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Abstract—Emerging smart contract systems over decentralized
cryptocurrencies allow mutually distrustful parties to transact
safely without trusted third parties. In the event of contrac-
tual breaches or aborts, the decentralized blockchain ensures
that honest parties obtain commensurate compensation. Existing
systems, however, lack transactional privacy. All transactions,
including flow of money between pseudonyms and amount
transacted, are exposed on the blockchain.

We present Hawk, a decentralized smart contract system that
does not store financial transactions in the clear on the block-
chain, thus retaining transactional privacy from the public’s view.
A Hawk programmer can write a private smart contract in an
intuitive manner without having to implement cryptography, and
our compiler automatically generates an efficient cryptographic
protocol where contractual parties interact with the blockchain,
using cryptographic primitives such as zero-knowledge proofs.

To formally define and reason about the security of our
protocols, we are the first to formalize the blockchain model
of cryptography. The formal modeling is of independent interest.
We advocate the community to adopt such a formal model when
designing applications atop decentralized blockchains.

I. INTRODUCTION

Decentralized cryptocurrencies such as Bitcoin [52] and alt-
coins [20] have rapidly gained popularity, and are often quoted
as a glimpse into our future [5]. These emerging cryptocur-
rency systems build atop a novel blockchain technology where
miners run distributed consensus whose security is ensured if
no adversary wields a large fraction of the computational (or
other forms of) resource. The terms “blockchain” and “miners”
are therefore often used interchangeably.

Blockchains like Bitcoin reach consensus not only on a
stream of data but also on computations involving this data. In
Bitcoin, specifically, the data include money transfer transac-
tion proposed by users, and the computation involves transac-
tion validation and updating a data structure called the unspent
transaction output set which, imprecisely speaking, keeps track
of users’ account balances. Newly emerging cryptocurrency
systems such as Ethereum [61] embrace the idea of running
arbitrary user-defined programs on the blockchain, thus creat-
ing an expressive decentralized smart contract system.

In this paper, we consider smart contract protocols where
parties interact with such a blockchain. Assuming that the
decentralized concensus protocol is secure, the blockchain can
be thought of as a conceptual party (in reality decentralized)
that can be trusted for correctness and availability but not for

privacy. Such a blockchain provides a powerful abstraction for
the design of distributed protocols.

The blockchain’s expressive power is further enhanced by
the fact that blockchains naturally embody a discrete notion
of time, i.e., a clock that increments whenever a new block
is mined. The existence of such a trusted clock is crucial
for attaining financial fairness in protocols. In particular,
malicious contractual parties may prematurely abort from a
protocol to avoid financial payment. However, with a trusted
clock, timeouts can be employed to make such aborts evident,
such that the blockchain can financially penalize aborting
parties by redistributing their collateral deposits to honest,
non-aborting parties. This makes the blockchain model of
cryptography more powerful than the traditional model without
a blockchain where fairness is long known to be impossible
in general when the majority of parties can be corrupt [8],
[17], [25]. In summary, blockchains allow parties mutually
unbeknownst to transact securely without a centrally trusted
intermediary, and avoiding high legal and transactional cost.

Despite the expressiveness and power of the blockchain
and smart contracts, the present form of these technologies
lacks transactional privacy. The entire sequence of actions
taken in a smart contract are propagated across the network
and/or recorded on the blockchain, and therefore are publicly
visible. Even though parties can create new pseudonymous
public keys to increase their anonymity, the values of all trans-
actions and balances for each (pseudonymous) public key are
publicly visible. Further, recent works have also demonstrated
deanonymization attacks by analyzing the transactional graph
structures of cryptocurrencies [46], [56].

We stress that lack of privacy is a major hindrance towards
the broad adoption of decentralized smart contracts, since fi-
nancial transactions (e.g., insurance contracts or stock trading)
are considered by many individuals and organizations as being
highly secret. Although there has been progress in designing
privacy-preserving cryptocurrencies such as Zerocash [11] and
several others [27], [47], [58], these systems forgo programma-
bility, and it is unclear a priori how to enable programmability
without exposing transactions and data in cleartext to miners.

A. Hawk Overview
We propose Hawk, a framework for building privacy-

preserving smart contracts. With Hawk, a non-specialist pro-
grammer can easily write a Hawk program without having to



implement any cryptography. Our Hawk compiler is in charge
of compiling the program to a cryptographic protocol between
the blockchain and the users. As shown in Figure 1, a Hawk
program contains two parts:

1) A private portion denoted φpriv which takes in parties’ input
data (e.g., choices in a “rock, paper, scissors” game) as well
as currency units (e.g., bids in an auction). φpriv performs
computation to determine the payout distribution amongst
the parties. For example, in an auction, winner’s bid goes to
the seller, and others’ bids are refunded. The private Hawk
program φpriv is meant to protect the participants’ data and
the exchange of money.

2) A public portion denoted φpub that does not touch private
data or money.
Our compiler will compile the Hawk program into the

following pieces which jointly define a cryptographic protocol
between users, the manager, and the blockchain:
• the blockchain’s program which will be executed by all

consensus nodes;
• a program to be executed by the users; and
• a program to be executed by a special facilitating party

called the manager which will be explained shortly.

Security guarantees. Hawk’s security guarantees encompass
two aspects:
• On-chain privacy. On-chain privacy stipulates that transac-

tional privacy be provided against the public (i.e., against
any party not involved in the contract) – unless the con-
tractual parties themselves voluntarily disclose information.
Although in Hawk protocols, users exchange data with
the blockchain, and rely on it to ensure fairness against
aborts, the flow of money and amount transacted in the
private Hawk program φpriv is cryptographically hidden
from the public’s view. Informally, this is achieved by
sending “encrypted” information to the blockchain, and
relying on zero-knowledge proofs to enforce the correctness
of contract execution and money conservation.

• Contractual security. While on-chain privacy protects con-
tractual parties’ privacy against the public (i.e., parties
not involved in the financial contract), contractual secu-
rity protects parties in the same contractual agreement
from each other. Hawk assumes that contractual parties
act selfishly to maximize their own financial interest. In
particular, they can arbitrarily deviate from the prescribed
protocol or even abort prematurely. Therefore, contractual
security is a multi-faceted notion that encompasses not only
cryptographic notions of confidentiality and authenticity,
but also financial fairness in the presence of cheating and
aborting behavior. The best way to understand contractual
security is through a concrete example, and we refer the
reader to Section I-B for a more detailed explanation.

Minimally trusted manager. The execution of Hawk con-
tracts are facilitated by a special party called the manager.
The manager can see the users’ inputs and is trusted not to
disclose users’ private data. However, the manager is NOT to
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Fig. 1. Hawk overview.

be equated with a trusted third party — even when the manager
can deviate arbitrarily from the protocol or collude with the
parties, the manager cannot affect the correct execution of
the contract. In the event that a manager aborts the protocol,
it can be financially penalized, and users obtain compensation
accordingly.

The manager also need not be trusted to maintain the
security or privacy of the underlying currency (e.g., it cannot
double-spend, inflate the currency, or deanonymize users).
Furthermore, if multiple contract instances run concurrently,
each contract may specify a different manager and the effects
of a corrupt manager are confined to that instance. Finally,
the manager role may be instantiated with trusted comput-
ing hardware like Intel SGX, or replaced with a multiparty
computation among the users themselves, as we describe in
Section IV-C and Appendix A.
Terminology. In Ethereum [61], the blockchain’s portion of
the protocol is called an Ethereum contract. However, this
paper refers to the entire protocol defined by the Hawk
program as a contract; and the blockchain’s program is a
constituent of the bigger protocol. In the event that a manager
aborts the protocol, it can be financially penalized, and users
obtain compensation accordingly.

B. Example: Sealed Auction

Example program. Figure 2 shows a Hawk program for
implementing a sealed, second-price auction where the highest
bidder wins, but pays the second highest price. Second-
price auctions are known to incentivize truthful bidding under
certain assumptions, [59] and it is important that bidders
submit bids without knowing the bid of the other people. Our
example auction program contains a private portion φpriv that
determines the winning bidder and the price to be paid; and
a public portion φpub that relies on public deposits to protect
bidders from an aborting manager.

For the time being, we assume that the set of bidders are
known a priori.
Contractual security requirements. Hawk will compile this
auction program to a cryptographic protocol. As mentioned
earlier, as long as the bidders and the manager do not volun-
tarily disclose information, transaction privacy is maintained
against the public. Hawk also guarantees the following con-
tractual security requirements for parties in the contract:



1 HawkDeclareParties(Seller,/* N parties */);
2 HawkDeclareTimeouts(/* hardcoded timeouts */);

3 // Private portion φpriv

4 private contract auction(Inp &in, Outp &out) {
5 int winner = -1;
6 int bestprice = -1;
7 int secondprice = -1;

8 for (int i = 0; i < N; i++) {
9 if (in.party[i].$val > bestprice) {

10 secondprice = bestprice;
11 bestprice = in.party[i].$val;
12 winner = i;
13 } else if (in.party[i].$val > secondprice) {
14 secondprice = in.party[i].$val;
15 }
16 }

17 // Winner pays secondprice to seller
18 // Everyone else is refunded
19 out.Seller.$val = secondprice;
20 out.party[winner].$val = bestprice-secondprice;
21 out.winner = winner;
22 for (int i = 0; i < N; i++) {
23 if (i != winner)
24 out.party[i].$val = in.party[i].$val;
25 }
26 }

27 // Public portion φpub

28 public contract deposit {
29 // Manager deposited $N earlier
30 def check(): // invoked on contract completion
31 send $N to Manager // refund manager
32 def managerTimeOut():
33 for (i in range($N)):
34 send $1 to party[i]
35 }

Fig. 2. Hawk program for a second-price sealed auction. Code described
in this paper is an approximation of our real implementation. In the public
contract, the syntax “send $N to P ” corresponds to the following semantics
in our cryptographic formalism: ledger[P ] := ledger[P ] + $N – see
Section II-B.

• Input independent privacy. Each user does not see others’
bids before committing to their own (even when they collude
with a potentially malicious manager). This way, users bids
are independent of others’ bids.

• Posterior privacy. As long as the manager does not disclose
information, users’ bids are kept private from each other
(and from the public) even after the auction.

• Financial fairness. Parties may attempt to prematurely abort
from the protocol to avoid payment or affect the redistribu-
tion of wealth. If a party aborts or the auction manager
aborts, the aborting party will be financially penalized
while the remaining parties receive compensation. As is
well-known in the cryptography literature, such fairness
guarantees are not attainable in general by off-chain only
protocols such as secure multi-party computation [7], [17].
As explained later, Hawk offers built-in mechanisms for
enforcing refunds of private bids after certain timeouts.
Hawk also allows the programmer to define additional rules,

as part of the Hawk contract, that govern financial fairness.

• Security against a dishonest manager. We ensure authen-
ticity against a dishonest manager: besides aborting, a dis-
honest manager cannot affect the outcome of the auction
and the redistribution of money, even when it colludes with
a subset of the users. We stress that to ensure the above,
input independent privacy against a faulty manager is a
prerequisite. Moreover, if the manager aborts, it can be
financially penalized, and the participants obtain correspond-
ing remuneration.
An auction with the above security and privacy requirements

cannot be trivially implemented atop existing cryptocurrency
systems such as Ethereum [61] or Zerocash [11]. The former
allows for programmability but does not guarantee transac-
tional privacy, while the latter guarantees transactional privacy
but at the price of even reduced programmability than Bitcoin.
Aborting and timeouts. Aborting is dealt with using timeouts.
A Hawk program such as Figure 2 declares timeout parame-
ters using the HawkDeclareTimeouts special syntax. Three
timeouts are declared where T1 < T2 < T3:
T1 : The Hawk contract stops collecting bids after T1.

T2 : All users should have opened their bids to the manager
within T2; if a user submitted a bid but fails to open by T2,
its input bid is treated as 0 (and any other potential input
data treated as ⊥), such that the manager can continue.

T3 : If the manager aborts, users can reclaim their private bids
after time T3.

The public Hawk contract φpub can additionally implement
incentive structures. Our sealed auction program redistributes
the manager’s public deposit if it aborts. Specifically, in our
sealed auction program, φpub defines two functions, namely
check and managerTimeOut. The check function will be in-
voked when the Hawk contract completes execution within T3,
i.e., manager did not abort. Otherwise, if the Hawk contract
does not complete execution within T3, the managerTimeOut

function will be invoked. We remark that although not explic-
itly written in the code, all Hawk contracts have an implicit
default entry point for accepting parties’ deposits – these
deposits are withheld by the contract till they are redistributed
by the contract. Bidders should check that the manager has
made a public deposit before submitting their bids.
Additional applications. Besides the sealed auction example,
Hawk supports various other applications. We give more
sample programs in Section VI-B.

C. Contributions
To the best of our knowledge, Hawk is the first to simulta-

neously offer transactional privacy and programmability in a
decentralized cryptocurrency system.
Formal models for decentralized smart contracts. We are
among the first ones to initiate a formal, academic treatment
of the blockchain model of cryptography. We present a formal,
Universal Composability (UC) model for the blockchain model
of cryptography – this formal model is of independent interest,



and can be useful in general for defining and modeling the
security of protocols in the blockchain model. Our formal
model has also been adopted by the Gyges work [39] in
designing criminal smart contracts.

In defining for formal blockchain model, we rely on a notion
called wrappers to modularize our protocol design and to sim-
plify presentation. Wrappers handle a set of common details
such as timers, pseudonyms, global ledgers in a centralized
place such that they need not be repeated in every protocol.
New cryptography suite. We implement a new cryptography
suite that binds private transactions with programmable logic.
Our protocol suite contains three essential primitives freeze,
compute, and finalize. The freeze primitive allows parties
to commit to not only normal data, but also coins. Committed
coins are frozen in the contract, and the payout distribution will
later be determined by the program φpriv. During compute,
parties open their committed data and currency to the manager,
such that the manager can compute the function φpriv. Based on
the outcome of φpriv, the manager now constructs new private
coins to be paid to each recipient. The manager then submits
to the blockchain both the new private coins as well as zero-
knowledge proofs of their well-formedness. At this moment,
the previously frozen coins are now redistributed among the
users. Our protocol suite strictly generalizes Zerocash since
Zerocash implements only private money transfers between
users without programmability.

We define the security of our primitives using ideal func-
tionalities, and formally prove security of our constructions
under a simulation-based paradigm.
Implementation and evaluation. We built a Hawk prototype
and evaluated its performance by implementing several ex-
ample applications, including a sealed-bid auction, a “rock,
paper, scissors” game, a crowdfunding application, and a
swap financial instrument. We propose interesting protocol
optimizations that gained us a factor of 10× in performance
relative to a straightforward implementation. We show that
for at about 100 parties (e.g., auction and crowdfunding), the
manager’s cryptographic computation (the most expensive part
of the protocol) is under 2.85min using 4 cores, translating
to under $0.14 of EC2 time. Further, all on-chain computation
(performed by all miners) is very cheap, and under 20ms for
all cases. We will open source our Hawk framework in the
near future.

D. Background and Related Work
1) Background: The original Bitcoin offers limited pro-

grammability through a scripting language that is neither
Turing-complete nor user friendly. Numerous previous endeav-
ors at creating smart contract-like applications atop Bitcoin
(e.g., lottery [7], [17], micropayments [4],verifiable computa-
tion [44]) have demonstrated the difficulty of in retrofitting
Bitcoin’s scripting language – this serves well to motivate a
Turing-complete, user-friendly smart contract language.

Ethereum is the first Turing-complete decentralized smart
contract system. With Ethereum’s imminent launch, companies
and hobbyists are already building numerous smart contract

applications either atop Ethereum or by forking off Ethereum,
such as prediction markets [3], supply chain provenance [6],
crowd-based fundraising [1], and security and derivatives
trading [30].
Security of the blockchain. Like earlier works that design
smart contract applications for cryptocurrencies, we rely on the
underlying decentralized blockchain to be secure. Therefore,
we assume the blockchain’s consensus protocol attains security
when an adversary does not wield a large fraction of the com-
putational power. Existing cryptocurrencies are designed with
heuristic security. On one hand, researchers have identified
attacks on various aspects of the system [31], [37]; on the
other, efforts to formally understand the security of blockchain
consensus have begun [35], [49].
Minimizing on-chain costs. Since every miner will execute
the smart contract programs while verifying each transaction,
cryptocurrencies including Bitcoin and Ethereum collect trans-
action fees that roughly correlate with the cost of execution.
While we do not explicitly model such fees, we design our
protocols to minimize on-chain costs by performing most of
the heavy-weight computation off-chain.

2) Additional Related Works: Leveraging blockchain for
financial fairness. A few prior works have explored how to
leverage the blockchain technology to achieve fairness in pro-
tocol design. For example, Bentov et al. [17], Andrychowicz
et al. [7], Kumaresan et al. [44], Kiayias et al. [40], as well
as Zyskind et al. [63], show how Bitcoin can be used to
ensure fairness in secure multi-party computation protocols.
These protocols also perform off-chain secure computation
of various types, but do not guarantee transactional privacy
(i.e., hiding the currency flows and amounts transacted). For
example, it is not clear how to implement our sealed auction
example using these earlier techniques. Second, these earlier
works either do not offer system implementations or provide
implementations only for specific applications (e.g., lottery). In
comparison, Hawk provides a generic platform such that non-
specialist programmers can easily develop privacy-preserving
smart contracts.
Smart contracts. The conceptual idea of programmable elec-
tronic “smart contracts” dates back nearly twenty years [57].
Besides recent decentralized cryptocurrencies, which guaran-
tee authenticity but not privacy, other smart contract imple-
mentations rely on trusted servers for security [50]. Our work
therefore comes closest to realizing the original vision of
parties interacting with a trustworthy “virtual computer” that
executes programs involving money and data.
Programming frameworks for cryptography. Several works
have developed programming frameworks that take in high-
level programs as specifications and generate cryptographic
implementations, including compilers for secure multi-party
computation [19], [43], [45], [55], authenticated data struc-
tures [48], and (zero-knowledge) proofs [12], [33], [34], [53].
Zheng et al. show how to generate secure distributed protocols
such as sealed auctions, battleship games, and banking applica-
tions [62]. These works support various notions of security, but



none of them interact directly with money or leverage public
blockchains for ensuring financial fairness. Thus our work
is among the first to combine the “correct-by-construction”
cryptography approach with smart contracts.
Concurrent work. Our framework is the first to provide a
full-fledged formal model for decentralized blockchains as
embodied by Bitcoin, Ethereum, and many other popular
decentralized cryptocurrencies. In concurrent and independent
work, Kiayias et al. [40] also propose a blockchain model
in the (Generalized) Universal Composability framework [23]
and use it to derive results that are similar to what we describe
in Appendix G-A, i.e., fair MPC with public deposits. How-
ever, the “programmability” of their formalism is limited to
their specific application (i.e., fair MPC with public deposits).
In comparison, our formalism is designed with much broader
goals, i.e., to facilitate protocol designers to design a rich
class of protocols in the blockchain model. In particular, both
our real-world wrapper (Figure 11) and ideal-world wrapper
(Figure 10) model the presence of arbitrary user defined
contract programs, which interact with both parties and the
ledger. Our formalism has also been adopted by the Gyges
work [39] demonstrating its broad usefulness.

II. THE BLOCKCHAIN MODEL OF CRYPTOGRAPHY

A. The Blockchain Model
We begin by informally describing the trust model and

assumptions. We then propose a formal framework for the
“blockchain model of cryptography” for specifying and rea-
soning about the security of protocols.

In this paper, the blockchain refers to a decentralized set
of miners who run a secure consensus protocol to agree upon
the global state. We therefore will regard the blockchain as a
conceptual trusted party who is trusted for correctness and
availability, but not trusted for privacy. The blockchain
not only maintains a global ledger that stores the balance for
every pseudonym, but also executes user-defined programs.
More specifically, we make the following assumptions:
• Time. The blockchain is aware of a discrete clock that

increments in rounds. We use the terms rounds and epochs
interchangeably.

• Public state. All parties can observe the state of the block-
chain. This means that all parties can observe the public
ledger on the blockchain, as well as the state of any user-
defined blockchain program (part of a contract protocol).

• Message delivery. Messages sent to the blockchain will
arrive at the beginning of the next round. A network
adversary may arbitrarily reorder messages that are sent
to the blockchain within the same round. This means that
the adversary may attempt a front-running attack (also
referred to as the rushing adversary by cryptographers), e.g.,
upon observing that an honest user is trading a stock, the
adversary preempts by sending a race transaction trading the
same stock. Our protocols should be proven secure despite
such adversarial message delivery schedules.
We assume that all parties have a reliable channel to the
blockchain, and the adversary cannot drop messages a party

sends to the blockchain. In reality, this means that the
overlay network must have sufficient redundancy. However,
an adversary can drop messages delivered between parties
off the blockchain.

• Pseudonyms. Users can make up an unbounded polynomial
number of pseudonyms when communicating with the
blockchain.

• Correctness and availability. We assume that the blockchain
will perform any prescribed computation correctly. We also
assume that the blockchain is always available.

Advantages of a generic blockchain model. We adopt
a generic blockchain model where the blockchain can run
arbitrary Turing-complete programs. In comparison, previous
and concurrent works [7], [17], [44], [54] retrofit the artifacts
of Bitcoin’s limited and hard-to-use scripting language. In
Section VII and Appendix G, we present additional theoretical
results demonstrating that our generic blockchain model yields
asymptotically more efficient cryptographic protocols.

B. Formally Modeling the Blockchain
Our paper adopts a carefully designed notational system

such that readers may understand our constructions without
understanding the precise details of our formal modeling.

We stress, however, that we give formal, precise specifi-
cations of both functionality and security, and our protocols
are formally proven secure under the Universal Composability
(UC) framework. In doing so, we make a separate contribution
of independent interest: we are the first to propose a formal,
UC-based framework for describing and proving the security
of distributed protocols that interact with a blockchain —
we refer to our formal model as “the blockchain model of
cryptography”.
Programs, wrappers, and functionalities. In the remainder
of the paper, we will describe ideal specifications, as well
as pieces of the protocol executed by the blockchain, the
users, and the manager respectively as programs written in
pseudocode. We refer to them as the ideal program (denoted
Ideal), the blockchain program (denoted B or Blockchain), and
the user/manager program (denoted UserP) respectively.

All of our pseudo-code style programs have precise mean-
ings in the UC framework. To “compile” a program to a
UC-style functionality or protocol, we apply a wrapper to
a program. Specifically, we define the following types of
wrappers:
• The ideal wrapper F(·) transforms an ideal program IdealP

into a UC ideal functionality F(IdealP).
• The blockchain wrapper G(·) transforms a blockchain pro-

gram B to a blockchain functionality G(B). The blockchain
functionality G(B) models the program executing on the
blockchain.

• The protocol wrapper Π(·) transforms a user/manager
program UserP into a user-side or manager-side protocol
Π(UserP).

One important reason for having wrappers is that wrappers im-
plement a set of common features needed by every smart con-
tract application, including time, public ledger, pseudonyms,



and adversarial reordering of messages — in this way, we
need not repeat this notation for every blockchain application.

We defer our formal UC modeling to Appendix B. This will
not hinder the reader in understanding our protocols as long
as the reader intuitively understands our blockchain model and
assumptions described in Section II-A. Before we describe our
protocols, we define some notational conventions for writing
“programs”. Readers who are interested in the details of our
formal model and proofs can refer to Appendix B.

C. Conventions for Writing Programs
Our wrapper-based system modularizes notation, and allows

us to use a set of simple conventions for writing user-defined
ideal programs, blockchain programs, and user protocols. We
describe these conventions below.
Timer activation points. The ideal functionality wrapper
F(·) and the blockchain wrapper G(·) implement a clock that
advances in rounds. Every time the clock is advanced, the
wrappers will invoke the Timer activation point. Therefore,
by convention, we allow the ideal program or the blockchain
program can define a Timer activation point. Timeout oper-
ations (e.g., refunding money after a certain timeout) can be
implemented under the Timer activation point.
Delayed processing in ideal programs. When writing the
blockchain program, every message received by the blockchain
program is already delayed by a round due to the G(·) wrapper.

When writing the ideal program, we introduce a simple
convention to denote delayed computation. Program instruc-
tions that are written in gray background denote computation
that does not take place immediately, but is deferred to
the beginning of the next timer click. This is a convenient
shorthand because in our real-world protocol, effectively any
computation done by a blockchain functionality will be de-
layed. For example, in our IdealPcash ideal program (see
Figure 3), whenever the ideal functionality receives a mint or
pour message, the ideal adversary S is notified immediately;
however, processing of the messages is deferred till the next
timer click. Formally, delayed processing can be implemented
simply by storing state and invoking the delayed program in-
structions on the next Timer click. By convention, we assume
that the delayed instructions are invoked at the beginning of
the Timer call. In other words, upon the next timer click, the
delayed instructions are executed first.
Pseudonymity. All party identifiers that appear in ideal
programs, blockchain programs, and user-side programs by
default refer to pseudonyms. When we write “upon receiving
message from some P ”, this accepts a message from any
pseudonym. Whenever we write “upon receiving message
from P ”, without the keyword some, this accepts a message
from a fixed pseudonym P , and typically which pseudonym
we refer to is clear from the context.

Whenever we write “send m to G(B) as nym P ” inside a
user program, this sends an internal message (“send”, m, P )
to the protocol wrapper Π. The protocol wrapper will then
authenticate the message appropriately under pseudonym P .
When the context is clear, we avoid writing “as nym P ”,

IdealPcash
Init: Coins: a multiset of coins, each of the form (P, $val)

Mint: Upon receiving (mint, $val) from some P:
send (mint,P, $val) to A
assert ledger[P] ≥ $val
ledger[P] := ledger[P]− $val
append (P, $val) to Coins

Pour: On (pour, $val1, $val2,P1,P2, $val
′
1, $val

′
2) from P:

assert $val1 + $val2 = $val′1 + $val′2
if P is honest,

assert (P, $vali) ∈ Coins for i ∈ {1, 2}
assert Pi 6= ⊥ for i ∈ {1, 2}
remove one (P, $vali) from Coins for i ∈ {1, 2}
for i ∈ {1, 2}, if Pi is corrupted, send (pour, i,
Pi, $val′i) to A; else send (pour, i,Pi) to A

if P is corrupted:
assert (P, $vali) ∈ Coins for i ∈ {1, 2}
remove one (P, $vali) from Coins for i ∈ {1, 2}

for i ∈ {1, 2}: add (Pi, $val′i) to Coins
for i ∈ {1, 2}: if Pi 6= ⊥, send (pour, $val′i) to Pi

Fig. 3. Definition of IdealPcash. Notation: ledger denotes the public ledger,
and Coins denotes the private pool of coins. As mentioned in Section II-C,
gray background denotes batched and delayed activation. All party names

correspond to pseudonyms due to notations and conventions defined in
Section II-B.

and simply write “send m to G(B)”. Our formal system also
allows users to send messages anonymously to the blockchain
– although this option will not be used in this paper.
Ledger and money transfers. A public ledger is denoted
ledger in our ideal programs and blockchain programs. When a
party sends $amt to an ideal program or a blockchain program,
this represents an ordinary message transmission. Money
transfers only take place when ideal programs or blockchain
programs update the public ledger ledger. In other words,
the symbol $ is only adopted for readability (to distinguish
variables associated with money and other variables), and does
not have special meaning or significance. One can simply think
of this variable as having the money type.

III. CRYPTOGRAPHY ABSTRACTIONS

We now describe our cryptography abstraction in the form
of ideal programs. Ideal programs define the correctness and
security requirements we wish to attain by writing a speci-
fication assuming the existence of a fully trusted party. We
will later prove that our real-world protocols (based on smart
contracts) securely emulate the ideal programs. As mentioned
earlier, an ideal program must be combined with a wrapper F
to be endowed with exact execution semantics.
Overview. Hawk realizes the following specifications:
• Private ledger and currency transfer. Hawk relies on the

existence of a private ledger that supports private currency
transfers. We therefore first define an ideal functionality
called IdealPcash that describes the requirements of a private
ledger (see Figure 3). Informally speaking, earlier works
such as Zerocash [11] are meant to realize (approximations
of) this ideal functionality – although technically this ought



to be interpreted with the caveat that these earlier works
prove indistinguishability or game-based security instead
UC-based simulation security.

• Hawk-specific primitives. With a private ledger specified,
we then define Hawk-specific primitives including freeze,
compute, and finalize that are essential for enabling trans-
actional privacy and programmability simultaneously.

A. Private Cash Specification IdealPcash

At a high-level, the IdealPcash specifies the requirements of a
private ledger and currency transfer. We adopt the same “mint”
and “pour” terminology from Zerocash [11].
Mint. The mint operation allows a user P to transfer money
from the public ledger denoted ledger to the private pool
denoted Coins[P]. With each transfer, a private coin for user
P is created, and associated with a value val.

For correctness, the ideal program IdealPcash checks that
the user P has sufficient funds in its public ledger ledger[P]
before creating the private coin.
Pour. The pour operation allows a user P to spend money
in its private bank privately. For simplicity, we define the
simple case with two input coins and two output coins. This
is sufficient for users to transfer any amount of money by
“making change,” although it would be straightforward to
support more efficient batch operations as well.

For correctness, the ideal program IdealPcash checks the
following: 1) for the two input coins, party P indeed possesses
private coins of the declared values; and 2) the two input coins
sum up to equal value as the two output coins, i.e., coins
neither get created or vanish.
Privacy. When an honest party P mints, the ideal-world
adversary A learns the pair (P, val) – since minting is raising
coins from the public pool to the private pool. Operations on
the public pool are observable by A.

When an honest party P pours, however, the adversary A
learns only the output pseudonyms P1 and P2. It does not learn
which coin in the private pool Coins is being spent nor the
name of the spender. Therefore, the spent coins are anonymous
with respect to the private pool Coins. To get strong anonymity,
new pseudonyms P1 and P2 can be generated on the fly to
receive each pour. We stress that as long as pour hides the
sender, this “breaks” the transaction graph, thus preventing
linking analysis.

If a corrupted party is the recipient of a pour, the adversary
additionally learns the value of the coin it receives.
Additional subtleties. Later in our protocol, honest parties
keep track of a wallet of coins. Whenever an honest party
pours, it first checks if an appropriate coin exists in its local
wallet – and if so it immediately removes the coin from the
wallet (i.e., without delay). In this way, if an honest party
makes multiple pour transactions in one round, it will always
choose distinct coins for each pour transaction. Therefore, in
our IdealPcash functionality, honest pourers’ coins are immedi-
ately removed from Coins. Further, an honest party is not able
to spend a coin paid to itself until the next round. By contrast,

corrupted parties are allowed to spend coins paid to them in
the same round – this is due to the fact that any message is
routed immediately to the adversary, and the adversary can
also choose a permutation for all messages received by the
blockchain in the same round (see Section II and Appendix B).

Another subtlety in the IdealPcash functionality is while hon-
est parties always pour to existing pseudonyms, the function-
ality allows the adversary to pour to non-existing pseudonyms
denoted ⊥ — in this case, effectively the private coin goes
into a blackhole and cannot be retrieved. This enables a
performance optimization in our UserPcash and Blockchaincash
protocol later – where we avoid including the cti’s in the NIZK
of LPOUR (see Section IV). If a malicious pourer chooses to
compute the wrong cti, it is as if the recipient Pi did not
receive the pour, i.e., the pour is made to ⊥.

B. Hawk Specification IdealPhawk

To enable transactional privacy and programmability simul-
taneously, we now describe the specifications of new Hawk
primitives, including freeze, compute, and finalize. The formal
specification of the ideal program IdealPhawk is provided in
Figure 4. Below, we provide some explanations. We also refer
the reader to Section I-C for higher-level explanations.
Freeze. In freeze, a party tells IdealPhawk to remove one
coin from the private coins pool Coins, and freeze it in the
blockchain by adding it to FrozenCoins. The party’s private
input denoted in is also recorded in FrozenCoins. IdealPhawk
checks that P has not called freeze earlier, and that a coin
(P, val) exists in Coins before proceeding with the freeze.
Compute. When a party P calls compute, its private input
in and the value of its frozen coin val are disclosed to the
manager PM.
Finalize. In finalize, the manager PM submits a public
input inM to IdealPhawk. IdealPhawk now computes the outcome
of φpriv on all parties’ inputs and frozen coin values, and
redistributes the FrozenCoins based on the outcome of φpriv.
To ensure money conservation, the ideal program IdealPhawk
checks that the sum of frozen coins is equal to the sum of
output coins.
Interaction with public contract. The IdealPhawk functional-
ity is parameterized by a public Hawk contract φpub, which is
included in IdealPhawk as a sub-module. During a finalize,
IdealPhawk calls φpub.check. The public contract φpub typically
serves the following purposes:
• Check the well-formedness of the manager’s input inM.

For example, in our financial derivatives application (Sec-
tion VI-B), the public contract φpub asserts that the input
corresponds to the price of a stock as reported by the stock
exchange’s authentic data feed.

• Redistribute public deposits. If parties or the manager have
aborted, or if a party has provided invalid input (e.g., less
than a minimum bet) the public contract φpub can now
redistribute the parties’ public deposits to ensure financial
fairness. For example, in our “Rock, Paper, Scissors” exam-
ple (see Section VI-B), the private contract φpriv checks if



IdealPhawk(PM, {Pi}i∈[N ], T1, T2, φpriv, φpub)
Init: Call IdealPcash.Init. Additionally:

FrozenCoins: a set of coins and private in-
puts received by this contract, each of the form
(P, in, $val). Initialize FrozenCoins := ∅.

Freeze: Upon receiving (freeze, $vali, ini) from Pi for some
i ∈ [N ]:

assert current time T < T1

assert Pi has not called freeze earlier.
assert at least one copy of (Pi, $vali) ∈ Coins
send (freeze,Pi) to A
add (Pi, $vali, ini) to FrozenCoins
remove one (Pi, $vali) from Coins

Compute: Upon receiving compute from Pi for some i ∈ [N ]:
assert current time T1 ≤ T < T2

if PM is corrupted, send (compute,Pi, $vali, ini)
to A
else send (compute,Pi) to A
let (Pi, $vali, ini) be the item in FrozenCoins
corresponding to Pi
send (compute,Pi, $vali, ini) to PM

Finalize: Upon receiving (finalize, inM, out) from PM:
assert current time T ≥ T2

assert PM has not called finalize earlier
for i ∈ [N ]:

let ($vali, ini) := (0,⊥) if Pi has not called
compute

({$val′i}, out†) := φpriv({$vali, ini}, inM)
assert out† = out
assert

∑
i∈[N ] $vali =

∑
i∈[N ] $val′i

send (finalize, inM, out) to A
for each corrupted Pi that called compute: send (Pi,
$val′i) to A
call φpub.check(inM, out)
for i ∈ [N ] such that Pi called compute:

add (Pi, $val′i) to Coins
send (finalize, $val′i) to Pi

φpub: Run a local instance of public contract φpub. Messages
between the adversary to φpub, and from φpub to parties
are forwarded directly.
Upon receiving message (pub,m) from party P:

notify A of (pub,m)

send m to φpub on behalf of P

IdealPcash: include IdealPcash (Figure 3).

Fig. 4. Definition of IdealPhawk. Notations: FrozenCoins denotes frozen coins
owned by the contract; Coins denotes the global private coin pool defined by
IdealPcash; and (ini, vali) denotes the input data and frozen coin value of
party Pi.

each party has frozen the minimal bet. If not, φpriv includes
that information in out so that φpub pays that party’s public
deposit to others.

Security and privacy requirements. The IdealPhawk specifies
the following privacy guarantees. When an honest party P
freezes money (e.g., a bid), the adversary should not observe
the amount frozen. However, the adversary can observe the
party’s pseudonym P . We note that leaking the pseudonym P
does not hurt privacy, since a party can simply create a new

pseudonym P and pour to this new pseudonym immediately
before the freeze.

When an honest party calls compute, the manager PM gets
to observe its input and frozen coin’s value. However, the
public and other contractual parties do not observe anything
(unless the manager voluntarily discloses information).

Finally, during a finalize operation, the output out is
declassified to the public – note that out can be empty if we
do not wish to declassify any information to the public.

It is not hard to see that our ideal program IdealPhawk
satisfies input independent privacy and authenticity against a
dishonest manager. Further, it satisfies posterior privacy as
long as the manager does not voluntarily disclose information.
Intuitive explanations of these security/privacy properties were
provided in Section I-B.
Timing and aborts. Our ideal program IdealPhawk requires
that freeze operations be done by time T1, and that compute
operations be done by time T2. If a user froze coins but did
not open by time T2, our ideal program IdealPhawk treats
(ini, vali) := (0,⊥), and the user Pi essentially forfeits
its frozen coins. Managerial aborts is not handled inside
IdealPhawk, but by the public portion of the contract.
Simplifying assumptions. For clarity, our basic version of
IdealPhawk is a stripped down version of our implementation.
Specifically, our basic IdealPhawk and protocols do not realize
refunds of frozen coins upon managerial abort. As mentioned
in Section IV-C, it is not hard to extend our protocols to
support such refunds.

Other simplifying assumptions we made include the follow-
ing. Our basic IdealPhawk assumes that the set of pseudonyms
participating in the contract as well as timeouts T1 and T2 are
hard-coded in the program. This can also be easily relaxed as
mentioned in Section IV-C.

IV. CRYPTOGRAPHIC PROTOCOLS

Our protocols are broken down into two parts: 1) the private
cash part that implements direct money transfers between
users; and 2) the Hawk-specific part that binds transactional
privacy with programmable logic. The formal protocol descrip-
tions are given in Figures 5 and 6. Below we explain the high-
level intuition.

A. Warmup: Private Cash and Money Transfers
Our construction adopts a Zerocash-like protocol for im-

plementing private cash and private currency transfers. For
completeness, we give a brief explanation below, and we
mainly focus on the pour operation which is technically more
interesting. The blockchain program Blockchaincash maintains
a set Coins of private coins. Each private coin is of the format

(P, coin := Comms($val))

where P denotes a party’s pseudonym, and coin commits to
the coin’s value $val under randomness s.

During a pour operation, the spender P chooses two coins
in Coins to spend, denoted (P, coin1) and (P, coin2) where
coini := Commsi($vali) for i ∈ {1, 2}. The pour operation



Blockchaincash
Init: crs: a reference string for the underlying NIZK system

Coins: a set of coin commitments, initially ∅
SpentCoins: set of spent serial numbers, initially ∅

Mint: Upon receiving (mint, $val, s) from some party P ,
coin := Comms($val)
assert (P, coin) /∈ Coins
assert ledger[P] ≥ $val
ledger[P] := ledger[P]− $val
add (P, coin) to Coins

Pour: Anonymous receive (pour, π, {sni,Pi, coini, cti}i∈{1,2}})
let MT be a merkle tree built over Coins
statement := (MT.root, {sni,Pi, coini}i∈{1,2})
assert NIZK.Verify(LPOUR, π, statement)
for i ∈ {1, 2},

assert sni /∈ SpentCoins
assert (Pi, coini) /∈ Coins
add sni to SpentCoins
add (Pi, coini) to Coins
send (pour, coini, cti) to Pi,

Relation (statement,witness) ∈ LPOUR is defined as:
parse statement as (MT.root, {sni,Pi, coin′i}i∈{1,2})
parse witness as (P, skprf, {branchi, si, $vali, s′i, ri, $val′i})
assert P.pkprf = PRFskprf(0)
assert $val1 + $val2 = $val′1 + $val′2
for i ∈ {1, 2},
coini := Commsi($vali)
assert MerkleBranch(MT.root, branchi, (P‖coini))
assert sni = PRFskprf(P‖coini)
assert coin′i = Comms′i

($val′i)

Protocol UserPcash
Init: Wallet: stores P’s spendable coins, initially ∅

GenNym: sample a random seed skprf
pkprf := PRFskprf(0)
return pkprf

Mint: On input (mint, $val),
sample a commitment randomness s
coin := Comms($val)
store (s, $val, coin) in Wallet
send (mint, $val, s) to G(Blockchaincash)

Pour (as sender): On input (pour, $val1, $val2, P1, P2, $val′1,
$val′2),

assert $val1 + $val2 = $val′1 + $val′2
for i ∈ {1, 2}, assert (si, $vali, coini) ∈ Wallet for some
(si, coini)
let MT be a merkle tree over Blockchaincash.Coins
for i ∈ {1, 2}:

remove one (si, $vali, coini) from Wallet
sni := PRFskprf(P‖coini)
let branchi be the branch of (P, coini) in MT
sample randomness s′i, ri
coin′i := Comms′i

($val′i)

cti := ENC(Pi.epk, ri, $val′i‖s′i)
statement := (MT.root, {sni,Pi, coin′i}i∈{1,2})
witness := (P, skprf, {branchi, si, $vali, s′i, ri, $val′i})
π := NIZK.Prove(LPOUR, statement,witness)
AnonSend(pour, π, {sni,Pi, coin′i, cti}i∈{1,2})

to G(Blockchaincash)
Pour (as recipient): On receive (pour, coin, ct) from

G(Blockchaincash):
let ($val‖s) := DEC(esk, ct)
assert Comms($val) = coin
store (s, $val, coin) in Wallet
output (pour, $val)

Fig. 5. UserPcash construction. A trusted setup phase generates the NIZK’s common reference string crs. For notational convenience, we omit writing the
crs explicitly in the construction. The Merkle tree MT is stored on the blockchain and not computed on the fly – we omit stating this in the protocol for
notational simplicity. The protocol wrapper Π(·) invokes GenNym whenever a party creates a new pseudonym.

pays val′1 and val′2 amount to two output pseudonyms denoted
P1 and P2 respectively, such that val1 + val2 = val′1 + val′2.
The spender chooses new randomness s′i for i ∈ {1, 2}, and
computes the output coins as(

Pi, coini := Comms′i
($val′i)

)
The spender gives the values s′i and val′i to the recipient Pi
for Pi to be able to spend the coins later.

Now, the spender computes a zero-knowledge proof to show
that the output coins are constructed appropriately, where
correctness compasses the following aspects:

• Existence of coins being spent. The coins being spent
(P, coin1) and (P, coin2) are indeed part of the private pool
Coins. We remark that here the zero-knowledge property
allows the spender to hide which coins it is spending – this
is the key idea behind transactional privacy.
To prove this efficiently, Blockchaincash maintains a Merkle
tree MT over the private pool Coins. Membership in the set
can be demonstrated by a Merkle branch consistent with the
root hash, and this is done in zero-knowledge.

• No double spending. Each coin (P, coin) has a cryptograph-
ically unique serial number sn that can be computed as
a pseudorandom function of P’s secret key and coin. To
pour a coin, its serial number sn must be disclosed, and a
zero-knowledge proof given to show the correctness of sn.
Blockchaincash checks that no sn is used twice.

• Money conservation. The zero-knowledge proof also attests
to the fact that the input coins and the output coins have
equal total value.

We make some remarks about the security of the scheme.
Intuitively, when an honest party pours to an honest party,
the adversary A does not learn the values of the output
coins assuming that the commitment scheme Comm is hiding,
and the NIZK scheme we employ is computational zero-
knowledge. The adversary A can observe the nyms that receive
the two output coins. However, as we remarked earlier, since
these nyms can be one-time, leaking them to the adversary
would be okay. Essentially we only need to break linkability
at spend time to ensure transactional privacy.

When a corrupted party P∗ pours to an honest party P , even
though the adversary knows the opening of the coin, it cannot



Blockchainhawk(PM, {Pi}i∈[N ], T1, T2, φpriv, φpub)
Init: See IdealPhawk for description of parameters

Call Blockchaincash.Init.
Freeze: Upon receiving (freeze, π, sni, cmi) from Pi:

assert current time T ≤ T1

assert this is the first freeze from Pi
let MT be a merkle tree built over Coins
assert sni /∈ SpentCoins
statement := (Pi,MT.root, sni, cmi)
assert NIZK.Verify(LFREEZE, π, statement)
add sni to SpentCoins and store cmi for later

Compute: Upon receiving (compute, π, ct) from Pi:
assert T1 ≤ T < T2 for current time T
assert NIZK.Verify(LCOMPUTE, π, (PM, cmi, ct))
send (compute,Pi, ct) to PM

Finalize: On receiving (finalize, π, inM, out, {coin′i, cti}i∈[N ])
from PM:

assert current time T ≥ T2

for every Pi that has not called compute, set cmi := ⊥
statement := (inM, out, {cmi, coin

′
i, cti}i∈[N ])

assert NIZK.Verify(LFINALIZE, π, statement)
for i ∈ [N ]:

assert coin′i /∈ Coins
add coin′i to Coins
send (finalize, coin′i, cti) to Pi

Call φpub.check(inM, out)

Blockchaincash: include Blockchaincash
φpub : include user-defined public contract φpub

Relation (statement,witness) ∈ LFREEZE is defined as:
parse statement as (P,MT.root, sn, cm)
parse witness as (coin, skprf, branch, s, $val, in, k, s

′)
coin := Comms($val)
assert MerkleBranch(MT.root, branch, (P‖coin))
assert P.pkprf = skprf(0)
assert sn = PRFskprf(P‖coin)
assert cm = Comms′($val‖in‖k)

Relation (statement,witness) ∈ LCOMPUTE is defined as:
parse statement as (PM, cm, ct)
parse witness as ($val, in, k, s′, r)
assert cm = Comms′($val‖in‖k)
assert ct = ENC(PM.epk, r, ($val‖in‖k‖s′))

Relation (statement,witness) ∈ LFINALIZE is defined as:
parse statement as (inM, out, {cmi, coin

′
i, cti}i∈[N ])

parse witness as {si, $vali, ini, s′i, ki}i∈[N ]

({$val′i}i∈[N ], out) := φpriv({$vali, ini}i∈[N ], inM)
assert

∑
i∈[N ] $vali =

∑
i∈[N ] $val′i

for i ∈ [N ]:
assert cmi = Commsi($vali‖ini‖ki))
∨($vali, ini, ki, si, cmi) = (0,⊥,⊥,⊥,⊥)

assert cti = SENCki(s
′
i‖$val′i)

assert coin′i = Comms′i
($val′i)

Protocol UserPhawk(PM, {Pi}i∈[N ], T1, T2, φpriv, φpub)
Init: Call UserPcash.Init.

Protocol for a party P ∈ {Pi}i∈[N ]:
Freeze: On input (freeze, $val, in) as party P:

assert current time T < T1

assert this is the first freeze input
let MT be a merkle tree over Blockchaincash.Coins
assert that some entry (s, $val, coin) ∈ Wallet for some
(s, coin)
remove one (s, $val, coin) from Wallet
sn := PRFskprf(P‖coin)
let branch be the branch of (P, coin) in MT
sample a symmetric encryption key k
sample a commitment randomness s′

cm := Comms′($val‖in‖k)
statement := (P,MT.root, sn, cm)
witness := (coin, skprf, branch, s, $val, in, k, s

′)
π := NIZK.Prove(LFREEZE, statement,witness)
send (freeze, π, sn, cm) to G(Blockchainhawk)
store in, cm, $val, s′, and k to use later (in compute)

Compute: On input (compute) as party P:
assert current time T1 ≤ T < T2

sample encryption randomness r
ct := ENC(PM.epk, r, ($val‖in‖k‖s′))
π := NIZK.Prove((PM, cm, ct), ($val, in, k, s′, r))
send (compute, π, ct) to G(Blockchainhawk)

Finalize: Receive (finalize, coin, ct) from G(Blockchainhawk):
decrypt (s‖$val) := SDECk(ct)
store (s, $val, coin) in Wallet
output (finalize, $val)

Protocol for manager PM:
Compute: On receive (compute,Pi, ct) from G(Blockchainhawk):

decrypt and store ($vali‖ini‖ki‖si) := DEC(esk, ct)
store cmi := Commsi($vali‖ini‖ki)
output (Pi, $vali, ini)
If this is the last compute received:

for i ∈ [N ] such that Pi has not called compute,
($vali, ini, ki, si, cmi) := (0,⊥,⊥,⊥,⊥)

({$val′i}i∈[N ], out) := φpriv({$vali, ini}i∈[N ], inM)
store and output ({$val′i}i∈[N ], out)

Finalize: On input (finalize, inM, out):
assert current time T ≥ T2

for i ∈ [N ]:
sample a commitment randomness s′i
coin′i := Comms′i

($val′i)

cti := SENCki(s
′
i‖$val′i)

statement := (inM, out, {cmi, coin
′
i, cti}i∈[N ])

witness := {si, $vali, ini, s′i, ki}i∈[N ]

π := NIZK.Prove(statement,witness)
send (finalize, π, inM, out, {coin′i, cti})

to G(Blockchainhawk)

UserPcash: include UserPcash.

Fig. 6. Blockchainhawk and UserPhawk construction.



spend the coin (P, coin) once the transaction takes effect by
the Blockchaincash, since P∗ cannot demonstrate knowledge
of P’s secret key. We stress that since the contract binds the
owner’s nym P to the coin, only the owner can spend it even
when the opening of coin is disclosed.
Technical subtleties. Our Blockchaincash uses a modified ver-
sion of Zerocash to achieve stronger security in the simulation
paradigm. In comparison, Zerocash adopts a strictly weaker,
indistinguishability-based privacy notion called ledger indis-
tinguishability. In multi-party protocols, indistinguishability-
based security notions are strictly weaker than simulation
security. Not only so, the particular ledger indistinguishability
notion adopted by Zerocash [11] appears subtly questionable
upon scrutiny, which we elaborate on in the Appendix. This
does not imply that the Zerocash construction is necessarily
insecure – however, there is no obvious path to proving their
scheme secure under a simulation based paradigm.

B. Binding Privacy and Programmable Logic
So far, Blockchaincash, similar to Zerocash [11], only sup-

ports direct money transfers between users. We allow transac-
tional privacy and programmable logic simutaneously.
Freeze. We support a new operation called freeze, that does
not spend directly to a user, but commits the money as well
as an accompanying private input to a smart contract. This is
done using a pour-like protocol:
• The user P chooses a private coin (P, coin) ∈ Coins, where
coin := Comms($val). Using its secret key, P computes the
serial number sn for coin – to be disclosed with the freeze

operation to prevent double-spending.

• The user P computes a commitment (val||in||k) to the
contract where in denotes its input, and k is a symmetric
encryption key that is introduced due to a practical opti-
mization explained later in Section V.

• The user P now makes a zero-knowledge proof attesting to
similar statements as in a pour operation, i.e., that the spent
coin exists in the pool Coins, the sn is correctly constructed,
and that the val committed to the contract equals the value
of the coin being spent. See LFREEZE in Figure 6 for details
of the NP statement being proven.

Compute. Next, computation takes place off-chain to compute
the payout distribution {val′i}i∈[n] and a proof of correctness.
In Hawk, we rely on a minimally trusted manager PM to
perform computation. All parties would open their inputs to
the manager PM, and this is done by encrypting the opening
to the manager’s public key:

ct := ENC(PM.epk, r, ($val‖in‖k‖s′))

The ciphertext ct is submitted to the smart contract along with
appropriate zero-knowledge proofs of correctness. While the
user can also directly send the opening to the manager off-
chain, passing the ciphertext ct through the smart contract
would make any aborts evident such that the contract can
financially punish an aborting user.

After obtaining the openings, the manager now computes
the payout distribution {val′i}i∈[n] and public output out by
applying the private contract φpriv. The manager also constructs
a zero-knowledge proof attesting to the outcomes.
Finalize. When the manager submits the outcome of φpriv
and a zero-knowledge proof of correctness to Blockchainhawk,
Blockchainhawk verifies the proof and redistributes the frozen
money accordingly. Here Blockchainhawk also passes the man-
ager’s public input inM and public output out to the public
Hawk contract φpub. The public contract φpub can be invoked
to check the validity of the manager’s input, as well as
redistribute public collateral deposit.

Theorem 1. Assuming that the hash function in the Merkle
tree is collision resistant, the commitment scheme Comm
is perfectly binding and computationally hiding, the NIZK
scheme is computationally zero-knowledge and simulation
sound extractable, the encryption schemes ENC and SENC
are perfectly correct and semantically secure, the PRF scheme
PRF is secure, then, our protocols in Figures 5 and 6 securely
emulates the ideal functionality F(IdealPhawk) against a ma-
licious adversary in the static corruption model.

Proof. Deferred to the Appendix.

C. Extensions and Discussions
Refunding frozen coins to users. In our implementation,
we extend our basic scheme to allow the users to reclaim
their frozen money after a timeout T3 > T2. To achieve this,
user P simply sends the contract a newly constructed coin
(P, coin := Comms($val)) and proves in zero-knowledge that
its value $val is equal to that of the frozen coin. In this case,
the user can identify the previously frozen coin in the clear,
i.e., there is no need to compute a zero-knowledge proof of
membership within the frozen pool as is needed in a pour

transaction.
Instantiating the manager with trusted hardware. In some
applications, it may be a good idea to instantiate the manager
using trusted hardware such as the emerging Intel SGX. In this
case, the off-chain computation can take place in a secret SGX
enclave that is not visible to any untrusted software or users.
Alternatively, in principle, the manager role can also be split
into two or more parties that jointly run a secure computation
protocol – although this approach is likely to incur higher
overhead.

We stress that our model is fundamentally different from
placing full trust in any centralized node. Trusted hardware
cannot serve as a replacement of the blockchain. Any off-
chain only protocol that does not interact with the blockchain
cannot offer financial fairness in the presence of aborts – even
when trusted hardware is employed.

Furthermore, even the use of SGX does not obviate the need
for our cryptographic protocol. If the SGX is trusted only by
a subset of parties (e.g., just the parties to a particular private
contact), rather than globally, then those users can benefit from
the efficiency of an SGX-managed private contract, while still
utilizing the more widely trusted underlying currency.



Pouring anonymously to long-lived pseudonyms. In our
basic formalism of IdealPcash, the pour operation discloses
the recipient’s pseudonyms to the adversary. This means that
IdealPcash only retains full privacy if the recipient generates
a fresh, new pseudonym every time. In comparison, Zero-
cash [11] provides an option of anonymously spending to a
long-lived pseudonym (in other words, having IdealPcash not
reveal recipients’ pseudonyms to the adversary).

It would be straightforward to add this feature to Hawk as
well (at the cost of a constant factor blowup in performance);
however, in most applications (e.g., a payment made after
receiving an invoice), the transfer is subsequent to some
interaction between the recipient and sender.
Open enrollment of pseudonyms. In our current formalism,
parties’ pseudonyms are hardcoded and known a priori. We can
easily relax this to allow open enrollment of any pseudonym
that joins the contract (e.g., in an auction). Our implementation
supports open enrollment. Due to SNARK’s preprocessing,
right now, each contract instance must declare an upper-
bound on the number of participants. An enrollment fee
can potentially be adopted to prevent a DoS attack where
the attacker joins the contract with many pseudonyms thus
preventing legitimate users from joining. How to choose the
correct fee amount to achieve incentive compatibility is left as
an open research challenge. The a priori upper bound on the
number of participants can be avoided if we adopt recursively
composable SNARKs [18], [26] or alternative proofs that do
not require circuit-dependent setup [16].

V. ADOPTING SNARKS IN UC PROTOCOLS AND
PRACTICAL OPTIMIZATIONS

A. Using SNARKs in UC Protocols
Succinct Non-interactive ARguments of Knowledge [12],

[36], [53] provide succinct proofs for general computation
tasks, and have been implemented by several systems [12],
[53], [60]. We would like to use SNARKs to instantiate the
NIZK proofs in our protocols — unfortunately, SNARK’s
security is too weak to be directly employed in UC protocols.
Specifically, SNARK’s knowledge extractor is non-blackbox
and cannot be used by the UC simulator to extract witnesses
from statements sent by the adversary and environment —
doing so would require that the extractor be aware of the
environment’s algorithm, which is inherently incompatible
with UC security.

UC protocols often require the NIZKs to have simulation
extractability. Although SNARKs do not satisfy simulation
extractability, Kosba et al. show that it is possible to apply
efficient SNARK-lifting transformations to construct simula-
tion extractable proofs from SNARKs [42]. Our implementa-
tions thus adopt the efficient SNARK-lifting transformations
proposed by Kosba et al. [42].

B. Practical Considerations

Efficient SNARK circuits. A SNARK prover’s performance
is mainly determined by the number of multiplication gates
in the algebraic circuit to be proven [12], [53]. To achieve

efficiency, we designed optimized circuits through two ways:
1) using cryptographic primitives that are SNARK-friendly,
i.e. efficiently realizable as arithmetic circuits under a specific
SNARK parametrization. 2) Building customized circuit gen-
erators to produce SNARK-friendly implementations instead
of relying on compilers to translate higher level implementa-
tion.

The main cryptographic building blocks in our system are:
collision-resistant hash function for the Merkle trees, pseudo-
random function, commitment, and encryption. Our imple-
mentation supports both 80-bit and 112-bit security levels. To
instantiate the CRH efficiently, we use an Ajtai-based SNARK-
friendly collision-resistant hash function that is similar to the
one used by Ben-Sasson et al. [14]. In our implementation, the
modulus q is set to be the underlying SNARK implementation
254-bit field prime, and the dimension d is set to 3 for the 80-
bit security level, and to 4 for the 112-bit security level based
on the analysis in [42]. For PRFs and commitments, we use
a hand-optimized implementation of SHA-256. Furthermore,
we adopt the SNARK-friendly primitives for encryption used
in the study by Kosba et al. [42], in which an efficient circuit
for hybrid encryption in the case of 80-bit security level was
proposed. The circuit performs the public key operations in a
prime-order subgroup of the Galois field extension Fpµ , where
µ = 4, p is the underlying SNARK field prime (typically 254-
bit prime, i.e. pµ is over 1000-bit ), and the prime order of the
subgroup used is 398-bit prime. This was originally inspired
by Pinocchio coin [27]. The circuit then applies a lightweight
cipher like Speck [10] or Chaskey-LTS [51] with a 128-bit key
to perform symmetric encryption in the CBC mode, as using
the standard AES-128 instead will result in a much higher
cost [42]. For the 112-bit security, using the same method for
public key operations requires intensive factorization to find
suitable parameters, therefore we use a manually optimized
RSA-OAEP encryption circuit with a 2048-bit key instead.

In the next section, we will illustrate how using SNARK-
friendly implementations can lead to 2.0-3.7× savings in the
size of the circuits at the 80-bit security level, compared to
the case when naive straightforward implementation are used.
We will also illustrate that the performance is also practical
in the higher security level case.

Optimizations for finalize. In addition to the SNARK-
friendly optimizations, we focus on optimizing the O(N)-
sized finalize circuit since this is our main performance
bottleneck. All other SNARK proofs in our scheme are for
O(1)-sized circuits. Two key observations allow us to greatly
improve the performance of the proof generation during
finalize.

Optimization 1: Minimize SSE-secure NIZKs. First, we ob-
serve that in our proof, the simulator need not extract any new
witnesses when a corrupted manager submits proofs during a
finalize operation. All witnesses necessary will have been
learned or extracted by the simulator at this point. Therefore,
we can employ an ordinary SNARK instead of a stronger
simulation sound extractable NIZK during finalize. For



freeze and compute, we still use the stronger NIZK. This
optimization reduces our SNARK circuit sizes by 1.5× as can
be inferred from Figure 9 of Section VI, after SNARK-friendly
optimizations are applied.
Optimization 2: Minimize public-key encryption in SNARKs.
Second, during finalize, the manager encrypts each party
Pi’s output coins to Pi’s key, resulting in a ciphertext cti.
The ciphertexts {cti}i∈[N ] would then be submitted to the
contract along with appropriate SNARK proofs of correctness.
Here, if a public-key encryption is employed to generate
the cti’s, it would result in relatively large SNARK circuit
size. Instead, we rely on a symmetric-key encryption scheme
denoted SENC in Figure 6. This requires that the manager
and each Pi perform a key exchange to establish a symmetric
key ki. During an compute, the user encrypts this ki to the
manager’s public key PM.epk, and prove that the k encrypted
is consistent with the k committed to earlier in cmi. The
SNARK proof during finalize now only needs to include
commitments and symmetric encryptions instead of public key
encryptions in the circuit – the latter much more expensive.

This second optimization additionally gains us a factor of
1.9× as shown in Figure 9 of Section VI after applying the
previous optimizations. Overall, all optimizations will lead to
a gain of more than 10× in the finalize circuit.
Remarks about the common reference string. SNARK
schemes require the generation of a common reference string
(CRS) during a pre-processing step. This common reference
string consists of an evaluation key for the prover, and a
verification key for the verifier. Unless we employ recursively
composed SNARKs [18], [26] whose costs are significantly
higher, the evaluation key is circuit-dependent, and its size
is proportional to the circuit’s size. In comparison, the
verification key is O(|in| + |out|) in size, i.e., depends on
the total length of inputs and outputs, but independent of the
circuit size. We stress that only the verification key portion of
the CRS needs to be included in the public contract that lives
on the blockchain.

We remark that the CRS for protocol UserPcash is shared
globally, and can be generated in a one-time setup. In com-
parison, the CRS for each Hawk contract would depend
on the Hawk contract, and therefore exists per instance of
Hawk contract. To minimize the trust necessary in the CRS
generation, one can employ either trusted hardware or use
secure multi-party computation techniques as described by
Ben-Sasson et al. [13].

Finally, in the future when new primitives become suffi-
ciently fast, it is possible to drop-in and replace our SNARKs
with other primtives that do not require per-circuit preprocess-
ing. Examples include recursively composed SNARKs [18],
[26] or other efficient PCP constructions [16]. The commu-
nity’s efforts at optimizing these constructions are underway.

VI. IMPLEMENTATION AND EVALUATION

A. Compiler Implementation
Our compiler consists of several steps, which we illustrate

in Figure 7 and describe below:
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Fig. 7. Compiler overview. Circuit augmentation for finalize.

Preprocessing: First, the input Hawk program is split into its
public contract and private contract components. The public
contract is Serpent code, and can be executed directly atop
an ordinary cryptocurrency platform such as Ethereum. The
private contract is written in a subset of the C language,
and is passed as input to the Pinocchio arithmetic circuit
compiler [53]. Keywords such as HawkDeclareParties are
implemented as C preprocessors macros, and serve to de-
fine the input (Inp) and output (Outp) datatypes. Currently,
our private contract inherits the limitations of the Pinocchio
compiler, e.g., cannot support dynamic-length loops. In the
future, we can relax these limitations by employing recursively
composition of SNARKs.

Circuit Augmentation: After compiling the preprocessed pri-
vate contract code with Pinocchio, we have an arithmetic
circuit representing the input/output relation φpriv. This be-
comes a subcomponent of a larger arithmetic circuit, which we
assemble using a customized circuit assembly tool. This tool
is parameterized by the number of parties and the input/output
datatypes, and attaches cryptographic constraints, such as
computing commitments and encryptions over each party’s
output value, and asserting that the input and output values
satisfy the balance property.

Cryptographic Protocol: Finally, the augmented arithmetic
circuit is used as input to a state-of-the-art zkSNARK library,
Libsnark [15]. To avoid implementing SNARK verification
in Ethereum’s Serpent language, we must add a SNARK
verification opcode to Ethereum’s stack machine. We finally
compile an executable program for the parties to compute the
Libsnark proofs according to our protocol.

B. Additional Examples

Besides our running example of a sealed-bid auction (Fig-
ure 2), we implemented several other examples in Hawk,
demonstrating various capabilities:

Crowdfunding: A Kickstarter-style crowdfunding campaign,
(also known as an assurance contract in economics litera-
ture [9]) overcomes the “free-rider problem,” allowing a large
number of parties to contribute funds towards some social
good. If the minimum donation target is reached before the
deadline, then the donations are transferred to a designated
party (the entrepreneur); otherwise, the donations are refunded.



TABLE I
Performance of the zk-SNARK circuits for the user-side circuits: pour,

freeze AND compute (SAME FOR ALL APPLICATIONS). MUL denotes
multiple (4) cores, and ONE denotes a single core. The mint operation does

not involve any SNARKs, and can be computed within tens of
microseconds. The Proof includes any additional cryptographic material

used for the SNARK-lifting transformation.

80-bit security 112-bit security
pour freeze compute pour freeze compute

KeyGen(s)MUL 26.3 18.2 15.9 36.7 30.5 34.6
ONE 88.2 63.3 54.42 137.2 111.1 131.8

Prove(s) MUL 12.4 8.4 9.3 18.5 15.7 16.8
ONE 27.5 20.7 22.5 42.2 40.5 41.7

Verify(ms) 9.7 9.1 10.0 9.9 9.3 9.9

EvalKey(MB) 148 106 90 236 189 224
VerKey(KB) 7.3 4.4 7.8 8.7 5.3 8.4
Proof(KB) 0.68 0.68 0.68 0.71 0.71 0.71
Stmt(KB) 0.48 0.16 0.53 0.57 0.19 0.53

Hawk preserves privacy in the following sense: a) the do-
nations pledged are kept private until the deadline; and b)
if the contract fails, only the manager learns the amount by
which the donations were insufficient. These privacy properties
may conceivably have a positive effect on the willingness
of entrepreneurs to launch a crowdfund campaign and its
likelihood of success.

Rock Paper Scissors: A two-player lottery game, and natu-
rally generalized to an N -player version. Our Hawk imple-
mentation provides the same notion of financial fairness as
in [7], [17] and provides stronger security/privacy guarantees.
If any party (including the manager), cheats or aborts, the
remaining honest parties receive the maximum amount they
might have won otherwise. Furthermore, we go beyond prior
works [7], [17] by concealing the players’ moves and the
pseudonym of the winner to everyone except the manager.

“Swap” Financial Instrument: An individual with a risky
investment portfolio (e.g, one who owns a large number
of Bitcoins) may hedge his risks by purchasing insurance
(e.g., by effectively betting against the price of Bitcoin with
another individual). Our example implements a simple swap
instrument where the price of a stock at some future date
(as reported by a trusted authority specified in the public
contract) determines which of two parties receives a payout.
The private contract ensures the privacy of both the details of
the agreement (i.e., the price threshold) and the outcome.
The full Hawk programs for these examples are provided in
the Appendix.

C. Performance Evaluation
We evaluated the performance for various examples, using

an Amazon EC2 r3.8xlarge virtual machine. We assume
a maximum of 264 leaves for the Merkle trees, and we
present results for both 80-bit and 112-bit security levels. Our
benchmarks actually consume at most 27GB of memory and 4
cores in the most expensive case. Tables I and II illustrate the
results – we focus on evaluating the zk-SNARK performance

TABLE II
Performance of the zk-SNARK circuits for the manager circuit

finalize for different applications. The manager circuits are the same
for both security levels. MUL denotes multiple (4) cores, and ONE denotes a

single core.

swap rps auction crowdfund

#Parties 2 2 10 100 10 100
KeyGen(s)MUL 8.6 8.0 32.3 300.4 32.16 298.1

ONE 27.8 24.9 124 996.3 124.4 976.5
Prove(s) MUL 3.2 3.1 15.4 169.3 15.2 169.2

ONE 7.6 7.4 40.1 384.2 40.3 377.5
Verify(ms) 8.4 8.4 10 19.9 10 19.8

EvalKey(GB) 0.04 0.04 0.21 1.92 0.21 1.91
VerKey(KB) 3.3 2.9 12.9 113.8 12.9 113.8
Proof(KB) 0.28 0.28 0.28 0.28 0.28 0.28
Stmt(KB) 0.22 0.2 1.03 9.47 1.03 9.47
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Fig. 8. Gains of using SNARK-friendly implementation for the user-side
circuits: pour, freeze and compute at 80-bit security.

since all other computation time is negligible in comparison.
We highlight some important observations:

• On-chain computation (dominated by zk-SNARK verifica-
tion time) is very small in all cases, ranging from 9 to 20
milliseconds The running time of the verification algorithm
is just linearly dependent on the size of the public statement,
which is far smaller than the size of the computation,
resulting into small verification time.
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TABLE III
Additional theoretical results for fair MPC with public deposits. The

table assumes that N parties wish to securely compute 1 bit of output that
will be revealed to all parties at the end. For collateral, we assume that each

aborting party must pay all honest parties 1 unit of currency.

claim-or-refund [17] multi-lock [44] generic
blockchain

On-chain cost O(N2) O(N2) O(N)
# rounds O(N) O(1) O(1)
Total collateral O(N2) O(N2) O(N2)

• On-chain public parameters: As mentioned in Sec-
tion IV-C, not the entire SNARK common reference string
(CRS) need to be on the blockchain, but only the verification
key part of the CRS needs to be on-chain. Our imple-
mentation suggests the following: the private cash protocol
requires a verification key of 23KB to be stored on-chain –
this verification key is globally shared and there is only a
single instance. Besides the globally shared public param-
eters, each Hawk contract will additionally require 13-114
KB of verification key to be stored on-chain, for 10 to 100
users. This per-contract verification key is circuit-dependent,
i.e., depends on the contract program. We refer the readers
to Section IV-C for more discussions on techniques for
performing trusted setup.

• Manager computation: Running private auction or crowd-
funding protocols with 100 participants requires under
6.5min proof time for the manager on a single core, and
under 2.85min on 4 cores. This translates to under $0.14 of
EC2 time [2].

• User computation: Users’ proof times for pour, freeze
and compute are under one minute, and independent of the
number of parties. Additionally, in the worst case, the peak
memory usage of the user is less than 4 GB.

Savings from protocol optimizations. Figure 8 illustrates
the performance gains attained by using a SNARK-friendly
implementation for the user-side circuits, i.e. pour, freeze

and compute w.r.t. the naive implementation at the 80-bit
security level. We calculate the naive implementation cost
using conservative estimates for the straightforward implemen-
tation of standard cryptographic primitives. The figure shows a
gain of 2.0-2.6× compared to the naive implementation. Fur-
thermore, Figure 9 illustrates the performance gains attained
by our protocol optimizations described in Section V The
figure considers the sealed-bid auction finalize circuit at dif-
ferent number of bidders. We show that the SNARK-friendly
implementation along with our two optimizations combined
significantly reduce the SNARK circuit sizes, and achieve a
gain of 10× relative to a straightforward implementation. The
figure also illustrates that the manager’s cost is proportional
to the number of participants. (By contrast, the user-side costs
are independent of the number of participants).

VII. ADDITIONAL THEORETICAL RESULTS

Last but not the least, we present additional theoretical
results to fruther illustrate the usefulness of our formal block-
chain model. In the interest of space, we defer details to
Appendix G, and only state the main findings here.
Fair MPC with public deposits in the generic blockchain
model. As is well-understood, fairness is in general impossible
in plain models of multi-party computation when the majority
can be corrupted. This was first observed by Cleve [25]
and later extended in subsequent papers [8]. Assuming a
blockchain trusted for correctness and availability (but not
for privacy), an interesting notion of fairness which we refer
to as “financial fairness” can be attained as shown by recent
works [7], [17], [44]. In particular, the blockchain can finan-
cially penalize aborting parties by confiscating their deposits.
Earlier works in this space [7], [17], [44], [54] focus on
protocols that retrofit the artifacts of Bitcoin’s limited scripting
language. Specifically, a few works use Bitcoin’s scripting
language to construct intermediate abstractions such as “claim-
or-refund” [17] or “multi-lock” [44], and build atop these
abstractions to construct protocols. Table VII shows that by
assuming a generic blockchain model where the blockchain
can run Turing-complete programs, we can improve the effi-
ciency of financially fair MPC protocols.
Fair MPC with private deposits. We further illustrate how to
perform financially fair MPC using private deposits, i.e., where
the amount of deposits cannot be observed by the public. The
formal definitions, constructions, and proofs are supplied in
Appendix G-B.
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APPENDIX A
FREQUENTLY ASKED QUESTIONS

we address frequently asked questions. Some of this con-
tent repeats what is already stated earlier, but we hope that
addressing these points again in a centralized section will help
reiterate some important points that may be missed by a reader.

A. Motivational

“How does Hawk’s programming model differ from
Ethereum?” Our high-level approach may be superior than
Ethereum: Ethereum’s language defines the blockchain pro-
gram, where Hawk allows the programmer to write a single
global program, and Hawk auto-generates not only the block-
chain program, but also the protocols for users.
“Why not spin off the formal blockchain modeling into
a separate paper?” The blockchain formal model could be
presented on its own, but we gain evidence of its usefulness
by implementing it and applying it to interesting practical



examples. Likewise our system implementation benefits from
the formalism because we can use our framework to provide
provable security.

B. Technical

“SNARKs do not offer simulation extractability required
for UC.” See Section V-A as well as Kosba et al. [42].
SNARK’s common reference string. See discussions in
Section V-B.
“Why are the recipient pseudonyms P1 and P2 revealed
to the adversary? And what about Zerocash’s persistent
addresses feature?” See discussions in Section IV-C.
“Isn’t the manager a trusted-third party?” No, our man-
ager is not a trusted third party. As we mention upfront
in Sections I-A and I-B, the manager need not be trusted
for correctness and input independence. Due to our use of
zero-knowledge proofs, if the manager deviates from correct
behavior, it will get caught.

Further, each contract instance can choose its own manager,
and the manager of one contract instance cannot affect the
security of another contract instance. Similarly, the manager
also need not be trusted to retain the security of the crypto-
currency as a whole. Therefore, the only thing we trust the
manager for is posterior privacy.

As mentioned in Section IV-C we note that one can possibly
rely on secure multi-party computation (MPC) to avoid having
to trust the manager even for posterier privacy – however
such a solution is unlikely to be practical in the near future,
especially when a large number of parties are involved. The
thereotical formulation of this full-generality MPC-based ap-
proach is detailed in Appendix G. In our implementation, we
made a conscious design choice and opted for the approach
with a minimally trusted manager (rather than MPC), since we
believe that this is a desirable sweet-spot that simultaneously
attains practical efficiency and strong enough security for
realistic applications. We stress that practical efficiency is an
important goal of Hawk’s design.

In Section IV-C, we also discuss practical considerations
for instantiating this manager. For the reader’s convenience,
we iterate: we think that a particularly promising choice is to
rely on trusted hardware such as Intel SGX to obtain higher
assurance of posterior privacy. We stress again that even when
we use the SGX to realize the manager, the SGX should not
have to be trusted for retaining the global security of the
cryptocurrency. In particular, it is a very strong assumption to
require all participants to globally trust a single or a handful
of SGX prcessor(s). With Hawk’s design, the SGX is only
very minimally trusted, and is only trusted within the scope
of the current contract instance.

APPENDIX B
FORMAL TREATMENT OF PROTOCOLS IN THE

BLOCKCHAIN MODEL

We are the first to propose a UC model for the blockchain
model of cryptography. First, our model allows us to easily
capture the time and pseudonym features of cryptocurrencies.

In cryptocurrencies such as Bitcoin and Ethereum, time pro-
gresses in block intervals, and the blockchain can query the
current time, and make decisions accordingly, e.g., make a
refund operation after a timeout. Second, our model captures
the role of a blockchain as a party trusted for correctness and
availability but not for privacy. Third, our formalism modular-
izes our notations by factoring out common specifics related
to the smart contract execution model, and implementing these
in central wrappers.

For simplicity, we assume that there can be any number
of identities in the system, and that they are fixed a priori.
It is easy to extend our model to capture registration of new
identities dynamically. We allow each identity to generate an
arbitrary (polynomial) number of pseudonyms as in Bitcoin
and Ethereum.

A. Programs, Functionalities, and Wrappers
To make notations simple for writing ideal functionalities

and smart contracts, we make a conscious notational choice of
introducing wrappers. Wrappers implement in a central place
a set of common features (e.g., timer, ledger, pseudonyms) that
are applicable to all ideal functionalities and contracts in our
blockchain model of execution. In this way, we can modularize
our notational system such that these common and tedious
details need not be repeated in writing ideal, blockchain and
user/manager programs.
Blockchain functionality wrapper G: A blockchain function-
ality wrapper G(B) takes in a blockchain program denoted B,
and produces a blockchain functionality. Our real world proto-
cols will be defined in the G(B)-hybrid world. Our blockchain
functionality wrapper is formally presented in Figure 11. We
point out the following important facts about the G(·) wrapper:
• Trusted for correctness and availability but not privacy.

The bloc kchain functionality wrapper G(·) stipulates that a
blockchain program is trusted for correctness and availabil-
ity but not for privacy. In particular, the blockchain wrapper
exposes the blockchain program’s internal state to any party
that makes a query.

• Time and batched processing of messages. In popular de-
centralized cryptocurrencies such as Bitcoin and Ethereum,
time progresses in block intervals marked by the creation
of each new block. Intuitively, our G(·) wrapper captures
the following fact. In each round (i.e., block interval), the
blockchain program may receive multiple messages (also
referred to as transactions in the cryptocurrency literature).
The order of processing these transactions is determined
by the miner who mines the next block. In our model, we
allow the adversary to specify an ordering of the messages
collected in a round, and our blockchain program will then
process the messages in this adversary-specified ordering.

• Rushing adversary. The blockchain wrapper G(·) naturally
captures a rushing adversary. Specifically, the adversary
can first see all messages sent to the blockchain program
by honest parties, and then decide its own messages for
this round, as well as an ordering in which the blockchain
program should process the messages in the next round.



F(idealP) functionality

Given an ideal program denoted idealP, the F(idealP) functionality is defined as below:
Init: Upon initialization, perform the following:

Time. Set current time T := 0. Set the receive queue rqueue := ∅.
Pseudonyms. Set nyms := {(P1, P1), . . . , (PN , PN )}, i.e., initially every party’s true identity is recorded as a default
pseudonym for the party.
Ledger. A ledger dictionary structure ledger[P ] stores the endowed account balance for each identity P ∈ {P1, . . . , PN}.
Before any new pseudonyms are generated, only true identities have endowed account balances. Send the array ledger[]
to the ideal adversary S.
idealP.Init. Run the Init procedure of the idealP program.

Tick: Upon receiving tick from an honest party P : notify S of (tick, P ). If the functionality has collected tick

confirmations from all honest parties since the last clock tick, then
Call the Timer procedure of the idealP program.
Apply the adversarial permutation perm to the rqueue to reorder the messages received in the previous round.
For each (m, P̄ ) ∈ rqueue in the permuted order, invoke the delayed actions (in gray background) defined by ideal
program idealP at the activation point named “Upon receiving message m from pseudonym P̄”. Notice that the program
idealP speaks of pseudonyms instead of party identifiers. Set rqueue := ∅.
Set T := T + 1

Other activations: Upon receiving a message of the form (m, P̄ ) from a party P :
Assert that (P̄ , P ) ∈ nyms.
Invoke the immediate actions defined by ideal program idealP at the activation point named “Upon receiving message
m from pseudonym P̄”.
Queue the message by calling rqueue.add(m, P̄ ).

Permute: Upon receiving (permute, perm) from the adversary S, record perm.
GetTime: On receiving gettime from a party P , notify the adversary S of (gettime, P ), and return the current time T
to party P .
GenNym: Upon receiving gennym from an honest party P : Notify the adversary S of gennym. Wait for S to respond with
a new nym P̄ such that P̄ /∈ nyms. Now, let nyms := nyms ∪ {(P, P̄ )}, and send P̄ to P . Upon receiving (gennym, P̄ )
from a corrupted party P : if P̄ /∈ nyms, let P̄ := nyms ∪ {(P, P̄ )}.

Ledger operations: // inner activation
Transfer: Upon receiving (transfer, amount, P̄r) from some pseudonym P̄s:

Notify (transfer, amount, P̄r, P̄s) to the ideal adversary S.

Assert that ledger[P̄s] ≥ amount.
ledger[P̄s] := ledger[P̄s]− amount
ledger[P̄r] := ledger[P̄r] + amount

/* P̄s, P̄r can be pseudonyms or true identities. Note that each party’s identity is a default pseudonym for the party. */
Expose: On receiving exposeledger from a party P , return ledger to the party P .

Fig. 10. The F(idealP) functionality is parameterized by an ideal program denoted idealP. An ideal program idealP can specify two types of activation points,
immediate activations and delayed activations. Activation points are invoked upon recipient of messages. Immediate activations are processed immediately,
whereas delayed activations are collected and batch processed in the next round. The F(·) wrapper allows the ideal adversary S to specify an order perm in
which the messages should be processed in the next round. For each delayed activation, we use the leak notation in an ideal program idealP to define the
leakage which is immediately exposed to the ideal adversary S upon recipient of the message.

Modeling a rushing adversary is important, since it captures
a class of well-known front-running attacks, e.g., those that
exploit transaction malleability [11], [28]. For example, in
a “rock, paper, scissors” game, if inputs are sent in the
clear, an adversary can decide its input based on the other
party’s input. An adversary can also try to maul transactions
submitted by honest parties to potentially redirect payments
to itself. Since our model captures a rushing adversary,
we can write ideal functionalities that preclude such front-
running attacks.

Ideal functionality wrapper F: An ideal functionality
F(idealP) takes in an ideal program denoted idealP. Specif-
ically, the wrapper F(·) part defines standard features such
as time, pseudonyms, a public ledger, and money transfers
between parties. Our ideal functionality wrapper is formally
presented in Figure 10.
Protocol wrapper Π: Our protocol wrapper allows us to
modularize the presentation of user protocols. Our protocol
wrapper is formally presented in Figure 12.
Terminology. For disambiguation, we always refer to the



G(B) functionality

Given a blockchain program denoted B, the G(B) functionality is defined as below:
Init: Upon initialization, perform the following:

A ledger data structure ledger[P̄ ] stores the account balance of party P̄ . Send the entire balance ledger to A.
Set current time T := 0. Set the receive queue rqueue := ∅.
Run the Init procedure of the B program.
Send the B program’s internal state to the adversary A.

Tick: Upon receiving tick from an honest party, if the functionality has collected tick confirmations from all honest
parties since the last clock tick, then

Apply the adversarial permutation perm to the rqueue to reorder the messages received in the previous round.
Call the Timer procedure of the B program.
Pass the reordered messages to the B program to be processed. Set rqueue := ∅.
Set T := T + 1

Other activations:
• Authenticated receive: Upon receiving a message (authenticated, m) from party P :

Send (m,P ) to the adversary A
Queue the message by calling rqueue.add(m,P ).

• Pseudonymous receive: Upon receiving a message of the form (pseudonymous,m, P̄ , σ) from any party:
Send (m, P̄ , σ) to the adversary A
Parse σ := (nonce, σ′), and assert Verify(P̄ .spk, (nonce, T, P̄ .epk,m), σ′) = 1
If message (pseudonymous,m, P̄ , σ) has not been received earlier in this round, queue the message by calling
rqueue.add(m, P̄ ).

• Anonymous receive: Upon receiving a message (anonymous, m) from party P :
Send m to the adversary A
If m has not been seen before in this round, queue the message by calling rqueue.add(m).

Permute: Upon receiving (permute, perm) from the adversary A, record perm.
Expose: On receiving exposestate from a party P , return the functionality’s internal state to the party P . Note that this
also implies that a party can query the functionality for the current time T .

Ledger operations: // inner activation
Transfer: Upon recipient of (transfer, amount, P̄r) from some pseudonym P̄s:

Assert ledger[P̄s] ≥ amount
ledger[P̄s] := ledger[P̄s]− amount
ledger[P̄r] := ledger[P̄r] + amount

Fig. 11. The G(B) functionality is parameterized by a blockchain program denoted B. The G(·) wrapper mainly performs the following: i) exposes all of
its internal states and messages received to the adversary; ii) makes the functionality time-aware: messages received in one round and queued and processed
in the next round. The G(·) wrapper allows the adversary to specify an ordering to the messages received by the blockchain program in one round.

user-defined portions as programs. Programs alone do not
have complete formal meanings. However, when programs
are wrapped with functionality wrappers (including F(·)
and G(·)), we obtain functionalities with well-defined formal
meanings. Programs can also be wrapped by a protocol
wrapper Π to obtain a full protocol with formal meanings.

B. Modeling Time

At a high level, we express time in a way that conforms
to the Universal Composability framework [21]. In the ideal
world execution, time is explicitly encoded by a variable
T in an ideal functionality F(idealP). In the real world
execution, time is explicitly encoded by a variable T in our
blockchain functionality G(B). Time progresses in rounds. The
environment E has the choice of when to advance the timer.

We assume the following convention: to advance the timer,
the environment E sends a “tick” message to all honest parties.
Honest parties’ protocols would then forward this message
to F(idealP) in the ideal-world execution, or to the G(B)
functionality in the real-world execution. On collecting “tick”
messages from all honeset parties, the F(idealP) or G(B)
functionality would then advance the time T := T + 1. The
functionality also allows parties to query the current time T .

When multiple messages arrive at the blockchain in a time
interval, we allow the adversary to choose a permutation
to specify the order in which the blockchain will process
the messages. This captures potential network attacks such
as delaying message propagation, and front-running attacks
(a.k.a. rushing attacks) where an adversary determines its own
message after seeing what other parties send in a round.



Π(UserP) protocol wrapper in the G(B)-hybrid world

Given a party’s local program denoted prot, the Π(prot) functionality is defined as below:
Pseudonym related:

GenNym: Upon receiving input gennym from the environment E , generate (epk, esk)← Keygenenc(1
λ), and (spk, ssk)←

Keygensign(1λ). Call payload := prot.GenNym(1λ, (epk, spk)). Store nyms := nyms ∪ {(epk, spk, payload)}, and output
(epk, spk, payload) as a new pseudonym.
Send: Upon receiving internal call (send, m, P̄ ):

If P̄ == P : send (authenticated, m) to G(B). // this is an authenticated send
Else, // this is a pseudonymous send

Assert that pseudonym P̄ has been recorded in nyms;
Query current time T from G(B). Compute σ′ := Sign(ssk, (nonce, T, epk,m)) where ssk is the recorded secret signing
key corresponding to P̄ , nonce is a freshly generated random string, and epk is the recorded public encryption key
corresponding to P̄ . Let σ := (nonce, σ′).
Send (pseudonymous,m, P̄ , σ) to G(B).

AnonSend: Upon receiving internal call (anonsend, m, P̄ ): send (anonymous, m) to G(B).
Timer and ledger transfers:

Transfer: Upon receiving input (transfer, $amount, P̄r, P̄ ) from the environment E :
Assert that P̄ is a previously generated pseudonym.
Send

(
transfer, $amount, P̄r

)
to G(B) as pseudonym P̄ .

Tick: Upon receiving tick from the environment E , forward the message to G(B).
Other activations:

Act as pseudonym: Upon receiving any input of the form (m, P̄ ) from the environment E :
Assert that P̄ was a previously generated pseudonym.
Pass (m, P̄ ) the party’s local program to process.

Others: Upon receiving any other input from the environment E , or any other message from a party: Pass the input/message
to the party’s local program to process.

Fig. 12. Protocol wrapper.

C. Modeling Pseudonyms

We model a notion of “pseudonymity” that provides a form
of privacy, similar to that provided by typical cryptocurren-
cies such as Bitcoin. Any user can generate an arbitrary
(polynomially-bounded) number of pseudonyms, and each
pseudonym is “owned” by the party who generated it. The
correspondence of pseudonyms to real identities is hidden
from the adversary.

Effectively, a pseudonym is a public key for a digital
signature scheme, and the corresponding private key is known
by the party who “owns” the pseudonym. The blockchain
functionality allows parties to publish authenticated messages
that are bound to a pseudonym of their choice. Thus each inter-
action with the blockchain program is, in general, associated
with a pseudonym but not to a user’s real identity.

We abstract away the details of pseudonym management
by implementing them in our wrappers. This allows user-
defined applications to be written very simply, as though
using ordinary identities, while enjoying the privacy benefits
of pseudonymity.

Our wrapper provides a user-defined hook, “gennym”, that
is invoked each time a party creates a pseudonym. This
allows the application to define an additional per-pseudonym
payload, such as application-specific public keys. From the
point-of-view of the application, this is simply an initialization

subroutine invoked once for each participant.
Our wrapper provides several means for users to communi-

cate with a blockchain program. The most common way is for
a user to publish an authenticated message associated with one
of their pseudonyms, as described above. Additionally, “anon-
send” allows a user to publish a message without reference to
any pseudonym at all.

In spite of pseudonymity, it is sometimes desirable to assign
a particular user to a specific role in a blockchain program
(e.g., “auction manager”). The alternative is to assign roles
on a “first-come first-served” basis (e.g., as the bidders in an
auction). To this end, we allow each party to define generate
a single “default” pseudonym which is publicly-bound to
their real identity. We allow applications to make use of this
through a convenient abuse of notation, by simply using a
party identifier as a parameter or hardcoded string. Strictly
speaking, the pseudonym string is not determined until the
“gennym” subroutine is executed; the formal interpretation is
that whenever such an identity is used, the default pseudonym
associated with the identity is fetched from the blockchain
program. (This approach is effectively the same as taken by
Canetti [22], where a functionality FCA allows each party to
bind their real identity to a single public key of their choice).

Additional appendices are supplied in the online full ver-
sion [41].



D. Modeling Money
We model money as a public ledger, which associates

quantities of money to pseudonyms. Users can transfer funds
to each other (or among their own pseudonyms) by sending
“transfer” messages to the blockchain. Like other messages,
these are delayed till the next round and may be delivered in
any order). The ledger state is public knowledge, and can be
queried immediately using the exposeledger instruction.

There are many conceivable policies for introducing new
currency into such a system: for example, Bitcoin “mints”
new currency as a reward for each miner who solves a proof-
of-work puzzles. We take a simple approach of defining an
arbitrary, publicly visible (i.e., common knowledge) initial
allocation that associates a quantity of money to each party’s
real identity. Except for this initial allocation, no money is
created or destroyed.

E. Simulator Wrapper
We also define a simulator wrapper which will later be

useful in aiding the construction of the ideal-world simulator
in our proofs in Appendices E and F. In particular, in our
proofs later, we will only write the simulator program denoted
simP. We will apply the wrapper S to the simulator program
to obtain the actual simulator S(simP).
Simulartor wrapper S: The ideal adversary S can typically
be obtained by applying the simulator wrapper S(·) to the user-
defined portion of the simulator simP. The simulator wrapper
modularizes the simulator construction by factoring out the
common part of the simulation pertaining to all protocols in
this model of execution.

The simulator wrapper is defined formally in Figure 13.

F. Composability and Multiple Contracts

Extending to multiple contracts. So far, our formalism only
models a single running instance of a user-specified contract
(φpriv, φpub). It will not be too hard to extend the wrappers
to support multiple contracts sharing a global ledger, clock,
pseudonyms, and Blockchaincash (i.e, private cash). While such
an extension is straightforward (and would involve segragating
different instances by associating them with a unique session
string or subsession string, which we omit in our presentation),
one obvious drawback is that this would result in a monolithic
functionality consisting of all contract instances. This means
that the proof also has to be done in a monolithic manner
simultaneously proving all active contracts in the system.
Future work. To further modularize our functionality and
proof, new composition theorems will be needed that are not
covered by the current UC [21] or extended models such
as GUC [23] and GNUC [38]. We give a brief discussion
of the issues below. Since our model is expressed in the
Universal Composability framework, we could apply to our
functionalities and protocols standard composition operators,
such as the multi-session extension [24]. However, a direct
application of this operator to the wrapped functionality
F(IdealPhawk) would give us multiple instances of separate
timers and ledgers, one for each contract - which is not what

1 // Raise $10,000 from up to N donors
2 #define BUDGET $10000

3 HawkDeclareParties(Entrepreneur, /* N Parties */);
4 HawkDeclareTimeouts(/* hardcoded timeouts */);

5 private contract crowdfund(Inp &in, Outp &out) {
6 int sum = 0;
7 for (int i = 0; i < N; i++) {
8 sum += in.p[i].$val;
9 }

10 if (sum >= BUDGET) {
11 // Campaign successful
12 out.Entrepreneur.$val = sum;
13 } else {
14 // Campaign unsuccessful
15 for (int i = 0; i < N; i++) {
16 out.p[i].$val = in.p[i].$val; // refund
17 }
18 }
19 }

Fig. 14. Hawk contract for a kickstarter-style crowdfunding contract. No
public portion is required. An attacker who freezes but does not open would
not be able to recover his money.

we want! The Generalized UC (GUC) framework [23] is a
better starting point; it provides a way to compose multiple
instances of arbitrary functionalies along with a single instance
of a shared functionality as a common resource. To apply
this to our scenario, we would model the timer and ledger
as a single shared functionality, composed with an arbitrary
number of instances of Hawk contracts. However, even the
GUC framework is inadequate for our needs since it does
not allow interaction between the shared functionality and
others, so this approach cannot be applied directly. In our
ongoing work, we further generalize GUC and overcome these
technical obstacles and more. As these details are intricate and
unrelated to our contributions here, we defer further discussion
to a forthcoming manuscript.
A remark about UC and Generalized UC. A subtle distinc-
tion between our work and that of Kiayias et al. [40] is that
while we use the ordinary UC framework, Kiayias et al. define
their model in the GUC framework [23]. Generalized UC defi-
nitions appear a priori to be stronger. However, we believe the
GUC distinction is unnecessary, and our definition is equally
strong; in particular, since the clock, ledger, and pseudonym
functionality involves no private state and is available in both
the real and ideal worlds, the simulator cannot, for example,
present a false view of the current round number. We plan to
formally clarify this in a forthcoming work.

APPENDIX C
ADDITIONAL EXAMPLE PROGRAMS

We provide the Hawk programs for the applications used in
our evaluation in Section VI. For the sealed auction contract,
please refer to Section I-B.
Crowdfunding example. In the crowdfunding example in
Figure 14, parties donate money for a kickstarter project. If the
total raised funding exceeds a pre-set budget denoted BUDGET,



S(simP)

Init. The simulator S simulates a G(B) instance internally. Here S calls G(B).Init to initialize the internal states of the
contract functionality. S also calls simP.Init.
Simulating honest parties.
• Tick: Environment E sends input tick to an honest party P : simulator S receives notification (tick, P ) from the ideal

functionality. Simulator forwards the tick message to the simulated G(B) functionality.
• GenNym: Environment E sends input gennym to an honest party P : simulator S receives notification gennym from the ideal

functionality. Simulator S honestly generates an encryption key and a signing key as defined in Figure 12, and remembers
the corresponding secret keys. Simulator S now calls simP.GenNym(epk, spk) and waits for the returned value payload.
Finally, the simulator passes the nym P̄ = (epk, spk, payload) to the ideal functionality.

• Other activations. // From the inner idealP
If ideal functionality sends (transfer, $amount, Pr, Ps), then update the ledger in the simulated G(Contract) instance
accordingly.
Else, forward the message to the inner simP.

Simulating corrupted parties.
• Permute: Upon receiving (permute, perm) from the environment E , forward it to the internally simulated G(B) and the

ideal functionality.
• Expose. Upon receiving exposestate from the environment E , expose all states of the internally simulated G(B).
• Other activations.
– Upon receiving (authenticated, m) from the environment E on behalf of corrupted party P : Forward to internally

simulated G(B). If the message is of the format (transfer, $amount, Pr, Ps), then forward it to the ideal functionality.
Otherwise, forward to simP.

– Upon receiving (pseudonymous, m, P̄ , σ) from the environment E on behalf of corrupted party P : Forward to internally
simulated G(B). Now, assert that σ verifies just like in G(B). If the message is of the format (transfer, $amount, Pr,
Ps), then forward it to the ideal functionality. Else, forward to simP.

– Upon receiving (anonymous, m) from the environment E on behalf of corrupted party P : Forward to internally simulated
G(B). If the message is of the format (transfer, $amount, Pr, Ps), then forward it to the ideal functionality. Else,
forward to simP.

Fig. 13. Simulator wrapper.

then the campaign is successful and the kickstarter obtains
the total donations. Otherwise, all donations are returned to
the donors after a timeout. In this case, no public deposit is
necessary to ensure the incentive compatibility of the contract.
If a party does not open after freezing its money, the money
is unrecoverable by anyone.

Swap instrument example. In this financial swap instrument,
Alice is betting on the stock price exceeding a certain threshold
at a future point of time, while Bob is betting on the reverse.
If the stock price is below the threshold, Alice obtains $20;
else Bob obtains $20. As mentioned earlier in Section VI-B,
such a financial swap can be used as a means of insurance
to hedge invenstment risks. This swap contract makes use of
public deposits to provide financial fairness when either Alice
or Bob cheats.

This swap assumes that the manager is a well-known public
entity such as a stock exchange. Therefore, the contract does
not protect against the manager aborting. In the event that the
manager aborts, the aborting event can be observed in public,
and therefore external mechanisms (e.g., legal enforcement or
reputation) can be leveraged to punish the manager.

Rock-Paper-Scissors example. In this lottery game in Fig-
ure 16, each party deposits $3 in total. In the case that all

parties are honest, then each party has a 50% chance of leaving
with $4 (i.e., winning $1) and a 50% chance of leaving with
$2 (i.e., losing $2).

The lottery game is fair in the following sense: if any party
cheats, then the remaining honest parties are guaranteed a
payout distribution that stochastically dominates the payout
distribution they would expect if every party was honest.

This is achieved using standard “collateral deposit” tech-
niques [7], [17]. For example, if Alice aborts, then her deposit
is used to compensate Bob by the maximum amount $4. If the
Manager aborts, then both Alice and Bob receive $8.

Unlike the lottery games found in Bitcoin and Ethereum [7],
[17], [29], our contract also provides privacy. If the Manager
and both parties do not voluntarily disclose information, then
no one else in the system learns which of Alice or Bob won.
Even when the Manager, Alice, and Bob are all corrupted, the
underlying ecash cash system still provides privacy for other
contracts and guarantees that the total amount of money is
conserved.

APPENDIX D
TECHNICAL SUBTLETIES IN ZEROCASH

In general, a simulation-based security definition is more
straightforward to write and understand than ad-hoc indistin-



TABLE IV
NOTATIONS.

φpriv user-defined private Hawk contract. Specifically, ({$val′i}i∈[N ], out) := φ({$vali, ini}i∈[N ], inM),
i.e., φ takes in the parties’ private inputs {ini}i∈[N ], private coin values {vali}i∈[N ], the manager’s
public input PM, and outputs the payout of each party {$val′i}i∈[N ], and a public output out.

φpub user-defined public Hawk contract.
IdealP ideal program
simP simulator program

B,Blockchain blockchain program
UserP user-side program
F(·) ideal functionality wrapper, F(IdealP) denotes an ideal functionality
G(·) blockchain functionality wrapper, G(B) denotes a blockchain functionality
Π(·) protocol wrapper, Π(UserP) denotes user-side protocol
P party or its pseudonym
PM minimally trusted manager (or its pseudonym)
A adversary
E environment
T current time

ledger global public ledger
Coins (in ideal programs) private ledger, maintained by the ideal functionality

Coins (in blockchain programs) a set of cryptographic coins stored by a blockchain program. Private spending (including pours and
freezes) must demonstrate a zero-knowledge proof of the spent coin’s membership in Coins. Further,
private spending must demonstrate a cryptographic serial number sn that prevents double spending.

guishability games – although it is often more difficult to prove
or require a protocol with more overhead. Below we highlight
a subtle weakness with Zerocash’s security definition [11],
which motivates our stronger definition.

Ledger indistinguishability leaks unintended information.
The privacy guarantees of Zerocash [11] are defined by a
“Ledger Indistinguishability” game (in [11], Appendix C.1).
In this game, the attacker (adaptively) generates two sequences
of queries, Qleft and Qright. Each query can either be a
raw “insert” transaction (which corresponds in our model
to a transaction submitted by a corrupted party) or else a
“mint” or “pour” query (which corresponds in our model to
an instruction from the environment to an honest party). The
attacker receives (incrementally) a pair of views of protocol
executions, Vleft and Vright, according to one of the following
two cases, and tries to discern which case occurred: either
Vright is generated by applying all the queries in Qright

and respectively for Vright; or else Vleft is generated by
interweaving the “insert” queries of Qleft with the “mint”
and “pour” queries of Qright, and Vright is generated y
interweaving the “insert” queries of Qright with the “mint”
and “pour” queries of Qleft. The two sequences of queries
are constrained to be “publicly consistent”, which effectively
defines the information leaked to the adversary. For example,
the ith queries in both sequences must be of the same type
(either “mint”, “pour”, or “insert”), and if a “pour” query
includes an output to a corrupted recipient, then the output
value must be the same in both queries.

However, the definition of “public consistency” is subtly
overconstraining: it requires that if the ith query in one
sequence is an (honest) “pour” query that spends a coin
previously created by a (corrupt) “insert” query, then the ith

queries in both sequences must spend coins of equal value
created by prior “insert” queries. Effectively, this means that
if a corrupted party sends a coin to an honest party, then the

adversary may be alerted when the honest party spends it.
We stress that this does not imply any flaw with the

Zerocash construction itself — however, there is no obvious
path to proving their scheme secure under a simulation based
paradigm. Our scheme avoids this problem by using an SSE-
NIZK instead of a zkSNARK.

APPENDIX E
FORMAL PROOF FOR PRIVATE CASH

We now prove that the protocol in Figure 5 is a secure
and correct implementation of F(IdealPhawk). For any real-
world adversary A, we construct an ideal-world simulator S,
such that no polynomial-time environment E can distinguish
whether it is in the real or ideal world. We first describe the
construction of the simulator S and then argue the indistin-
guishability of the real and ideal worlds.

Theorem 2. Assuming that the hash function in the Merkle
tree is collision resistant, the commitment scheme Comm
is perfectly binding and computationally hiding, the NIZK
scheme is computationally zero-knowledge and simulation
sound extractable, the encryption schemes ENC and SENC
are perfectly correct and semantically secure, the PRF scheme
PRF is secure, then our protocol in Figure 5 securely emulates
the ideal functionality F(IdealPcash).

A. Ideal World Simulator
Due to Canetti [21], it suffices to construct a simulator S for

the dummy adversary that simply passes messages to and from
the environment E . The ideal-world simulator S also interacts
with the F(IdealPcash) ideal functionality. Below we construct
the user-defined portion of our simulator simP. Our ideal
adversary S can be obtained by applying the simulator wrapper
S(simP). The simulator wrapper (formally defined earlier in
Appendix B-E) modularizes the simulator construction by
factoring out the common part of the simulation pertaining
to all protocols in this model of execution.



1 typedef enum {OK, A_CHEAT, B_CHEAT} Output

2 HawkDeclareParties(Alice, Bob);
3 HawkDeclareTimeouts(/* hardcoded timeouts */);
4 HawkDeclarePublicInput(int stockprice,

int threshold[5]);
5 HawkDeclareOutput(Output o);

6 int threshold_comm[5] = {/* harcoded */};

6 private contract swap(Inp &in, Outp &out) {
7 if (sha1(in.Alice.threshold) != threshold_comm)

out.o = A_CHEAT;
7 if (in.Alice.$val != $10) out.o = A_CHEAT;
8 if (in.Bob.$val != $10) out.o = B_CHEAT;
8
9 if (in.stockprice < in.Alice.threshold[0])

out.Alice.$val = $20;
10 else out.Bob.$val = $20;
11 }

12 public contract deposit {
13 def receiveStockPrice(stockprice):
14 // Alice and Bob each deposits $10
15 // Assume the stock price authority is trusted
16 // to send this contract the price
17 assert msg.sender == StockPriceAuthority
18 self.stockprice = stockprice
19 def check(int stockprice, Output o):
20 assert stockprice == self.stockprice
21 if (o == A_CHEAT): send $20 to Bob
22 if (o == B_CHEAT): send $20 to Alice
23 if (o == OK):
24 send $10 to Alice
25 send $10 to Bob
26 }

Fig. 15. Hawk contract for a risk-swap financial instrument. In this case, we
assume that the manager is a well-known entity such as a stock exchange,
and therefore the contract does not protect against the manager defaulting. An
aborting manager (e.g., a stock exchange) can be held accountable through
external means such as legal enforcement or reputation, since aborting is
observable by the public.

Recall that the simulator wrapper performs the ordinary
setup procedure, but retains the “trapdoor” information used in
creating the crs for the NIZK proof system, allowing it to forge
proofs for false statement and to extract witnesses from valid
proofs. Since the real world adversary would see the entire
state of the contract, the simulator allows the environment
to see the entire state of the local instance of the contract.
The environment can also submit transactions directly to the
contract on behalf of corrupt parties. Such a pour transaction
contains a zero-knowledge proof involving the values of coins
being spent or created; the simulator must rely on its ability
to extract witnesses in order to learn these values and trigger
F(IdealPcash) appropriately.

The environment may also send mint and pour instructions
to honest parties that in the ideal world would be forwarded
directly to F(IdealPcash). These activate the simulator, but only
reveal partial information about the instruction – in particular,
the simulator does not learn the values of the coins being spent.
The simulator handles this by writing bogus (but plausible-

1 typedef enum {ROCK, PAPER, SCISSORS} Move;
2 typedef enum {DRAW, WIN, LOSE} Outcome;
3 typedef enum {OK, A_CHEAT, B_CHEAT} Output;

4 // Parameters
5 HawkDeclareParties(Alice, Bob);
6 HawkDeclareTimeouts(/* hardcoded timeouts */);
7 HawkDeclareInput(Move move);

8 Outcome outcome(Move a, Move b) {
9 return (a - b) % 3;

10 }
11 private contract game(Inp &in, Outp &out) {
12 if (in.Alice.$val != $1) out.out = A_CHEAT;
13 if (in.Bob.$val != $1) out.out = B_CHEAT;
14 Outcome o = outcome(in.Alice.move, in.Bob.move);
15 if (o == WIN) out.Alice.$val = $2;
16 else if (o == LOSE) out.Bob.$val = $2;
17 else out.Alice.$val = out.Bob.$val = $1;
18 }

19 public contract deposit() {
20 // Alice and Bob each deposit $2
21 // Manager deposits $4
22 def check(Output o):
23 send $4 to Manager
24 if (o == A_CHEAT): send $4 to Bob
25 if (o == B_CHEAT): send $4 to Alice
26 if (o == OK):
27 send $2 to Alice
28 send $2 to Bob
29 def managerTimedOut():
30 send $4 to Bob
31 send $4 to Alice
32 }

Fig. 16. Hawk program for a rock-paper-scissors game. This program defines
both a private contract and a public contract. The private contract guarantees
that only Alice, Bob, and the Manager learn the outcome of the game. Public
collateral deposits are used to guarantee financial fairness such that if any of
the parties cheat, the remaining honest parties receive monetary compensation.

seeming) information to the contract.
Thus the simulator must translate transactions submitted by

corrupt parties to the contract into ideal world instructions,
and must translate ideal world instructions into transactions
published on the contract.

The simulator simP is defined in more detail below:
Init. The simulator simP runs (ĉrs, τ, ek)← NIZK.K̂(1λ), and
gives ĉrs to the environment E .
Simulating corrupted parties. The following messages are
sent by the environment E to the simulator S(simP) which
then forwards it on to both the internally simulated contract
G(Blockchaincash) and the inner simulator simP.
• simP receives a pseudonymous mint message

(mint, $val, r). No extra action is necessary.
• simP receives an anonymous pour message,

(pour, {sni,Pi, coini, cti}i∈{1,2}}). The simulator uses
τ to extract the witness from π, which includes the
sender P and values $val1, $val2, $val′1 and $val′2. If Pi
is an uncorrupted party, then the simulator must check
whether each encryption cti is performed correctly, since
the NIZK proof does not guarante that this is the case.



The simulator performs a trial decryption using Pi.esk;
if the decryption is not a valid opening of coini, then
the simulator must avoid causing Pi in the ideal world
to output anything (since Pi in the real world would not
output anything either). The simulator therefore substitutes
some default value (e.g., the name of any corrupt party
P) for the recipient’s pseudonym. The simulator forwards
(pour, $val1, $val2,P†1 ,P

†
2 , $val

′
1, $val

′
2) anonymously to

F(IdealPcash), where P†i = P if Pi is uncorrupted and
decryption fails, and P†i = Pi otherwise.

Simulating honest parties. When the environment E sends
inputs to honest parties, the simulator S needs to simulate
messages that corrupted parties receive, from honest parties
or from functionalities in the real world. The honest parties
will be simulated as below:

• GenNym(epk, spk): The simulator simP generates and
records the PRF keypair, (pkPRF, skPRF) and returns
payload := pkPRF.

• Environment E gives a mint instruction to party P .
The simulator simP receives (mint,P, $val, r) from
the ideal functionality F(IdealPcash). The simulator has
enough information to run the honest protocol, and posts
a valid mint transaction to the contract.

• Environment E gives a pour instruction to party P .
The simulator simP receives (pour,P1,P2) from FCASH.
However, the simulator does not learn the name of the
honest sender P , or the correct values for each input
coin vali (for i ∈ {1, 2}). Instead, the simulator uses τ
to create a false proof using arbitrary values for these
values in the witness. To generate each serial number sni
in the witness, the simulator chooses a random element
from the codomain of PRF. For each recipient Pi (for
i ∈ {1, 2}), the simulator behaves differently depending
on whether or not Pi is corrupted:

Case 1: Pi is honest. The simulator does not know the correct
output value, so instead sets val′i := 0, and computes
coin′i and cti as normal. The environment therefore
sees a commitment and an encryption of 0, but with-
out Pi.esk it cannot distinguish between an encryption
of 0 or of the correct value.

Case 2: Pi is corrupted. Since the ideal world recipient would
receive $val′i from FCASH, and since Pi is corrupted,
the simulator learns the correct value $val′i directly.
Hence coini is a correct encryption of $val′i under
Pi’s registered encryption public key.

B. Indistinguishability of Real and Ideal Worlds
To prove indistinguishability of the real and ideal worlds

from the perspective of the environment, we will go through
a sequence of hybrid games.
Real world. We start with the real world with a dummy adver-
sary that simply passes messages to and from the environment
E .
Hybrid 1. Hybrid 1 is the same as the real world, except that
now the adversary (also referred to as the simulator) will call

(ĉrs, τ, ek) ← NIZK.K̂(1λ) to perform a simulated setup for
the NIZK scheme. The simulator will pass the simulated ĉrs
to the environment E . When an honest party P publishes a
NIZK proof, the simulator will replace the real proof with a
simulated NIZK proof before passing it onto the environment
E . The simulated NIZK proof can be computed by calling the
NIZK.P̂(ĉrs, τ, ·) algorithm which takes only the statement as
input but does not require knowledge of a witness.

Fact 1. It is immediately clear that if the NIZK scheme
is computational zero-knowledge, then no polynomial-time
environment E can distinguish Hybrid 1 from the real world
except with negligible probability.

Hybrid 2. The simulator simulates the G(Blockchaincash)
functionality. Since all messages to the G(Blockchaincash)
functionality are public, simulating the contract functionality is
trivial. Therefore, Hybrid 2 is identically distributed as Hybrid
1 from the environment E’s view.
Hybrid 3. Hybrid 3 is the same as Hybrid 2 except the
following changes. When an honest party sends a message
to the contract (now simulated by the simulator S), it will
sign the message with a signature verifiable under an honestly
generated nym. In Hybrid 3, the simulator will replace all
honest parties’ nyms and generate these nyms itself. In this
way, the simulator will simulate honest parties’ signatures
by signing them itself. Hybrid 3 is identically distributed as
Hybrid 2 from the environment E’s view.
Hybrid 4. Hybrid 4 is the same as Hybrid 3 except for the
following changes:
• When an honest party P produces a ciphertext cti for

a recipient Pi, and if the recipient is also uncorrupted,
then the simulator will replace this ciphertext with an
encryption of 0 before passing it onto the environment
E .

• When an honest party P produces a commitment coin,
then the simulator replaces this commitment with a
commitment to 0.

• When an honest party P computes a pseudorandom serial
number sn, the simulator replaces this with a randomly
chosen value from the codomain of PRF.

Fact 2. It is immediately clear that if the encryption scheme
is semantically secure, if PRF is a pseudorandom function,
and if Comm is a perfectly hiding commitment scheme, then
no polynomial-time environment E can distinguish Hybrid 4
from Hybrid 3 except with negligible probability.

Hybrid 5. Hybrid 5 is the same as Hybrid 4 except for the
following changes. Whenever the environment E passes to the
simulator S a message signed on behalf of an honest party’s
nym, if the message and signature pair was not among the ones
previously passed to the environment E , then the simulator S
aborts.

Fact 3. Assume that the signature scheme employed is secure;
then the probability of aborting in Hybrid 5 is negligible.
Notice that from the environment E’s view, Hybrid 5 would



otherwise be identically distributed as Hybrid 4 modulo abort-
ing.

Hybrid 6. Hybrid 6 is the same as Hybrid 5 except for
the following changes. Whenever the environment passes
(pour, π, {sni,Pi, coini, cti}) to the simulator (on behalf
of corrupted party P), if the proof π verifies under
statement, then the simulator will call the NIZK’s extrac-
tor algorithm E to extract witness. If the NIZK π veri-
fies but the extracted witness does not satisfy the relation
LPOUR(statement,witness), then abort the simulation.

Fact 4. Assume that the NIZK is simulation sound extractable,
then the probability of aborting in Hybrid 6 is negligible.
Notice that from the environment E’s view, Hybrid 6 would
otherwise be identically distributed as Hybrid 5 modulo abort-
ing.

Finally, observe that Hybrid 6 is computationally indis-
tinguishable from the ideal simulation S unless one of the
following bad events happens:
• A value val′ decrypted by an honest recipient is different

from that extracted by the simulator. However, given that
the encryption scheme is perfectly correct, this cannot
happen.

• A commitment coin is different than any stored in
Blockchaincash.coins, yet it is valid according to the relation
LPOUR. Given that the merkle tree MT is computed using
collision-resistant a hash function, this occurs with at most
negligible probability.

• The honest public key generation algorithm results in
key collisions. Obviously, this happens with negligible
probability if the encryption and signature schemes are
secure.

Fact 5. Given that the encryption scheme is semantically
secure and perfectly correct, and that the signature scheme
is secure, then Hybrid 6 is computationally indistinguishable
from the ideal simulation to any polynomial-time environment
E .

APPENDIX F
FORMAL PROOF FOR HAWK

We now prove our main result, Theorem 1 (see Sec-
tion IV-B). Just as we did for private cash in Theorem 2, we
will construct an ideal-world simulator S for every real-world
adversary A, such that no polynomial-time environment E can
distinguish whether it is in the real or ideal world.

A. Ideal World Simulator
Our ideal program (IdealPhawk) and construction

(Blockchainhawk and ΠHAWK) borrows from our private
cash definition and construction in a non-blackbox way (i.e.,
by duplicating the relevant behaviors). As such, our simulator
program simP also duplicates the behavior of the simulator
from Appendix E-A involving mint and pour interactions.
Hence we will here explain the behavior involving the
additional freeze, compute, and finalize interactions.

Init. Same as in Appendix E.
Simulating corrupted parties. The following messages are
sent by the environment E to the simulator S(simP) which
then forwards it on to both the internally simulated contract
G(Blockchainhawk) and the inner simulator simP.
• Corrupt party P submits a transaction (freeze, π, sn, cm)

to the contract. The simulator forwards this transaction to the
contract, but also uses the trapdoor τ to extract a witness
from π, including $val and in. The simulator then sends
(freeze, $val, in) to FHAWK.

• Corrupt party P sumbits a transaction (compute, π, ct) to
the contract. The simulator forwards this to the contract and
sends compute to FHAWK. The simulator also uses τ to extract
a witness from π, including ki, which is used later. These
is stored as CorruptOpeni := ki.

• Corrupt party PM submits a transaction
(finalize, π, inM, out,{coin′i, cti}). The simulator
forwards this to the contract, and simply sends
(finalize, inM) to FHAWK.

Simulating honest parties. When the environment E sends
inputs to honest parties, the simulator S needs to simulate
messages that corrupted parties receive, from honest parties
or from functionalities in the real world. The honest parties
will be simulated as below:

• Environment E gives a freeze instruction to party
P . The simulator simP receives (freeze,P) from
F(IdealPhawk). The simulator does not have any infor-
mation about the actual committed values for $val or
in. Instead, the simulator create a bogus commitment
cm := Comms(0‖⊥‖⊥) that will later be opened
(via a false proof) to an arbitrary value. To generate
the serial number sn, the simulator chooses a random
element from the codomain of PRF. Finally, the sim-
ulator uses τ to generate a forged proof π and sends
(freeze, π, sn, cm) to the contract.

• Environment E gives a compute instruction to party
P . The simulator simP receives (compute,P) from
F(IdealPhawk). The simulator behaves differently de-
pending on whether or not the manager PM is cor-
rupted.

Case 1: PM is honest. The simulator does not know
values $val or in. Instead, the simulator sam-
ples an encryption randomness r and generates
an encryption of 0, ct := ENC(PM.epk, r, 0).
Finally, the simulator uses the trapdoor τ to create
a false proof π that the commitment cm and
ciphertext ct are consistent. The simulator then
passes (compute, π, ct) to the contract.

Case 2: PM is corrupted. Since the manager PM in
the ideal world would learn $val, in, and k
at this point, the simulator learns these values
instead. Hence it samples an encryption ran-
domness r and computes a valid encryption
ct := ENC(PM.epk, r, ($val‖in‖k)). The simu-
lator next uses τ to create a proof π attesting that



ct is consistent with cm. Finally, the simulator
sends (compute, π, ct) to the contract.

• Environment E gives a finalize instruction
to party PM. The simulator simP receives
(finalize, inM, out) from F(IdealPhawk). The
simulator generates the output coin′i for each party Pi
depending on whether Pi is corrupted or not:
– Pi is honest: The simulator does not know the correct

output value for Pi, so instead creates a bogus com-
mitment coin′i := Comms′i

(0) and a bogus ciphertext
ct′i := SENCki(s

′
i‖0) for sampled randomnesses ki

and s′i.
– Pi is corrupted: Since the ideal world recipient

would receive $val′i from F(IdealPhawk), the sim-
ulator learns the correct value $val′i directly. No-
tice that since Pi was corrupted, the simulator has
access to ki := CorruptOpeni, which it extracted
earlier. The simulator therefore draws a randomness
s′i, and computes coin′i := Comms′i

($val′i) and
cti := SENCki(s

′
i‖$val

′
i).

The simulator finally constructs a forged proof
π using the trapdoor τ , and then passes
(finalize, π, inM, out, {coin′i, cti}i∈[N ]) to the
contract.

B. Indistinguishability of Real and Ideal Worlds
To prove indistinguishability of the real and ideal worlds

from the perspective of the environment, we will go through
a sequence of hybrid games.
Real world. We start with the real world with a dummy adver-
sary that simply passes messages to and from the environment
E .
Hybrid 1. Hybrid 1 is the same as the real world, except that
now the adversary (also referred to as the simulator) will call
(ĉrs, τ, ek) ← NIZK.K̂(1λ) to perform a simulated setup for
the NIZK scheme. The simulator will pass the simulated ĉrs
to the environment E . When an honest party P publishes a
NIZK proof, the simulator will replace the real proof with a
simulated NIZK proof before passing it onto the environment
E . The simulated NIZK proof can be computed by calling the
NIZK.P̂(ĉrs, τ, ·) algorithm which takes only the statement as
input but does not require knowledge of a witness.

Fact 6. It is immediately clear that if the NIZK scheme
is computational zero-knowledge, then no polynomial-time
environment E can distinguish Hybrid 1 from the real world
except with negligible probability.

Hybrid 2. The simulator simulates the G(Blockchainhawk)
functionality. Since all messages to the G(Blockchainhawk)
functionality are public, simulating the contract functionality is
trivial. Therefore, Hybrid 2 is identically distributed as Hybrid
1 from the environment E’s view.
Hybrid 3. Hybrid 3 is the same as Hybrid 2 except the
following changes. When an honest party sends a message
to the contract (now simulated by the simulator S), it will

sign the message with a signature verifiable under an honestly
generated nym. In Hybrid 3, the simulator will replace all
honest parties’ nyms and generate these nyms itself. In this
way, the simulator will simulate honest parties’ signatures
by signing them itself. Hybrid 3 is identitally distributed as
Hybrid 2 from the environment E’s view.
Hybrid 4. Hybrid 4 is the same as Hybrid 3 except for the
following changes:
• When an honest party P produces a ciphertext cti for

a recipient Pi, and if the recipient is also uncorrupted,
then the simulator will replace this ciphertext with an
encryption of 0 before passing it onto the environment
E .

• When an honest party P produces a commitment coin or
cm, then the simulator replaces this commitment with a
commitment to 0.

• When an honest party P computes a pseudorandom serial
number sn, the simulator replaces this with a randomly
chosen value from the codomain of PRF.

Fact 7. It is immediately clear that if the encryption scheme
is semantically secure, if PRF is a pseudorandom function,
and if Comm is a perfectly hiding commitment scheme, then
no polynomial-time environment E can distinguish Hybrid 4
from Hybrid 3 except with negligible probability.

Hybrid 5. Hybrid 5 is the same as Hybrid 4 except for the
following changes. Whenever the environment E passes to the
simulator S a message signed on behalf of an honest party’s
nym, if the message and signature pair was not among the ones
previously passed to the environment E , then the simulator S
aborts.

Fact 8. Assume that the signature scheme employed is secure;
then the probability of aborting in Hybrid 5 is negligible.
Notice that from the environment E’s view, Hybrid 5 would
otherwise be identically distributed as Hybrid 4 modulo abort-
ing.

Hybrid 6. Hybrid 6 is the same as Hybrid 5 except for
the following changes. Whenever the environment passes
(pour, π, {sni,Pi, coini, cti}) (or (freeze, π, sn, cm)) to the
simulator (on behalf of corrupted party P), if the proof π
verifies under statement, then the simulator will call the
NIZK’s extractor algorithm E to extract witness. If the NIZK
π verifies but the extracted witness does not satisfy the relation
LPOUR(statement,witness) (or LFREEZE(statement,witness)),
then abort the simulation.

Fact 9. Assume that the NIZK is simulation sound extractable,
then the probability of aborting in Hybrid 6 is negligible.
Notice that from the environment E’s view, Hybrid 6 would
otherwise be identically distributed as Hybrid 5 modulo abort-
ing.

Finally, observe that Hybrid 6 is computationally indis-
tinguishable from the ideal simulation S unless one of the
following bad events happens:



IdealPsfe({Pi}i∈[n], $amt, f, T1)
Deposit: Upon receiving (deposit, xi) from Pi:

send (deposit, Pi) to the adversary A
assert T ≤ T1 and ledger[Pi] ≥ $amt
assert Pi has not called deposit earlier

ledger[Pi] := ledger[Pi]− $amt
record that Pi has called deposit

Compute: Upon receiving (compute) from Pi:
send (compute, Pi) to the adversary A
assert T ≤ T1

assert that all parties have called deposit
let (y1, . . . , yn) := f(x1, . . . , xn).
if all honest parties have called compute, notify the
adversary A of {yi}i∈K where K is the set of corrupt
parties

record that Pi has called compute
if all parties have called compute:

send each yi to Pi
for each party Pi that deposited: let
ledger[Pi] := ledger[Pi] + $amt.

Timer: Assert T > T1

If not all parties have deposited: for each Pi that
deposited: let ledger[Pi] := ledger[Pi] + $amt.
Else, let $r := (k · $amt)/(n − k) where k is the
number of parties who did not call compute. For
each party Pi that called compute: let ledger[Pi] :=
ledger[Pi] + $amt + $r.

Fig. 17. Ideal program for fair secure function evaluation.

• A value val′ decrypted by an honest recipient is different
from that extracted by the simulator. However, given that
the encryption scheme is perfectly correct, this cannot
happen.

• A commitment coin is different than any stored in
Blockchainhawk.coins, yet it is valid according to the re-
lation LPOUR. Given that the merkle tree MT is computed
using collision-resistant a hash function, this occurs with
at most negligible probability.

• The honest public key generation algorithm results in
key collisions. Obviously, this happens with negligible
probability if the encryption and signature schemes are
secure.

Fact 10. Given that the encryption scheme is semantically
secure and perfectly correct, and that the signature scheme
is secure, then Hybrid 6 is computationally indistinguishable
from the ideal simulation to any polynomial-time environment
E .

APPENDIX G
ADDITIONAL THEORETICAL RESULTS

In this section, we describe additional theoretical results for
a more general model that “shares” the role of the (minimally
trusted) manager among n designated parties. In contrast to
our main construction, where posterior privacy relies on a
specific party (the manager) following the protocol, in this
section posterior privacy is guaranteed even if a majority of
the designated parties follow the protocol. Just as in our main

Blockchainsfe({Pi}i∈[n], $amt)
Deposit: Upon receiving (deposit, {comj}j∈[n]) from Pi:

assert T ≤ T1 and ledger[Pi] ≥ $amt
assert Pi has not called deposit earlier
ledger[Pi] := ledger[Pi]− $amt
record that Pi has called deposit

Compute: Upon receiving (compute, si, ri) from Pi:
assert T ≤ T1

assert that all Pis have deposited, and that they have
all deposited the same set {comj}j∈[n].
assert that (si, ri) is a valid opening of comi

record that Pi has called compute
if all parties have called compute:
ledger[Pj ] := ledger[Pj ]+$amt for each j ∈ [n]
reconstruct ρ, send ρj to Pj for each j ∈ [n]

Timer: Assert T > T1

If not all parties have deposited or parties deposited
different {comj}j∈[n] sets:

For each Pi that deposited: let ledger[Pi] :=
ledger[Pi] + $amt.

Else, let $r := (k · $amt)/(n − k) where k is
the number of parties whose did not send a valid
opening. For each party Pi that sent a valid opening:
let ledger[Pi] := ledger[Pi] + $amt + $r.

Fig. 18. Contract program for fair secure function evaluation.

construction, even if all the manager parties are corrupted, the
correctness of the outputs as well as the security and privacy
of the underlying crytpocurrency remains in-tact.

A. Financially Fair MPC with Public Deposits
We describe a variant of the financially fair MPC result by

Kumaresan et al. [44], reformulated under our formal model.
We stress that while Bentov et al. [17] and Kumaresan et
al. [44] also introduce formal models for cryptocurrency-based
secure computation, their models are somewhat restrictive
and insufficient for reasoning about general protocols in the
blockchain model of secure computation — especially proto-
cols involving pseudonymity, anonymity, or financial privacy,
including the protocols described in this paper, Zerocash-like
protocols [11], and other protocols of interest [39]. Further,
their models are not UC compatible since they adopt special
opague entities such as coins.

Therefore, to facilitate designing and reasoning about the
security of general protocols in the blockchain model of secure
computation, we propose a new and comprehensive model for
blockchain-based secure computation in this paper.

1) Definitions: Our ideal program for fair secure function
evaluation is given in Figure 17. We make the following
remarks about this ideal program. First, in a deposit phase,
parties are required to commit their inputs to the ideal func-
tionality and make deposits of the amount $amt. Next, parties
send a compute command to the ideal functionality. When
all honest parties have issued a compute command, then
the adversary learns the outputs of the corrupt parties. If all
parties (including honest and corrupt) have issued an compute

command, then all parties learn their respective outputs, and
the deposits are returned. Finally, if a timeout happens defined



UserPsfe({Pi}i∈[n], $amt, f)

Init: Let f̂(x1, . . . , xn) be the following function parame-
terized by f :

pick a random ρ := (ρ1, . . . , ρn) ∈ {0, 1}|y|, where
each ρi is of bit length |yi|
additively secret share ρ into n shares s1, . . . , sn,
where each share si ∈ {0, 1}|y|
for each i ∈ [n], pick ri ∈ {0, 1}λ, and compute
comi := commit(si, ri)
the i-th party’s output of f̂ is defined as:

outi :=

 ŷi := yi ⊕ ρi
com1, . . . , comn

si, ri


where yi denotes the i-th coordinate of the output
f(x1, . . . , xn).

Let Πf̂ denote an MPC protocol for evaluating the
function f̂ .

Deposit: Upon receiving the first input of the form (deposit,
xi),

assert T ≤ T1

run the protocol Πf̂ off-chain with input xi
when receiving the output outi from protocol Πf̂ ,
send (deposit, {comi}i∈[n]) to G(Blockchainsfe)

Compute: Upon receiving the first (compute) input,
assert that all parties have deposited, and that
they have deposited the same set {comj}j∈[n]) to
G(Blockchainsfe)
if T ≤ T1 and Pi has not sent any
compute instruction, then send (compute, si, ri) to
G(Blockchainsfe).
On receiving ρi from G(Blockchainsfe), output ŷi⊕
ρi

Fig. 19. User program for fair secure function evaluation.

by T1, the ideal functionality checks to see if all parties have
deposited. If not, this means that the computation has not even
started. Therefore, simply return the deposits to those who
have deposited, and no one needs to be punished. However, if
some corrupt parties called deposit but did not call compute,
then these parties’ deposits are redistributed to honest parties.

2) Construction: We now describe how to construct a
protocol that realizes the functionality F(IdealPsfe) in the most
general case.

Our contract construction and user-side protocols are de-
scribed in Figures 18 and 19 respectively. The protocol is a
variant of Bentov et al. [17] and Kumaresan et al. [44], but
reformulated under our formal framework. The intuition is that
all parties first run an off-chain MPC protocol – at the end of
this off-chain protocol, party Pi obtains ŷi which is a secret
share f its output yi. The other share needed to recover output
yi is ρi, i.e., yi := ŷi⊕ρi. Denote ρ := (ρ1, . . . ρn). All parties
also obtain random shares of the vector ρ at the end of the off-
chain MPC protocol. Then, in an on-chain fair exchange, all
parties reconstruct ρ. Here, each party deposits some money,
and can only redeem its deposit if it releases its share of ρ. If
a party aborts without releasing its share of ρ, its deposit will
be redistributed to other honest parties.

Theorem 3. Assume that the underlying MPC protocol Πf̂
is UC-secure against an arbitrary number of corruptions,
that the secret sharing scheme is perfectly secret against any
n − 1 collusions, and that the commitment scheme commit
is perfectly binding, computationally hiding, and equivocal,
Then, the protocols described in Figures 18 and 19 securely
emulate F(IdealPsfe) in the presence of an arbitrary number
of corruptions.

Proof. Suppose that Πf̂ securely emulates the ideal functional-
ity FSFE(f̂). For the proof, we replace the Πf̂ in Figure 19 with
FSFE(f̂), and prove the security of the protocol in the (FSFE(f̂),
G(Blockchainsfe))-hybrid world. We describe the user-defined
portion of the simulator program simP. The simulator wrapper
was described earlier in Figure 13. During the simulation,
simP will receive a deposit instruction from the environment
on behalf of corrupt parties. The ideal functionality will also
notify the simulator that an honest party has deposited (without
disclosing honest parties’ inputs). If the simulator has collected
deposit instructions on behalf of all parties (from both the
ideal functionality and environment), at this point the simulator
• Simulates n − 1 shares. Among these |K| shares will be

assigned to corrupt parties.
• Simulates all commitments {comi}i∈[n]. n − 1 of these

commitments will be computed honestly from the simulated
tokens. The last commitment will be simulated by commit-
ting to 0.
Now the simulator collects compute instructions from the

ideal functionality on behalf of honest parties, and from the
environment on behalf of corrupt parties. When the simulator
receives a notification (compute, si, ri) from the environment
on behalf of a corrupt party Pi, if si and ri are not consistent
with what was previously generated by the simulator, ignore
the message. Otherwise, send compute to the ideal functional-
ity on behalf of corrupt party Pi. When the simulator receives
a notification (compute, Pi) from the ideal functionality for
some honest Pi, unless this is the last honest Pi, the simulator
returns one of the previously generated and unused (si, ri)’s.
If this is the last honest Pi, then the simulator will also get the
corrupt parties’ outputs {yi}i∈K from the ideal functionality.
At this point, the simulator simulates the last honest party’s
opening to be consistent with the corrupt parties’ outptus –
this can be done if the secret sharing scheme is perfectly
simulatable (i.e., zero-knowledge) against n−1 collusions and
the commitment scheme is equivocable.

It is not hard to see that the environment cannot distinguish
between the real world and the ideal world simulation.

Optimizations and on-chain costs. Since F(IdealPsfe) is
simultaneously a generalization of Zerocash [11] and of earlier
cryptocurrency-based MPC protocols [17], [40], [44], our
construction satisfies the strongest definition so far. However,
our construction above requires compiling a generic NIZK
prover algorithm with a generic MPC compiler, it is likely
slow. Our main construction, ProtHawk (see Section IV), can
be seen as an optimization when n = 1 (i.e., the MPC is



executed by only a single party). Similarly, the earlier off-
chain MPC protocols [17], [40], [44] can be used in place of
ours if the user-specified program does not involve any private
money.

Even our general construction can be optimized in sevearl
ways. One obvious optimization is that not all parties need to
send the commitment set {comj}j∈[n] to the contract. After
the first party sends the commitment set, all other parties can
simply send a bit to indicate that they agree with the set.

If we adopt this optimization, the on-chain communication
and computation cost would be O(|y| + λ) per party. In the
special case when all parties share the same output, i.e., y1 =
y2 = . . . = yn, it is not hard to see that the on-chain cost can
be reduced to O(|yi|+ λ).

If we were to rely on a (programmable) random oracle
model, [32] we could further reduce the on-chain cost to
O(λ) per party (i.e., independent of the total output size).
In a nutshell, we could modify the protocol to adopt a ρ of
length λ. We then apply a random oracle to expand ρ to |y|
bits. Our simulation proof would still go through as long as
the simulator can choose the outputs of the random oracle.

B. Fair MPC with Private Deposits
The construction above leaks nothing to the public except

the size of the public collateral deposit. For some applications,
even revealing this information may leak unintended details
about the application. As an example, an appropriate deposit
for a private auction might corresopnd to the seller’s estimate
of the item’s value. Therefore, we now describe the same task
as in Appendix G, but with private deposits instead.

1) Ideal Functionality: Figure 20 defines the ideal program
for fair MPC with private deposits, IdealPsfe-priv. Here, the
deposit amount is known to all parties {Pi}i∈[n] participating
in the protocol, but it is not revealed to other users of the
blockchain. In particular, if all parties behave honestly in the
protocol, then the adversary will not learn the deposit amount.
Therefore, in the Init part of this ideal functionality, some
party Pi sends the deposit amount $amt to the functionality,
and the functionality notifies all parties of $amt. Otherwise,
the functionality in Figure 20 is very similar to Figure 17,
except that when all of {Pi}i∈[n] are honest, the adversary
does not learn the deposit amount.

2) Protocol: Figures 21 and 22 depict the user-side pro-
gram and the contract program for fair MPC with private
deposits.

At the beginning of the protocol, all parties {Pi}i∈[n] agree
on a deposit amount $amt, and cm0 and publish a commitment
to $amt on the blockchain. As in the case with public deposits,
all parties first run an off-chain protocol after which each party
Pi obtains ŷi. ŷi is random by itself, and must be combined
with another share ρi to recover yi (i.e., the output is recovered
as yi := ŷi ⊕ ρi). Denote ρ := (ρ1, . . . , ρn). All parties also
obtain random shares of the vector ρ at the end of the off-
chain MPC protocol. The vector ρ can be reconstructed when
parties reveal their shares on the blockchain, such that each
party Pi can obtain its outcome yi. To ensure fairness, parties

IdealPsfe-priv({Pi}i∈[N ], T1, f)
Init: Call IdealPcash.Init. Additionally:

FrozenCoins: a set of coins and private inputs re-
ceived by this contract, each of the form (P, in, $val)
Initialize FrozenCoins := ∅

On receiving the first $amt from some Pi, notify all
parties of $amt

Deposit: Upon receiving (deposit, $vali, xi) from Pi for some
i ∈ [n]:

assert $vali ≥ $amt and T ≤ T1

assert at least one copy of (Pi, $vali) ∈ Coins
assert Pi has not called deposit earlier
send (deposit,Pi) to A
add (Pi, $vali, ini) to FrozenCoins
remove one (Pi, $vali) from Coins
record that Pi has called deposit

Compute: Upon receiving compute from Pi for some i ∈ [N ]:
send (compute,Pi) to A
assert current time T ≤ T1

assert that all parties called deposit
Let (y1, . . . , yn) := f(x1, . . . , xn).
If all honest parties have called compute, notify the
adversary A of {yi}i∈K where K is the set of corrupt
parties.
record that Pi has called compute
If all parties have called compute:

Send each yi to Pi.
For each party Pi that deposited: add one
(Pi, $vali) to Coins

Refund: Upon receiving (refund) from Pi:
notify (refund, Pi) to A
assert T > T1

assert Pi has not called refund earlier
assert Pi has called compute
If not all parties have called deposit, add one
(Pi, $vali) to Coins
Else $r := (k · $val)/(n − k) where k is the
number of parties who did not call compute,
and add one (Pi, $vali + $r) to Coins

IdealPcash: include IdealPcash (Figure 3).

Fig. 20. Definition of IdealPsfe-priv with private deposit. Notations:
FrozenCoins denotes frozen coins owned by the contract; Coins denotes the
global private coin pool defined by IdealPcash.

make private deposits of $amt to the blockchain, and can only
obtain their private deposit back if they reveal their share of
ρ to the block chain. The private deposit and private refund
protocols make use of commitment schemes and NIZKs in a
similar fashion as Zerocash and Hawk.

Theorem 4. Assuming that the hash function in the Merkle
tree is collision resistant, the commitment scheme Comm
is perfectly binding and computationally hiding, the NIZK
scheme is computationally zero-knowledge and simulation
sound extractable, the encryption scheme ENC is perfectly
correct and semantically secure, the PRF scheme PRF is
secure, then, our protocols in Figures 21 and 22 securely
emulates the ideal functionality F(IdealPsfe-priv) in Figure 20.



UserPsfe-priv({Pi}i∈[n], f)
Init: Same as Figure 19. Additionally, let P denote the

present pseudonym, let crs denote an appropriate com-
mon reference string for the NIZK
If current (pseudonymous) party is P1:

send ($amt, r0) to all {Pi}i∈[n]

let cm0 := Commr0($amt), and send (init, cm0)
to G(Blockchainsfe-priv)

Else, on receiving ($amt, r0), store ($amt, r0)
On receiving (init, cm0) from G(Blockchainsfe-priv):
verify that cm0 = Commr0($amt)

Deposit: Upon receiving the first input of the form (deposit,
$val, xi): Same as Figure 19. Additionally,

assert initialization was successful
assert current time T < T1

assert this is the first deposit input
let MT be a merkle tree over Blockchaincash.Coins
assert that some entry (s, $val, coin) ∈Wallet where
$val = $amt
remove one such (s, $val, coin) from Wallet
sn := PRFskprf(P‖coin)
let branch be the branch of (P, coin) in MT
statement := (MT.root, sn, cm0)
witness := (P, coin, skprf, branch, s, $val, r0)
π := NIZK.Prove(LDEPOSIT, statement,witness)
send (deposit, π, sn) to G(Blockchainsfe-priv)

Compute: Same as Figure 19
Refund: On input (refund) from the environment,

if not all parties called deposit, k := 0
else k := (number of parties that aborted)
let $val′ := $amt + (k · $amt)/(n− k)
pick randomness s
let coin := Comms($val

′)
statement := (coin, cm0, k, n)
witness := (s, r0, $val, $val

′)
π := NIZK.Prove(LREFUND, statement,witness)
send (refund, π, coin) to G(Blockchainsfe-priv).

Fig. 21. User program for fair SFE with private deposit.

Proof. The proof can be done in a similar manner as that of
Theorem 1 (see Appendix F).

Blockchainsfe-priv({Pi}i∈[n])
Init: Let crs denote an appropriate common reference string

for the NIZK.
On first receiving (init, cm0) from Pi for some i ∈
[n], send cm0 to all {Pi}i∈[n].

Deposit: On receive (deposit, {comj}j∈[n], π, sn) from Pi:
assert initialization was successful
assert T ≤ T1

assert sn /∈ SpentCoins
statement := (MT.root, sn, cm0)
assert NIZK.Verify(LDEPOSIT, π, statement)
assert Pi has not called deposit earlier
record that Pi has called deposit

Compute: Upon receiving (compute, si, ri) from Pi:
assert T ≤ T1

assert that all Pis have deposited, and that they have
all deposited the same set {comj}j∈[n].
assert that (si, ri) is a valid opening of comi.
record that Pi has called compute

Refund: Upon receiving (refund, π, coin) from Pi:
assert T > T1

assert Pi did not call refund earlier
assert Pi called compute
if not all parties have deposited or parties deposited
different {comj}j∈[n] sets, k := 0
else k := (number of aborting parties)
statement := (coin, cm0, k, n)
assert NIZK.Verify(LREFUND, π, statement)
add (Pi, coin) to Coins

Relation (statement,witness) ∈ LDEPOSIT is defined as:
parse statement := (MT.root, sn, cm0)
parse witness := (P, coin, skprf, branch, s, $val, r0)
coin := Comms($val)
cm0 := Commr0($val)
assert MerkleBranch(MT.root, branch, (P‖coin))
assert P.pkprf = skprf(0)
assert sn = PRFskprf(P‖coin)

Relation (statement,witness) ∈ LREFUND is defined as:
parse statement := (coin, cm0, k, n)
parse witness := (s, r0, $val, $val

′)
assert cm0 := Commr0($val)
assert $val′ := $val + (k · $val)/(n− k)
assert coin := Comms($val

′)

Fig. 22. Blockchain program for fair SFE with private deposit.


