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ABSTRACT
Oblivious RAM (ORAM) is a tool proposed to hide access pattern
leakage, and there has been a lot of progress in the efficiency of
ORAM schemes; however, less attention has been paid to study the
applicability of ORAM for cloud applications such as symmetric
searchable encryption (SSE). Although, searchable encryption is
one of the motivations for ORAM research, no in-depth study of the
applicability of ORAM to searchable encryption exists as of June
2015. In this work, we initiate the formal study of using ORAM to
reduce the access pattern leakage in searchable encryption.

We propose four new leakage classes and develop a systematic
methodology to study the applicability of ORAM to SSE. We de-
velop a worst-case communication baseline for SSE. We show that
completely eliminating leakage in SSE is impossible. We propose
single keyword schemes for our leakage classes and show that ei-
ther they perform worse than streaming the entire outsourced data
(for a large fraction of queries) or they do not provide meaning-
ful reduction in leakage. We present detailed evaluation using the
Enron email corpus and the complete English Wikipedia corpus.

1. INTRODUCTION
Oblivious RAM (ORAM) enables accessing the memory with-

out leaking the access pattern. A lot of effort is underway to make
ORAM schemes efficient. Searching for the exact phrase “Oblivi-
ous RAM” on the Google Scholar returns 671 articles, 565 of them
published since 2010. ORAM is a cryptographic primitive that al-
lows accessing memory without leaking the access pattern; how-
ever, it provides a random access memory (RAM) interface that al-
lows accessing a block of memory using its address. Therefore, the
access pattern hiding properties of ORAM are only valid if mem-
ory is accessed single block at a time, which is not always the case
with real applications. Many applications such as searchable en-
cryption (SSE) or cloud storage1, requires downloading multiple
blocks at a time as illustrated in Figure 1, which leaks the number
of blocks being accessed for a particular request. The number of
blocks in turn leaks partial access pattern information. In SSE, each
keyword query requires multiple blocks to be accessed. As differ-
ent keywords require different number of blocks to be retrieved,
the number of blocks retrieved leaks some information about the
query. Similarly, in cloud storage, a file may consist of multiple
blocks; therefore, downloading the file leaks its size (rounded off
to the block size). Suppose that a file has a unique size, then every
time the client accesses this file, the server observes, from the num-
ber of blocks being accessed, that the client is accessing the same
file.

Symmetric Searchable Encryption (SSE) enables a client to store
encrypted documents on a server and search over her encrypted
documents to selectively retrieve the documents. In the SSE set-
ting, the client prepares an inverted index for her documents and
encrypts it using SSE, encrypts her documents using a symmetric
cipher (such as AES), and sends both the encrypted index and the

1By cloud storage, we mean services such as Dropbox and
Google Drive that allow users to store their files.

encrypted documents to the server. The server does not see the
contents of the documents or the queries, but for each query it ob-
serves some information leakage: the search and document-access
patterns (combination of search and document-access patterns is
commonly referred to as access pattern). Access pattern is a signif-
icant leakage and may enable the server to infer information about
the queries or the documents [18].

Preventing the leakage in SSE is one of the motivations for the
applied ORAM research; however, no SSE construction that pre-
vents the access pattern leakage has been proposed yet. A search
for articles on the Google Scholar that contains both exact phrases
“Oblivious RAM” and “Searchable Encryption” returns 214 arti-
cles. At least 18 ORAM papers cite Islam et al. 2012 paper ti-
tled “Access Pattern disclosure on Searchable Encryption: Ram-
ification, Attack and Mitigation” [18] to motivate the importance
of eliminating leakage and the capability of ORAM to do so in
applications such as SSE. Similarly, it is widespread in the SSE
literature that ORAM can completely eliminate leakage in SSE.
We show that using ORAM to completely eliminate access pattern
leakage or even achieve weaker notions of access pattern hiding
either renders the communication performance worse than the triv-
ial approach of streaming all of the outsourced data for each query
or they do not provide any meaningful reduction in leakage. To
the best of our knowledge, this paper is the first work studying the
applicability of ORAM to SSE.

1.1 The fallacy of Composition
The fallacy of Composition occurs when one infers that some-

thing is true of the whole based on the fact that it is true for a part
of the whole, without any justification for the inference. An ex-
ample of the fallacy of Composition follows: Atoms are colorless.
Cats are made of atoms. Therefore, cats are colorless.

The widespread fallacy of Composition of Oblivious RAM and
Searchable Encryption is: Searchable encryption leaks access pat-
tern. Oblivious RAM eliminates access pattern. Therefore, there
exists a method of using Oblivious RAM to eliminate access pat-
tern in searchable encryption. This fallacy is prevalent in ORAM
and Searchable Encryption literature; however, for brevity we do
not cite all of the papers.

1.2 Overview
We propose a new systematic methodology to study the appli-

cability of ORAM to searchable encryption (SSE). We develop a
baseline linear searchable encryption scheme: Linear–LC0–SSE. It
supports arbitrary queries and leaks absolutely no information, ex-
cept an upperbound on the total size of the data stored on the server.
For each query, Linear–LC0–SSE, however, needs to stream all the
outsourced data, storing only a small constant amount of data on
the client at a time. The client needs to stream all the outsourced
data, but she does not need to store all of it locally. She can stream
in small chunks and discard any streamed chunk that does not sat-
isfy the query as soon as the local search on it completes. This
makes Linear–LC0–SSE an excellent worst-case baseline to gauge
the communication performance of any SSE scheme. If an SSE
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Figure 1: ORAM functionality vs. SSE requirements. For each query, SSE accesses multiple blocks which leaks the number of blocks being accessed. As the
number of blocks accessed depends upon the query, it leaks some information about the access pattern. The ORAM overhead of 4 shown is just for ease of
exposition. (a). The client downloads multiple blocks (e.g., 4 in the figure) to access a single block from the ORAM. (b). The client needs to retrieve 3 blocks
from the ORAM and therefore downloads 12 blocks. The server learns that the client downloaded 3 blocks.

scheme needs to communicate more data then Linear–LC0–SSE,
then it is always better to use Linear–LC0–SSE. Note that Linear–
LC0–SSE does not require ORAM.

We propose four new leakage classes: LC0,LC1,LC2, andLC3.
We also discussLC4 which is the leakage of standard SSE schemes
[20, 23]. Each leakage class captures the information leaked to the
server, with LC0 leaking the least and LC4 leaking the most infor-
mation among the five classes. We prove that LC0 is impossible to
achieve without downloading all outsourced data for each and every
query (communication required by Linear–LC0–SSE). We propose
single keyword SSE schemes for LC1, LC2, and LC3. We empiri-
cally demonstrate that for a large fraction of queries, LC1–SSE and
LC2–SSE perform worse than downloading the entire outsourced
data. We emphasize that a small fraction of keywords are accessed
most frequently (Zipf’s law) and therefore these small number of
keywords constitute a large fraction of the queries. Moreover, we
demonstrate that LC3 does not provide any meaningful reduction
in leakage over LC4.

Contributions. We summarize our contributions below:

• First work on composition of ORAM and SSE. To the best
of our knowledge, this is the first work studying the applica-
bility of ORAM to reduce the leakage in SSE.

• New Leakage Classes. We propose four new leakage classes
for SSE.

• New Systematic Methodology. We develop a new system-
atic methodology to study the applicability of ORAM to SSE.
Although, we specifically developed the methodology for
SSE, we believe that it can be useful for other applications
as well. First, we design a baseline scheme, called Linear–
LC0–SSE, with a worst-case communication performance.
Second, we propose static single keyword schemes for LC1,
LC2, and LC3. Third, we empirically study the communi-
cation performance of LC1–SSE, LC2–SSE, LC3–SSE, and
LC4–SSE (Naveed’s et al. scheme [23]) relative to Linear–
LC0–SSE.

• Interesting findings. We report interesting findings about
the applicability of ORAM to the leakage prevention in SSE.
Using our systematic methodology, we show that it is impos-
sible to eliminate leakage in SSE without downloading the

entire outsourced data. We show that LC1–SSE and LC2–
SSE have query communication worse than that of Linear–
LC0–SSE for a large fraction of queries (a small fraction of
keywords make up the large fraction of queries). We also
demonstrate that LC3 and LC4 leak almost the same amount
of information.

• Evaluation. We provide a detailed evaluation of the query
communication performance of the single keywordLC1–SSE,
LC2–SSE, LC3–SSE, and LC4–SSE schemes using the En-
ron Email Corpus and the complete English Wikipedia Cor-
pus.

Scope of the paper. We focus only on the applicability of ORAM
to reduce access pattern leakage in SSE. ORAM has other applica-
tions such as secure multiparty computation and secure co-processor;
however, these applications are out of scope of this paper.

Most of the ORAM schemes work with a storage-only server
with a few exceptions. Throughout the paper, we assume the server
to be a storage-only resource that allows the client to download and
upload blocks of data.

Organization. The paper is organized as follows: Section 2 presents
the leakage classes. Section 3 presents a worst-case communica-
tion baseline scheme (Linear–LC0–SSE). Section 4 presents single
keyword constructions for our leakage classes. Section 5 presents
detailed evaluation. Section 6 presents the related work. Finally,
Section 7 concludes the paper.

2. LEAKAGE CLASSES
We present five different leakage classes: LC0,LC1,LC2,LC3,

and LC4. LC0 represents absolute minimum leakage and LC4 cap-
tures the leakage of a typical static symmetric searchable encryp-
tion (SSE) scheme (e.g., [20, 23]). LC1,LC2, and LC3 leak more
information than LC0 but less than LC4. Table 1 shows all the
leakage classes. To clearly explain the leakage, Table 1 shows the
leakage for LC0,LC1,LC2, and LC3 relative to LC4 which is the
prevalent standard for SSE schemes in the literature [20, 23]; we
believe that this juxtaposition make the difference in leakage easy
to compare and understand.

For each leakage class we describe setup and query leakage.
Setup leakage shows the information leaked when the client ini-
tially send the documents and index to the server and the query



Leakage Classes
LC0 LC1 LC2 LC3 LC4

Setup Leakage
Total combined size of index (if applicable) and all documents 3 3 3 3 3

Total size of all documents 7 7 3 3 3

Size of index 7 7 3 3 3

Query Leakage
For each queried keyword q:

Search Pattern
Number of times q is queried, i.e., the access frequency of q 7 7 7 7 3

If q is the same or different from any of the keywords queried in the past 7 7 7 7 3

Document-Access Pattern
Identifiers of the documents that contain q 7 7 7 3 3

Number of documents that contain q 7 7 3 3 3

Size of each document that contain q 7 7 7 3 3

Total size of all documents that contain q 7 3 3 3 3

Table 1: Leakage Classes for Static Single Keyword Searchable Encryption. Padding can be used to hide the exact sizes and leak an upperbound on the sizes
instead. 7 shows the information that is not leaked and 3 shows the information that is leaked.

leakage shows the information leaked by the queries. Query leak-
age is divided into search pattern and document-access pattern:
search pattern represents the leakage about the query keyword it-
self, while document-access pattern represents the leakage about
the documents that contain the query keyword. Most of the litera-
ture combine search and document-access pattern and call it access
pattern, however, for ease of exposition we explain them separately.

Padding can be used to hide the exact size and leak an upper-
bound on the size instead. For simplicity, we omit this fact from
this point onwards unless necessary.

Leakage Class 0 (LC0) represents the minimum possible leakage
for an SSE scheme. It only leaks the combined size (with padding
an upperbound on the size) of all documents and index (only if
the SSE scheme uses index) during the initial outsourcing to the
server; however, this information is impossible to hide given that
the server is storing the data. No information whatsoever is leaked
during queries, and hence, there is no query leakage.

Leakage Class 1 (LC1) captures the minimum amount of leak-
age of an SSE scheme with the query communication complexity
linear in the size of the documents that satisfy the query. As the
query communication complexity is linear in the total size of the
documents that satisfy the query, an upperbound on the total size
of the documents that satisfy the query is inherently leaked. More-
over, without appropriate padding, the exact total size of documents
being retrieved is leaked; we consider this case for simplicity.

Leakage Class 2 (LC2) leaks the size as well as the number of
documents that satisfy the query. Moreover, during the setup the
size of the index and total size of all documents is leaked.

Leakage Class 3 (LC3) does not explicitly leak the search pat-
tern, but does leak the document-access pattern. Document-access
pattern implicitly leaks search pattern except in the following rare
situation: If any two keywords q and q′ appears in exactly the same
set of documents, then the server is not able to distinguish between
q and q′. This condition is rare in realistic data and therefore LC3
is almost same as LC4 which is leakage of standard SSE schemes.
We explain LC3 to demonstrate that a straightforward method of
obliviously accessing only the index in an SSE scheme is not use-
ful, we explain this in detail in Section 5. Fig. 10 shows that LC3
is almost same as LC4.

Leakage Class 4 (LC4) captures the leakage of a static single key-
word SSE scheme (e.g., [20, 23]). It leaks the complete search and
document-access patterns.

3. COMMUNICATION BASELINE
In this section, we present a simple Linear–LC0–SSE scheme,

an SSE scheme with query communication complexity linear in the
total size of all documents, as a communication performance base-
line to study the communication performance of our single key-
word LC1–SSE, LC2–SSE, and LC3–SSE schemes we propose in
Section 4.

Linear–LC0–SSE scheme. We propose a Linear–LC0–SSE scheme
in Figure 2. The client encrypts her documents with any semanti-
cally secure symmetric-key encryption scheme (such as AES) and
sends the encrypted documents to the server. Later, when the client
wants to search her outsourced documents, she streams all of them.
The client streams data in small chunks, searches them locally, and
discards the streamed documents that do not satisfy the query.

Our Linear–LC0–SSE scheme has the following properties:

• Absolute minimum leakage (LC0). It has leakage class
LC0, which means it leaks absolute minimum information.

• Arbitrary queries. It supports arbitrary type of queries2.

• Worst-case query communication. It streams all outsourced
documents to the client for each query.

• Optimal query communication for LC0. It has optimal
query communication. Theorem 4.1 shows that Linear–LC0–
SSE has optimal communication required to achieve LC0.

• Constant local storage. It requires the client to store only
a single document at any given instant; the client keeps the
document if it satisfy the query and discards it otherwise.
Therefore, in addition to the documents that satisfy the query,
the client only needs to store a single more document.

• It does not need ORAM to achieve access pattern hiding.

2Sublinear SSE schemes are designed for a specific type of
queries such as single keyword and Boolean keyword queries.



Keygen
• The client generates a symmetric key K uniformly at random.

Setup
• The client encrypts all the documents as a single file using a seman-

tically secure symmetric-key encryption scheme with key K, and
sends it to the server.

Search
• For each search query, the client streams all of the outsourced docu-

ments and searches locally. The client stores only a (small) constant
amount of data, say a single document, at any given time. All docu-
ments that do not satisfy the query are discarded after the completion
of local search.

Figure 2: Linear–LC0–SSE Scheme. Baseline for communication perfor-
mance of SSE schemes we propose in Section 4.

Baseline Query Communication. Linear–LC0–SSE supports ar-
bitrary queries and has absolute minimum leakage (LC0). The
only problem Linear–LC0–SSE has is that for each query it re-
quires streaming all outsourced data to the client. Therefore, it
serves as an excellent worst-case communication baseline for any
SSE scheme. Any SSE scheme with query communication worse
than the Linear–LC0–SSE scheme can be trivially replaced with
the Linear–LC0–SSE scheme.

4. CONSTRUCTIONS
In this section, we first show that achieving LC0 is, in general,

impossible with query communication better than that of Linear–
LC0–SSE. We construct single keyword SSE schemes forLC1,LC2,
and LC3 such that they have optimal query communication for the
respective leakage class. These schemes capture simple ways of
using Oblivious RAM as a blackbox to reduce leakage in SSE. We
show in section 5 that query communication of LC1-SSE and LC2-
SSE is worse than that of Linear–LC0–SSE for a large fraction of
queries (only a small number of keywords constitute most of the
queries). Moreover, LC3-SSE has acceptable query communica-
tion but as explained in section 5 it does not provide meaningful
reduction in leakage compared to LC4. Security of our schemes
follows from the security of the underlying ORAM and ODICT
schemes; therefore, we omit the security proofs.

Oblivious Dictionary (ODICT). Sublinear SSE schemes require
inverted index to function. Index needs a dictionary data structure
and ORAM is not a dictionary data structure. Therefore, we use
AVL tree based Oblivious Map scheme of Wang et al. [31] as an
Oblivious Dictionary in our schemes. We consider that ODICT
stores key value pairs and ODICT.Lookup(key) operation returns
the value associated with the key.

4.1 LC0–SSE
We show that a scheme with Leakage Class 0 (LC0) necessar-

ily requires downloading the entire outsourced data for each query.
Therefore, completely eliminating the leakage with communication
less than that of the Linear–LC0–SSE scheme (i.e., streaming all of
the outsourced data) is impossible.

THEOREM 4.1. The lower bound on the query communication
complexity to achieve the Leakage Class 0 (LC0) is |D|, where |D|
is the total size of all outsourced documents.

PROOF. We prove that if for any query the communication is
less than |D|, then the information leaked to the server is strictly
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Figure 3: In all the schemes, the client searches for a keyword and retrieves
a list of document identifiers that contain the keyword. Next the client re-
trieves the documents in this list from the server. For simplicity, the figures
are only showing the important details.



more than LC0. Suppose for a query q, the client retrieves docu-
ments with total size |D′| < |D|, then the server learns the size of
the documents being retrieved |D′|. Suppose the client has another
query q′ that is satisfied by all the documents. For an SSE scheme
to be correct, it has to download all the documents for the query
q′, i.e., the size of the documents retrieved for the query q′ needs
to be |D|. As the size of the data retrieved for the query q and the
query q′ are different, the server can distinguish the query q from
the query q′, which is strictly more leakage than LC0. Moreover,
the server learns an upperbound on the total size |D′| of the doc-
uments that match the query q. This shows that the only way to
prevent this leakage is to retrieve all documents for every query.
Therefore, we conclude that |D| is the optimal communication for
the Leakage Class 0 (LC0).

4.2 LC1–SSE
LC1-SSE prevents as much leakage as possible while keeping

the query communication less than the communication of Linear–
LC0–SSE. We propose a single keywordLC1-SSE scheme to study
the query communication required to achieve LC1.

Single Keyword LC1–SSE Scheme. We present our Single Key-
word LC1–SSE scheme in fig. 4. The client uses an ORAM O to
store both the index ODICT and the documents. To query a key-
word, the client looks up the inverted index stored in ODICT DO

to retrieve the list L of document identifiers that contain the query
keyword. She then retrieves all the documents in the list L from the
ORAM O.

Query Communication. Let n and d be the number of documents
and the total size of the documents that satisfy a query, e be the size
of n document identifiers, o be the overhead of the ORAM, co be
the overhead of the ODICT (where c shows the number of ORAM
accesses required for a single ODICT lookup), and B be the block-
size used in ORAM and ODICT, then the communication overhead
of LC1-SSE is co×max(B, d e

B
e)+o×max(B, d d

B
e). We prove

in appendix A.1 that for the fixed values of o and c, this is the op-
timal query communication required to achieve LC1. We demon-
strate using real datasets in Section 5 that the optimal communi-
cation single keyword LC1–SSE scheme requires more communi-
cation than Linear–LC0–SSE for a large fraction of the queries (a
small number of keywords constitute a large fraction of queries).

4.3 LC2–SSE
We propose a single keyword LC2–SSE scheme to investigate

Leakage Class 2 (LC2). Our single keyword LC1–SSE and LC2–
SSE schemes differ due the fact that the former stores both index
ODICT and documents in the same ORAM while the later stores
index ODICT and documents separately as shown in fig. 3.

Single Keyword LC2–SSE Scheme. We describe a single key-
word LC2 scheme in Figure 5. As shown in Figure 3b, it uses
an ODICT to store index and an ORAM to store the documents.
To search for a keyword q, the client retrieves a list L of docu-
ment identifiers of documents that satisfy q from the ODICT D.
Next, the client retrieves the documents in list L from the docu-
ment ORAM O.

Query Communication. Let n and d be the number of docu-
ments and the total size of the documents that satisfy a query, e
be the size of n document identifiers, o be the overhead of the
ORAM, o′ be the overhead of the ODICT, and B be the block-
size used in ORAM and ODICT, then the communication overhead
of LC2-SSE is o′×max(B, d e

B
e)+ o×max(B, d d

B
e). We prove

in appendix A.2 that for the fixed values of o and o′, this is the opti-
mal query communication required to achieve LC2. As LC1–SSE

Keygen.
• The client generates a symmetric key KO uniformly at random and

use it in all symmetric key operations of ODICT DO and ORAM O.

Setup.
• The client setups an ORAM O on the server. She uses ORAM O to

store both an ODICT DO for the index and the documents.

• The client creates an inverted index for all documents.

• The client writes the index in the ODICT DO . This can be done
during ORAM O setup.

• The client writes all the documents in the ORAM O. This can also
be done during ORAM O setup.

Search.
• To query a keyword q, the client queries the ODICT DO using

DO .Lookup(q) and retrieves the list L of documents that contain the
keyword.

• The client retrieves all the documents in list L from ORAM O.

Figure 4: Single Keyword LC1-SSE Scheme

Keygen.
• The client generates a symmetric key K uniformly at random, which

is used for encrypting blocks of ODICT D and ORAM O.

Setup.
• The client creates an inverted index for all documents.

• The client writes the index in an ODICT D stored on the server. This
can be done during ODICT D setup.

• The client writes all the documents in an ORAM O stored on the
server. This can be done during ORAM O setup.

Search.
• To query keyword q, the client queries ODICT D using D.Lookup(q)

and retrieves the list L of document identifiers that contain the key-
word.

• The client retrieves all the documents in list L from ORAM O.

Figure 5: Single Keyword LC2-SSE Scheme

stores both index ODICT and documents in the same ORAM and
LC2–SSE stores them separately, therefore, the size of the ORAM
in LC1–SSE is bigger than index ODICT and document ORAM
in LC2–SSE. Moreover, the ORAM and ODICT access increases
with their size, the LC2–SSE has slightly better query communi-
cation; however, it may not worth the extra amount of information
being leaked.

4.4 LC3–SSE.
We propose a single keyword LC3–SSE scheme to study Leak-

age Class 3 (LC3). Our single keyword LC3–SSE scheme uses
ODICT for the index but stores document using plain encryption
without ORAM.

Single Keyword LC3–SSE Scheme. We present a Single Key-
word LC3–SSE scheme in Figure 6. This scheme uses ODICT for
the inverted index and symmetric key encryption to store the docu-
ments.

Query Communication Complexity. Let n and d be the num-
ber of documents and the total size of the documents that satisfy a
query, e be the size of n document identifiers, o′ be the overhead
of the ODICT, and B be the blocksize used in ODICT, then the
communication overhead of LC3-SSE is o′ ×max(B, d e

B
e) + d.



Keygen
• The client generates two keys K and K′ uniformly at random. K

is used to encrypt blocks of ODICT D and K′ to encrypts the docu-
ments.

Setup:

• The client creates an inverted index for all documents.

• She writes the index in an ODICT D. This is done during ODICT D
setup.

• She encrypts each document with key K using a semantically secure
symmetric key encryption and send the encrypted documents to the
server.

Search:

• To query a keyword q, the client queries the ODICT D using
D.Lookup(q) and retrieves the list L of documents that contain the
keyword.

• The client retrieves all the documents in the list L from the server.

Figure 6: Single Keyword LC3-SSE Scheme

We prove in appendix A.3 that for the fixed values of o′, this is the
optimal query communication required to achieve LC3.

5. EVALUATION
We have implemented our protocols to evaluate the query com-

munication; however, we only simulate the ORAM accesses, which
we believe is enough to evaluate the query communication over-
head. We present detailed and comprehensive experiments.

In the first set of experiments fig. 7, which we call realistic exper-
iments, we use simulated PathORAM (4 log(N) overhead, where
N represents the total number of blocks) [30] for the document
ORAM and the Wang’s et al. AVL tree based Oblivious Map ((4 log(N))2

overhead) [31] for the index ODICT.
In the second set of more conservative experiments fig. 8, which

we call optimistic experiments, we use simulated ideal ORAM with
log(N)3 overhead for the document ORAM. Furthermore, we as-
sume that a single ODICT lookup requires a single ORAM ac-
cesses.

We use a blocksize of 4KB throughout.
Before presenting our results, we describe the preliminaries re-

quired to understand our results.

• Empirical CCDF Plots. We present our evaluation results
using empirical Complementary Cumulative Distribution Func-
tion (CCDF) plots. For example, a point (x, y) in figs. 7
and 8 indicate that the query overhead is at least x for y frac-
tion of the keywords.

• Query overhead. Query overhead of a query is the ratio of
the amount of data retrieved in an SSE scheme to the total
size of all the outsourced documents. This allows us to com-
pare the query communication of our SSE schemes to our
baseline Linear–LC0–SSE scheme: if the ratio is greater or
equal to 1, then the SSE scheme does not perform better than
our baseline Linear–LC0–SSE.

• Keyword Frequency. We plot keyword frequencies of all
the keywords in the Enron email corpus and the English Wikipedia
corpus in fig. 9; which shows that keywords follow Zipf’s
law.

3No existing ORAM scheme have this overhead. A loose
ORAM bound proved by [16] is log(N).
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Figure 9: Keyword Frequency. A point (x, y) in the plots indicates that the
fraction of the number of documents that contain a keyword is at least x for
y fraction of the keywords.

• Query Pattern. The more frequent the keyword is the more
frequently it will be queried (we have removed all stopwords).
As shown in fig. 9, a small number of keywords have very
high frequency, therefore, these small number of keywords
constitutes most of the queries. This fact is important in un-
derstanding the query overhead; in addition to query over-
head plots for the all the keywords, we present query over-
head plots zoomed in at the tail to clearly show the overhead
for the most frequent keywords that make up a large fraction
of the queries.

Datasets. We use two datasets: the complete English Wikipedia
corpus and the Enron email dataset. The English Wikipedia cor-
pus contains 4,825,180 distinct articles and is 9.8GB in size. En-
ron email dataset [1] contains emails from 150 Enron employees,
mostly senior managers. The dataset was made public by the Fed-
eral Energy Regulatory Commission during its investigation of En-
ron. The dataset is 1.32GB in size and has 517,424 emails. Enron
dataset has been extensively used to evaluate searchable encryption
schemes [20, 4, 23].

We removed all stopwards and non-alphabetical characters, and
converted all keywords to the lowercase. After this preprocessing,
English Wikipedia corpus had 4,400,034 keywords and Enron data
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Figure 7: Cumulative Query Overhead using PathORAM for the document ORAM and AVL tree based Oblivious Map [31] for the Index ODICT. Query
overhead of a query is the ratio of the amount of data retrieved in an SSE scheme to the total size of all the outsourced documents. A point (x, y) in the plots
indicates that the query overhead is at least x for y fraction of the keywords.

had 628,908 keywords.

Realistic Experiments. As explained above we use PathORAM
for the documents and AVL tree based Oblivious Map for the index
ODICT. LC3–SSE does not use document ORAM and LC4–SSE
does not use both document ORAM and index ODICT.

Fig. 7a shows the query overhead for all keywords in the Enron
Email Corpus. LC1–SSE and LC2–SSE have the same query over-
head and therefore their curves are overlapping. LC3–SSE query
overhead is slightly more than that of LC4–SSE. Moreover, LC1–
SSE and LC2–SSE query overhead is more than 1 for a large frac-
tion of queries (a small number of keywords constitutes a large frac-
tion of queries). Fig. 7c shows zoomed in view of the tail of fig. 7a
for 5, 000 most frequent keywords, which shows that for all of the
5, 000 most frequent keywords the query overhead is at least 1.75.

Fig. 7b and fig. 7d shows similar results for the English Wikipedia
corpus.

Optimistic Experiments. Fig. 8 shows results for our optimistic
experiments, where we use ideal ORAM and ODICT, both with
the communication overhead of log(N), where N is the number
of blocks. The results are better than our realistic experiments,
however, a large fraction of queries still has query overhead of more

than 1.

Leakage Analysis of LC3–SSE and LC4–SSE. Our experiments
show that LC3–SSE query overhead is almost same as LC4–SSE;
therefore, we investigate whetherLC3–SSE provide meaningful re-
duction in leakage compared to LC4–SSE. As explained in Sec-
tion 2 LC3–SSE prevents explicit leakage of search pattern, but
leaks search pattern indirectly from the document access pattern.
Specifically, the only information that is not leaked about the search
pattern from the document-access pattern is whether the client is
querying for two keywords that appear in exactly the same set of
documents. Fig. 10 shows the fraction of keywords for which there
are at least a fraction of other keywords appearing in the same set
of documents. As it can been seen, a very small fraction of key-
words have a very small fraction of other keywords that appear in
the same set of documents; therefore, we conclude that LC3 leaks
almost as much as LC4. This implies that oblivious index accesses
alone does not provide a meaningful reduction in leakage if the
documents are accessed in a non-oblivious fashion. Therefore, for
any meaningful reduction in leakage both the index and documents
accesses need to be oblivious.

6. RELATED WORK
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Figure 8: Cumulative Query Overhead using an ideal ORAM overhead of log(N), where N is the total number of blocks, for both the documents ORAM and
index ODICT. We assume that a single ODICT lookup requires a single ORAM access. Query overhead of a query is the ratio of the amount of data retrieved
in an SSE scheme to the total size of all the outsourced documents. A point (x, y) in the plots indicates that the query overhead is at least x for y fraction of
the keywords.
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Figure 10: Leakage Advantage of LC3–SSE over LC4–SSE for Enron
Email Corpus. A point (x, y) in the plots indicates that the fraction of
keywords that appear in the same set of documents is at least x for y fraction
of the keywords.

Oblivious RAM (ORAM). Oblivious RAM was first proposed by
Goldreich and Ostrovsky in 1996 [16] in the context of software
protection. There has been a lot of progress since then in the effi-
ciency of ORAM schemes [24, 9, 25, 13, 7, 21, 2, 17, 29, 30, 28, 10,
14, 11, 12] . Tree-based schemes deamortize the cost of shuffling
to avoid an occasional linear shuffling overhead. Recently, ORAM
has find applications in secure multiparty computation [33, 32, 13]
and secure-coprocessor [22]. Oblivious RAM has also been used
to develop oblivious data structure schemes such as tree and linked
list [31].

Symmetric Searchable Encryption (SSE). Song et al. first pro-
posed the idea of searching on encrypted data [26]. A lot of progress
has been made in making SSE practical and many different schemes
have been proposed [15, 5, 8, 6, 20, 20, 4, 19, 3, 23]. Curtmola et
al. proposed better security definitions for SSE [8]. Searchable en-
cryption scheme with support for updates was first proposed by Ka-
mara et a. [20]. Naveed et al. proposed a different way of construc-
tion SSE schemes with support for updates [23]. Recently, Cash et
al. proposed a first sublinear SSE scheme for Boolean queries [4].

Stefanov et al. proposed a forward secure SSE schemes that re-



duces the leakage in addition and deletion of documents, but leaks
access pattern for queries just like other SSE schemes [27].

7. CONCLUSIONS
Oblivious RAM enables a client to access memory without leak-

ing the access pattern. However, access pattern hiding properties
of ORAM are limited to a random access memory (RAM) inter-
face, which is not always the case with the real applications such as
symmetric searchable encryption (SSE). We show that eliminating
leakage in SSE is impossible. Moreover, achieving even weaker
classes of leakage either requires communication more than down-
loading the entire outsourced data or does not provide meaningful
leakage reduction.

8. ACKNOWLEDGMENTS
We thank Vincent Bindschaedler, Carl Gunter, and Manoj Prab-

hakaran for their insightful feedback.

9. REFERENCES
[1] Enron dataset. https://www.cs.cmu.edu/~enron/.
[2] D. Boneh, D. Mazieres, and R. A. Popa. Remote oblivious storage:

Making oblivious ram practical. 2011.
[3] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Rosu,

and M. Steiner. Dynamic searchable encryption in very large
databases: Data structures and implementation. In NDSS, 2014.

[4] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and
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APPENDIX
A. PROOF SKETCHES

A.1 Single Keyword LC1–SSE Scheme

THEOREM A.1. For given ORAM and ODICT schemes, LC1–
SSE scheme has optimal query communication required to achieve
LC1.

We use ORAM as a blackbox in our scheme, therefore we use it
as a blackbox in the proof as well.

PROOF. According to Lemma A.4, for a query q, LC1–SSE
needs to retrieve the list L of document identifiers that satisfy the
query q and the set of documents D that satisfy the query q.

To achieve Leakage Class 1 (LC1), LC1–SSE uses ODICT for
the index accesses and ORAM for the document accesses.

To achieve LC1, LC1–SSE uses single ORAM storing index
ODICT and the documents. ODICT for the index and ORAM
for the documents are required to achieve LC1, furthermore it is
also required that index ODICT and documents are stored in the
same ORAM. Otherwise, access pattern leakage from index and
document accesses would leak strictly more information than LC1.
The overhead of using ODICT and ORAM is the only overhead
incurred by LC1–SSE. Therefore, we conclude that our single key-
word LC1–SSE has optimal communication for LC1 leakage.

A.2 Single Keyword LC2–SSE Scheme

THEOREM A.2. For given ORAM and ODICT schemes, LC2–
SSE scheme has optimal query communication required to achieve
LC2.

PROOF. According to Lemma A.4, for a query q, LC2–SSE
needs to retrieve the list L of document identifiers that satisfy the
query q and the set of documents D that satisfy the query q.

https://www.cs.cmu.edu/~enron/


To achieve LC2, LC2–SSE use ODICT for the index accesses
and ORAM for the document accesses. ODICT for the index and
ORAM for the documents are required to achieve LC2. Otherwise,
access pattern leakage from index and document accesses would
leak strictly more information than LC2. The overhead of using
ODICT and ORAM is the only overhead incurred by LC2–SSE.
Therefore, we conclude that our single keyword LC2–SSE has op-
timal communication for LC2 leakage.

A.3 Single Keyword LC3–SSE Scheme

THEOREM A.3. For a given ODICT construction, LC3–SSE
scheme has optimal query communication required to achieveLC3.

PROOF. According to Lemma A.4, for a query q, single key-
word LC3–SSE needs to retrieve the list L of document identifiers
that satisfy the query q and the set of documents D that satisfy the
query q.

To achieve LC3 the index needs to be stored in the ODICT, but
the documents do not need any oblivious data structure. If index
is not stored in and accessed from an ODICT then the leakage
would be strictly more than LC3. The overhead of ODICT is the
only overhead incurred by LC3–SSE. Therefore, we conclude that
our single keyword LC3–SSE has optimal communication for LC3
leakage.

A.4 Sublinear Communication

LEMMA A.4. For a computation-less server and a client with
poly log(|D|) local storage, a query q in an LCX–SSE schemes,

the minimum amount of communication requires retrieving the list
of document identifiers that satisfy the query q and set of documents
D that satisfy the query q.

PROOF. Let |D| be the total size of all outsourced documents.
Let the client query be q and let D be the documents that satisfy
the query q.

We require an LCX–SSE scheme to have better performance
than our baseline Linear–LC0–SSE. Linear–LC0–SSE has com-
munication linear in the total size of all outsourced data, so LCX–
SSE scheme is by definition a sublinear scheme. Any sublinear
scheme, first requires to find out which documents (e.g., finding
the document identifiers) match the query and then retrieve these
documents. Client has limited local storage i.e., poly log(|D|); this
means that the client cannot locally find out the document identi-
fiers that match the query as it would require local storage linear
in |D|. So, this information needs to be stored on the server and
retrieved for each query.

For an LCX–SSE scheme to be correct4, the minimum amount
of communication needs to be the complete list of document iden-
tifiers for all documents that satisfy the query (let’s call this list L),
otherwise client would not be able to download all the documents.
Next, the client needs to download all the documents in the list L,
that is all the documents that satisfy the query. For an LCX–SSE
scheme to be correct, client has to download all the documents D.
So, we need to retrieve the list of document identifiers L and all the
documents D.

4Correctness means that the client downloads all the documents
that match the query.
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