
Analyzing the Efficiency of Biased-Fault Based
Attacks

Nahid Farhady Ghalaty, Bilgiday Yuce, Patrick Schaumont

Bradley Department of Electrical and Computer Engineering,
Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

{farhady,bilgiday,schaum}@vt.edu

Abstract. The traditional fault analysis techniques developed over the
past decade rely on a fault model, a rigid assumption about the nature of
the fault. A practical challenge for all faults attacks is to identify a fault
injection method that achieves the presumed fault model. In this paper,
we analyze a class of more recently proposed fault analysis techniques,
which adopt a biased fault model. Biased fault attacks enable a more
flexible fault model, and are therefore easier to adopt to practice. The
purpose of our analysis is to evaluate the relative efficiency of several
recently proposed biased-fault attacks, including Fault Sensitivity Anal-
ysis (FSA), Non-Uniform Error Value Analysis (NUEVA), Non-Uniform
Faulty Value Analysis (NUFVA), and Differential Fault Intensity Analy-
sis (DFIA). We compare the relative performance of each technique in a
common framework, using a common circuit and using a common fault
injection method. We show that, for an identical circuit and an identical
fault injection method, the number of faults per attack greatly varies ac-
cording with the analysis technique. In particular, DFIA is more efficient
than FSA, and FSA is more efficient than both NUEVA and NUFVA.
In terms of number of fault injections until full key disclosure, for a typ-
ical case, FSA uses 8x more faults than DFIA, and NUEVA uses 33x
more faults than DFIA. Hence, the post-processing technique selected
in a biased-fault attack has a significant impact on the probability of a
successful attack.

Keywords: Differential Attack, Fault Intensity, Biased Fault, Fault In-
tensity

1 Introduction

Secure cryptographic circuits are subject to a wide variety of cryptanalytic tech-
niques, at the level of the algorithm as well as at the level of the implementation.
Fault analysis is a class of implementation-oriented attacks. They analyze the
response of a circuit to a fault injection, with the objective of accurately es-
timating an internally stored secret such as a key or a secret variable. Known
since over a decade, fault analysis has grown into an advanced and refined crypt-
analytic technique that handles public-key - as well as secret-key cryptographic
implementations [1, 2]. Faults can be obtained by pushing the circuit outside of

2 Nahid Farhady Ghalaty, Bilgiday Yuce, Patrick Schaumont

its nominal operating conditions. Some common techniques include overclock-
ing it, voltage-starving it [3], heating it up [4], creating spurious charges using
optical means [5], or causing eddy currents through electromagnetic induction.
Faults are only limited by the creativity of the adversary.

On the other hand, fault attacks face a recurring challenge. The adversary
needs to ensure that the actual physical manifestation of the fault corresponds to
the specific assumptions made during fault analysis. Such assumptions include,
for example, the location of the fault in the circuit, the precise time at which a
fault must occur, and the specific value of a faulty variable. These conditions are
summarized in a fault model, the set of properties that describe a given fault.
Some of the well known fault types assumed by fault attacks are random-byte
errors, bit-flip errors, or stuck-at errors. The attacks further assume a speci-
fied time precision that can range from a complete encryption period, to one
cryptographic round, down to a precise clock cycle.

The efficiency of a fault attack is inversely proportional to the number of fault
injections required to learn an internal secret. In well-known fault attacks such
as differential fault analysis, a more precise fault model typically requires fewer
faults [6]. Hence, a more precise fault model is therefore a desirable objective in
fault analysis.

The challenge to the cryptographic engineer is to ensure that the available
fault injection techniques for the circuit under consideration, will provide the
fault model required for the selected fault analysis. That is a challenge, for
various reasons. First, the resolution of fault injection techniques varies greatly.
Some fault injection techniques only enable time control, but are imprecise in
terms of location. Glitch injection and electromagnetic-pulse injection fall in this
category. Some fault injection techniques only have a global effect. Temperature
and voltage fall in this category. On the other hand, precise fault injection may
be too expensive or too complicated. For example, the use of a laser to trigger
setup effects in a selected register, requires partial disassembly of a chip package.

Recently, a series of fault analysis techniques have been introduced that are
based on fault bias. In this context, fault bias is the proportion of a circuit that
experiences a fault under a given fault injection. Attacks based on fault bias can
use relaxed fault models, compared to classic fault attacks.

We will discuss and compare several recently proposed biased-fault attacks,
including Fault Sensitivity Analysis (FSA, [7]), Non-Uniform Error Value Anal-
ysis (NEUVA, [8]), Non-Uniform Faulty Value Analysis (NUFVA, [9]) and Dif-
ferential Fault Intensity Analsysis (DFIA, [10]). We will show that these four at-
tacks share common ideas, and hence their performance can be compared. Perfor-
mance, in the context of this paper, is defined as the number of (faults, plaintext)
pairs needed to extract (fully or partially) the secret key of a cipher. For the
experiments, we have selected setup time violation as the source of faults, and a
hardware implementation of the Advanced Encryption Standard as the reference
design. The faults are injected by controlled clock glitches. Our results are ob-
tained from gate-level simulations, such that we are able to determine the exact

Analyzing the Efficiency of Biased-Fault Based Attacks 3

Fig. 1. The effect of the glitch injection on the clock signal

cause of each fault. These are pragmatic choices that make our results verifiable
and comparable with other efforts.

The remainder of this paper is organized as follows. In Section 2, we provide
a more systematic description of fault bias, and we present a tentative definition
of the concept. We show that, when faults are caused through setup time viola-
tions, fault bias is a property of the static timing of a circuit. Section 3 shows the
effects of fault bias on the circuit behavior. These effects will later be used by
the attacks. In Section 4, we describe a generic framework for a systematic com-
parison of biased-fault attacks, and in Section 5, we apply it to FSA, NUEVA,
NUFVA and DFIA. Section 6 describes our experimental setup, and in Section
7, we present the results of biased fault attacks. We determine the efficiency of
each fault attack under fault injection with varying precision. In Section 8, we
conclude the paper.

2 Causes of Biased Faults

In this section, we first explain the mechanism of clock glitch injection, and then,
describe the causes of fault bias.

2.1 Setup Time Violation

We inject faults into the operation of a circuit by violating its setup time con-
straints. Setup time violation is a widely-used low-cost fault injection mecha-
nism [11]. In the following paragraphs, we explain setup time constraints of a
circuit and their use as the fault injection means.

In synchronous circuits the data is processed by combinational blocks, which
are surrounded by input/output registers. The data is captured when the sam-
pling edge of the clock signal arrives at the registers. Each combinational block
requires a certain propagation delay (Tpd) to compute its output value. For the
correct operation of the circuit, combinational block outputs must settle to their
final values and remain stable at least some setup time (tsu) before the sampling
clock edge. Therefore, the clock period (Tclk) must satisfy the following equation
for all paths from input registers to output registers:

Tclk ≥ Tpd + Tsu (1)

This equation specifies the setup time constraints of a circuit. The setup time
constraint of the longest (i.e, critical) path determines the minimum clock period

4 Nahid Farhady Ghalaty, Bilgiday Yuce, Patrick Schaumont

(a)

(b)

Fig. 2. (a) A block diagram of a 4-bit ripple-carry adder implemented on an FPGA.
(b) The distribution of path delays within fan-in cone of each output bit. Using the
non-uniform path delay distribution, we can create biased faults (e.g, 1-bit, 2-bit, etc.)

for the circuit. Applying a shorter clock period than this value will fail the setup
time constraints.

An adversary can cause setup time violation via clock glitches. Figure 1 shows
the effect of a glitch on the clock signal. A clock glitch will temporarily shorten
the clock cycle period from Tclk to Tglitch, thereby causing timing violation of the
digital logic. When the glitch period (Tglitch) violates timing constraint of a path,
the output value of this path is captured before its computation is completed.
Therefore, the captured value is very likely to be faulty.

2.2 Causes of Fault Bias

The fault behavior of a circuit under clock glitch injection is determined by its
path delay distribution and the applied fault intensity. For clock glitching, we
define the fault intensity (FI) as the the inverse of glitch period, Tglitch (Fig. 1),
and quantify it with Equation 2. The following paragraphs explain how these
two factors can be combined to inject biased faults.

FI =
1

Tglitch
(2)

Figure 2(a) shows the block diagram of a 4-bit ripple-carry adder, which
computes sum (Q) of two input numbers (A, B). Figure 2(b) shows the (static)

Analyzing the Efficiency of Biased-Fault Based Attacks 5

path delay distribution of the adder in the form of box-whisker plots. Each box-
whisker plot in Figure 2(b) shows the delay distribution of paths within the fan-in
cone of a different output bit. We extracted the path delays from a post-place-
and-route netlist generated for a Xilinx Spartan 3E FPGA. As it is seen, the
path delay distribution is non-uniform. For example, more than 50% of the path
delays within the fan-in cone of bit Q3 are greater than all of the path delays
within the fan-in cone of bit Q2. Similarly, the path delays within the fan-in cone
of Q0 are the smallest ones. This observation promises a biased (i.e, non-uniform)
fault behavior. For example, it is possible to inject a fault that affects only a few
bits of a targeted variable. This can be achieved by applying a fault intensity
that violates only a few paths. If the applied fault intensity is greater than
0.364GHz (i.e, Tglitch > 2.75ns), no faults can be injected into the ripple-carry
adder. However, single-bit faults can be injected on the bit Q3 when the fault
intensity is between 0.364GHz and 0.392GHz (i.e, 2.55ns < Tglitch < 2.75ns).
Additional faults can be induced in the other bits only if the fault intensity value
is increased further.

As a consequence, the non-uniform path delay distribution enables an adver-
sary to obtain a biased fault behavior in proportion to the fault intensity. The
next section provides a definition for the fault bias, which allows us to quantify
it.

2.3 Quantifying Fault Bias

The fault bias is a property of the circuit architecture, which expose the poten-
tial of a circuit to experience a setup time violation at a given fault intensity.
Therefore, we can define the fault bias (FB) as the proportion of the violated
paths for a given fault intensity. This definition enables us to quantify the fault
bias as a number between 0 and 1 via Equation 3.

FB(f) = Number of violated paths
Number of all paths

∣∣∣
FI=f

(3)

Figure 3 illustrates this concept for our ripple-carry adder example. It shows
the number of violated paths with respect to the fault intensity and the cor-
responding clock glitch period. The bottom horizontal axis shows the fault in-
tensity values and the top horizontal axis shows the corresponding glitch period
values. As it is seen, the number of violated paths increases with the fault in-
tensity. As an example, we will explain two fault bias values for two different
fault intensities. The first fault intensity is 0.370GHz and the corresponding
glitch period is 2.70ns. The fault bias for this fault intensity value is 0.22. This
means that only 22% of the all paths can contribute the fault behavior. As it
is shown in the ripple-carry example, this fault intensity can induce only 1-bit
faults (Fig. 2(b)). The second fault intensity and the corresponding glitch period
are 0.526GHz and 1.90ns, respectively. At this fault intensity, the fault bias is
0.91. In this case, only the bit Q0 of the adder computes the correct result. De-
pending on the attack strategy, both of these cases can be exploited to retrieve
the key.

6 Nahid Farhady Ghalaty, Bilgiday Yuce, Patrick Schaumont

Fig. 3. Number of violated paths with respect to the applied fault intensity and the
corresponding glitch period for the ripple-carry adder.

Equation 3 reveals three important properties of fault bias. First, the fault
bias is a property of circuit architecture. Therefore, an adversary can accurately
model the fault behavior in terms of circuit architecture. Second, an adversary
can control the severity of fault effects on a circuit by controlling the fault
intensity. Higher fault intensity values induce more severe fault effects. Thus,
each point in Figure 3 provides additional information that can be used as a
source of leakage. Third, cryptographic hardware designers can evaluate the
vulnerability of their designs to setup time time violation, and develop more
efficient countermeasures. Next, we will demonstrate other parameters that affect
the fault bias.

2.4 Effects of Operating Conditions and Data on Fault Bias

During an attack, the adversary can influence the dynamic path delay distri-
bution through the input data and the operating conditions. This will affect the
fault bias. In the following paragraphs, we will demonstrate their effects on the
path delays.

Effects of Operating Conditions: An adversary can influence the path delays
of a circuit by varying the operating conditions such as the supply voltage and
the operating temperature. In Figure 4, we provide an example to illustrate
the effects of varying the supply voltage and the operating temperature on the

Analyzing the Efficiency of Biased-Fault Based Attacks 7

Fig. 4. The effect of varying the supply voltage and the operating temparature on the
path delays. Increasing the temperature and decreasing the supply voltage increase the
path delays.

path delays of the ripple carry adder. We investigate the path delay distribution
within the fan-in cone of bit Q3 with four different (supply voltage, operating
temperature) combinations. We provide a separate box-whisker plot for each
case. We obtained these data using Xilinx’s static timing analyzer tool.

The top two box-whisker plots of Figure 4 show the effect of increasing the
operating temperature from 85C to 100C, while applying a constant supply
voltage of 1.14V . The bottom two box-whisker plots show the same effect for the
supply voltage of 1.32. As it is seen, the path delays increase with the increasing
temperature.

The Case 1 and Case 3 shows the effect of decreasing the supply voltage from
1.32V to 1.14V for a temperature of 85C. The Case 2 and Case 4 illustrate the
same effect for a temperature of 100C. As it is shown, the path delays increases
with the decreasing supply voltage. These behaviors are compatible with the
experimental results provided by Zussa et al. [12].

Effects of the Processed Data: An adversary can also influence the path
delays via processed data since path delays are data-dependent.

In Figure 5, we provide post-place-and-route simulation results for our ripple-
carry adder example to illustrate the data-dependency of its path delays. In the
simulation, we first initialized the adder ouputs to logic-1. Then, we applied two
different input sets and observed the timing of the output signals during their
transition from logic-1 to logic-0. As it is seen, path delays have a distribution
of TQ3 > TQ2 > TQ1 > TQ0 for the first input set (Fig. 5(a)). The output bit Q3
settles down later than the other bits because of the ripple effect. On the other
hand, the path delay distribution is TQ3 > TQ1 > TQ2 > TQ0 for the second
input set (Fig. 5(b)). As there is no carry propagation in this case, the bit Q1
can settle down before the bit Q2. This shows that modifying the processed data
changes the distribution of the path delays.

8 Nahid Farhady Ghalaty, Bilgiday Yuce, Patrick Schaumont

Fig. 5. Illustration of data-dependency of paths delays on the ripple-carry adder: (a)
TQ3 > TQ2 > TQ1 > TQ0. (b) TQ3 > TQ1 > TQ2 > TQ0.

3 Effects of Fault Bias on Circuit Behavior

In this section, we demonstrate the different effects of the fault bias on the
circuit behavior, which are exploited by FSA, NUEVA, NUFVA, and DFIA. For
this purpose, we provide some experimental results for two AES SBOX designs,
namely, PPRM1-SBOX [13] and Comp-SBOX [14]. PPRM1-SBOX is a low-
power SBOX design, which is based on a AND-XOR logic array. Comp-SBOX is
a compact composite-field-based design, which decomposes the SBOX operation
into smaller, lower-level finite-field operations.

Before proceeding further, we need the following definitions. We can model
the effects of the fault injection on the targeted signal with an XOR operation:

s∗ = s⊕ e (4)

In Equation 4, the correct value, s, is the value of the targeted signal without
fault injection. The faulty value, s∗, is the value of the targeted signal after fault
injection. The error value, e, denotes the value of the injected fault itself. If i-th
bit of the error value (e) is 1, the i-th bit of the correct value (s) is flipped and
the faulty value (s∗) is obtained. Next, we will show different effects of fault bias
on these values.

Data-Dependency of the Fault Sensitivity: If an adversary gradually in-
creases the fault intensity, a circuit can reach a point at which the output of the
circuit becomes faulty. This threshold point is called fault sensitivity. For setup

Analyzing the Efficiency of Biased-Fault Based Attacks 9

Fig. 6. The relationship between the critical timing delay and the Hamming weight of
the input of PPRM1-SBOX [15].

time violation, the critical path delay determines the fault sensitivity point. As
the path delay distribution of a circuit is data-dependent, the fault sensitivity
of the circuit is also data-dependent.

Ghalaty et al. experimentally demonstrated this effect on an FPGA imple-
mentation of PPRM1-SBOX architecture [15]. They obtained critical path delay
value for each possible SBOX input in their experiment, where the initial values
of SBOX outputs are logic-0. Figure 6 shows their critical path delay results
with respect to the Hamming weight of the SBOX input values. As it is seen,
the critical path delay of PPRM1-SBOX is proportional to the Hamming weight
of the SBOX inputs.

Non-uniform Error Value Distribution: Fault bias can also cause a non-
uniform distribution in the error value (i.e, fault pattern).

To illustrate this effect, we obtained error value distribution for a PPRM1-
SBOX design. For this purpose, we applied a gate-level simulation for a post-
place-and-route netlist, which is generated for a Xilinx Spartan6 FPGA. During
the simulation, we applied all possible input transitions to the SBOX inputs
and observed the error values injected into the SBOX outputs. We used a fault
intensity of 0.238GHz in our experiment. Figure 7 shows the obtained error
value distribution at the output of the SBOX. The horizontal axis shows the
error values and the vertical axis shows the their frequency of occurrence. As it

10 Nahid Farhady Ghalaty, Bilgiday Yuce, Patrick Schaumont

Fig. 7. The distribution of injected error values in the output of PPRM1-SBOX
(Fault Intensity = 0.238GHz).

Fig. 8. The distribution of faulty values in the output of Comp-SBOX
(Fault Intensity = 0.250GHz).

is seen, the fault bias causes a non-uniform error value distribution. Also, error
values that have low Hamming-weight are more likely to occur for this fault
intensity value.

Non-uniform Faulty Value Distribution: Fault bias might also cause a
non-uniform distribution in faulty values. By controlling the fault intensity, an
adversary can make a circuit produce some faulty values more than the other
faulty values.

Figure 8 demonstrates this effect for a gate-level netlist of Comp-SBOX,
which is generated for a Xilinx Spartan6 FPGA. To obtain this figure, we applied
a gate-level simulation with all possible SBOX input transitions and observed
the faulty SBOX ouput values. Our fault intensity was 0.250GHz in our sim-

Analyzing the Efficiency of Biased-Fault Based Attacks 11

Fig. 9. The relationship between the critical timing delay and the Hamming weight of
the input of PPRM1-SBOX [10]

.

ulation. The figure shows the distribution of faulty SBOX output values. The
horizontal axis shows the faulty output values and the vertical axis shows the
their frequency of occurrence. It also shows the distribution of fault-free SBOX
output values. As it is shown (blue line of Fig. 8), the correct outputs of the
SBOX have a uniform distribution. However, faulty outputs have a non-uniform
distribution, and we see the output value 99 more than the other faulty values
because of fault bias. This effect also experimentally demonstrated on an ASIC
implementation of Comp-SBOX by Li et al. [16].

Small Changes in Fault Behavior: The effects of fault bias on a circuit’s
operation has also a differential character: A small change in the fault intensity
will cause a small change in the fault bias. Therefore, an adversary can gradually
increase the number of induced faults by gradually increasing the fault intensity.
This enables the adversary to combine the information obtained at different fault
intensities.

Ghalaty et al. experimentally demonstrated this effect on an FPGA imple-
mentation of PPRM1-SBOX architecture [10]. In their experiment, they col-
lected the faulty SBOX output values, generated by a certain SBOX input value
for 33 different clock frequencies. Figure 9 shows the number of faulty output
bits, which they observed in the experiment, with respect to the applied clock
frequency (i.e, fault intensity). As it is seen, the number of faulty output bits
increases with the increasing fault intensity. As a consequence, this figure ex-
perimentally demonstrates the gradual fault behavior in proportion to the fault
intensity.

Next section provides a framework to build biased fault attacks, which rely
on the effects of fault bias. Then, in Section 6, we will explain how FSA, NUEVA,
NUFVA, and DFIA utilize the demonstrated fault bias effects.

12 Nahid Farhady Ghalaty, Bilgiday Yuce, Patrick Schaumont

Fig. 10. Generic Fault Attack Framework

4 Building a Biased Fault Attack

In the previous sections, we discussed a systematic description of fault bias, its
causes and effects on the circuit behavior. In this section, we describe a generic
framework for a systematic comparison of the fault attacks. Following are the
steps of a fault attack. These steps are shown in Figure 10 as well.

– Step 1: Measurement: In this step, the adversary applies several plain-
texts and all possible fault intensities to inject biased fault into the block
cipher. Then, he collects the observables, namely, plaintexts, faulty cipher-
texts, correct ciphertexts and fault intensities for further analysis. The col-
lected observables contain fault bias information of the circuit.

– Step 2: Estimating the Effects of Fault Bias on Secret Intermediate
Variable: The target of biased fault injection is a secret intermediate vari-
able. Therefore, an adversary should first invert the observables back to the
intermediate variables using key guesses. Then, the adversary estimates the
effect of fault bias on hypothesized intermediate variable. Since the effects of
fault bias are different, each attack strategy requires a different estimation
function on the intermediate variable.

– Step 3: Distinguisher: Only for the correct key guess, the estimated fault
bias values in Step 2 correspond to the observed fault bias in Step 1. In
this step, we distinguish the correct key guess from the wrong key guesses.
For this purpose, the distinguisher first assigns a number for the strength of
the correlation between the collected observables (Step 1) and the fault bias
estimations (Step 2). Then, it selects the key guess which corresponds to the
maximum strength.

5 Biased Fault Attacks

In this section, we explain FSA, NUEVA, NUFVA and DFIA on AES algorithm.

Analyzing the Efficiency of Biased-Fault Based Attacks 13

Fig. 11. AES Structure

5.1 Advanced Encryption Standard Algorithm

This section provides some preliminary information about AES algorithm and
the notations used throughout this section. The AES algorithm consists of 10
rounds. The first 9 rounds have 4 main operations, SBOX, ShiftRows(SR), Mix-
Column(MC) and AddRoundKey(ADK). Round 10 omits the MixColumn op-
eration. Figure 11 shows the structure of the AES algorithm. In this figure, P is
the applied plaintext to the AES algorithm, S10 is the intermediate state vari-
able for round 10. K10 is the key for round 10 and C represents the ciphertext.
The faulty value of the variable x is shown by x′, x′′,

All of the considered attacks aim at retrieving the last round key (K10).
However, the target round for fault injection might differ based on the attack
strategy. Next, we will give the details of each attack.

5.2 Fault Sensitivity Analysis (FSA)

Fault Sensitivity Analysis (FSA) attack is proposed by Li et. al, in CHES
2010 [7]. Realizing that fault bias can have a data dependency on a secret value
in a circuit, Li used it to demonstrate a fault attack with side-channel-like prop-
erties. The steps of FSA are as below.

– Step 1: In this attack, the target of the fault injection is round 10. The
observables are plaintext, ciphertext and fault sensitivity points.

– Step 2: For FSA, the effect of fault bias is the data dependency of fault
sensitivity. The adversary first inverts the ciphertext to round 10 input (S10)
using a key guess. Then, he estimates the effect of fault bias as the Hamming
Weight of round 10 input HW (S10).

– Step 3: In this step the attacker uses the Pearson Correlation Coefficient to
find the key guess for which the fault sensitivity is strongly correlated to
HW (S10) for all inputs.

5.3 Non-Uniform Error Value Analysis (NUEVA)

Lashermes proposed a technique now abbreviated as Non Uniform Error Value
Analysis, or NUEVA [8]. NUEVA relies on a biased distribution of error values.
Lashermes used NUEVA in a differential evaluation technique. He evaluated the
Shannon Entropy in the distribution of a secret error value under a given key
hypothesis, and was thus able to distinguish a correct hypothesis from a wrong
hypothesis. The steps of the attack are as below.

14 Nahid Farhady Ghalaty, Bilgiday Yuce, Patrick Schaumont

– Step 1: In this step, the target of fault injection is the output of round 9.
The observables are correct and faulty ciphertexts.

– Step 2: Since, the effect of the fault bias in NUEVA is non-uniformity in
error value, the adversary must estimate the fault bias on the error value.
For this purpose, he inverts the faulty and correct ciphertexts for each key
guess, and obtains the input of round 10 (S10, S

′
10). Then, the error value is

estimated by XORing the S10 and S′10 values.
– Step 3: In this step, using the error values computed in Step 2, the adversary

generates the error value distribution for each key guess. The adversary uses
the Shanon Entropy to differentiate a key guess that has the strongest bias
in the error value distribution.

5.4 Non-Uniform Faulty Value Attack (NUFVA)

Fuhr generalized the NUEVA technique, by directly considering the distribution
of the faulty secret variable separately. His technique therefore is called Non
Uniform Faulty Value Analysis (NUFVA), to indicate that the bias is present in
the fault value itself, rather than in the error pattern [9]. He also proposed sev-
eral distinguisher techniques. The NUFVA attack can be performed in different
rounds of AES including round 7, 8 and 9.

– Step 1: We take the round 9 as the fault injection target. Since, this attack
is a faulty ciphertext only attack, the observables include the fault intensity
and the faulty ciphertext.

– Step 2: The effect of fault bias for NUFVA is the non-uniform faulty value
distribution. To extract the fault bias, the attacker must estimate the effect
of fault bias on the faulty value. Therefore, he inverts the faulty ciphertext
using a key hypothesis and obtain faulty inputs for round 10 (S′10).

– Step 3: Using the values of faulty intermediate state, the attacker computes
the distribution of faulty values for each key guess. Then, for each key guess,
the attacker applies the Maximum likelihood function to distinguish the
correct key guess from the wrong ones.

5.5 Differential Fault Intensity Analysis (DFIA)

The fourth technique that builds on fault analysis is Differential Fault Intensity
Analysis (DFIA), proposed by Ghalaty [10]. The steps and properties of the
attack are explained in the following steps.

– Step 1: The target of fault injection for DFIA is the output of round 9. The
observables for this attack are the fault intensity and the faulty ciphertexts.

– Step 2: Unlike the previous techniques, DFIA does not assume that the fault
distribution or the faulty value is biased. Rather, the fundamental differ-
ence with the previous techniques is that DFIA relies on small change in
fault behavior as a result of small change in fault intensity. To estimate the
small change, the adversary computes the input of round 10 (S′10, S′′10,...), by

Analyzing the Efficiency of Biased-Fault Based Attacks 15

Fig. 12. (a) Block diagram for the experimental setup. (b) Timing diagram for the
experimental setup.

inverting the faulty ciphertexts and key guess for several fault intensity lev-
els. Then, he computes the distance between the hypothesized intermediate
variables by using the Hamming Distance function.

– Step 3: The fault bias assumption for DFIA enables the use of a distinguisher
that looks for the smallest change. Unlike the previous techniques, DFIA
can combine fault behaviors collected at multiple fault intensities. Hence,
the complete fault bias characteristic of a circuit can be exploited. Based on
the assumption of fault attack, the error values are close to each other for
the correct key guess. For wrong key guesses, the distance between injected
error values will be random due to the non-uniform behavior of the Sbox
module. Therefore, the distinguisher function simply chooses the key that
shows the minimal distance between intermediate variables.

6 Experimental Setup

In this work, we injected biased faults into a device under test (DUT) through
gate-level simulation. As the DUT, we use two AES-128 designs: PPRM1-SBOX-
based AES-128 (PPRM1-AES) and Comp-SBOX-based AES-128 (Comp-AES).
We generated the gate-level netlists of these designs for a Xilinx Spartan6 FPGA
(45nm technology). Both DUTs compute each round of AES in a separate clock
cycle. We use clock glitches as the fault injection means (Fig. 12(a)). This method
generates a clock signal for the circuit as a combination of two clock signals,
namely, glitch clock (clk g) and nominal clock (clk o). As it is seen in Fig-
ure 12(b), we inject glitches in the clk o via an enable signal (g en). To inject a
biased fault in the input of the r-th round of AES, we set the g en signal just be-
fore the clock cycle, in which the r-th round is computed. Such a glitch injection
makes some timing paths fail during (r−1)-th round and causes a biased fault in
the input of r-th round. We control the fault intensity by increasing/decreasing
the period of the clk g signal.

As each considered attack has different requirements for the fault injection,
we collected a large set of fault injections results to compare their performances.
We repeated the following steps in our gate-level simulations for each DUT. We
first generated 1000 random plaintexts. Then, for the rounds 6-10 of AES, we
obtained the ciphertexts for different clock glitch periods. In this experiment,

16 Nahid Farhady Ghalaty, Bilgiday Yuce, Patrick Schaumont

we gradually decreased the clock glitch period from 16ns to 0.6ns with 100ps
step size. At the end, we obtained 154 ciphertexts for each plaintext and 154000
ciphertexts for each round. In Section 8, we will use these ciphertexts to evaluate
the performances of the considered biased fault attacks.

7 Results

In this section, we show our results for two fault injection conditions. The first
case is the ideal condition, in which the target of the fault injection is a specific
round of the AES algorithm.

In the second condition, we assume that the fault injection is in a noisy
environment or the adversary is not able to control the timing of the glitch
injection precisely [17]. Some previous works show that in case of using other
injection tools such as Electromagnetic pulse injection, the attacker might not
be able to specifically inject fault into one round [17]. In this case, we assume
that the faults might occur in other rounds of the AES algorithm. In this case,
we randomly choose the faulty results from several rounds of AES and study the
effect of noise in the performance of the attacks.

7.1 Results for Ideal Fault Injection

In the ideal condition, we assume that the fault injection tool is based on the
clock glitching and the attacker is able to identify the location of the fault in the
AES algorithm. Based on the requirements of the discussed attacks, we inject
faults in Round 9 for DFIA, NUEVA and NUFVA, and in round 10 for the FSA
algorithm, in order to retrieve the key of the last round. Figure 13 shows the
results of applying different attack strategies on two implementations of AES
algorithm (PPRM1-AES and Comp-AES).

The first fault injection strategy is by starting from the correct ciphertext.
Then, we gradually increase the fault intensity until we observe the first faulty
ciphertext at the fault sensitivity point. We captured the faulty ciphertext with
this method for 1000 plaintext. Then, we applied four attack strategies to the
set of faulty ciphertexts. The results in Figure 13(a) and 13(b) show the required
number of plaintext for retrieving the key. In this case, the required number of
plaintexts simply shows the number of fault injection attempts, since there s one
fault sensitivity point for each plaintext. As shown, in this case, even if we do
not have multiple fault intensities, the DFIA attack works with less number of
plaintexts compared to FSA and NUEVA. The NUFVA attack is not able to
retrieve all bytes of the key as observing stuck-at or biased faulty value with this
method of fault injection is very difficult.

The second fault injection methodology is the extension of the first one.
Starting from the correct ciphertext, we gradually increase the fault intensity
for each plaintext and keep different faulty ciphertexts for each plaintext. We
injected 154 levels of fault intensity for 1000 plaintext. Then, we applied four
different attacks on these faulty ciphertexts. Each attack uses a certain amount

Analyzing the Efficiency of Biased-Fault Based Attacks 17

(a) PPRM1 AES

(b) Comp AES

(c) PPRM1 AES

(d) Comp AES

Fig. 13. Number of Required Fault Injection Attempts to Retrieve the Key with Dif-
ferent Attack Strategies in Ideal Condition (a)(b)with Fault Sensitivity Information
(c)(d)with All Possible Fault Intensities

18 Nahid Farhady Ghalaty, Bilgiday Yuce, Patrick Schaumont

of the injected faults based on its requirements. For example, in FSA attack, the
attacker only requires the fault injections up to the fault sensitivity point. Or
for DFIA, the adversary requires increasing the fault intensity up to the point of
generating the last faulty byte. For each attack, we count the number of useful
fault intensity levels associated with each plaintext to find the total number of
fault injection attempts.

Figure 13(c) and 13(d) show the results for the second fault injection method-
ology. The results show that the DFIA attack can retrieve the key efficiently with
using less than 2000 fault injection attempts. The number of fault injection at-
tempts used by the FSA in Comp-AES increases because observing the effect of
fault bias is more difficult in Comp-SBOX implementation. NUFVA attack can
only retrieve less than 5 bytes of the key. The reason is that we cannot observe
biased faulty output or stuck-at faults in the intermediate state.

7.2 Results for Noisy Fault Injection

Assuming a noisy fault injection environment, we injected faults into round 6, 7,
8, 9 and 10. Then, as the set of faulty values, we choose faults from each round
randomly. Then, we apply the four fault attacks, and count the number of fault
injection attempts it requires to find the key. Figure 14(a) and 14(b) shows the
number of required fault injections for each case. Since NUFVA attack cannot
fully retrieve the key, the number of fault injection attempts shown is for the
maximum number of key bytes that it can retrieve. As shown, DFIA is able
to retrieve the key by less number of attempts compared to other attacks. The
number of fault injection attempts increases exponentially for FSA attack. The
reason is that due to the noise in the induced fault, the fault sensitivity point
associated with each plaintext is for the data of the noisy rounds, rather than
round 10. The NUEVA attack, is still successful when the noise is in round 8,
however, in the last case, NUEVA can only retrieve 9 bytes of the key using all
available plaintexts.

Since, NUFVA is not able to fully retrieve the key, to provide a fair compar-
ison of the attacks, Figure 14(d) and 14(d) show the number of required fault
injection attempts to retrieve only one byte of the key. As shown in these fig-
ures, the required number of attempts for DFIA is much less compared to other
attacks.

7.3 Attack Efficiency

In this section, we intend to compare the efficiency of the biased fault based at-
tacks. The cost of an attack can be defined by the number of fault injections and
the number of applied plaintexts used for the attack. As mentioned in previous
sections, for each applied plaintext, we count the number of useful fault injection
attempts. The attack efficiency in this paper is defined with the Equation 5.

Attack Efficiency = (#Plaintexts× #Fault Injection Attempts per P laintext)−1

(5)

Analyzing the Efficiency of Biased-Fault Based Attacks 19

(a) PPRM1 AES

(b) Comp AES

(c) PPRM1 AES

(d) Comp AES

Fig. 14. Number of Required Fault Injection Attempts to Retrieve (a)(b) the Key
(c)(d) one Byte of the Key with Different Attack Strategies in Noisy Environment.
Each group shows the rounds that are affected by the fault injection.

20 Nahid Farhady Ghalaty, Bilgiday Yuce, Patrick Schaumont

Table 1. Cost of Fault Attacks for Noisy and Ideal Fault Injection Conditions

DFIA FSA NUEVA NUFVA

Ideal-PPRM1 1518−1 12250−1 50320−1 69000−1

Noisy-PPRM1 10346−1 19800−1 100100−1 154000−1

Ideal-Comp 980−1 45650−1 91650−1 112800−1

Noisy-Comp 14800−1 55610−1 139650−1 154000−1

To compare the attacks, we counted the number of fault injections and number
of applied plaintext for each attack in two conditions. First is the ideal condition
that we injected fault only in the target location and second is the noisy condition
in which we injected the fault in rounds 8, 9 and 10. Table 1 shows the efficiency of
different fault attacks, in these two conditions for two implementations of AES.
Since, NUFVA cannot completely retrieve the key, we provided the minimum
number of fault injection attempts that it uses for partial key retrieval. Based
on the results, DFIA needs less number of fault injection attempts compared
to other attacks. The reason is that, the assumption on the effects of fault bias
for the DFIA attack benefits from combining multiple fault intensity levels per
plaintext. This property maximizes the information we can obtain from each
biased fault injection and hence, helps to improve the efficiency of the DFIA
attack.

8 Conclusion

In this paper, we presented a comparison of four recently published attacks that
use fault bias, the non-uniform response of digital systems towards fault injec-
tion. By investigating the common elements of these attacks,we were able to
build a single framework that supports a systematic comparison. Our main con-
clusion is that, even though all of the investigated attacks use the same test case
of glitch injection on an AES design, their performance differs greatly. Using
the number of fault injections as the cost metric, we found that DFIA performs
best, followed by FSA, NUEVA and NUFVA. The main reason for the better
performance of DFIA is the differential nature of the analysis mechanism. This
makes DFIA more tolerant against estimation mistakes and noise effects. Also,
DFIA can use the entire fault characteristic for a given input stimulus, in con-
trast to other fault injection techniques, which uses only a single fault per input
stimulus. Overall, fault-bias based techniques are effective as an implementation
attack, and they show that fault-injection based attacks can be applied in a
generic setting with minimal assumptions on the underlying cryptographic im-
plementation. It seems reasonable to conclude that there is a rapidly increasing
need to develop countermeasures against fault bias in digital hardware, including
firmware-driven embedded systems.

Analyzing the Efficiency of Biased-Fault Based Attacks 21

Acknowledgment This research was supported through the National Science
Foundation Grant 1441710, Grant 1115839, and through the Semiconductor Re-
search Corporation.

References

1. Joye, M., Tunstall, M., eds.: Fault Analysis in Cryptography. Information Security
and Cryptography. Springer Berlin Heidelberg (2012)

2. Karaklajic, D., Schmidt, J.M., Verbauwhede, I.: Hardware Designer’s Guide to
Fault Attacks. Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on 21 (2013) 2295–2306

3. Barenghi, A., Bertoni, G., Parrinello, E., Pelosi, G.: Low Voltage Fault Attacks on
the RSA Cryptosystem. In: IEEE Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC),, IEEE (2009) 23–31

4. Hutter, M., Schmidt, J.: The Temperature Side Channel and Heating Fault At-
tacks. In: Smart Card Research and Advanced Applications - 12th International
Conference, CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised Se-
lected Papers. (2013) 219–235

5. van Woudenberg, J., Witteman, M., Menarini, F.: Practical Optical Fault Injection
on Secure Microcontrollers. In: IEEE Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC),. (2011) 91–99

6. Clavier, C.: Attacking block ciphers. In Joye, M., Tunstall, M., eds.: Fault Anal-
ysis in Cryptography. Information Security and Cryptography. Springer Berlin
Heidelberg (2012) 19–35

7. Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J., Ohta, K.: Fault
Sensitivity Analysis. In: Cryptographic Hardware and Embedded Systems, CHES
2010. Springer (2010) 320–334

8. Lashermes, R., Reymond, G., Dutertre, J., Fournier, J., Robisson, B., Tria, A.: A
DFA on AES Based on the Entropy of Error Distributions. In: IEEE Workshop
on Fault Diagnosis and Tolerance in Cryptography (FDTC),, IEEE (2012) 34–43

9. Fuhr, T., Jaulmes, E., Lomné, V., Thillard, A.: Fault Attacks on AES with Faulty
Ciphertexts Only. In: IEEE Workshop on Fault Diagnosis and Tolerance in Cryp-
tography (FDTC),, IEEE (2013) 108–118

10. Ghalaty, N.F., Yuce, B., Taha, M., Schaumont, P.: Differential fault intensity
analysis. In: IEEE Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC),, IEEE (2014) 49–58

11. Agoyan, M., Dutertre, J.M., Naccache, D., Robisson, B., Tria, A.: When Clocks
Fail: On Critical Paths and Clock Faults. In: Smart Card Research and Advanced
Application. Springer (2010) 182–193

12. Zussa, L., Dutertre, J.m., Clédiere, J., Robisson, B., Tria, A.: Investigation of
Timing Constraints Violation as a Fault Injection Means. In: 27th Conference on
Design of Circuits and Integrated Systems (DCIS). (2012)

13. Morioka, S., Satoh, A.: An Optimized S-Box Circuit Architecture for Low Power
AES Design. In: Cryptographic Hardware and Embedded Systems-CHES 2002.
Springer (2003) 172–186

14. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael Hardware
Architecture with S-box Optimization. In: Advances in CryptologyASIACRYPT
2001. Springer (2001) 239–254

22 Nahid Farhady Ghalaty, Bilgiday Yuce, Patrick Schaumont

15. Ghalaty, N.F., Aysu, A., Schaumont, P.: Analyzing and Eliminating the Causes
of Fault Sensitivity Analysis. In: Proceedings of the conference on Design, Au-
tomation & Test in Europe, European Design and Automation Association (2014)
204

16. Li, Y., Hayashi, Y.i., Matsubara, A., Homma, N., Aoki, T., Ohta, K., Sakiyama,
K.: Yet Another Fault-Based Leakage in Non-uniform Faulty Ciphertexts. In:
Foundations and Practice of Security. Springer (2014) 272–287

17. Takahashi, J., Hayashi, Y.i., Homma, N., Fuji, H., Aoki, T.: Feasibility of Fault
Analysis based on Intentional Electromagnetic Interference. In: Electromagnetic
Compatibility (EMC), 2012 IEEE International Symposium on, IEEE (2012) 782–
787

