
Privacy-preserving Frequent Itemset Mining
for Sparse and Dense Data

Peeter Laud1 and Alisa Pankova1,2,3

1 Cybernetica AS
2 Software Technologies and Applications Competence Centre (STACC)

3 University of Tartu
{peeter.laud|alisa.pankova}@cyber.ee

Abstract. Frequent itemset mining is a task that can in turn be used for other
purposes such as associative rule mining. One problem is that the data may be
sensitive, and its owner may refuse to give it for analysis in plaintext. There exist
many privacy-preserving solutions for frequent itemset mining, but in any case
enhancing the privacy inevitably spoils the efficiency. Leaking some less sensitive
information such as data density might improve the efficiency. In this paper, we
devise an approach that works better for sparse matrices and compare it to the
related work that uses similar security requirements on similar secure multiparty
computation platform.

1 Introduction

Frequent itemset mining (FIM) is a standard data mining task that can in turn be used to
extract some more interesting knowledge such as association rules. Not only the task it-
self, but also its privacy-preserving variant has been well studied in many related works.
The goal of this task is, given a collection of sets, find the subsets that are contained
in sufficiently many of these sets. After finding which elements are more likely to oc-
cur together, one may search for the reason for that co-occurrence, and whether the
existence of one item implies the existence of the other one.

In this paper, our goal is not to implement yet another efficient algorithm for FIM,
but to see if we can gain more efficiency given some additional assumptions about the
matrix density. We are going to present some algorithms that can be used for very sparse
and very dense data matrices. Moreover, as the algorithms for FIM are iterative, even if
data has not been sparse on the first iteration, it may become very sparse or very dense
on later iterations, and hence we are not very strict about constraining our algorithms to
sparse and dense data only.

2 Preliminaries

In this section, we define some notions and quantities that will be used further.

2.1 FIM

Input Data Traditionally, the sets themselves are called the transactions, and their el-
ements are called items. This comes from one possible use case, where the items are
some goods sold in the supermarket, and each transaction corresponds to the contents
of one shopping cart that a client has bought. In this case, analyzing frequent itemsets
tells which items are usually bought together, so that they could be deliberately put into
opposite corners of the supermarket, and the clients would have to increase the length
of their trajectories, which hopefully forces them to buy more goods than they initially
wanted. In general, the shopping carts are nothing more than just sets T over some uni-
versal set U (e.g all the goods sold in the shop), and the task is to find the subsets I ⊆U
that are encountered in sufficiently many sets T .

Frequency Definition First, one has to define a frequent itemset. Usually, the criterion
of being frequent depends on the particular task, and hence initially one defines some
threshold t ≥ 1 (sets of size 0 are not very interesting) in such a way that an itemset I is
considered frequent if the number of transactions that contain I is at least t.

Data Representation In general, the data table is represented by a bit matrix B = (bi j).
Each column of the matrix corresponds to an item, and each row to a transaction. The
matrix is defined as bi j = 1 iff the j-th item belongs to the i-th transaction.

2.2 Our Contribution

In a perfectly secure mining, nothing is leaked besides the final result that will be pub-
lished anyway. This means that a dense matrix is in fact indistinguishable from a sparse
matrix, since that information also remains private. Could we do something better if we
agreed to leak the matrix density (the number of nonzero entries in the bit matrix)?

In this paper, we think on representing the matrix B as a set of pairs C = (tid, item),
such that (i, j) ∈ C iff bi j = 1. The cardinality |C| clearly leaks information about the
number of nonzero entries, but we find it acceptable. We see that unfortunately leaking
just |C| is not enough to achieve better efficiency than for bit matrices, and hence we ad-
ditionally will have to leak an upper bound on the number of elements in each column.
Leaking the precise column size allows to achieve even more efficient solutions.

2.3 Notation

Throughout this paper, we use the following quantities:

– m is the number of rows in the data table (transactions);
– n is the number of columns in the data table (items); the same notation is used to

denote the number of columns on current iteration (itemsets);
– `≤ mn is the total number of non-zero entries in the data table;
– m j ≤ m is the number of non-zero entries in the j-th column;
– m′ ≥m j(∀ j) is the upper bound on the number of non-zero entries in each column;
– t is the threshold of being a frequent set;

– k is the size of the currently generated itemsets;
– k̂ is the maximal size of frequent itemsets that have to be generated.

Some FIM-specific notation:

– σ(I) is the set of all transactions containing the itemset I (the support of I);
– ∆(I1, I2) := σ(I1)\σ(I2) is the difference of the supports of I1 and I2.

The following more general shorthand operation notation will be used:

– protocol input length (if the input is a vector) n;
– number of bits of protocol input: k;
– secret shared value (additive or xor sharing) 〈[a]〉;
– additively shared value [[a]];
– xor shared value 〈〈a〉〉;
– i-th element of a vector a: ai and a[i];
– i-th row of a matrix A: A[i,∗];
– rows i1, . . . , ik of A: A[I,∗] for I = {i1, . . . , in};
– j-th column of a matrix A: A[∗, j];
– columns j1, . . . , jk of A: A[∗,J] for J = { j1, . . . , jn};
– (i, j)-th element of a matrix A: (ai j) and A[i, j];
– vector concatenation: x‖y;

– [1]m =

m︷ ︸︸ ︷
[1, . . . ,1];

– zip of two (equal-length) vectors: x ./ y = [(xi,yi) | i← [1, . . . , |x|]].
– matrix columnwise multiplication: A⊗B. Namely, if A = (a1‖ . . .‖anA) and B =
(b1‖ . . .‖bnB), then A⊗B = (c1,1, . . . ,cnA,nB) where ci, j[k] = ai[k] ·b j[k];

– protocol composition:
• P1⊕P2 execute P1 and P2 in parallel;
• P1+P2 execute P1 and P2 sequentially;
• n�P execute n instances of P in parallel;
• n ·P execute P sequentially n times.

2.4 General FIM Algorithms

There exist several variations for the standard FIM algorithms. In this section, we just
give the intuition about how these algorithms work, without introducing particular algo-
rithm descriptions, as the actual implementations may vary. We present some particular
private versions of these algorithms in Sec. 3.

Apriori This algorithm sequentially constructs all the frequent itemsets of size 1, then
of size 2, until all the frequent sets of size k̂. Any infrequent itemsets are immediately
discarded. The frequent sets of size k are constructed only for those sets whose all k−1
subsets have been frequent. The straightforward implementation of this algorithm does
not keep in memory the lists of transactions that contain sets of size other than 1, and
on each iteration, the sets are constructed from the initial database. The way in which
these sets are constructed depends on the particular algorithm instance. One possible
recursive implementation is given in Alg. 1 (although it is actually linear and can be
written out into a for-cycle as well, we have written it recursively to make it comparable
to the other algorithms).

Algorithm 1: Apriori

Data: M all the frequent sets of size k−1
Result: Frequent itemsets of size at least k
F ← /0 ;1
foreach Xi ∈M do2

foreach X j ∈M, j > i do3
R← Xi∪X j ;4
if |R| ≥ t then5

F ← F ∪{R} ;6

if F 6= /0 then7
F ′← Apriori(F) ;8

return F ∪F ′ ;9

Algorithm 2: Eclat

Data: [P] all the frequent sets of size k−1 with a prefix P
Result: Frequent itemsets of size at least k with a prefix P
foreach Xi ∈ [P] do1

Fi← /0 ;2
foreach X j ∈ [P], j > i do3

R = Xi∪X j ;4
if |R| ≥ t then5

Fi = Fi∪{R} ;6

if Fi 6= /0 then7
F ′i = Eclat(Fi) ;8

return
⋃

i F ′i ;9

Eclat Similarly to Apriori, this algorithm constructs set of size k from sets of size
k− 1. The main difference from Apriori is that this algorithm uses depth-first search,
considering on one step not all the possible subsets of size k, but rather constrains one
step to the sets of size k with a common prefix P of length k− 1 (these are all sets of
the form P∪{x} for x /∈ P). Let the support of P be denoted σ(P). For each item x,
all possible frequent sets with prefix P′ := P∪{x} can be constructed as σ(P∪{x})∩
σ(P∪{y}) for all other sets (P∪{y}), y 6= x. This new longer prefix is then processed
recursively. The description is given in Alg. 2.

Diffset If the matrix columns, are dense, then instead of keeping a set of transactions
that contain the given dataset, one could try to keep a set of transactions that do not con-
tain the given dataset. Actually, even something more clever can be done. Another FIM
algorithm Diffset [11] is similar to Eclat, but instead of keeping the set of transactions
in each itemset, it keeps just the sizes of supports of sets of size k− 1, and the differ-
ences between a set of size k and its subsets of size k−1. In this way, even if the initial
matrix is not dense, the algorithm may still give better efficiency on later iterations.

Algorithm 3: Diffset

Data: [P] all the frequent sets of size k−1 with a prefix P
Result: Frequent itemsets of size at least k with a prefix P
foreach Xi ∈ [P] do1

Fi← /0 ;2
foreach X j ∈ [P], j > i do3

R← Xi∪X j ;4
∆(P,R)← ∆(P,X j)\∆(P,Xi) ;5
|σ(R)|= |σ(P)|− |∆(P,R)| ;6
if |σ(R)| ≥ t then7

Fi = Fi∪{R} ;8

if Fi 6= /0 then9
F ′i = Diffset(Fi) ;10

return
⋃

i F ′i ;11

Namely, suppose that the itemsets P∪{x} and P∪{y}, are frequent. The question is
whether the itemset P∪{x}∪{y} is frequent. Let ∆(P,P∪{x}) be the difference in sup-
ports of the itemsets P and P∪{x}. We can compute σ(P∪{x})=σ(P)\∆(P,P∪{x}),
as shown in Alg. 3.

3 Privacy-preserving FIM

In privacy-preserving setting, the initial data table is partitioned amongst several par-
ties. The partitioning can be horizontal (rowwise), vertical (columnwise), or just any
arbitrary sharing. Since FIM can in turn be used for various purposes such as associa-
tive rule mining, preserving privacy may be very important in some cases. For example,
several shops may want to make some statistics of the contents of shopping carts with-
out revealing what exactly has been sold. Privacy is especially important in cases where
the shopping cart is associated with the customer.

It is not so easy to implement more efficient complex algorithms in a privacy-
preserving way. Some simpler algorithms such as Apriori and Eclat have been imple-
mented and optimized in [2,5,9]. Implementing an algorithm such as FP-tree (that we
have not described in Sec. 2.4 since it is irrelevant in this paper) is not suitable for
all security settings since its structure leaks a lot of information. In [9] that makes use
of FP-trees, the tree is constructed after the frequent itemsets have been found (using
Apriori-based algorithm), and its goal is to introduce noise into the public output and
make the task differentially private. Differential privacy has been considered in [5,12,9],
and these methods are based on adding noise to the data. Similar distortion-based ap-
proach is also used in [10]. There are also some solutions designed for specific initial
data sharing, such as vertical or horizontal partitioning [7].

In this work, we mainly extend the results of [2]. The efficiency results are based
on the operation complexities of Sharemind [4]. We do not consider differential privacy
here. We assume that the algorithm should work with any initial partitioning. The algo-

Operation Call Returned Value
Mult(〈[x]〉,〈[y]〉) 〈[x · y]〉

OuterProd(〈[x]〉,〈[y]〉) 〈[Z]〉 where zi j = xi · y j
ColSum(〈[X]〉) 〈[y]〉, yi = ∑

m
j=1 x ji

ShareConv(〈[x]〉,k) 〈[y]〉, x ∈ Z2, y ∈ Z2k , x = y
Shuffle(〈[x]〉) 〈[y]〉 a random reordering of x

Equal(〈[x]〉,〈[y]〉) 〈[x == y]〉
LessThan(〈[x]〉,〈[y]〉) 〈[x≤ y]〉

Declassify(〈[x]〉) x
Table 1. Basic blackbox operations

rithms of [2] are based on bit matrix representation, and hence it works with the same
efficiency for both sparse and dense matrices. We want a solution that works better with
sparse matrices.

3.1 Basic Black-box Operations

The algorithms will use some blackbox operations that in general depend on the un-
derlying SMC platform, and whose implementation is not the part of development of
FIM algorithms. The notation used for basic operations is presented in Tab. 1. While
notation Protocol(x) denotes the application of a protocol to the vector of inputs x,
we use Protocol(n,k) for denoting the complexity of running the protocol on a k-bit
vector of inputs x such that |x| = n (if the protocol has two input vectors x and y, we
take n = |x|+ |y|, as it will be sufficient to estimate the complexity of our particular
protocols). As a shorthand notation, we write just Protocol(k) for the protocol whose
inputs are not vectors, but single elements. We also sometimes use explicit notation
˜Protocol(n,k) for the number of rounds and

−−−−−→
Protocol(n,k) for communication (in bits).

3.2 Bit Matrix Representation

First, we describe the existing implementations of [2] based on representing the data
table as a secret shared bit matrix. Our own algorithms will be based on this work.

Initially, the n items and m transactions are ordered in some way. For each item
j ∈ {1, . . . ,n}, a shared bit vector [[bi]] of length m is stored. It is defined as [[bi j]] = 1
iff the i-th transaction contains the i-th item. These vectors comprise a bit matrix [[B]] =
([[b1]] | . . . | [[bn]]) of size m×n.

We give the two complexity estimations: the number of rounds, and the number
of communicated bits that are spent on computing one frequent itemset of size k. The
reason why we take this metric is that it is good when comparing bit representation with
the set representation (which we are going to present in this paper). If we parallelize the
computation of several itemsets of size k, then it can be done in the bit representation
as well as in the set representation.

Algorithm 4: Privacy Preserving Apriori

Data: [[D]] the initial data matrix
Result: All the frequent itemsets
// Compute support for all cover vectors
[[s]]← CountOnes([[D]]) ;1
// Declassify index vector of frequent columns
f1←Declassify([[s]]≥ [[t]]) ;
// Gather frequent column data
F1←{[[D]][i] | f1[i] = 1} ;2
[[M1]]← [[D]][∗,F1] ;3

// Validate candidate itemsets until size k̂
foreach k ∈ {2, . . . , k̂} do

// Generate candidates
(Ck, I1, I2)← GenCandidates(Fk−1) ;4
// Compute covers for all candidate sets
[[Mk]]← [[Mk−1]][∗, I1]⊗ [[Mk−1]][∗, I2] ;5
// Compute support for all covers
[[s]]← CountOnes([[Mk]]) ;6
fk←Declassify([[s]]≥ [[t]]) ;7
// Remember frequent sets
Fk←{Ck[i] | fk[i] = 1} ;8
[[Mk]]← [[Mk]][∗,Fk] ;9

return
⋃

k Fk ;10

First, we present privacy-preserving implementations of some of the algorithms pre-
sented in Sec. 2.4, taken from [2]. They are entirely based on additive secret sharing.
The descriptions of subalgorithms used in these algorithms are given in Tab. 1.

Apriori In Sec. 2.4, we omitted the precise description of how the sets of size k are
constructed. In [2], two possible implementations of Apriori are proposed: with and
without caching. In the first case, the sets of size k are constructed from the intersections
of size k−1, what makes Apriori similar to Eclat. In the second case, the intersection of
k vectors that correspond to sets of size 1 have to be found, and the algorithm becomes
too inefficient in practice. The cached version of the algorithm is shown in Alg. 4.

The function GenCandidates filters out the possible pairs of k−1 itemsets for which
it makes sense to find the intersection and obtain a frequent set of size k. For example,
if AB and AC are frequent, but BC is not, then it makes no sense to construct ABC since
it cannot be frequent in any case, and hence the pair (AB,BC) can be discarded. This
function returns a set of itemsets of size k (the quantity Ck) and two sets of indices I1
and I2 that show how Ck is being constructed from Mk (Ck[j] = I1[j]∪ I2[j] for all j)
In particular, the Apriori algorithm of [2] is implemented similarly to Eclat, in such a
way that, for each j, the itemsets I1[j] and I2[j] share the same prefix. The only way in
which it differs from Eclat is the traversal order.

Algorithm 5: Privacy Preserving Eclat (PPEclat)
Data: [[M]] the columns corresponding to itemsets sharing the same prefix P
Result: All the frequent sets with all the extensions of the prefix P
[[M]]← [[M]][∗,X]⊗ [[M]][∗,N] ;1
// Compute supports ;
[[s]]← CountOnes([[M]]) ;2
f ←Declassify([[s]]≥ [[t]]) ;3
// Construct new frequent item sets
F ←{X}, F∗←{X ∪N[i] | f [i] = 1} ;4
// If we have reached the target set size, return ;
if |X |+1≥ k̂ then

return F∗ ;5

// See how we could extend the current frequent sets
foreach Y ∈ F∗ do

N∗ = {Z ∈ F∗ | Y � Z} // Recursively extend the frequent itemset candidate6
F ← F ∪PPEclat(Y,N∗, [[M]][∗,N∗]) ;7

return F ;8

PP Eclat This algorithm works works similarly to the memory cached Apriori. The
communication and round complexities of computing all the frequent sets of size k
are the same. The difference is in the way in which the itemsets are traversed, and how
many intermediate computations should be kept in memory at once. Not all the itemsets
are constantly stored in memory, but some of them are discarded and are recomputed
again in the recursive Depth-First-Search process, while Apriori uses pure Breadth-
First-Search. The recursive step of this algorithm is given in 5. The notation Y � Z
denotes the itemsets that share the same prefix, and where the remaining element of Z
has higher index than the remaining element of Y (this is needed just not to generate
the same sets multiple times). An optimized version of Eclat does a certain amount
of caching, giving hybrid Eclat-Apriori solutions, which have also been implemented
in [2].

PP Diffset This algorithm has not been implemented in [2], but it could be analogous
to Eclat. The reason why it has not been implemented is that it gives no advantage
compared to Eclat. Namely, since information about the columns should remain private,
and the difference between a set of size k and its subset of size k−1 can be up to m− t
(any frequent set is found in at most m and at least t transactions), we cannot make
any significant advantage unless t is very large. Moreover, in the case of bit matrix
implementation, we need m bits to represent an itemset anyway, and hence Diffset gives
no advantage at all.

The main step of presented Privacy-Preserving FIM algorithms We now make a
small summary of the privacy-preserving FIM algorithms proposed above. A similar
property of these algorithms is that, on each step of each iteration, all they compute a
frequent itemset of size k, based on the frequent itemsets of size k− 1 (the difference

of these algorithms is mainly in which of k-sets are computed in parallel). The basis of
finding a k-set from k− 1 subsets is private set intersection (for Apriori and Eclat), or
set difference (for Diffset).

A straightforward approach to find a set intersection is to represent each set as a
characteristic vector of the item universe, and then find their pointwise product. This
method is used in the bit matrix representation.

Although all matrix elements are bits, at some moment the column sum has to be
computed. In this way, in [2] the matrix elements are initially all at least logm-bit, since
the maximal value that the sum may take is m. For very sparse sets, such an encod-
ing may be excessive due to large amount of zeroes that will not be needed anyway.
In [2], finding an intersection of two itemsets i and j and checking its cardinality is
implemented as:

1. multiply pointwise two logm-bit vectors of length m;
2. sum the obtained m products up;
3. compare the obtained logm-bit number with a logm-bit number t.

In Sec. 3.5, we discuss whether it is reasonable to keep all the bits in logm format, or
there is another more efficient way to find the sum.

Precise complexities of bit matrix approach Implementing the intersection straight-
forwardly (as in [2]), this is m�Mult(logm) for multiplying pointwise two logm bit
vectors of length m. Another possibility to do the same thing is to keep all the bits in
Z2, doing the share conversion after the multiplication. Now the multiplication of m
bit pairs has complexity m�Mult(1), and the share conversion m�ShareConv(logm),
which can be useful if ShareConv is implemented more efficiently than Mult.

Note that, if we need to compute Mult(〈[ai]〉,〈[b j]〉) for all i ∈ {1, . . . ,na}, j ∈
{1, . . . ,nb}, then we could apply OuterProd(〈[a1]〉| . . .‖〈[ana]〉,〈[b1]〉‖ . . .‖〈[bnb]〉) in-
stead, which has the same operation complexity as (na + nb)Mult(1). Hence treating
intersections independently may look like cheating. We must ensure that our protocol
for sparse matrices achieves the same property. Namely, if some set participates in some
intersection, then for several intersections we have to pay as much as for one intersec-
tion. Hence we need to think about something similar for the set based approach. We
discuss it in Sec. 3.3.

3.3 Set Representation

Set representation makes sense for sparse and dense matrices. First, let us assume that
the columns are sparse, i.e each column of the matrix contains at most m′ entries for
m′� m. We will now use an m′×n matrix for data table representation. Each column
will now contain not the characteristic bit vector, but the indices of transactions straight-
forwardly. Encoding a number from [1, . . . ,m] requires logm bits. If the table contains
at most nm′ nonzero entries, then nm′ · logm bits are sufficient to encode it. If the size
of some column is m j < m′, then some m′−m j of its entries are set to 0. The order of
values in a column does not matter.

Algorithm 6: CountOnes for sorted inputs
Data: 〈〈a〉〉 is a sorted vector
Result: 〈〈c〉〉 is the number of non-zeroes in a
〈〈b1〉〉 ← 〈〈a1〉〉 ;1
foreach i ∈ {1, . . . , |a|} do2
〈〈bi〉〉 ← 〈〈ai〉〉⊕〈〈ai−1〉〉 ;3

〈〈c〉〉 ←
⊕|a|

i=1 i · 〈〈bi〉〉 ;4
return 〈〈c〉〉 ;5

Building Blocks First of all, we present some algorithms that will be later used as
building blocks for set operations.

– Radix Sort (Rsort). We use the algorithm proposed in [3, Algorithm 3]. That paper
uses notation m ·Protocol(n) to denote that Protocol have been run sequentially m
times on n inputs. Although [3, Algorithm 3] does not include the ring in which the
computation is made (this is implicit since it is always the same throughout their
paper), the number of bits is actually very important in our settings. Hence we write
m ·Protocol(n,k) to denote that the protocol has been run m times on n inputs of k
bits each (the details of protocol composition can be found in Sec. 2). The precise
interpretation of protocols is given in Tab. 1.
The secure operation complexity of the radix sort of [3] is k · (n�Mult(k)+ n�
ShareConv(k) + Shuffle(n,2k) + n�Declassify(k)). More precisely, the protocol
runs in k steps, on each of which the elements are sorted according to one bit, using
counting sort (we further denote one iteration of Rsort as Csort). In our algorithms,
we often need to sort the values just by one bit, and that makes Csort especially
useful.

– Quicksort (Qsort). We use the algorithm proposed in [6, Protocol 1] to sort n el-
ements of k bits each. More precise secure operation complexity of this algorithm
is given in [3], and in average case this is

−−−−→
Shuffle(n,k)+ logn · (n�

−−−−−−→
LessThan(k)+

n�
−−−−−−→
Declassify(k)). Since the case only depends on the random shuffle, it turns out

that the worst case comes with negligible probability, and we may indeed believe
that we get the average case in practice.

– Counting the number of ones in a sorted bit list (CountOnes)
This operation is used on each iteration in each of the three FIM algorithms, and
it can be generalized to finding the number of non-zero entries by performing a
comparison with 0 first. Let a be a sorted list for which we know that the zero
elements come first. If the values are shared over a sufficiently large Zn, where
n ≥ |a|, then clearly we can just sum up the entries of a, which is a free operation
in additive secret sharing. However, if we are using bitwise xor sharing, then we
cannot sum up the elements of Z2 straightforwardly. We do not want to make a
share conversion since it is expensive. However, we know that ⊕ (xor) operation is
free in xor-shared data.
The algorithm is shown in Alg. 6. Since the list is already sorted, b is a vector such
that its coordinates are 0 everywhere except the one coordinate whose index is equal

Algorithm 7: MultByBit for xor shared inputs
Data: 〈〈a〉〉 and 〈〈b〉〉
Result: 〈〈c〉〉 such that c = a iff b == 1
〈〈C〉〉= OuterProd(〈〈a〉〉,〈〈b〉〉) ;1
// since |[b]|= 1, there is just one column in C
return C[∗,0] ;2

to the number of non-zero entries in a (if all the entries are 0, then b = 0). Hence c
is equal to the number of non-zero entries in a. Computing i · 〈〈bi〉〉 is free since i is
public and bi ∈ {0,1}, and the multiplication can be written out as i∧ [〈〈bi〉〉]log |a|,
which is free for xor shared data. The overall secure operation complexity is 0,
and we conclude is that this operation is free for both additive and bitwise secret
sharing.

– Finding the Characteristic Vector (CharVec) Given a xor shared k-bit value i, the
task is to find a bit vector b of length 2k such that its i-th coordinate is 1 and the rest
are 0. We use the algorithm proposed in [8] since it allows to reduce the complexity
to the order k

√
2k, and in our case the value of 2k will be pretty large in practice.

The precise complexity of this algorithm is at most k ·OuterProd(
√

2k,1).
– Multiplication by a bit for xor sharing (MultByBit) For xor shared data a =
(a1‖ . . .‖ak) and b, one may compute MultByBit(a,b) = (a1∧b, . . . ,ak∧b), which
now reduces to OuterProd(a1‖ . . .‖ak,b). This simple protocol is given in Alg. 7,
and its complexity is OuterProd(|a|+1,1).

– Outer Equality (OuterEq). This protocol is in fact just an outer product where the
multiplication is replaced by equality. This is defined as OuterEq(〈〈a〉〉,〈〈b〉〉) = C
where ci j = (ai = b j). We define the protocol for xor shared data only. Given two
k-bit values a and b, for the i-th bits of a and b we can define (ai = bi)← (1⊕
ai⊕ bi), and this computation is free. However, if k > 1, then we have (a = b)←∧k

i=1(1⊕ai⊕bi). For k = 2, these expression can be reduced to OuterProd, but we
will need this algorithm for larger k. Another solution is to convert a to its binary
representation: a 2k-bit vector a′ such that a′a = 1 and a′i = 0 for all i 6= a. In this
case, we can define (a = b)←

⊕k
i=1(a

′
i ∧ b′i), where finding all possible a′i ∧ b′i is

now equivalent to OuterProd. Although finding the characteristic vector is rather
expensive, the overall complexity will be linear in |a|+ |b|. The protocol is formally
given on Alg. 8. Its total complexity is (|a|+ |b|)�CharVec(k)+OuterProd((|a|+
|b|) ·2k,1)

The summary of building block definitions can be found in in Tab. 2, and their
secure operation complexities in Tab. 3.

Set Operations We now present the algorithms for set intersection and set difference.
We represent sets with arrays. Although leaking the set size would be too much, we can
assume that there is a known upper bound m on the number of elements. If the set has
less than m elements, then the entries that represent missing elements are set to 0. Since
0 is now reserved, we start element indexation with 1.

Algorithm 8: Pairwise equality OuterEq

Data: k-bit vectors 〈〈a〉〉 and 〈〈b〉〉 such that |a|= |b|
Result: 〈〈C〉〉 such that ci j = a
foreach i ∈ {1, . . . , |a|} do1
〈〈A[i,∗]〉〉 ← CharVec(〈〈ai〉〉,k) ;2
〈〈B[i,∗]〉〉 ← CharVec(〈〈bi〉〉,k) ;3

// find the conjunctions for each bit separately
foreach j ∈ {1, . . . ,2k} do4
〈〈Ck〉〉= OuterProd(A[∗, j],B[∗, j]) ;5

// xor all the conjunctions up
〈〈C〉〉 ←

⊕k
i=1〈〈Ck〉〉 ;6

return 〈〈c〉〉 ;7

Algorithm Call Returned Value
Csort(〈[x]〉 ./ 〈[b]〉) 〈[y]〉 which is x sorted by 〈[b]〉

Rsort(〈[x]〉) 〈[y]〉 which is sorted x
Qsort(〈[x]〉) 〈[y]〉 which is sorted x

CountOnes(〈〈x〉〉) 〈〈c〉〉 s.t c = ∑
n
i=1 xi, xi ∈ Z2

CharVec(〈〈a〉〉,k) 2k-bit vector b s.t bi = 1 iff i = a
MultByBit(〈〈a〉〉,〈〈b〉〉) a if b == 1 and 0 otherwise
OuterEq(〈〈a〉〉,〈〈b〉〉) C s.t ci j = (ai == b j)

Table 2. Building block operations

Algorithm Secure Operation Complexity
Csort(n,k) n�Mult(k)+n�ShareConv(k)+Shuffle(n,2k)+n�Declassify(k)
Rsort(n,k) k · (n�Mult(k)+n�ShareConv(k)+Shuffle(n,2k)+n�Declassify(k))
Qsort(n,k) Shuffle(n,k)+ logn · (n�LessThan(k)+n�Declassify(k))

CountOnes(n,k) 0
CharVec(k) k ·OuterProd(

√
2k,1)

MultByBit(k) OuterProd(|a|+1,1).
OuterEq(n,k) 2n�CharVec(k)+ k�OuterProd(2n,2k)

Table 3. Complexity of building block operations

Algorithm 9: Set intersection Set∩
Data: 〈[a]〉 and 〈[b]〉 where all elements except 0 are unique
Result: 〈[c]〉= 〈[a∩b]〉, |c|= min(|a|, |b|)
〈[d]〉 ← Sort(〈[a]〉‖〈[b]〉) ;1
〈[t1]〉 ← 0 ;2
〈[s1]〉 ← 0 ;3
foreach i ∈ {1, . . . , |a|+ |b|−1} do4
〈[ti]〉= Equal(〈[di]〉,〈[di−1]〉) ;5
〈[si]〉= MultByBit(〈[ti]〉,〈[di]〉) ;6

〈[c]〉= Csort(〈[t]〉 ./ 〈[s]〉) ;7
return 〈[c]〉[0 : min(|a|, |b|),1] ;8

– Set intersection of k-bit elements. Let a and b be the two arrays that represent the
sets whose intersection we are going to find. Let |a| = n1, |b| = n2, n = n1 + n2.
The computation of c = a∩b is given in Alg. 9.
First, the algorithm sorts the straightforward concatenation 〈[a]〉‖〈[b]〉 by value, so
that if an element occurs in both sets, then these two elements appear together in
the resulting sorted array. Hence if there are two sequential instances of the same
element di−1 and di in d, then we chose si = di. Everywhere else si = 0. In this
way, we keep exactly those elements that are present in both a and b. We sort the
elements once more according to the bits ti in order to get all the zeroes into the end
of the array, so that the excessive zeroes could be safely removed. The intersection
contains at most min(n1,n2) elements.
We have |s| = |c| = |a|+ |b| = n. The iterations of the for-cycle do not depend on
each other and hence are parallelizable. The number of used operations is Sort(n,k)+
n� (Equal(k)+MultByBit(k))+Csort(n,k).
We assume that Sort can be instantiated either to Rsort or Qsort, and one may be
preferable to the other depending on the parameters and whether we want to win
more in rounds or in communication. However, note that the second sort depends
on one bit only. Hence Csort is preferable. Note that, if we agree to leak the precise
number of nonzero entries, then Csort may be replaced with a Shuffle followed
by Declassify. The reason is that, after shuffling, the positions of zeroes will be
random. Declassifying t reveals at most the number of zeroes. All entries such that
ti = 0 can be discarded.

– Set difference of k-bit numbers: the algorithm is analogous to set intersection.
The computation of c = a\b is given in Alg. 10.
The difference is that now we should leave exactly the elements that are in a, but
not in b. In order to do this, we add a bit 1 to each element of a and a bit 0 to each
element of b, so that now we sort pairs of elements. After sorting, if two elements
are equal, then the bit 0 comes before 1. Now if two sequential elements are the
same in c, we set ti = 0. Otherwise, we set ti = 1 unless the element comes from
the second set (has the label 0).
Adding a bit to a, b and removing it from d is free in any secret sharing scheme
since we treat this concatenation just as a pairing. The number of used operations

Algorithm 10: Set difference Set\

Data: 〈[a]〉 and 〈[b]〉 where all elements except 0 are unique
Result: 〈[c]〉= 〈[a\b]〉, |c|= |a|
〈[a′]〉 := 〈[a]〉 ./ [1]|a| ;1

〈[b′]〉 := 〈[b]〉 ./ [0]|b| ;2

〈[d]〉 ← Sort(〈[a′]〉‖〈[b′]〉) ;3
〈[t1]〉 ← 0 ;4
〈[s1]〉 ← 0 ;5
foreach i ∈ {1, . . . , |a|+ |b|−1} do6
〈[ti]〉= Equal(〈[di]〉[0],〈[di−1]〉[0])−〈[di]〉[1] ;7
〈[si]〉= MultByBit(〈[ti]〉,〈[di]〉[0]) ;8

〈[c]〉= Csort(〈[t]〉 ./ 〈[s]〉) ;9
return 〈[c]〉[0 : |a|,1] ;10

Algorithm Call Returned Value Secure Operation Complexity
Set∩(〈[a]〉‖〈[b]〉) 〈[c]〉= 〈[a∪b]〉 Sort(n,k)+n� (Equal(k)+MultByBit(k))+Csort(n,k)
Set\(〈[a]〉‖〈[b]〉) 〈[c]〉= 〈[a\b]〉 Sort(n,k+1)+n� (Equal(k)+MultByBit(k))+Csort(n,k)

Table 4. Set operations

is almost the same as for the set intersection, except one extra bit in Sort(n,k+1)
that adds a negligible complexity overhead compared to Set∩.

The summary of set operation complexities is given in Tab. 4

Parallelizing Set Intersections As we have shown in Sec. 3.2, in the bit matrix ap-
proach, for each set that participates in some intersection, one should pay as much as
for one intersection only (thanks to OuterProd). We show that a similar property can
be achieved by our set intersection algorithm.

Let the sparse matrix be represented by ` pairs (tid, item). Let Ai∩B j, i ∈ IA, j ∈ IB,
|IA|= nA, |IB|= nB be the intersections that we need to find.

Algorithm The algorithm for finding all these intersections using set-based approach is
shown in 11. First of all, on the Line 1, all the (tid, item) pairs are sorted by tid, getting
a vector d of size ` (in the algorithm, these pairs are already distributed to columns,
but they could be just a sequence of pairs as well). Now the goal is to find all the
transactions that belong to each possible pair Ai,B j. That is, in the `× ` intersection
matrix, we need to locate all the entries where the same item is present in both the row
and the column. Since the matrix is symmetric, and there are at most n instances of each
tid, these entries are accumulated at distance at most n from the diagonal. Moreover,
half of them can be removed due to symmetry. The upper bound on the number of such
entries is `n

2 (start with an n×n square in the corner, move it along the diagonal to the
opposite corner, and take 1

2 of the covered entries).

Algorithm 11: Multiple set intersection MSet∩
Data: 〈[ai]〉, 〈[b j]〉, i ∈ IA, j ∈ IB, where in each vector all elements except 0 are unique
Result: 〈[ci j]〉= 〈[ai∩b j]〉, |ci j|= |ai|, i ∈ IA, j ∈ IB
〈[d]〉 ← Sort(〈[a1 ./ 1]〉‖ · · ·‖〈[anA ./ nA]〉‖〈[b1 ./ 1]〉‖ · · ·‖〈[bnB ./ nB]〉) ;1
foreach i ∈ {1, . . . , |d|} do2

foreach j ∈ {max(0, i−n), . . . ,max(0, i−n)+n} do3
〈[ti j]〉= Equal(〈[di]〉[0],〈[d j]〉[0]) ;4
〈[si j]〉= MultByBit(〈[ti j]〉,〈[di]〉[0]) ;5
〈[d′ij]〉= (〈[di]〉[1]‖〈[d j]〉[1],〈[si j]〉)6

〈[e]〉= Sort(〈[d′]〉) ;7
foreach i ∈ {1, . . . ,n} do8

ci← e[ni, . . . ,n(i+1)][1] ;9

return 〈[c1,1]〉, . . . ,〈[cnA,nB]〉 ;10

For each of these `n
2 entries, we perform one comparison, one multiplication, and

leave a pair (Ai‖B j,si) behind, where A j‖B j will denote the set Ai ∩B j, and si = ai if
ai ∈ Ai∩B j, and 0 otherwise.

If we do not leak the precise column density, but still know that the number of
nonzero entries in each column is at most m′, we have the same number m′ for all the
intersections we have obtained so far. Hence after we sort the elements according to
the itemset Ai‖B j, we know that each of them now takes exactly m′ elements (some of
which are 0).

Similarly to the ordinary two-set intersection, if we agree to leak the precise column
size, then instead of sorting we may include tk into d′ (getting triples instead of pairs),
and then apply Shuffle and leak all the shuffled tk, leaving behind only the pairs for
which tk = 1. For the pairs left behind, we may in turn declassify Ai‖A j, so that the set
sizes are now clearly visible, and the infrequent ones may be eliminated.

The analogous algorithm for Diffset is given in Alg. 12

Complexity The complexity of Alg. 11 is Sort(`, logm + logn) for the initial sort-
ing, `n

2 � Equal(logm) for the equality checks, and `n
2 �MultByBit(logm) for mul-

tiplications. After that, apply one more sort of complexity Sort(`n2 , logm+ logn+ 1)
to the pairs. Since each block that corresponds to one Ai ∩B j is in turn sorted by sl ,
CountOnes will be free. The overall operation complexity is Sort(`, logm+ logn) +
`n
2 �Equal(logm)+ `n

2 �MultByBit(logm)+Sort(`n2 , logm+2logn). Here MultByBit
may be reduced to OuterProd, as in each row we actually multiply every tl by the same
tid.

As a particular case, if we take n= 2 (just one intersection), we get Sort(2m′, logm+
1)+ 2m′�Equal(logm)+ 2m′�MultByBit(logm)+Sort(2m′, logm+ 1), getting the
same complexity than the ordinary two-set intersection of Sec. 3.3 presented above,
applied to two sets of length m′ (the last sorting uses only one bit in sorting and hence
is equivalent to Csort).

If we agree to leak the number of entries, then instead of the last sorting we have
Shuffle(`n2 , logm+ logn+1), and then Declassify(`n2 ,1).

Algorithm 12: Multiple set difference MSet\

Data: 〈[ai]〉, 〈[b j]〉, i ∈ IA, j ∈ IB, where in each vector all elements except 0 are unique
Result: 〈[ci j]〉= 〈[ai \b j]〉, |ci j|= |ai|, i ∈ IA, j ∈ IB
〈[a′i]〉 ← 〈[ai ./ [1]|a|]〉 ;1

〈[b′j]〉 ← 〈[b j ./ [0]|b|]〉 ;2

〈[d]〉 ← Sort(〈[a′1 ./ 1]〉‖ · · ·‖〈[a′nA
./ nA]〉‖〈[b′1 ./ 1]〉‖ · · ·‖〈[b′nB

./ nB]〉) ;3
foreach i ∈ {1, . . . , |d|} do4

foreach i ∈ {max(0, i−n), . . . ,max(0, i−n)+n} do5
〈[ti j]〉= Equal(〈[di]〉[0],〈[d j]〉[0])−〈[di]〉[1] ;6
〈[si j]〉= MultByBit(〈[ti j]〉,〈[di]〉[0]) ;7
〈[d′ij]〉= (〈[di]〉[2]‖〈[d j]〉[2],〈[si j]〉)8

〈[e]〉= Sort(〈[d′]〉) ;9
foreach i ∈ {1, . . . ,n} do10

ci← e[ni, . . . ,n(i+1)][1] ;11

return 〈[c1,1]〉, . . . ,〈[cnA,nB]〉 ;12

Type Operation Operation Complexity
bit MSet∩(n,k) m ·Mult(1)+m ·ShareConv(logm)

MSet\(n,k) m ·Mult(1)+m ·ShareConv(logm)

set MSet∩(n,k) Sort(`, log(mn))+ `n
2 �Equal(logm)+OuterProd(2`, logm)+Sort(`n2 , log(mn2))

MSet\(n,k) Sort(`, log(mn))+ `n
2 �Equal(logm)+OuterProd(2`, logm)+Sort(`n2 , log(mn2))

Table 5. Multiple set algorithm complexities of Sharemind

Similarly to OuterProd, this produces all possible intersections, including Ai ∩A j
and B j ∩ Ai that we probably did not need. Hence even if these intersections would
be more efficiently computable with the bit vector approach, we do not have to do it
again. If we decide to leak the number of zero entries, then these additional sets may
leak information that we did not intend to (for example, the size of Ai ∩A j for which
we have already known that it would not be frequent). In this case, revealing the Ai‖A j
should be done before revealing t, and the unnecessary sets discarded immediately.

Comparisons of the bit matrix and the set matrix based approaches is shown in
Tab. 10.

3.4 Balancing Set and Bit Based Approaches

In practice, it may happen that a dataset contains both dense and sparse columns. What
could we do if the most columns are sparse, but there are still some columns that are so
dense that finding an set based intersection becomes too inefficient for them?

Let m′ the number of nonzero entries per column that we need to achieve in order
that the set based approach would be preferable.

1. The simplest solution is to split each column of size m into d m
m′ e columns of size

m′. Instead of a set of transactions T A that correspond to the itemset A, there are

now d m
m′ e sets Ti such that T A

1 ∪·· ·∪T A
d m

m′ e
= T A. Since the radix sort is linear in the

set size, such a splitting gives no difference for RSet∩, but may indeed be useful
for the superlinear Qsort∩.

2. If we agree to additionally leak not only |T A| ≥ t, but also |T A
i | ≥ t, then we may

dispose of a lot of columns if the matrix is sparse. This will however be leaking
additional information about the size of TA. Moreover, the number of comparisons
increases up to d m

m′ e times.
3. If we agree to leak the number of entries per column, then we may just leave the

dense columns as they are. Although finding the intersections that involve those
dense columns are expensive, we may still win if their number is small, especially
taking into account the fact that the dense columns become sparse after a couple
of iterations. It is even sufficient to leak not the total number of nonzero entries in
each column, but just whether this number exceeds the threshold m′.

One possible way to remedy the overhead caused by dense columns is is to maintain
the set format for sparse columns and the bit format for dense columns. The main ques-
tion is how to find the intersection of a set-represented and a bit-represented column. In
Sec. 3.4, we discuss how the dense columns can be handled.

In this subsection, we still assume that we are using the standard Apriori, Eclat, and
Diffset algorithms without modifying them in general. In our comparisons, we consider
a particular iteration on which k-sets are being constructed from k− 1-sets. The algo-
rithm should now decide to which columns it applies the set-based approach, and to
which the bit-based approach.

Since the matrix is now mixed, and the particular partitioning depends on the choice
of m, we assume for simplicity that initially there are ` secret shared pairs of the form
(row(tid),column(item)) that correspond to the non-zero entries. The table has size
m× n as before. The algorithms convert this set of pairs to set and bit based columns
based on the value of m′.

We will further assume that all the algorithms are based on xor sharing, as the
subalgorithms that we will use are significantly less efficient for additive sharing.

Auxiliary Building Block Algorithms We define some auxiliary subalgorithms that
we will use.

– Converting the set of (row,column) pairs to a bit matrix (Pairs2Bits) The task
is easy if the sizes of columns are leaked so let us assume that it is not the case.
The idea is to first map each (i, j) pair into an m×n matrix M such that M[i, j] = 1
and all the other entries are 0 otherwise. Then it is easy to find the final result by
summing these matrices up, which is free. This is shown in Alg. 13.
The complexity of this algorithm consists of finding ` characteristic vectors of logm
bits, ` vectors of logn bits, ` outer products of logn× logm vectors (each outer
product is a matrix Bk such that Bk[i, j] = 1, and all the other entries are 0), and
summing the obtained matrices Bk up. The complexity is

`� ((CharVec(logm)⊕CharVec(logn))+OuterProd(n+m,1)) .

Algorithm 13: Pairs to a bit matrix Pairs2Bits

Data: A list of (row,column) pairs 〈〈m〉〉
Result: A bit matrix 〈〈M〉〉 that corresponds to 〈〈m〉〉
foreach (〈〈i〉〉,〈〈 j〉〉) ∈ 〈〈m〉〉 do1
〈〈i〉〉= CharVec(〈〈i〉〉) ;2
〈〈j〉〉= CharVec(〈〈 j〉〉) ;3
〈〈Bk〉〉= OuterProd(〈〈i〉〉‖〈〈j〉〉) ;4

〈〈B〉〉=
⊕

k〈〈Bk〉〉 ;5
return 〈〈B〉〉 ;6

Algorithm 14: Bit vector to a set Bits2Set

Data: A xor shared bit vector 〈〈b〉〉 of length m with at most m′ nonzero entries
Result: A xor shared set representation 〈〈c〉〉 of 〈〈b〉〉
foreach i ∈ {1, . . . ,m} do1
〈〈ci〉〉= 〈〈bi〉〉 · i ;2

〈〈d〉〉= CSort(〈〈b〉〉 ./ 〈〈c〉〉) ;3
return 〈〈d〉〉[0 : m′,1] ;4

– Converting a bit matrix column to a set matrix column (Bits2Set) This algo-
rithm transforms a column of a bit matrix to a column of xor shared row identifiers
of length m′ where m′ is a known upper bound on the number of nonzero entries.
This is shown in Alg. 14
Computing the multiplications is free since we are multiplying by a public value j,
and bi ∈ {0,1}. The only thing that remains is Csort. This transformation is itself
already more expensive than multiplying bit vectors, and hence it should be used
only if the set representation will be reused afterwards.

– Converting a set matrix column to a bit matrix column (Set2Bits) This algo-
rithm is based on finding the characteristic vector of each set element and summing
them up. This is shown in Alg. 15.
The complexity of this algorithm is m′�CharVec(k).

The summary of the auxiliary protocols is given in Tab. 6.

Leaking Column Density

Algorithm 15: Set to a bit vector Set2Bits

Data: A xor shared set representation 〈〈c〉〉 of length m′ with over m elements
Result: A xor shared bit vector representation 〈〈b〉〉 of 〈〈c〉〉
foreach i ∈ {1, . . . ,m′} do1
〈〈di〉〉= CharVec(〈〈ci〉〉,m) ;2

〈〈b〉〉=
⊕m

i=1〈〈di〉〉 ;3
return 〈〈b〉〉 ;4

Type Operation Secure Operation Complexity
xor Pairs2Bits(`,m,n,k) `� (CharVec(m)+CharVec(n)+OuterProd(n+m,1))

Sets2Bits(m′,k) m′�CharVec(k)
Bits2Set(m,k) Csort(m,k)

Table 6. Complexities of Protocols of Sec. 3.4

Algorithm 16: Transforming sparse bit columns to set columns Partition

Data: Bit vector columns (〈〈c1〉〉, . . . ,〈〈cn〉〉), threshold m′

Result: Partitioning to bit columns of density more than m′ and set columns of density at
most m′.

foreach i ∈ {1, . . . ,n} do1
s = CountOnes(〈〈ci〉〉) ;2
if s≤ m′ then3
〈〈di〉〉= Bits2Set(〈〈ci〉〉) ;4

else5
〈〈di〉〉= ci ;6

return 〈〈d〉〉 ;7

Algorithm Let m′ be the bound for which set based approach is applicable. The two
main modifications to the previous standard FIM are the following.

1. Initially all the columns are represented by bit vectors. If the input comes in sparse
form, it can be done using Pairs2Bits (just calling that protocol on the initial set of
pairs).

2. On each iteration the columns that have at most m′ elements are converted to set
columns using Bits2Set protocol. This is described in Alg. 16.

3. Each intersection is based on the types of columns: whether both are set based,
both are bit based, or the representation is different. The algorithm for finding one
intersection is shown in Alg. 17. We may either transform the bit column into a set,
or the set column into a bit vector. The parties may decide which approach is more
efficient dynamically, estimating both complexities based on public information
(Line 10).

Complexity The complexity is a bit difficult to estimate since the size of columns may
vary, and the exact complexity depends on each column density on each iteration. In the
worst case, there would be two representations maintained in parallel for each column:
the bit-based an the set-based one. The worst case complexity would be the following.

1. Initially The complexity of this phase is up to n�Bits2Set(m, logm).
2. On each iteration In the worst case, each bit column is transformed to a set column.

The complexity is n�Bits2Set(m, logm).
3. For each intersection There are now several cases.

– Both are bit vectors: m�Mult(1)+m�ShareConv(logm).

Algorithm 17: Mixed column set intersection MSet∩
Data: Two columns 〈[a]〉 and 〈[b]〉
Result: 〈[c]〉= 〈[a∩b]〉.
if a and b are bit vectors then1
〈[c′]〉 ←Mult(〈[a]〉‖〈[b]〉) ;2
〈[c]〉 ← ShareConv(〈[c′]〉, logm) ;3

else if a and b are sets then4
〈[c]〉 ← Set∩(〈[a]〉‖〈[b]〉) ;5

else if a is a set and and b is a bit vector then6

c1←
−−−−−→
Bits2Set(m, logm)+

−−→
Set∩(|a|+ |b|, logm) ;7

c2←
−−−−−→
Set2Bits(|a|, logm)+m�

−−→
Mult(1) ;8

c3←
−−−−−−−→
ShareConv(m, logm) ;9

if c1 ≤ c2 + c3 then10
〈[b′]〉 ← Bits2Set(〈[b]〉) ; //if it does not exist yet11
〈[c]〉 ← Set∩(〈[a]〉‖〈[b′]〉) ;12

else13
〈[a′]〉 ← Set2Bits(〈[a]〉) ; //if it does not exist yet14
〈[c′]〉 ←Mult(〈[a′]〉‖〈[b]〉) ;15
〈[c]〉 ← ShareConv(〈[c′]〉, logm) ;16

else
// analogous to the previous case

return 〈[c]〉 ;17

– Both are sets: Set∩(|a|+ |b|, logm).
– Different Representations: n�min(Set∩(|a|+ |b|, logm),m�Mult(1)+m�

ShareConv(logm)).

It will be more easy to estimate the complexity of an analogous algorithm in the next
subsubsection, where all the columns have the same length m′, as then the quantity
|a|+ |b| can be estimated.

Complexity using Parallel Set Intersection As we have discussed in Sec. 3.3, it would
be unfair to treat set intersections independently. In practice, the number of such par-
allelizable set intersections is unpredictable. Since the candidate sets are public, we
could decide dynamically whether it still makes sense to apply the set intersection. Let
Ai∩B j, i ∈ IA, j ∈ IB be the intersections that we need to find. Let nA = |IA|, nB = |IB|,
n′ = nA+nB. We can immediately see that the intersections of Ai and B j that participate
in some intersection with some bit column are now actually free for all bit columns.
Hence let Ai and B j be such that at least one of them participates in set intersections
only. Even in this case, if some Ai in participating in numerous intersections, it may be
more efficient to compute all the intersections of Ai in bit format.

Using Eclat and Diffset, the parallelization of intersections is not important, as on
each iteration all the current k-subsets are intersected with just one particular element

Sharing Operation Rounds Communication
additive LessThan(k) logk+3 27(logk)(k−1)+64k−27

Equal(k) logk+1 14k−9
Mult(k) 1 15k

OuterProd(n,k) 1 9nk
xor LessThan(k) logk 30k

Equal(k) logk 12k−9
OuterProd(n,k) 1 3n(2k+1)

both OuterProd(n,1) 1 9n
ShareConv(k) 2 5k+4
Shuffle(n,k) 3 6nk
Declassify(k) 1 6k

Table 7. Basic operation complexities of Sharemind

Sharing Operation Rounds Communication
additive Qsort(n,k) 3+ logn logk 6nk+36k ·n logn

xor Csort(n,k) 7 n(32k+10)
Rsort(n,k) 7k nk(32k+10)
QSort(n,k) 3+ logn logk 6nk+30k ·n logn+6n logn
CharVec(k) k 15k

√
2k

MultByBit(k) 1 9k+6
OuterEq(n,k) 1 n · (15k

√
2k)+15n2k

Table 8. Auxiliary algorithm complexities of Sharemind

(if we do not attempt to parallelize several distinct branches, as it was done in [2]).
Using Apriori, we could split the n columns into equivalence classes Ci of size nCi ,
such that no intersections need to be found for columns of different classes. Namely,
first compute the transitive closure for intersection relation, and then split according to
obtained equivalence classes. For each nCi , decide whether the bit or the set approach is
more efficient. Since using parallel column intersection makes more sense if we share
bits over Zm, all the conversions between bit and set columns become more expensive,
and deciding which variant is optimal may be not so easy.

3.5 Comparing Bit Matrix and Set Based Approaches for a Particular Platform

So far it has been completely unclear in which cases the set based approach can be
preferable to the bit based approach. Let us now see which communication and round
complexity we get if we instantiate the algorithms to some particular platform. For
this, we have chosen Sharemind [4], as it uses both additive and xor sharing, and also
contains all the necessary black box algorithms needed in the computation. The com-
plexities of basic operations are given in Tab. 7. On the basis of this table, we estimated
the complexities of the algorithms introduced in Sec. 3.3. They are presented in Tab. 8
and Tab. 9.

Sharing Operation Rounds Communication
xor RSet∩(n,k), RSet\(n,k) 7k+ logk+8 32nk2 +63nk+7n

QSet∩(n,k), QSet\(n,k) logn logk+ logk+11 30nk logn+6n log logn+59nk+7n

Table 9. Set algorithm complexities of Sharemind

We are now ready to compare the bit matrix and the set based approaches. The main
structure of the algorithms remains unchanged. The only difference is that the bit vector
products are substituted with the set intersection and set difference defined in Sec. 3.3.
The size of the sets is m′, and the number of bits is logm, where the numbers m′ and n
are defined as in the beginning of Sec. 3.3.

One set intersection First of all, let us for simplicity estimate the complexity of one
set intersection, based on the operation complexities of Tab. 7. We compare it to the
complexity of the bit matrix approach.

1. Using radix sort:
– Round advantage: 7logm+ log logm+8 instead of 3. This is an obvious dis-

advantage, but we hope to win in communication.
– Communication: 32(2m′)(logm)2+63(2m′) logm+7(2m′)=m′(64(logm)2+

126logm+14) instead of 5m logm+19m. The advantage is nonnegative iff

m′ ≤ 5m logm+19m
64(logm)2 +126logm+14

.

2. Using quicksort:
– Round advantage: log(2m′) log logm+ log logm+11 instead of 3. Again, an

obvious disadvantage, but we hope to win in communication.
– Communication: 30(2m′) log(m) log(2m′)+6(2m′) log(2m′)+59(2m′) log(m)+

7(2m′)=m′(178logm+60logm logm′+12logm′+26). The advantage is non-
negative iff

m′ ≤ 5m logm+19m
178logm+60logm logm′+12logm′+26

.

Knowing that m′ ≤ m, we may get rid of logm′ on the right hand side, getting

m′ ≤ 5m logm+19m
60(logm)2 +190logm+26

.

Since in practice the bound is even larger, using quicksort seems to have better
efficiency. Nevertheless, since the number of rounds may be larger for quick-
sort, both algorithms should still be considered.

What if not all Columns are Sparse In general, even for a sparse dataset we cannot
assume that all the columns will be sparse enough, so that the upper bounds for m′ are
satisfied.

Example: A standard Retail testing set (which is available at the Frequent Itemset
Mining Dataset Repository [1]) has m = 88163 rows, n = 16470 columns, and ` =
908576 nonzero entries in total. If we want to get advantage in communication, for
radix sort we need m′ ≤ 460 (the estimated bound for quicksort is 500, and actually
it is even around 700 in this case). In the case of Retail set, the most frequent item
has 50675 occurrences, and so we definitely do not reach advantage in communication.
This dataset is bad example since although the matrix is sparse, its columns are not
all sparse. There are only 211 items out of 16470 that exceed 460 occurrences, but we
cannot just round them down to 460 since we would have to decide which transaction
id-s exactly should be removed, and that choice may affect the final result significantly.
In this case, we will need to use the mixed approach of Sec. 3.4.

It is easier to estimate the complexity of Alg. 17 of Sec. 3.4 if we leak not the pre-
cise value of CountOnes(c) for each column c, but just whether CountOnes(c)≤m′. If
a column has at most m′ entries, it is considered a set column, and a bit column other-
wise. Let us now for simplicity take m′ =

(√
m

3 + 19
√

m
15logm

)
(in this case, estimating the

complexities will be easier). Such an m′ satisfies the bounds of 3.5. We use the same al-
gorithms as in the previous section. Since all the sparse columns are of size m′ now, and
the dense columns of size m, the choice of Line 10 of Alg. 17 now always evaluates to
the one that transforms the set column to a bit column. Namely,

−−→
Set∩(|a|+ |b|, logm) =

−−→
Set∩(m+m′, logm) ≥

−−→
Set∩(m, logm) = 32m logm2 + 63m logm+ 7m, which is larger

than
−−−−−→
Set2Bits(|a|, logm)+m�

−−→
Mult(m)+

−−−−−−−→
ShareConv(m, logm)=

−−−−−→
Set2Bits(m′, logm)+

m�
−−→
Mult(1)+

−−−−−−−→
ShareConv(m, logm)=

(√
m

3 + 19
√

m
15logm

)
·15
√

m ·logm+5m logm+19m=

2(5m logm + 19m). This means that if we want to find the intersection of different
columns, then converting the set column to a bit column is always preferable. Note
that, for this choice of m′, the transformation itself has complexity 2(5m logm+19m),
and in overall the intersection is 3 times as expensive as it would be if the set column
had already been a bit column.

We may now estimate the complexity of Alg. 17 more precisely.

1. Initially The complexity of this phase is up to n�Bits2Set(m, logm) as before.
2. On each iteration As before, in the worst case the complexity is n�Bits2Set(m, logm) ,

which is 7 rounds and n�m(32logm+10) communication.
3. For each intersection Again, there are now several cases.

– Both are bit vectors: The complexity estimation is Mult(m,1)+ShareConv(m, logm),
which is 3 rounds and 5m logm+19m communication.

– Both are sets: The complexity is Set∩(2m′, logm), which is 7 logm+log logm+

8 rounds and 2m′(32 ·(logm)2+63logm+7)= 2
(√

m
3 + 19

√
m

15logm

)
(32·(logm)2+

63 · logm+7)< 2
√

m(32logm2 +63logm+7) communication.
– Different Representations: As we have discussed above, we always choose the

set to bit branch on Line 10, and the complexity is 7 logm + log logm + 11
rounds and 2(5m logm+19m) communication.

Type Operation Rounds Communication
bit MSet∩(n,k) 3 9mn logm

MSet\(n,k) 3 9mn logm
set MSet∩(n,k) ≈ 14log(mn)+7logn ≈ `[(n

2 +1) logm(32log(mn2)+10)+ n
2 (12logm−9)]

MSet\(n,k) ≈ 14log(mn)+7logn ≈ `[(n
2 +1) logm(32log(mn2)+10)+ n

2 (12logm−9)]

Table 10. Multiple set algorithm complexities of Sharemind

In this way, using mixed representation gives us additional overhead if the columns
are of different type (three times as much as would be if they we bit matrices ini-
tially). Another overhead is caused by converting bit matrices to set matrices when
they become sparse. Nevertheless, since the intersections of sparse columns become
much more efficient for small m′, they may compensate that overhead.

3.6 Complexity using Parallel Set Intersection

The particular complexities of Mset protocols are presented in table Tab. 10.
Example: Consider again m′=

(√
m

3 + 19
√

m
15logm

)
using Retail dataset. For m= 88163,

we get m′ ≈ 121. Let us now suppose that we use Apriori algorithm and apply it If we
substitute this number into MSet∩, we get the complexity that is still too large due to the
n2 factor. It would be better than the bit column approach for small n, if we take only
80 columns out of 16470 (while there are actually 14986 columns that have at most
m′ entries). Taking smaller m′ allows to increase the number of columns. For example,
m′ = 50 allows to increase n to 500.

We see that even if the matrix is sparse, we are not going to apply the set intersec-
tion to most of the columns, but only to some of them, preferring to chose those that
do not repeat several times in different intersections. Using Eclat and Diffset, we find
intersection of the form A∩B1, . . . ,A∩BnB on each iteration, and hence deciding on
which approach should be used is straightforward, as n ·1 = n, and the OuterProd can
at most reduce the computation 2 times compared to straightforward multiplication, so
the chosen m′ should just take this factor of 2 into account.

3.7 Estimating the Number of Sparse Columns

Our last question is whether our algorithms are indeed suitable for arbitrary sparse
matrices. Namely, they give advantage if the number of sparse columns in the matrix is
large. How is the total number of nonzero entries ` related to possible choices of m′?

If the total number of non-zero entries is ` and the number of columns is n, then
there can be at most b n·m′

` c columns that have at least m′ non-zero entries. Taking m′

below the upper bound for which set based approach is reasonable, one may check if
using set-based approach gives any advantage. It may happen that initially the matrix is
quite dense and bit based approach is preferable, but the columns may become sparser
on further steps. A proposed value for m′ is

(√
m

3 + 19
√

m
15logm

)
, which makes it easier

to decide dynamically during the computation which approach is preferable, using the
bounds presented in this paper.

4 Conclusions

We have presented two basic FIM algorithm for sparse datasets, an Eclat/Apriori based
one, and a Diffset based one, where Diffset may be useful also for non-sparse matrices.
The main problem of these algorithms is that they are not as linearizable as the bit
vector algorithms are. Nevertheless, since our protocols can be easily integrated into
the bit based approach, we may choose to apply them only on those steps where they
indeed give advantage.

References
1. Frequent itemset mining dataset repository. http://fimi.ua.ac.be/data/. Last ac-

cessed 2015-07-07.
2. D. Bogdanov, R. Jagomägis, and S. Laur. A universal toolkit for cryptographically secure

privacy-preserving data mining. In Proceedings of the 2012 Pacific Asia Conference on
Intelligence and Security Informatics, PAISI’12, pages 112–126, Berlin, Heidelberg, 2012.
Springer-Verlag.

3. D. Bogdanov, S. Laur, and R. Talviste. A practical analysis of oblivious sorting algorithms
for secure multi-party computation. In K. Bernsmed and S. Fischer-Hübner, editors, Secure
IT Systems - 19th Nordic Conference, NordSec 2014, Tromsø, Norway, October 15-17, 2014,
Proceedings, volume 8788 of Lecture Notes in Computer Science, pages 59–74. Springer,
2014.

4. D. Bogdanov, M. Niitsoo, T. Toft, and J. Willemson. High-performance secure multi-party
computation for data mining applications. Int. J. Inf. Sec., 11(6):403–418, 2012.

5. X. Cheng, S. Su, S. Xu, and Z. Li. Dp-apriori: A differentially private frequent itemset
mining algorithm based on transaction splitting. Computers & Security, 50:74–90, 2015.

6. K. Hamada, R. Kikuchi, D. Ikarashi, K. Chida, and K. Takahashi. Practically efficient
multi-party sorting protocols from comparison sort algorithms. In T. Kwon, M.-K. Lee,
and D. Kwon, editors, ICISC, volume 7839 of Lecture Notes in Computer Science, pages
202–216. Springer, 2012.

7. M. Kantarcioglu and C. Clifton. Privacy-preserving distributed mining of association rules
on horizontally partitioned data. IEEE Trans. on Knowl. and Data Eng., 16(9):1026–1037,
Sept. 2004.

8. J. Launchbury, I. S. Diatchki, T. DuBuisson, and A. Adams-Moran. Efficient lookup-table
protocol in secure multiparty computation. In P. Thiemann and R. B. Findler, editors, ICFP,
pages 189–200. ACM, 2012.

9. J. Lee and C. W. Clifton. Top-k frequent itemsets via differentially private fp-trees. In
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’14, pages 931–940, New York, NY, USA, 2014. ACM.

10. C. Sun, Y. Fu, J. Zhou, and H. Gao. Personalized privacy-preserving frequent itemset mining
using randomized response. The Scientific World Journal, 2014, 2014.

11. M. J. Zaki and K. Gouda. Fast vertical mining using diffsets. In Proceedings of the Ninth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’03, pages 326–335, New York, NY, USA, 2003. ACM.

12. C. Zeng, J. F. Naughton, and J.-Y. Cai. On differentially private frequent itemset mining.
Proc. VLDB Endow., 6(1):25–36, Nov. 2012.

