ABSTRACT

Protecting software from malware injection is the holy grail of modern computer security. Despite intensive efforts by the scientific and engineering community, the number of successful attacks continues to increase.

We have a breakthrough novel approach to provably detect malware injection. The key idea is to use the very insertion of the malware itself to allow for the systems to detect it. This is, in our opinion, close in spirit to the famous Heisenberg Uncertainty Principle. The attackers, no matter how clever, no matter when or how they insert their malware, change the state of the system they are attacking. This fundamental idea is a game changer. And our system does not rely on heuristics; instead, our scheme enjoys the unique property that it is proved secure in a formal and precise mathematical sense and with minimal and realistic CPU modification achieves strong provable security guarantees. Thus, we anticipate our system and formal mathematical security treatment to open new directions in software protection.

General Terms
Malware Detection, Provable Security, Attestation

1. INTRODUCTION

Protecting software from malware injection is a major goal of computer security. In this work we suggest a novel provably secure and practically efficient paradigm for software protection against arbitrary malicious code injection.

Our system has the following desirable properties: 1) it requires minor to no changes to the CPU specification to provably defend against all injection attacks that can not read the code before they inject its software; 2) it only affects the performance of the program by a modest amount (or not at all, given slightly more powerful CPU computation). The first property implies that it can already be used on today’s computers. The second property means that our system is practical, since performance is critical in most applications; this is obvious even in its simplified form presented here, where various optimizations have been avoided for the sake of clarity in the presentation. Finally, we allow attacks both spatial and temporal freedom: the attack can occur at any time during the execution and on any part of the memory. It can attack code as well as data.

Our solutions are practically efficient and, importantly, they are accompanied by rigorous mathematical proofs that any injection will be caught with arbitrary high probability. For our security proofs we provide a formal cryptographic model tailored to detect malware injection in modern computers; we envision this model as the basis for fruitful research on provable secure detection and prevention of malware leading into the next generation of secure systems.

1.1 Overview of our Approach

So how can we detect an intrusion that we have never seen before? How can we arrange that any injection of malware into our program, no matter how clever, will be detected? The answer is that we will hide a secret in our program in a way that ensures that with very high probability, any injection by an adversary must destroy the secret. Once this secret is destroyed, the adversary may indeed be able to take over the program, but will be quickly detected. We note that current systems may fail to detect such an attack forever—we are able to detect it in seconds.

A point: We can imagine situations where even such a swift detection of an attack is not sufficient to stop all potential harm. An attacker could, in some situations, do immense damage even if he is in control of a program for only a fraction of a second. Furthermore, our approach is not targeted towards fixing buggy software. And we do not necessarily detect malware—including software which might be (unknowingly) installed by the user. Rather, our detection offer protection against "unauthorized" injection of malicious code, e.g., through buffer overflows. But the ability to detect any attack, new, old, clever, or not, is an immense improvement over the current state-of-the-art.

So how can we do this? Let \(W \) be a program that we wish to protect from malware. We recompile \(W \) to \(\tilde{W} \). The idea is that \(W \) and \(\tilde{W} \) must compute the same thing, run in about the same time, and yet \(\tilde{W} \) must be able to detect itself against the insertion of malware. An obvious idea is to have \(\tilde{W} \) periodically check to see if its code or data have been maliciously changed. The trouble with this approach is that the attacker could easily inject his own code, take over the checker, and thereby disable the checking. In short: who checks the checker?

Here is how we proceed. The protected program \(\tilde{W} \) operates normally most of the time. Periodically it is challenged by another machine to prove that it has a secret key \(K \). This key is known only to \(\tilde{W} \) and not to the attacker. If \(\tilde{W} \) has not been attacked, then it simply uses the key \(K \) to an-
swer the challenge and thus proves that it is still operating properly.

The issue is what happens if \tilde{W} has been attacked and some code has been injected into it. We can arrange \tilde{W} so that no matter how the injection of code has happened the key K is lost. The attacker’s vote injection will have changed the state of \tilde{W} so that it is now in a state that no longer knows the key K. This is the analog of the Heisenberg Uncertainty Principle: the attacker has damaged the state of \tilde{W} so that the key has been destroyed.

Making the attack destroy the key is the central idea here. If \tilde{W} simply stores K somewhere in memory, the attacker will take over the program, look around for the key, and likely find the key; thereby defeating the protection, since now it can answer the periodic challenges just like \tilde{W} could. This would be a disaster.

To resolve the above issue we distribute the key K all through memory by using what is called secret sharing. This is a standard method in cryptography that breaks a small key, like K, into many small pieces, called shares. These pieces are cleverly placed throughout all of \tilde{W}’s memory. Our secret sharing allows K to be reconstructed only if all the pieces are left untouched—if any are changed in any way, then it is impossible to reconstruct the key. Obviously, if there has been no attack, then in normal operation \tilde{W} can reconstruct the key from the pieces and answer the challenges. However, if the pieces are not all intact, then \tilde{W} will be unable to answer the next challenge.

This is the high level idea of our method: hide the key via secret sharing, and rely on the attacker to destroy at least one share of the key. This destruction is irreversible and makes the attack fail the next challenge.

There is one additional point that we must mention. We must arrange that \tilde{W} can be attacked at anytime, including when it has collected all the shares and reconstructed the key K. This is a very dangerous time, since if \tilde{W} is attacked at this moment the fact that shares are destroyed does not matter. The attacker can simply use the reconstructed key K. We avoid such time-of-check-time-of-use (TOCTOU) attacks by actually using two keys K_1 and K_2 in tandem. Both are stored via secret sharing as before, but now one must have both in order to answer the challenges. We arrange that \tilde{W} only reconstructs one key at a time and this means that an attacker must destroy either or bot of the keys. This handles the above dangerous situation and makes our method provably secure.

Tying up the last loose end, we treat the case of very small viruses—i.e., ones that consist of a single bit or just a few bits—and viruses that know (or guess) the exact memory locations of key-shares in advance and therefore might not need to overwrite them. We armor our system to defend even against such tiny/informed viruses by employing an additional lightweight cryptographic primitive, namely a message authentication code (in short, MAC). A MAC authenticates a value using a random key, so that an attacker without access to the key cannot change the value without being detected.

We use the MACs in a straightforward and efficient manner: we authenticate each word in W using the key-shares (also) as MAC keys, and require that for any word that is loaded from the random access memory, the CPU verifies the corresponding MAC before further processing the word. Thus, if the MAC does not check out we detect it (and immediately destroy the share), and if the adversary changes the MAC key, he loses one of the shares of one of the two secrets, and we detect that as well.

We enforce the above checks by assuming a modified CPU architecture (with only very small amount of additional computation, so the CPU power consumption is not affected.) More specifically, to get the most out of the MAC functionality we need that when the CPU executes the program, it verifies authenticity of the words it loads from the memory. That is, the load operation of the CPU loads a block of several (four or five) words—this is already the case in most modern CPUs—including the program word, the MAC-tag and the corresponding keys, and check with every load instruction that the MAC verifies before further processing the word. Importantly, our MAC uses just one field addition and one field multiplication per authentication/verification; the circuits required to perform these operation are actually trivial compared to the modern CPU complexity and are part of many existing CPU specifications.

But to obtain security against any injection, we need one more trick: instead of using the actual key-shares in the generation/verification of the MAC tag, we use their hash-values. This ensures that the virus cannot manipulate the keys and forge a consistent MAC unless he overwrites a large part of them. We anticipate that given our proposed system’s impact on security, such functionality will be included in the next generations of CPUs.

1.2 Related Literature

The literature on modelling, generalizing, and providing defense mechanisms against malware-injection attacks is vast. Due to its urgency and importance, the problem has been intensively researched. In what follows we provide a brief overview of the basic research directions that have been explored and refer to the full version for a more detailed exposition and a complete list of references.

Common Security Countermeasures. The traditional and most applicable countermeasures to prevent malware attacks are antivirus technologies along with approaches directed at blocking the path an attacker uses to inject its malware, e.g., buffer-overflowes. Other defenses monitor the system calls that the program makes—e.g., its interfaces to the operating system—to detect abnormal behavior. Although the above countermeasures are often successful in patching known vulnerabilities, they are typically ad-hoc and/or targeted to a single or a small class of attacks, thus leaving a large part of the system exposed to unforeseen or zero-day attacks.

At a more theoretical level, the software diversification approach uses randomization to ensure that each system executes a unique (or even several unique) copies of the software, so that an attack which succeeds against some system will most likely fail against other systems (or even when launched twice against the same system), e.g., address obfuscation randomizes the locations of program data and instructions so that the attacker is most likely to follow an invalid computation path and thus provoke a crash out of stack. It should be noted that the above approaches are typically heuristics, and there is no formal proof that they are ei-
We provide our formal cryptographic definitions of VDS security based on the well-studied Random Access Machine (RAM) model, slightly adapted to be closer to an abstract version of a modern computer following the von Neumann architecture. The suggested model corresponds to a simplistic closed-system abstraction of software execution, where the execution of code is done by the software’s code and data loaded (initially) in the random access memory (RAMEM) which through the execution only communication with the CPU.2 We provide a formal and generic definition of malware injection in this model, which is motivated by how modern computer systems might become infected by a virus.

In more detail, a secure VDS is described as follows. The software to be executed is compiled, prior to being loaded onto the memory, to a secure version. Importantly, this compilation does not need the source code but merely the binary (machine-language) code of the program (provided that it is non-self-modifying); thus, the compilation can be performed by the program vendor (this might allow for further efficiency optimizations) or by the user without requiring any reverse engineering. The compiler, in addition to the (binary code) of the program and its data, uses a randomly chosen compilation key K. To check/verify that the software running on a system has not been attacked by a virus (or to detect such an attack in case it has occurred), the following detection process is executed. The user issues a challenge c that depends on the compilation key K and the system is required to produce a reply which passes a specified verification test. As already discussed, we arrange things in such a way that the verifier does not need to know the compilation key, and he can just know some public information on it. Formally, this is done by the use of public key cryptography, where the compilation key is the secret key, and the information held by the verifier, which we refer to as the verification key, is the corresponding public key. The security of the VDS requires that if the RAM has not been attacked then it can always reply to the challenge in an accepting manner (verification correctness); otherwise, any reply will be rejected with high probability (security).

We provide concrete instantiations of practical VDSs which, depending on the assumptions about the CPU they are executed on, can achieve from a reasonably strong security (namely protection against moderate-sized virus) to the ultimate security guarantee (namely security against viruses that are arbitrary small and are injected on locations that depend on the location of the key shares). Informally, we prove the following result for our VDSs.

Theorem (informal) Under standard complexity assumptions our VDSs compile any non-self-modifying software W into a secure version that detects any malware injection with very high probability.

Our schemes are independent of the virus code, are platform-independent, and might require only small modifications to the common CPU architecture (in particular, they do not assume tamper-resilient hardware); and, with appropriate optimizations we can make it that they only affect the performance of the executed software by a practically unnoticeable amount. However, as this is the first work

1Unlike software-based attestation techniques, the verification in our scheme can be done even over an insecure network, e.g. the Internet.
introducing VDSs, various performance optimizations have been sacrificed for the sake of presentation clarity. As a useful side effect, our scheme is even able to detect hardware errors, e.g., random bit-flips in the memory; as demonstrated in [6], such errors might have important consequences on the security of the executed software.

For the construction of our VDSs we devise a general methodology. We start by constructing a scheme satisfying a weaker notion of security which ensures that the adversary is caught if the response is computed by an external (trusted) device that is given access to the state of the attacked system. We give a formal definition of this weaker notion which depending on the application and the desired security level might already be satisfactory. We then proceed and gradually modify our weaker scheme to ensure the compiled program executes the detection by itself. The security of our weakest scheme is information theoretic (it is based on the perfect privacy of one-time pad encryption), whereas the proof of the more secure scheme requires a leakage-resilient encryption algorithm [13] and a secure hash function.

Our last, ultimately secure VDS uses the following simple MAC algorithm. To authenticate a word w we use two keys K_1 and K_2, and compute a MAC tag as $t = w \cdot K_1 + K_2$, where w, K_1, and K_2 are interpreted as elements of an appropriate large arithmetic field. Observe that such arithmetic operations are implemented in hardware in existing CPUs. We assume, however, that the executing CPU has a slightly extended instruction set which, informally, has each “load” instruction, i.e., read-from-memory instruction, check that the MAC is correct before it loads the word on the CPU registers. We stress that this only needs the architecture to provide us with a very simple extra piece of microcode, but by engineering the CPU’s hardware in a smart way so that these operations are done on the circuit level, we expect to be able to reduce the effect of our compiler to a barely noticeable slowdown. Fortunately, the new architecture that Intel recently announced promises to embed such microcode in its next-generation microchips [25].

1.4 Comparison to Existing Approaches

In Section 1.2 above we discussed main directions in existing malware detection and protection literature. Here, we highlight the advantages of our scheme. As already mentioned, a major advantage with respect to existing works is that our scheme comes with a mathematical security proof, i.e., its security does not rely on simulations. In what follows we discuss some of our scheme’s basic advantages with respect to existing methods:

STATE-INDEPENDENT VERIFICATION. The verifier does not need to know the state in which the executed software is at the point of verification; in fact the state of the verifier is independent of the software’s computation. Thus our scheme can protect both static program and its data and has the potential to be extended to classes of dynamic (self-modifying) programs.

MITIGATING DENIAL OF SERVICE. Existing attestation techniques, whether remote or software-based, require the host to pause computation, as the state of the machine should not change during the execution. (If the state changes the checksum will fail.) This allows for trivial denial-of-service attacks. Instead, our verification does not require the host to pause its execution of the software, nor does it require disallowing interrupts thus mitigating denial of service.

NO NEED FOR TIMING OR RELIABLE COMMUNICATION. Software-based attestation schemes typically require accurate timing and a reliable connection to the receiver. (The latter requirement is necessary even in remote attestation schemes.) In contrast, our scheme allows for remote verification without the need for any of the above properties. Indeed, even when taking full control over the verification link, an attacker can respond correctly only if the host has not been compromised.

NO SECRETS HELD BY THE VERIFIER. By using public key cryptography, we restrict the attack surface to be only the host. In particular, even if the entire environment of the system which is verified is under the control of the adversary, it will be provably infeasible to come up with a valid reply to a challenge, as the only entity that can recover the private key is the host itself. This is particularly useful in settings where the system is a service provider, e.g., a cloud server, and might be verified over the Internet by different users. In contrast, in existing remote or software attestation schemes, knowledge of the long-term or short-term key can trivially compromise the schemes security.

A SINGLE REALISTIC ASSUMPTION. Our scheme is secure under the assumption that the attacker does not get to see information on the key-shares without injecting its code first. This is for example the case with many injection venues, e.g., buffer-overflows. Note that this assumption suffices to remove all past assumptions in remote or software attestation, i.e., minimality and non-parallelizability of code, complete knowledge of the hardware, etc [21].

1.5 Outline

The remainder of the paper is organized as follows: In Section 2 we introduce some useful notation and terminology; subsequently, in Section 3 we describe the model of execution and malware injection which is used to introduce Virus Detection Schemes (VDS) and describe their security definition in Section 4. In Sections 5 and 6 we describe our secure VDS instantiations: We start (in Section 5) with a scheme that is secure against moderately-sized (at least three words long) viruses injected in continuous memory location and poses no architectural restrictions on the system: it is executed on (thus it can be applied on modern as well as legacy systems); our system is strengthened in Section 6 to tolerate injection of arbitrary small viruses and remove the continuous injection assumption, under minimal and realistic modifications on the systems CPU. This manuscript is an extended abstract of our work; detailed definitions and formal proofs of our statements can be found in the full version of this work available from the authors.

2. PRELIMINARIES AND NOTATION

Throughout the paper we assume an (often implicit) security parameter denoted as k. For a finite set S we denote by $s \xleftarrow{} S$ the operation of choosing s from S uniformly at random. For a randomized algorithm B we denote by $B(x; r)$ the output of B on input x and random coins r. To avoid always explicitly writing the coins r, we shall denote by $y \xleftarrow{} B(x)$ the operation of running B on input x (and uniformly random coins) and storing the output on variable y. We use the standard definition of negligible and overwhelming (e.g., see [25]). For a number $a \in \mathbb{N}$, we denote by $[a]$
the set \([n] = \{1, \ldots, n\}\) and by \(0^n\) (resp. \(1^n\)) the all-zero (resp. all-ones) string of length \(n\). Finally, for strings \(x\) and \(y\) we denote their concatenation by \(x|y\). In slight abuse of notation, we at times use the vector notation for denoting concatenation, i.e., write \((x, y)\) instead of \(x|y\).

Secret Sharing. A perfect \(m\)-out-of-\(m\) secret sharing scheme allows a dealer to split a secret \(s\) into \(m\) pieces \(s_1, \ldots, s_m\), called the shares so that someone who holds all \(m\) shares can recover the secret (correctness), but any \(m-1\) shares give no information on the secret (privacy). In this work, we use \(m\)-out-of-\(m\) sharings of strings \(s \in S = \{0, 1\}^n\), where \(n \in \mathbb{N}\). A simple construction of such a scheme has the dealer choose all \(s_i\)’s uniformly at random with the restriction that \(s = \bigoplus_{i=1}^m s_i\). We refer to the above sharing as the XOR-sharing and denote it as \((s) = (s_1, \ldots, s_m)\).

3. THE MODEL

In this section, we provide an abstract specification of our model of computation and a model for malware injection. We use as basis the well-known Random Access Machine (RAM) model but slightly adapt it to be closer to an abstract version of a modern computer following the von Neumann architecture. In a nutshell, this modification consists of assuming that both the program and the data are written on the RAM’s random access memory (RAM), which is polynomially bounded. Along the way, we also specify some terminology which draws parallels between our theoretical model and modern computers’ specification.

A RAM \(R\) consists of two components: A Random Access Memory (in short \(RMEM\)) and a Central Processing Unit (in short \(CPU\)). The memory \(RMEM\) is modeled as an array of \(m = poly(k)\) registers each of which can store an \(L\)-bit string — word — where we assume that \(L\) is linear in the security parameter \(k\). The CPU has a much smaller set of registers — in this work we assume that the total amount of storage of the CPU is linear in the security parameter \(k\) — an instruction set \(I\) that defines which operations can be performed on the registers, and how data are loaded to/output from the CPU. The CPU registers include a read-only input register and output register which correspond to its interface with its environment (the user), and a program counter \(pc\) which stores the location in the memory that the will be read in the next CPU cycle. Each register is assigned a unique address and can store an \(L\)-bit word.

The \(RMEM\) and the CPU communicate in fetch and execute cycles, aka CPU cycles, where the number of CPU cycles is the default complexity measure of a RAM\(^3\). We at times refer to a CPU cycle as a round in the RAM execution. In each round, the CPU accesses the \(RMEM\) to read (load) a word to some of its registers, performs some basic operation from \(I\) on its local registers, e.g., adding two registers and storing their output on a third register, and (potentially) writes some word (the contents of some register) to a location in the memory \(RMEM\). The location in \(RMEM\) from where the next word will be read is stored in a special integer-valued register denoted as \(pc\) (usually called the program counter) which unless the CPU processes a “jump” instruction (see below) is incremented by one in each cycle. Although modern CPUs are able to execute several instructions per round, here we assume for simplicity that only one instruction is executed in each round. In the following we provide some details on the above components.

We represent the memory \(RMEM\) as an array \(MEM\) of \(m = |MEM|\) words, where for \(i \in \{0, 1, \ldots, m\}\) we denote by \(MEM[i]\) the \(i\)th word, i.e., the contents of the \(i\)-th register. Similarly, the CPU registers are modeled as an array \(REG\) of words, where we denote by \(REG[i]\) the content of the \(i\)th register.

We denote a CPU by the pair \(C = (REG, I)\) of vector \(REG\) of registers and the instruction set \(I\). As syntactic sugar, we denote a RAM with CPU \(C\) and \(RMEM\) as \(R = (C, MEM)\). The state of a RAM at any point in the protocol execution is the vector \((REG, MEM)\) including the current contents of all its CPU and \(RMEM\) registers.

To allow for asymptotic security definitions — where the word size, the size of the CPU (i.e., number of its registers), and the size of the memory depend on the security parameter — we often consider a family of RAM’s, \(R = \{R_k\}_{k \in \mathbb{N}}\) with \(R_k = (C_k = (REG_k, I_k), \{MEM_k\})\). (The size of words processed by \(R_k\) is \(k\).) The RAM families considered in this work have the following property: The instruction set \(I_k\) is the same for all values of the security parameter \(k\). In particular, we assume that all elements of a RAM family, have the same constant number \(c = O(1)\) of CPU registers, and there is some set of instructions \(I\) that is defined over strings of arbitrary size such that \(I_k\) is the same as \(I\) applied on \(k\)-long words.

Software Execution and Virus Injection. A program to be executed on a RAM \(R = (C, MEM)\) is described as a vector \(W = (w_0, \ldots, w_{n-1}) \in \{(0, 1)^L\}^n\) of words that might be instructions, addresses, or program data. To avoid confusion, we refer to such a vector including the (binary of a) software and its corresponding data as a binary or a programming for \(R\). By convention, whenever, for a RAM family \(R\) we say that \(W\) is programming for \(R\), we mean that \(W\) is a programming for the element \(R_k \in R\) with register size as long as the word size of \(W\) and instruction set that includes all the instructions used by \(W\).

The execution of a program proceeds as follows: The program \(W\) is loaded onto the memory \(MEM\). Unless stated otherwise, we assume that \(W\) is loaded sequentially on the first \(n = |W|\) locations of \(MEM\) and locations \(j\) of \(MEM\) with \(j \geq |W|\) are filled with \((\text{no-op})\) instructions. The user might give input \((s)\) to \(R\) by writing them on its input register in a sequential (aka write once) manner, i.e., a new input is written (appended) next to the last previous input. Once the binary is loaded (and, potentially, input has been written on the input register) the RAM starts its execution by fetching the word of the \(RMEM\) which the program counter points to, i.e., \(MEM[pc]\). Unless stated otherwise, at the beginning of the computation \(pc\) is initiated to 0 (i.e., points to the first memory location). The RAM executes the program in CPU cycles as sketched above. We assume that the RAM is reactive, i.e., any new input written (appended) on its input register, makes the RAM resume its computation (even if it had halted with output).

A CPU is complete (also referred to as universal) if given sufficient (but polynomial) random access memory it can

\(^3\)In the literature, a RAM with this modification is usually called a Random Access Stored-Program machine\(^2\).

\(^4\)We use \(RMEM\) instead of the more standard “RAM” to refer to random access memory as here RAM refers to Random Access Machine.

\(^5\)In reality, this communication is done through the CPU bus; however, for our treatment we do not need to formally specify how this communication is implemented.
perform any efficient deterministic computation. We at

times refer to a RAM (family) with a complete CPU as a

complete RAM (family). An example of a complete CPU

is one which has three registers (each of size \(k \)) and can, in

addition to communicating with its RMEM, compute arithmetic

operations on the contents of any two of these registers

(treated as representations of elements from an appropriate

finite field) and store it on the third. However, modern

CPUs have many more registers and might perform several

complicated instructions in a single round.

Modeling Virus Attacks. A virus attacks a RAM by in-

jecting its code on selected locations of the memory RMEM.

For simplicity, we discuss here viruses that inject sequences

of full words but our definitions are easily extended to ap-

ply also to viruses whose length (in bit) is not a multi-

ple of the word length \(L \). (In fact, in Section 4 we

show how to protect against such viruses.) More formally,

an \(L \)-word virus is modelled as a tuple

\[
(v, W) = ((\alpha_0, \ldots, \alpha_{L-1}), (w_0, \ldots, w_{L-1}))
\]

where each \(\alpha_i \in \hat{\alpha} \) is a lo-

cation (address) in the memory and each \(w_i \in W \) is a word.

The effect of injecting a virus \(v \) into a RAM \(\mathcal{R} = (\mathcal{C}, \mathcal{MEM}) \), is
to have, for each \(\alpha_i \in \hat{\alpha} \), the register \(\mathcal{MEM}[\alpha_i] \) (over)written with

\(w_i \). We say that the \(v \) is valid for \(\mathcal{R} \) if the following

properties hold: (1) \(\alpha_i \neq \alpha_j \) for every \(\alpha_i, \alpha_j \in \hat{\alpha} \), and (2) \(\alpha_i \in \{0, \ldots, |\mathcal{MEM}| - 1\} \) for every \(\alpha_i \in \hat{\alpha} \).

Furthermore, we say that \(v \) is non-empty if \(|\hat{\alpha}| > 0 \).

We make no external security assumption, e.g., existence of

secure hardware, about the CPU; thus, for example, an

“intelligent” virus is allowed to take full control of the CPU,

e.g., read and (over)write all its registers, while it is being

executed. But we do not allow the virus to inject itself on the

CPU registers. This is justified by the fact that during the

software execution, the CPU communicates only with the

RAM and the input/output devices. Finally, we point out

that some of our theorems assume a continuous injection

model, i.e., that the virus is injected as a single chunk in

continuous memory locations.

4. VIRUS DETECTION SCHEMES

In this section we define virus detection schemes and pro-

vide the relevant security definitions.

Definition 1. A virus detection scheme (VDS) \(V \) consists of five (potentially) randomized algorithms, i.e., \(V = (\text{Gen, Comp, Chal, Resp, Ver}) \), defined as follows:

- **Gen** is a key-generation algorithm; it computes a pair (comp-

ilation-key, verification-key), i.e., \((K_c, K_v) \leftarrow \text{Gen}(\cdot)\)

- **Comp** on input the description \(\mathcal{R} = \{(\mathcal{C}_k, \mathcal{MEM}_k)\}_{k \in \mathbb{Q}_N} \) of a

RAM family, a programming \(W \) for \(\mathcal{R}_k \), and a comp-

ilation key \(K_c \)

outputs a secure programming \(\bar{W} \)

for \(\mathcal{R}_k \); i.e., \(\bar{W} \leftarrow \text{Comp}(\mathcal{R}_k, W, K_c) \).

- **Chal** on input a verification key \(K_v \), and a string \(z \in \text{Inp}_{\text{Chal}} \subseteq \{0,1\}^{\text{poly}(k)} \), outputs a challenge string \(c \in \text{Out}_{\text{Chal}} \), where \(\text{Out}_{\text{Chal}} \subseteq \{0,1\}^{\text{poly}(k)} \) denotes the output domain of algorithm \(\text{Chal} \); i.e., \(c \leftarrow \text{Chal}(z, K_v) \).

- **Resp** on input a string \(c \in \text{Out}_{\text{Chal}} \) and a polynomial pro-

gramming \(\bar{W} \). \(\text{Resp} \) outputs a string \(y \in \text{Out}_{\text{Resp}} \), where \(\text{Out}_{\text{Resp}} \subseteq \{0,1\}^{\text{poly}(k)} \) denotes the output domain of al-

gorithms \(\text{Resp} \); i.e., \(y \leftarrow \text{Resp}(c, \bar{W}) \).

- **Ver** on input a verification key \(K_v \), a message \(z \in \text{Inp}_{\text{Chal}} \), a challenge \(c \in \text{Out}_{\text{Chal}} \) and a response \(y \in \text{Out}_{\text{Resp}} \). \(\text{Ver} \) outputs a bit \(b \in \{0,1\} \); i.e., \(b \leftarrow \text{Ver}(K_v, z, c, y) \). We say that \(\text{Ver} \) accepts if \(b = 1 \).

In the following we sketch the security properties which a

VDS should satisfy. Due to space limitation, we restrict

ourselves to high-level descriptions and refer to the full ver-

sion of this paper for a detailed description of the random

experiments underlying these definitions.

- The first property is verification correctness which, intuit-

ively, guarantees that if the RAM has not been attacked,

then the reply to the challenge is accepting (except with

negligible probability).

- The second property is compilation correctness which

intuitively ensures that the compiled programming \(\bar{W} \)

performs the same computation (on \(\mathcal{R} \)) as the original

programming \(W \). This means that on the same input(s)

from the user the following properties hold: (1) \(\mathcal{R} \) exec-

uting \(\bar{W} \) produces the same output sequence as \(\mathcal{R} \) executing

\(W \), and (2) there exists an efficient transformation which

maps executions of \(\mathcal{R} \) programmed with \(\bar{W} \) onto execu-

tions of \(\mathcal{R} \) programmed with \(W \), such that the contents of

the memory \(\mathcal{MEM} \) at any point of the the execution of

\(\mathcal{R} \) with programming \(W \) are efficiently mapped to con-

ents of \(\mathcal{MEM} \) at a corresponding point in the execution of

\(\mathcal{R} \) with programming \(\bar{W} \).

- In an application of a VDS, the verifier inputs the chal-

lenge at a point of his choice and checks that the reply

verifies according to the predicate \(\text{Ver} \). Thus the last

property we require from a VDS is self-responsiveness:

the secured programming \(\bar{W} \) includes code that on some

special input emulates algorithm \(\text{Resp} \) on the RAM it

executes. More concretely, the requirement here is that

upon receiving a special input message \(x' = (\text{check}, c) \) the

next output of the RAM equals the output of \(\text{Resp} \)

on input \(c \) with overwhelming probability.

Virus Vulnerability as a Security Game. The afore-

mentioned properties, specify the behavior of software pro-

tected by a VDS when it is not attacked by malware. We

next define invulnerability of a VDS to malware-injection

attack via a security game between an adversary \(\text{Adv} \) who

aims to inject a virus on a RAM, and a challenger \(\text{Ch} \) who

aims to detect it. Informally, the security definition requires

that \(\text{Adv} \) cannot inject a virus without being detected, except

with sufficiently low probability.

At a high-level, the security game, denoted by \(\text{Gen, Ch, Ver, Comp} \), proceeds as follows: The challenger \(\text{Ch} \) runs the key-
geneneration algorithm to obtain a key-pair \((K_c, K_v)\), and

6 All five algorithms below take as an additional input the

security parameter \(k \), which is omitted for compactness.

7 Note that if we instantiate the VDS with symmetric-key

cryptography then \(K_c = K_v \).

8 This description of the family includes the word-size, the

size and addresses of the CPU and RMEM registers and (an

encoding) of the instruction set \(Z \).

9 This latter property will be useful in a real-world deploy-

ment, where the computation also modifies program data

which might then be returned to the hard drive to be used

by another application.
compiles a programming \(W \) for RAM \(R \) into a new program-
ing \(\tilde{W} \) for \(R \) by invocation of algorithm \(\text{Comp} \); \(Ch \) then em-
ulates an execution of \(\tilde{W} \) on \(R \), i.e., emulates its CPU cycles and
stores its entire state at any given point. The adversary
is allowed to inject a virus of his choice on any location in the
memory \(\text{MEM} \). Eventually, the challenger executes the (virus)
detection procedure: It computes a challenge \(c \) by invocation of algorithm \(\text{Chal}(z, K_c) \), and then feeds input (check, \(c \)) to the
emulated RAM and lets it compute the response \(y \).

To capture worst case attack scenarios, we allow the ad-
versary to inject his virus at any point during the RAM
emulation and make no assumption as to how many rounds
the RAM executes after the virus has been injected and be-
fore it receives the challenge. More concretely, we allow
the adversary to specify the number \(\rho_{\text{pre}} \) of rounds to be ex-
duced before the detection process kicks in, the index \(\rho_{\text{att}} \)
of the round in which \(\text{Adv} \) wants the virus to be injected on the
memory, and the number of rounds \(\rho_{\text{afd}} \) of the virus detec-
tion that the RAM will execute. Furthermore, we make no
assumptions on how much information the adversary holds
on the original programming \(W \) or on the inputs of \(R \), by
assuming that \(\text{Adv} \) knows \(W \) and can decide/see the entire
sequence of inputs.

The formal description of the security game \(\hat{G}^{R,W}_{\text{VDS}} \) is
given in Figure 1. For simplicity we describe the game for
the case where the adversary injects a virus only once, but
our treatment can be extended to repeated injections.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{The Virus Attack Game \(\hat{G}^{R,W}_{\text{VDS}} \)}
\end{figure}

The security definition for a VDS is provided in the fol-
lowing. In the definition we use the following terminology:
we say that a programming \(W \) is \((R,V)\)-consistent for \(R_k \)
if the compiled version \(\tilde{W} \) of \(W \) fits in the random access
memory \(\text{MEM} \) of \(R_k \) (a formal specification can be found in the
full version).

Definition 2. We say that a virus detection scheme \(V =
(\text{Gen}, \text{Comp}, \text{Chal}, \text{Resp}, \text{Ver}) \) is secure for RAM family \(R \) if it
satisfies the following properties:
1. \(V \) is verification correct, compilation correct, and self-
responsive.
2. For sufficiently large \(k \) for any \((R,V)\)-consistent program-
ing \(W \) for \(R_k \) and any polynomial adversary \(\text{Adv} \) in the
game \(G^{R_k,V,W}_{\text{VDS}} \) who injects a valid non-empty virus:
\[
\Pr[h = 1] \leq \mu(k),
\]
where \(\mu \) is some negligible function, and the probability
is taken over the random coins of \(\text{Adv} \) and \(Ch \).

In our constructions we restrict our statements to certain
class of programming that satisfy some desirable properties
making the compilation easier, and/or to certain classes of
adversaries (e.g., adversaries injecting their virus to consec-
tive memory locations). We will then say that the corre-
responding VDS is secure with respect to the given class of
programmings and/or adversaries.

The Repeated Detection Game. Definition 2 requires
that the adversary is caught even when he injects its virus
while the RAM is executing the \(\text{Resp} \) algorithm. A
relaxed security game, which also provides a useful guaran-
tee for practical purposes has the virus detection (challen-
gle/response) procedure executed multiple times periodi-
cally (on the same compiled programming); the requirement
is that if the adversary injects its virus to the RAM at round
\(\rho \), then he will be caught by the first invocation of the virus
detection procedure which starts after round \(\rho \). Note that
all executions use the same compiled RAM program and
therefore the same key \(K \). The formal security definition is
similar to Definition 2 but requires that any virus that is in-
jected in the RAM will be caught in the first virus detection
attempt performed after the injection.

5. A VDS FOR MODERATE VIRUSES

In this section we provide a VDS which is secure in the
continuous-injection-model assuming the virus has a con-
stant number of words. This covers a wide class in reality,
as viruses are usually several words long. Nonetheless, in
Section \(\ref{sec:continuous} \) we show how to get rid of the length and the
continuous injection restrictions.

Our construction proceeds in three steps. First step we con-
struct a VDS \(V_1 \) which achieves a weaker notion of se-
curity that, roughly; does not have self-responsiveness. In a
second step, we show how to transform \(V_1 \) into a VDS \(V_2 \)
which is secure (and self-responsive) in the repeated detec-
tion game. Finally, in a third step we show how to transform
\(V_2 \) into a VDS \(V_1 \) which is secure in the standard detection
game. We point out that the VDSs \(V_1 \) and \(V_2 \) are not just
steps towards building \(V_1 \), but can be useful in applications
where their corresponding (weaker) security is satisfactory.

A VDS without self-responsiveness We start by de-
scribing a VDS \(V_1 = (\text{Gen}, \text{Comp}, \text{Chal}, \text{Resp}, \text{Ver}) \) which achieves security without self-responsiveness. More con-
cretely, the corresponding attack-game \(G^{R,W}_{\text{VDS}} \) is derived
from the standard attack-game \(G^{R,W}_{\text{VDS}} \) by modifying the
detection procedure so that in Step 2 of the game $v_{R,R,Y,W}$ (Figure 1), instead of emulating R on the compiled program W and input (check, c) to compute $y = \text{Resp}(c, W)$, the challenger evaluates $y \leftarrow \text{Resp}(c, W)$ himself.

At a high level, the idea of our construction is as follows: The key generation algorithm Gen samples a k-bit key K for a symmetric-key cryptosystem, i.e., $K_i = K_j = K$ $\forall (i, j) \in \{0,1\}^k$. Given key K, the algorithm Comp computes an additive sharing (\tilde{K}) of K and fills the entire memory MEM by interleaving a different share of (\tilde{K}) between every two words in the original program. More precisely, Comp compiles a programming W for a RAM R into a new programming \hat{W} for R constructed as follows: Between any two consecutive words w_i and w_{i+1} of W the compiler interleaves a uniformly chosen k-bit string $K_i^{i+1} = K_i \cdots K_1^{i+1}$, where each $K_i^{i+1} \in \{0,1\}^k$. In the last k bits of the compiled programming (i.e., after the last word w_iW_{i-1}) the string $K_{\text{last}} = K_0 \oplus \overline{\text{MEM}}_{\text{last}}[W_i-2] K^{i+1}$ is written.

To ensure that the compiled programming \hat{W} executes the same computation as W we need to ensure that while being executed it "jumps over" the locations where keys are stored (as the keys are only to be used in the detection procedure). For this purpose, we do the following modification: After each word w_i of the original program we put a (jump, i) instruction where i is the number of key-shares between this and the next W-word in the compiled programming. Similarly, we modify any "jump" instructions of the original programming W to point to the correct locations in \hat{W}. Note that this modification is not necessarily applicable for arbitrary classes of codes, and for certain self-modifying code it might even be infeasible. Our goal here is to demonstrate applicability of our method, therefore, in the following we restrict to the class of programmings W with the following four properties: (1) While executing, W accesses only the first $|W| \text{MEM}$ locations. (2) The only type of instructions in W which change the program flow (i.e., modify the program counter) are (conditional) "jumps", that skip constantly many words. (These are sufficient for implementing efficiently control-flow commands such as while- and for-loops.) (3) During its execution in RAM R, W does not write any (new) instructions to the memory MEM (but might insert data) and might only overwrite locations where instructions other than no-op are written. (4) The only instructions in W that access the random access memory RMEM are (read, i, j) (which loads the word from $\text{MEM}[i]$ onto the CPU register $\text{REG}[j]$), (write, j, i) (which stores the word from $\text{REG}[j]$ to the memory location $\text{MEM}[i]$), and the built-in load command that is executed at the beginning of each CPU cycle and loads the contents of $\text{MEM}[\text{pc}]$ to a special CPU register. All other instructions define operations on values of the CPU registers. Furthermore, we assume that read is used to only load data and not instructions on the CPU (i.e., an instruction is executed only if it is loaded by the special built-in "load" command).

We refer to a programming W which satisfies the above conditions as a non-self-modifying structured programming for R. Without loss of generality, we shall allow throughout this text that any considered RAM has the above instructions, i.e., read, write, jumpby, and jumpify, if, as part of its CPU instruction set I. Observe, that the above specification is sufficient for any structured program, i.e., a program which uses while- and for-loops but no "goto"s. As a fact, writing structured programs is considered a good practice and most programmers avoid writing self-modifying code as it can be source of bugs. Furthermore, classical results in programming languages imply that any program can be compiled to a structured program with a low complexity overhead [6, 34]. Nonetheless, compilers at times do generate self-modifying code in order to optimize performance. Extending our results to such code is one of many interesting research direction.

In the full version of this work, we describe (and formally prove the correctness of) a process, called Spread, which spreads such programming to allow for enough space between the words to fit the key-shares and adds the extra "jump" instructions to preserve the right program flow. The compiler Comp uses the process Spread to translate, as sketched above, a non-self-modifying structured programming W for a RAM $R = (\mathcal{C}, \text{MEM})$ into a programming \hat{W} for R. For simplicity, we assume that $|\text{MEM}| = (k/(L+1)|W|)$ (if this is not the case we can expand W with no-op instructions prior to computing and/or pad the last positions of MEM with extra key shares).

To complete the description of VDS V_1 we need to describe the remaining three algorithms $\text{Chal}_1, \text{Resp}_1$, and Ver_1. The algorithm Chal_1 chooses a random string $x \in \{0,1\}^*$, and computes the challenge as a one-time pad encryption of x with key K; i.e., $c \leftarrow \text{Chal}(x, K) = \text{Enc}_K(x) = x \oplus K$. The algorithm Resp_1 works as follows: On input the challenge $c = \text{Enc}_K(r)$ and the compiled programming \hat{W}, it reconstructs K by summing up all its shares as retrieved from \hat{W}, and outputs a decryption of the challenge under the reconstructed key, i.e., outputs $y = c \oplus K$. The corresponding verification algorithm Ver_1 simply verifies that $y = x$.

The security of V_1 follows from the fact that an adversary who injects a long-enough virus in consecutive memory locations will overwrite a linear number of bits of some key-share which will information-theoretically destroy an analogous amount of decryption-key bits making it infeasible to correctly decrypt the challenge and thus pass the VDS check.

Theorem 1. Assuming \mathcal{R} is a complete RAM family the VDS V_1 is secure for R without self-responsiveness with respect to the class of all non-self-modifying structured programmings and the class of adversaries who injects a virus v with $|v| \geq 3$ on consecutive memory locations.

Adding Self-Responsiveness. We next modify V_1 so that it is secure (with self-responsiveness) in the repeated detection game. Towards this direction, prior to applying the above compilation strategy we extend the given sound programming W to also implement the corresponding response algorithm. The completeness of \mathcal{R} and the universality of structured non-self-modifying code [5, 34] ensure that given that \mathcal{R} has sufficient memory, there exists a programming W_{keep} which implements Resp on R. (Note that the algorithm Resp_1 above is deterministic.) Thus we can combine W_{keep} and W via a threading mechanism to some new programming $\text{Emb}(W, W_{\text{keep}})$ which, when executed (periodically) checks if a new (check, c)-input is provided, and if so stores the CPU state on free memory locations and changes the program counter to point to the location where W_{keep} is valid.

\text{Wlog, here we implicitly assume that }(|\text{MEM}| - |W|) = 0 \mod k \text{ so that the keys fit exactly in the memory. The general case can also be easily treated.}
stored; once \(\text{Resp} \) has produced output, it restores the CPU to its prior state and continues the execution of \(W \).

Although it might seem that using the above trick combined with the response algorithm \(\text{Resp} \), from the previous section, i.e., using \(\text{Emb}(W, W_{\text{comp}}) \), takes care of the self-responsiveness issue, this is not the case, i.e., the resulting VDS in not secure. Informally, the reason is that it only detects attacks (virus injections) that occur outside the virus detection procedure. In more detail, a possible adversarial strategy is to inject the virus while the RAM is computing the response to a challenge, and in particular as soon as the key \(K \) has been reconstructed on the CPU and is about to be used to decrypt the challenge. By attacking at that exact point, the adversary might be able to inject an “intelligent” virus onto \(\text{MEM} \) while the key is still in the CPU, restore the key back to the memory and use it to pass the current as well as all future virus detection attempts.

To protect against the above attack we use the following technical trick: instead of using a single compilation-key \(K \) of length \(k \) we use a 2\(k \)-bit key \(K \) which is parsed as two \(k \)-bit keys \(K_{\text{od}} \) and \(K_{\text{ev}} \) via the following transformation: Let \(K = x_1 | \ldots | x_{2k} \), where each \(x_i \) is a word of length \(2 \).

Then \(K_{\text{od}} \) is a concatenation of the odd-indexed words, i.e., \(x_i \)'s with \(i = 1 \mod 2 \), and \(K_{\text{ev}} \) is a concatenation of the even indexed words. Now the challenge algorithm outputs a double encryption of \(z \) with keys \(K_{\text{od}} \) and \(K_{\text{ev}} \), i.e., \(c = \text{Enc}_{K_{\text{od}}} (\text{Enc}_{K_{\text{ev}}} (z)) \). In order to decrypt, the response algorithm does the following: First it reconstructs \(K_{\text{od}} \) by XOR-ing the appropriate shares, and uses it to decrypt \(c \), thus computing \(\text{Enc}_{K_{\text{od}}} (z) \). Subsequently, it erases \(K_{\text{od}} \) from the CPU register (e.g. by filling the register where \(K_{\text{od}} \) is stored with 0's) and after the erasure completes it starts reconstructing \(K_{\text{ev}} \) and uses it (as above) to decrypt \(\text{Enc}_{K_{\text{ev}}} (z) \) and output \(y = z \).

Intuitively, the reason why the above idea protects against injections occurring during a detection-procedure execution in the repeated detection game, is that in order to correctly answer the challenge, the virus needs both \(K_{\text{od}} \) and \(K_{\text{ev}} \). However, the keys are never simultaneously written in the CPU. Thus if the adversary injects the virus before \(K_{\text{od}} \) is erased it will overwrite bits from a share of \(K_{\text{ev}} \) (which at that point exists only in the memory); thus he will not be able to decrypt the challenge. Otherwise, if the adversary injects the virus after \(K_{\text{od}} \) has been erased from the CPU, he will overwrite bits from a share of \(K_{\text{ev}} \); in this case he will successfully pass this detection attempt, but will fail the next detection attempt.

But we are still not done, because the above argument cannot work with any encryption scheme, e.g., it fails if we instantiate \(\text{Enc}(\cdot) \) with one-time-pad encryption as in the previous section. To see why, assume that we use \(c = z \oplus K_1 \oplus K_2 \). Because the input register is read-only (for the RAM) once \(c \) is given it cannot be erased. Furthermore, from \(c = y = z \) (which is the output of \(\text{Resp} \)) one can recover \(K_2 \oplus K_3 := c \oplus y \). Now if the adversary injects its virus after \(y \) is computed but while \(K_{\text{ev}} \) is still on the CPU’s register he can easily recover both \(K_{\text{od}} \) and \(K_{\text{ev}} \) and answer all future challenges in an accepting manner. Thus we cannot use the one-time pad encryption as in the VDS \(V_1 \). In fact, we cannot even use a standard CCA2 secure cipher for \(\text{Enc}(\cdot) \) as the virus will have access to a big part of the private key and the cyphertext and standard CCA2 encryption does not account for that (recall that we only require the virus to overwrite a portion of a key share).

Instead we make use of a leakage resilient encryption scheme, which is secure as long as the adversary’s probability of guessing the key is negligible even when one leaks a big part of the key. A (public-key) encryption scheme satisfying the above property (with CPA security) was suggested by Dodis, Goldwasser, Kalai, Peikert, and Vaikuntanathan.\(^{12}\)\(^{13}\) We point out that the compiler \(\text{Comp}_2 \) will only use the compilation key (i.e., the secret key of the scheme in \(^{13}\)) plays the role of the compilation key) and ignore the public key. In the following we assume that all the remainder algorithms of VDS \(V_2 \) use such a public-key leakage resilient double encryption scheme. Thus the corresponding key generation algorithm \(\text{Gen}_2 \) generates two pairs of keys for such a scheme, where the secret (compilation) keys are used by \(\text{Comp}_2 \), whereas all other algorithms in \(V_2 \) use the corresponding verification (public) keys.

There are still a couple of details that need to be taken care of in the design of the appropriate response algorithm \(\text{Resp}_2 \) used in \(\text{Emb}(W, W_{\text{comp}}) \). First it should never copy key-shares on other memory locations (this will ensure that the key-shares which the virus overwrites are not recoverable). Second, we need to make sure that \(\text{Emb}(W, W_{\text{comp}}) \) is still able to access key locations, even after it has been compiled. (Recall that the compiler re-arranges the commands \(\text{read} \) and \(\text{write} \) to avoid these locations) We can resolve this by a simple technical trick: We make \(W_{\text{comp}} \) use a special read command \(\text{read_key}(i, j, \ell) \) for accessing the key shares, which reads the \(i \)-th word of the \(j \)-th key-share and stores it on register \(\text{REG}[\ell] \). According to the rules for spreading out the programming from the previous section, the compiler will not modify the address accessed by this command when \(\text{Emb}(W, W_{\text{comp}}) \) is compiled as it is not a \(\text{read} \) or \(\text{write} \) instruction. This extra \(\text{read_key}(i, j, \ell) \) instruction can be easily implemented in machine code by a combination of \(\text{read} \) and \(\text{jump} \) commands.

Having described \(\text{Resp}_2 \) we can now provide the detailed description of the corresponding compiler \(\text{Comp}_2 \). The compiler uses the programming \(\text{Emb}(W, W_{\text{comp}}) \) described above, and the compiler \(\text{Comp}_2 \) from the previous section but using the two compilation (secret) keys in tandem. Denote by \(V_2 \) the VDS (\(\text{Gen}_2, \text{Comp}_2, \text{Chal}_2, \text{Resp}_2, \text{Ver}_2 \)), where \(\text{Gen}_2, \text{Comp}_2, \text{Chal}_2, \) and \(\text{Resp}_2 \) are as described above, and \(\text{Ver}_2 \) is identical to \(\text{Ver}_1 \). As in \((\text{Theorem}1)\) we assume wlog that the RAM family has sufficient memory to accommodate \(W = \text{Comp}_2(\text{Emb}(W, W_{\text{comp}})) \).

Theorem 2 Assuming \(\mathcal{R} \) is a complete RAM, if the encryption scheme used in \(V_2 \) is CPA secure against an adversary who learns all but \(\ell = \omega(\log k) \) bits of the secret key \(k \), then the VDS \(V_2 \) is secure in the repeated detection model with respect to the class of non-self-modifying structured programms and the class of adversaries who injects a virus \(v \) with \(|v| \geq 4 \) on consecutive memory locations.

Obtaining Standard Security. The final step is to com-

\(^{12}\)Modern architectures use the program stack for efficiently implementing such a multi-thread computation; in the full version we describe a simple low level implementation in our RAM model.

\(^{13}\)For technical reasons we cannot use the (CCA) symmetric encryption with auxiliary input \(^{13}\). For details we refer to the proof of \(\text{Theorem} \) in the full version.
pile the VDS V_2 into a VDS V_3 which is secure in the standard model. The transformation is to a large extend generic and can be applied to most self-responsive VDSs as long as the algorithm Resp can be described as an invertible RAM program, i.e., a program which at the end of its execution leaves the memory in the same state it was at the beginning. Given sufficiently memory, that this is the case for the algorithms described here, as they only need to compute exclusive-ORs of the key shares and then use it to decrypt the challenge. Modern CPUs can even perform these operations without ever changing the contents of the memory.

Our transformation also assumes a hash function $h(\cdot)$ which can be efficiently computed by an invertible programming on the RAM R. Most known hash functions can be implemented as such by writing only on CPU registers and/or on temporary memory locations (swap memory) which can be erased at the end of their invocation. We convert the VDS $V_2 = \langle \text{Gen}_2, \text{Comp}_2, \text{Chal}_2, \text{Resp}_2, \text{Ver}_2 \rangle$ which is secure in the repeated detection model into a VDS $V_3 = \langle \text{Gen}_3, \text{Comp}_3, \text{Chal}_3, \text{Resp}_3, \text{Ver}_3 \rangle$ secure in the single detection model as follows:

1. The algorithm Gen_3 is the same as Gen_2.
2. The algorithm Resp_3 works as follows on input a challenge c and a programming \tilde{W}: (i) It executes the invertible programming for $h(\cdot)$ which computes a complete hash $y_0 = h(\tilde{W}[c])$ of the contents of memory RMEM (at the beginning of the evaluation of $h(\cdot)$ concatenated with the challenge ciphertext)

 outputs y_0 to the user, and then erases all memory locations and CPU registers that it wrote on. (ii) It executes the invertible programming for Resp_2 and outputs its output $y = \text{Resp}_3(c, \tilde{W})$. (iii) It executes again the invertible programming for $h(\cdot)$ computes again a complete hash $y_0' = h(\tilde{W}'[c])$ where \tilde{W}' denote the current memory RMEM and outputs y_0'.

3. The algorithms Comp_3, is the same as Comp_2 but uses Resp_3 instead of Resp_2, i.e., first generates the programming $\text{Emb}(\tilde{W}, 0)$, and then spreads it and interleaves the key-shares.

4. Chal_3 is the same as Chal_2.

5. Ver_3 is modified as follows: Let K_r and z denote the inputs of Chal_2 in the attack game $\text{Game}_{\text{Bad},V,W}$ (Figure 1), and let y_0, y, and y_0' denote the outputs of the detection procedure. Then $\text{Ver}_3(z, \cdot, (y_0, y, y_0'))$ outputs 1 if $y = z$ and $y = y_0'$, otherwise it outputs 0.

The above modification takes care of adversaries that submit a virus to be injected during the computation of Resp_2. If the injections occurs before the first evaluation of the hash function has been erased, then the security of V_2 in the repeated detection model ensures that the adversary will be caught with overwhelming probability. Otherwise, if the virus is injected after y_0 has been erased, then in order to produce a valid reply, the virus will need to compute y_0. Because by assumption, the adversary overwrites at least $L = O(k)$ bits of a key share which he cannot recover, the security of $h(\cdot)$ will guarantee that the probability that the virus outputs y_0 is negligible in k.

Theorem 3 Assuming R is a complete RAM, if the encryption scheme used in V_2 is CPA secure against an adversary

who learns all but $\ell = \omega(\log k)$ bits of the secret key $[13]$, then the VDS V_3 is secure with respect to the class of non-self-modifying structured programings and the class of adversaries who injects a virus v with $|v| \geq 4$ on consecutive memory locations.

6. **VDS for all viruses**

The constructions from the previous section are secure only against (sufficiently) long viruses (i.e., more than two words). In this section we describe a VDS V_4 which achieves security $2^{-O(k)}$ for any desirable value of the security parameter k, independent of the virus length, and in particular even when the virus affects only part of a single word (i.e., is a few bits long). Injection of such a virus can be easily captured by assuming a bit-by-bit injection (see full version for details).

The basic difficulty in designing a VDS which tolerates a virus of arbitrary small size is that depending on the actual programming we compile, an “intelligent” short virus that is injected on the position of the first instruction executed might cause the RAM to jump to a location that allows the virus to take over the entire computation (e.g., by return-oriented programming [40]). To prevent such an attack and ensure that even such viruses will be caught we use the following idea: We use a compiler similar to Comp_3, but we include, for each program word and pair of key-shares, message authentication codes (MACs) which we check every time we load a program word on the CPU.

A MAC consists of a pair of algorithms (Mac, Ver), where $\text{Mac} : M \times K \rightarrow T$ is the authentication algorithm (i.e., for a message $m \in M$ and a key $\text{vk} \in K$, $t = \text{Mac}(m, \text{vk}) \in T$ is the corresponding authentication tag), and $\text{Ver} : M \times T \rightarrow K \rightarrow \{0, 1\}$ is the verification algorithm (i.e., for a message $m \in M$, an authentication tag $t \in T$ and a key $\text{vk} \in K$, $\text{Ver}(m, t, \text{vk}) = 1$ if and only if t is a valid authentication tag for m with key vk). We let M include all strings of length at most k, $K = \{0, 1\}^k$, and $T = \{0, 1\}^k$. Such a MAC can be constructed as follows: Let $GF(2^k)$ be the field of characteristic two and order 2^k. (Every $x \in GF(2^k)$ can be represented as a k-bit string and vice-versa.) Let also $\text{vk} = v_k v_{k-1} \cdots v_1 v_0 \in \{0, 1\}^{2k}$ where $v_k \in \{0, 1\}^k$ for $i \in \{1, 2\}$. Then $\text{Mac}(m, \text{vk}) = v_k \cdot m + v_{k-1} \cdot m + \cdots + v_0$. The verification algorithm simply checks that the message, tag, and key satisfy the above condition. An important property of the above MAC is that for a given key vk, every $m \in M$ has a unique authentication tag that passes the verification test. Furthermore, the probability of any (even computationally unbounded) adversary learning a MAC tag to guess the corresponding key is at most 2^{-k}.

Similar to Comp_2, our new compiler Comp_4 compiles the programming $\text{Emb}(\tilde{W}, 0)$, i.e., W combined with the response algorithm Resp_4 described below, into a new programming \tilde{W} which interleaves additive shares $K_{ad} + 1$ and $K_{vr} + 1$ of decryption keys K_{ad} and K_{vr} between any two program words w_i and w_{i+1} and adds the appropriate jump command to ensure correct program flow. The difference is that Comp_4 also adds MAC tags $\text{Mac}(w_i || w_{i+1}, K_{ad} + 1)$

\[\text{Mac}(w_i || w_{i+1}, K_{ad} + 1) \]

\[\text{Mac}(w_i || w_{i+1}, K_{ad} + 1) \]
and \(i^t_{ev} = \text{Mac}(\overline{w}_i[1], \overline{w}_i[1:K_{ad}^{i+1}]) \). To visualize it: \(\text{Comp}_p \) expands every word \(w_i \in \text{Emb}(W, \text{Resp}_p) \), as \(\overline{w}_i[|\text{jumpby}, n|] K_{ad}^{i+1} | K_{ev}^{i+1} | \text{Mac}(\overline{w}_i[|\text{jumpby}, n|], K_{ad}^{i+1}) \).\]

As we prove, this ensures that any virus, no matter how small, which is written consecutively in \(\text{MEM} \) in the bit-by-bit injection setting, will either have to overwrite a long number of bits of some key \(K_i \), or will create an inconsistency in at least one of the MAC’s with overwhelming probability. To exploit the power of the MACs we need to ensure that during the program execution, before loading any word the CPU first verifies its MACs. Therefore, we assume that, by default, the CPU loads values from the memory RMEM to its registers via a special load instructions \(\text{read} \), which, first, verifies both MACs of the word in location \(i \) of the memory with the corresponding keys, and only if the MACs verify, it keeps the word on the CPU. If the MAC verification fails, then \(\text{read} \) deletes at least one of the key-shares from the memory, thus introducing an inconsistency that will be caught by the detection procedure.

Note that \(\text{read} \) makes no tamper-resiliency assumption on the memory or the CPU. It only needs for the architecture to provide us with this simple piece of microcode, and by engineering the CPU’s hardware in a smart way (so that these operations are done on the circuit level) we expect to be able to reduce the effect of the compiler to a rarely noticeable slowdown. Fortunately, the new architecture that Intel recently announced promises to embed such microcode in its next-generation microchips [35]. Luckily, the new architecture that Intel recently announced promises to allow for support of such a microcode in its next generation microchips [35]. The implementation details on the newly designed architecture are the subject of future work.

Observe that the original programming \(W \) might include \(\text{read} \) instructions which we will replace by \(\text{read} \). Furthermore, to ensure that the compiled program will not introduce inconsistencies, we replace every \(\text{write} \) instruction of the programming with microcode \(\text{write} \) which, when writing a word in the memory it also updates the corresponding MAC tags. Unlike \(\text{read} \), \(\text{write} \) does not require any change in the architecture or additional assumptions as it can be implemented in assembly code which can be included in \(W \). Nonetheless, a smart redesign of the CPU circuit (e.g., extensions of its ALU) to implement \(\text{write} \) in hardware could give a speed up that would make its effect nearly noticeable.

A formal description of the compiler \(\text{Comp}_p \) is derived along the lines of \(\text{Comp}_p \) with the above modifications. We next turn to other three algorithms of the VDS \(V_4 \), namely \(\text{Gen}_4 \), \(\text{Chal}_4 \), \(\text{Resp}_4 \) and \(\text{Ver}_4 \). The key generation \(\text{Gen}_4 \) is identical to \(\text{Gen}_2 \) but generates \(2k \)-bit compilation keys. The algorithms \(\text{Chal}_4 \) and \(\text{Ver}_4 \) are identical to the corresponding algorithms from the previous section, where the verification keys are as generated by \(\text{Gen}_4 \). \(\text{Resp}_4 \) works as \(\text{Resp}_p \) with the following difference: After the first evaluation of the hash function, and before doing anything else, \(\text{Resp}_4 \) scans the entire memory to ensure that all MAC tags are correct. After this check, \(\text{Resp}_4 \) continues as \(\text{Resp}_p \).\]

Observe that for all \(\text{read}, \cdot, \cdot \) instructions in \(W_{resp} \), the compiler \(\text{Comp}_p \) will replace them with corresponding \(\text{read}, \cdot, \cdot \) instructions. However, it will not touch the \(\text{read}, \cdot, \cdot \) instructions used for reading the keys. Therefore, the keys need not be authenticated. In the following we denote by \(V_4 \) the VDS \((\text{Gen}_4, \text{Comp}_p, \text{Chal}_4, \text{Resp}_p, \text{Ver}_4) \).

Theorem 4 Let \(R \) be a complete RAM. If the encryption scheme used in \(\text{Comp}_p \) is CPA secure even against an adversary who learns any \(\omega(\log k) \) bits of the secret key, then the VDS \(V_4 \) is secure for \(R \) with respect to the class of all non-self-modifying structured programmings and adversaries in the bit-by-bit continuous injection model.

Removing the Continuous-Injection Assumption.

The above VDS detects injections of arbitrary small size, but assuming continuous injection. We now show how to remove this assumptions, at the cost however of an additional modification on the CPU (microcode) specification. (As before, the modification is simple enough to be implemented in hardware which will impose a very small slowdown.) More concretely, as for \(V_4 \), we use MACs for authenticating the words. However, to ensure that the adversary cannot forge the MAC by a smart manipulation of the word, keys, and tags, we do not use the actual key-shares \(K_{ad}^{i+1} \) and \(K_{ev}^{i+1} \) in the computation and verification of the above MAC but rather their hash-value, i.e., \(H(K_{ad}^{i+1}) \) and \(H(K_{ev}^{i+1}) \) for some hash function \(H(\cdot) \).\]

Intuitively, this will ensure that if the malware overwrites less than \(d \) bits of some of the key-shares it will be unable to guess an appropriate manipulation of the MAC key. If, on the other hand, the adversary overwrites more than \(d \) bits of any key-share, then with overwhelming probability it will destroy a super-logarithmic portion of the decryption key and will be, therefore, unable to answer decryption challenges. More concretely, the compiler \(\text{Comp}_p \) works as \(\text{Comp}_p \) but maps a word \(w_i \) of the original program onto \(\overline{w}_i[|\text{jumpby}, n|] K_{ad}^{i+1} | K_{ev}^{i+1} | \text{Mac}(w_i[|\text{jumpby}, n|], K_{ad}^{i+1}) \).\]

Theorem 5 Let \(R \) be a complete RAM. If the encryption scheme used in \(V_5 \) is CPA secure even against an adversary who learns all but \(\omega(\log k) \) bits of the secret key, then the VDS \(V_5 \) is secure for \(R \) with respect to the class of all non-self-modifying structured programmings and adversaries in the bit-by-bit (non-continuous) injection model.

REFERENCES

\(^{16}\)Wlog assume that \(L \leq 2k \).

\(^{17}\)As usually, we will assume that \(H(\cdot) \) behaves as a random function, which is very natural to assume since we do not need any compression and we only evaluate it on randomly distributed shares.

