = x^{576} + x^{15} + x^{10} + x^7 + x^5)\) and incomplete reduction. This approach avoids the number of 5-bit wise shift operations and complete results are also obtained by performing the complete reduction before outputting the
Algorithm 3 (Shifted) 192-bit Polynomial Multiplication in Program Codes

Require: 192-bit operands \(A[2 \sim 0]\) (v1, v2) and \(B[2 \sim 0]\) (v6, v7).

Ensure: 384-bit result \(C[5 \sim 0] \leftarrow A[2 \sim 0] \times B[2 \sim 0]\) (v16, v17, v18, v19).

1: \(\text{pmull} v17.1q, v1.1d, v6.1d\) \(\{A[0] \times B[0]\}\)
2: \(\text{pmull} v18.1q, v1.1d, v7.1d\) \(\{A[0] \times B[2]\}\)
3: \(\text{pmul}l2 v28.1q, v1.2d, v6.2d\) \(\{A[1] \times B[1]\}\)
4: \(\text{eor.16b} v18, v18, v28\)
5: \(\text{pmull} v28.1q, v2.1d, v6.1d\) \(\{A[2] \times B[0]\}\)
6: \(\text{eor.16b} v18, v18, v28\)
7: \(\text{pmull} v19.1q, v2.1d, v7.1d\) \(\{A[2] \times B[2]\}\)
8: \(\text{ext.16b} v16, v31, v17, \#8\)
9: \(\text{ext.16b} v17, v18, \#8\)
10: \(\text{ext.16b} v18, v19, \#8\)
11: \(\text{ext.16b} v19, v19, v31, \#8\)
12: \(\text{ext.16b} v30, v1, v1, \#8\)
13: \(\text{pmul}l2 v29.1q, v30.2d, v6.2d\) \(\{A[0] \times B[1]\}\)
14: \(\text{pmull} v28.1q, v30.1d, v6.1d\) \(\{A[1] \times B[0]\}\)
15: \(\text{eor.16b} v29, v29, v28\)
16: \(\text{pmull} v30.1q, v30.1d, v7.1d\) \(\{A[1] \times B[2]\}\)
17: \(\text{ext.16b} v28, v2, v2, \#8\)
19: \(\text{eor.16b} v30, v30, v28\)
20: \(\text{eor.16b} v17, v17, v29\)
21: \(\text{eor.16b} v18, v18, v30\)

Algorithm 4 576-bit Polynomial Squaring

Require: 576-bit Operand \(A[8 \sim 0]\).

Ensure: 1152-bit Result \(C[17 \sim 0] \leftarrow A[8 \sim 0] \times A[8 \sim 0]\).

1: for \(i = 0\) to \(8\) by \(1\) do
2: \(\{C[2 \times i + 1][C[2 \times i]] \leftarrow A[i] \times A[i]\}\)
3: end for

Algorithm 5 Fast Reduction over \(\mathbb{F}_{2^{571}}\)

Require: 576-bit (complete) or 1152-bit (incomplete) operands \(A\). Complete reduction.

Ensure: 571-bit (complete) or 576-bit (incomplete) result \(C\).

1: if complete reduction then
2: \(r \leftarrow 0x0425\)
3: \(A_L \leftarrow A \mod 2^{571}\)
4: \(A_H \leftarrow A \div 2^{571}\)
5: \(T \leftarrow A_H \times r\)
6: \(C \leftarrow A_L \oplus T\)
7: else
8: \(r \leftarrow 0x84A0\)
9: \(A_L \leftarrow A \mod 2^{576}\)
10: \(A_H \leftarrow A \div 2^{576}\)
11: \(T \leftarrow A_H \times r\)
12: \(T_L \leftarrow T \mod 2^{576}\)
13: \(T_H \leftarrow T \div 2^{576}\)
14: \(T \leftarrow T_H \times r\)
15: \(C \leftarrow T_L \oplus T\)
16: end if
results. The detailed reduction process is available in Algorithm 5. If the complete reduction is selected, the modulo \((r)\) is set to 0x425 representing the values \((x^{10} + x^5 + x^2 + 1)\). In Step 3, the part of \(A\) which is lower than 571-bit is extracted to \(A_L\). In Step 4, the part of \(A\) which is higher than 571-bit is extracted to \(A_H\). In Step 5, the higher part \((A_H)\) is multiplied by modulus \((r)\). In Step 6, the results are added to the lower part \((A_L)\). In case of incomplete reduction, the modulus \((r)\) is set to 0x84A0 representing the values \((x^{15} + x^{10} + x^7 + x^5)\). In Step 9, the part of \(A\) which is lower than 576-bit is extracted to \(A_L\). In Step 10, the part of \(A\) which is higher than 576-bit is extracted to \(A_H\). In Step 11, the higher part \((A_H)\) is multiplied by modulus \((r)\). In Step 12, the lower part \((A_L)\) are added to the intermediate results \(T\). In Step 13, the part of \(T\) which is lower than 576-bit is extracted to \(T_L\). In Step 14, the part of \(T\) which is higher than 576-bit is extracted to \(T_H\). In Step 15, the higher part \((T_H)\) is multiplied by modulus \((r)\). In Step 16, the lower part \((T_L)\) are added to the intermediate results \(T\).

For fast and secure inversion operation, we used the Itoh-Tsujii algorithm [4], which is an optimization of inversion through Fermat’s little theorem \((f(x)^{-1} = f(x)^{2^k-2})\), ensuring the constant time computations. The algorithm uses a repeated field squaring and multiplication operations for \(f(x)^{2^k}\), which follows a chains of multiplication and squaring sequences \((f_1 \rightarrow f_2 \rightarrow f_4 \rightarrow f_8 \rightarrow f_{16} \rightarrow f_{32} \rightarrow f_{64} \rightarrow f_{128} \rightarrow f_{256} \rightarrow f_{512})\). The inversion algorithm requires 13 multiplication and 570 squaring operations.

3.2 Optimization for Scalar Multiplication

In order to perform the scalar multiplication, the point addition and doubling operations are required, which consist of a number of finite field operations. Depending on specific coordinates, the number of finite field operations are varied each other. The point addition in López-Dahab/affine coordinates requires 8 multiplication \((M)\), 5 squaring \((S)\) and 1 \(a\)-multiplication \((a-M)\). Alternative point addition in López-Dahab coordinates requires 13\(M\) and 58. For the point doubling in López-Dahab coordinates requires 3\(M\), 58, 1\(a\)-\(M\) and 1 \(b\)-multiplication \((b-M)\). Particularly, the variable \((a)\) is set to 1 in the B-571 curve so the \(a\)-\(M\) operation is free. The binary field multiplication and squaring operations are performed by following the implementation techniques described in Section 3.1. A sequence of multiplication, squaring and addition operations are optimized again by combining the reduction operations. This sequence of field operations involve a type \((A \times B + C \times D)\). The straight-forward implementation of type requires 2 multiplication, 2 reduction and 1 addition operations. One reduction operation can be optimized by performing the multiplication and addition operations in advance [9]. Similar a type \((A^2 + C \times D)\) is also optimized from 1 squaring, 1 multiplication, 2 reduction and 1 addition operations to 1 squaring, 1 multiplication, 1 reduction and 1 addition operations. We employed the Negre and Robert techniques for the point addition in López-Dahab/affine coordinates and doubling in López-Dahab coordinates. For point addition in López-Dahab/affine coordinates described in Algorithm 6, Step 13 and 19 can be optimized through
Algorithm 6 Optimization for Point Addition in López-Dahab/affine coordinates [9]

Require: Point P_1 (X_1, Y_1, Z_1) in López-Dahab coordinates and P_2 ($X_2, Y_2, 1$) in affine coordinates

Ensure: Point P_3 (X_3, Y_3, Z_3) in López-Dahab coordinates

1: $t_0 \leftarrow Z_1^2$
2: $t_1 \leftarrow Y_2 \times t_0$
3: $k_0 \leftarrow Y_1 + t_1$
4: $t_2 \leftarrow X_2 \times Z_1$
5: $k_1 \leftarrow X_1 + t_2$
6: $k_2 \leftarrow k_1 \times Z_1$
7: $Z_3 \leftarrow k_2^2$
8: $k_4 \leftarrow X_2 \times Z_3$
9: $t_3 \leftarrow k_1^2$
10: $t_4 \leftarrow a \times k_2$
11: $t_5 \leftarrow k_0 + t_3$
12: $t_6 \leftarrow t_5 + t_4$
13: $X_3 \leftarrow k_0^2 + k_2 \times t_6$ \{ $A^2 + C \times D$ \}
14: $t_7 \leftarrow k_0 \times k_2$
15: $t_8 \leftarrow k_4 + X_3$
16: $t_9 \leftarrow t_7 + Z_3$
17: $t_{10} \leftarrow Y_2 + X_2$
18: $t_{11} \leftarrow Z_3^2$
19: $Y_3 \leftarrow t_{10} \times t_{11} + t_8 \times t_9$ \{ $A \times B + C \times D$ \}

Algorithm 7 Optimization for Point Doubling in López-Dahab coordinates [9]

Require: Point P_1 (X_1, Y_1, Z_1) in López-Dahab coordinates

Ensure: Point P_3 (X_3, Y_3, Z_3) in López-Dahab coordinates

1: $t_0 \leftarrow Z_1^2$
2: $t_1 \leftarrow Y_2 \times t_0$
3: $k_0 \leftarrow Y_1 + t_1$
4: $t_2 \leftarrow X_2 \times Z_1$
5: $k_1 \leftarrow X_1 + t_2$
6: $k_2 \leftarrow k_1 \times Z_1$
7: $Z_3 \leftarrow k_2^2$
8: $t_2 \leftarrow Y_1^2$
9: $t_3 \leftarrow a \times Z_3$
10: $t_4 \leftarrow t_2 + t_3$
11: $t_5 \leftarrow t_4 + k_1$
12: $Y_3 \leftarrow t_5 \times X_3 + Z_3 \times k_1$ \{ $A \times B + C \times D$ \}

optimal ($A^2 + C \times D$) and ($A \times B + C \times D$) types. For point doubling in López-Dahab coordinates described in Algorithm 7, Step 12 can be optimized through optimal ($A \times B + C \times D$) type. We extended this technique to point addition in López-Dahab coordinates in Algorithm 8. The Step 17, 18 and 20 include the ($A \times B + C \times D$) type and this approach optimizes the 3 reduction operations in each point addition operation.

The scalar multiplication is implemented in Montgomery ladder algorithm [5]. This algorithm always performs the point addition and doubling operations in each bit and our implementations of finite field arithmetic are also regular fashion, which ensure constant-time computation and security against Simple Power Analysis (SPA). For unknown point, we used point addition/doubling in López-Dahab coordinates with window methods and for fixed point we used point addition in López-Dahab/affine coordinates and doubling in López-Dahab coordinates with window methods.
Algorithm 8 Optimization for Point Addition in López-Dahab coordinates

Require: Point $P_1 (X_1, Y_1, Z_1)$ and $P_2 (X_2, Y_2, Z_2)$ in López-Dahab coordinates

Ensure: Point $P_3 (X_3, Y_3, Z_3)$ in López-Dahab coordinates

1: $k_0 ← X_1 × Z_2$
2: $k_1 ← X_2 × Z_1$
3: $k_2 ← k_0^2$
4: $k_3 ← k_1^2$
5: $k_4 ← k_0 + k_1$
6: $k_5 ← k_2 + k_3$
7: $t_0 ← Z_2^2$
8: $k_6 ← Y_1 × t_0$
9: $t_1 ← Z_1^2$
10: $k_7 ← Y_2 × t_1$
11: $k_8 ← k_6 + k_7$
12: $k_9 ← k_8 × k_4$
13: $t_2 ← Z_1 × Z_2$
14: $Z_3 ← k_5 × t_2$
15: $t_3 ← k_7 × k_3$
16: $t_4 ← k_2 × k_6$
17: $X_3 ← k_1 × t_4 + k_0 × t_3 \{ A × B + C × D \}$
18: $t_5 ← k_5 × k_6 + k_0 × k_9 \{ A × B + C × D \}$
19: $t_6 ← k_9 + Z_3$
20: $Y_3 ← t_6 × X_3 + t_5 × k_5 \{ A × B + C × D \}$

Table 1: Comparison results of binary field multiplication for B-571 curve

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Clock cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seo et al. [13]</td>
<td>132</td>
</tr>
<tr>
<td>Proposed Method</td>
<td>99</td>
</tr>
</tbody>
</table>

4 Evaluation

We used Xcode (ver 6.3.2) as a development IDE and programmed over iPad Mini2 (iOS 8.4). The iPad Mini2 equipped Apple A7 with 64-bit architecture operated in the frequency of 1.3GHz. The program is written in C and assembly codes and complied with -Ofast optimization level. The timing are acquired through the clock cycles of real device.

In Table 1, the comparison results of binary field multiplication over B-571 curve are drawn. We only compared results with Seo et al. [13] since SUPERCOP benchmark tool does not support the iOS operating system which is required for our experiments and the work by Gouveia and J. López is only provide the GCM operations [3]. The Seo et al. achieved the high performance with three-term of Karatsuba multiplication for 576-bit polynomial multiplication and fast reduction techniques. In our implementation, we further improved performance by a factor of 1.34 times with the finely aligned multiplications and incomplete reduction techniques.

In Table 2, we listed the whole results of ECC implementations. Unfortunately, there is no paper about ECC implementations on ARMv8. We only provide our results. The squaring operation is linear computations, which requires small number of clock cycles. The inversion operation is implemented in Fermat’s little theorem, which requires 570 squaring and 13 multiplication operations. For group operations, three different point operations are evaluated. The doubling in López-Dahab coordinates shows the lowest clock cycles. The point
addition in López-Dahab coordinates shows the highest clock cycles. Finally, the scalar multiplication is efficiently implemented with window methods. In the fixed point, points can be pre-computed and the number of doubling operations are optimized. In this paper, we explore the medium window size but this can be easily extended to the long window size by sacrificing the RAM storages.

5 Conclusion

In this paper, we show efficient finite field and group operations for B-571 ECC implementations over ARMv8. We optimized the binary field arithmetics by introducing the several optimization techniques. The group operations are also improved by reducing the number of reduction operations in point addition and doubling operations. Finally, we achieved the high speed implementation of B-571 implementation over ARMv8.

6 Conflict of Interests

The author(s) declare(s) that there is no conflict of interest regarding the publication of this paper.

References