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Abstract

Concurrent non-malleable zero-knowledge (CNMZK) protocols are zero-knowledge proto-
cols that provides security even when adversaries interacts with multiple provers and verifiers
simultaneously. It is known that CNMZK arguments for NP can be constructed in the plain
model. Furthermore, it was recently shown that statistical CNMZK arguments for NP can also
be constructed in the plain model. However, although the former requires only the existence of
one-way functions, the latter requires the DDH assumption.

In this paper, we construct a statistical CNMZK argument forNP assuming only the existence
of one-way functions. The security is proven via black-box simulation, and the round complex-
ity is poly(n). Under the existence of collision-resistant hash functions, the round complexity
is reduced to ω(log n), which is essentially optimal for black-box concurrent zero-knowledge
protocols.

This article is based on an earlier article: Statistical Concurrent Non-malleable Zero-knowledge from One-way Func-
tions, in Proceedings of CRYPTO 2015, c⃝IACR 2015, DOI: 10.1007/978-3-662-48000-7 5.
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1 Introduction

Zero-knowledge (ZK) proofs and arguments are protocols that enable the prover to convince the ver-
ifier of the correctness of a mathematical statement while providing zero additional knowledge. This
“zero additional knowledge” property is formalized by using the simulation paradigm: An interactive
proof or argument is said to be zero-knowledge if for any adversarial verifier there exists a simulator
that can output a simulated view of the adversary. In the original definition of the ZK property, the
adversary interacts with a single prover at a time. In other words, in the original definition, the ZK
property is considered in the stand-alone setting.

Non-malleable zero-knowledge (NMZK) [DDN00] and concurrent zero-knowledge (CZK) [DNS04]
are two well-known notions of the ZK property in the concurrent setting. Specifically, NMZK is a no-
tion of the ZK property in the setting where the adversary concurrently interacts with a honest prover
in the left session and a honest verifier in the right session, and CZK is a notion of the ZK property in
the setting where the adversary concurrently interacts with unbounded number of honest provers.

As a security notion that implies both NMZK and CZK, Barak et al. [BPS06] proposed concurrent
non-malleable zero-knowledge (CNMZK). CNMZK guarantees the ZK property in the setting where
the adversary concurrently interacts with many provers in the left sessions and many verifiers in the
right sessions. In particular, it guarantees that receiving proofs in the left session does not help the
adversary to give proofs in the right sessions—that is, it guarantees that if the adversary can prove
some statements in the right sessions while receiving proofs in the left sessions, the adversary could
prove the same statements even without receiving proofs in the left sessions. In the definition of
CNMZK, this guarantee is formalized as the existence of a simulator-extractor that can simulate the
adversary’s view in the left and right sessions while extracting witnesses from the adversary in the
simulated right sessions.

The first CNMZK argument for NP was constructed by Barak et al. [BPS06]. Subsequently, a
computationally efficient construction was shown by Ostrovsky et al. [OPV10]. The first CNMZK
proof was constructed by Lin et al. [LPTV10], and a variant of their protocol was shown to be secure
with adaptively chosen inputs by Lin and Pass [LP11a]. Additionally, a CNMZK argument that
is secure with “fully” adaptively chosen inputs was recently constructed by Venkitasubramaniam
[Ven14].

Very recently, Orlandi et al. [OOR+14] constructed the first statistical CNMZK argument, i.e., a
CNMZK argument such that the simulator-extractor outputs view that is statistically indistinguishable
from the adversary’s real view. Statistical CNMZK is clearly of great interest since it guarantees
quite strong security in the concurrent setting. However, statistical CNMZK is hard to achieve, and
the existing techniques of computational CNMZK protocols seem to be insufficient for constructing
statistical CNMZK protocols (see Section 2.1).

An important open question on statistical CNMZK protocols is what hardness assumption is
needed for constructing them. The statistical CNMZK argument of Orlandi et al. [OOR+14] was
constructed under the DDH assumption (or the existence of dense cryptosystems). Hence, we already
know that statistical CNMZK protocols can be constructed under standard assumptions. However,
since the existence of one-way functions is known to be sufficient for constructing both statistical
ZK protocols and computational CNMZK protocols [HNO+09, BPS06], it is important to study the
following question.

Can we construct statistical concurrent non-malleable zero-knowledge protocols by as-
suming only the existence of one-way functions?
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1.1 Our Result

In this paper, we answer the above question affirmatively.

Theorem 1. Assume the existence of one-way functions. Then, there exists a statistical concurrent
non-malleable zero-knowledge argument for NP with round complexity poly(n). Furthermore, if
there exists a family of collision-resistant hash functions, the round complexity can be reduced to
ω(log n).

The round complexity of our statistical CNMZK argument—poly(n) rounds when only the ex-
istence of one-way functions is assumed and ω(log n) rounds when the existence of a family of
collision-resistant hash functions is assumed—is the same as the round complexity of the known
statistical CZK arguments [GMOS07]. Thus, our result closes the gap between statistical CNMZK
arguments and statistical CZK arguments. Furthermore, since the security of our statistical CNMZK
protocol is proven via black-box simulation, the logarithmic round complexity of our hash-function-
based protocol is essentially tight due to the lower bound on black-box CZK protocols [CKPR02].

2 Techniques

In this section, we give an overview of our techniques.

2.1 Previous Techniques

We start by describing the difficulty of constructing statistical CNMZK protocols with the techniques
of existing computational CNMZK protocols [BPS06, LPTV10].

First, let us recall the protocols of [BPS06, LPTV10]. The definition of CNMZK requires the
existence of a simulator-extractor that simulates the adversary’s view while extracting the witnesses
for the statements proven by the adversary in the simulated view. To satisfy this definition, protocols
need to satisfy the following properties: (i) the proofs in the left sessions can be simulated for the ad-
versary, and (ii) even when the adversary receives simulated proofs in the left sessions, the witnesses
can be extracted from the adversary in the right sessions. In the protocol of [BPS06, LPTV10], the
simulatability of the left sessions is guaranteed by requiring the verifier to commit to a random trap-
door by using a concurrently extractable commitment scheme CECom [MOSV06]. The committed
values of CECom can be extracted by a rewinding extractor even in the concurrent setting, and there-
fore the proofs in the left sessions can be simulated by extracting the trapdoors from CECom. On
the other hand, the witness-extractability of the right sessions is guaranteed by requiring the prover to
commit to the witness with a non-malleable commitment scheme NMCom [DDN00] and additionally
designing the protocols so that the following hold.

1. When the adversary receives honest proofs in the left sessions, the committed value of the
NMCom commitment is indeed a valid witness in every accepted right session.

2. When the proofs in the left sessions are switched to the simulated ones, the committed values
of the NMCom commitments do not change in the right sessions due to the non-malleability of
NMCom.

It follows from these that even when the adversary receives simulated proofs in the left sessions, the
committed value of the NMCom commitment is a witness for the statement in every accepted right
session. Therefore, the witnesses can be extracted in the right sessions by extracting the committed
values of the NMCom commitments.
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As mentioned in Introduction, the techniques of [BPS06, LPTV10] alone seem to be insuffi-
cient for constructing statistical CNMZK protocols. The main obstacle is that the techniques of
[BPS06, LPTV10] requires the prover to commit to the witness by using NMCom, which is only
computationally hiding.1 Since the committed values of NMCom in the left sessions need to be
switched to another values (e.g., 0n) in the simulation, the simulated view can be only computational
indistinguishable from the real view.

Recently, Orlandi et al. [OOR+14] constructed a statistical CNMZK protocol by modifying the
CNMZK protocol of [BPS06] with mixed non-malleable commitment scheme MXNMCom. MXNMCom
is parametrized by a string and is either statistically hiding or non-malleable depending on the string.2

Very roughly speaking, Orlandi et al. circumvent the above problem by carefully switching the pa-
rameter string of MXNMCom in the security proof—when proving the statistical indistinguishability
of the simulation, the string is set so that MXNMCom is statistically hiding, and when proving the
non-malleability, the string is set so that MXNMCom is non-malleable. The use of MXNMCom, how-
ever, requires assumptions that are seemingly stronger than the existence of one-way functions (such
as the DDH assumption or the existence of dense cryptosytems). Thus, the technique of Orlandi et al.
cannot be used to construct statistical CNMZK protocols from one-way functions.

2.2 Our Technique

Since the reason why the techniques of [BPS06, LPTV10] cannot be used for statistical CNMZK
protocols is that the committed values of NMCom need to be switched during the simulation, one po-
tential strategy for constructing statistical CNMZK is to construct a protocol such that the adversary’s
view can be simulated without switching the committed value of NMCom (and of any other compu-
tationally hiding commitment). However, when the simulator commits to the same value in NMCom
as a honest prover, it is not clear how non-malleability of NMCom can be used in the security proof.
Below, we show that the CNMZK property can be shown even in this case if we use a stronger variant
of NMCom.

A key technical tool in our technique is CCA-secure commitment schemes [CLP10], which is a
stronger variant of (concurrent) non-malleable commitment schemes. Roughly speaking, CCA secu-
rity guarantees that the scheme is hiding even against adversaries that have access to the committed-
value oracle, which receives concurrent commitments from the adversary and returns their committed
values to the adversary. (In non-malleability, the oracle receives only parallel commitments from the
adversary and returns the committed values only after the adversary finishes the interaction with the
committer.) Several CCA-secure commitment schemes were constructed from one-way functions
[CLP10, LP12, Kiy14, GLP+15]; furthermore, although CCA security itself does not provide any
extractability, all of these schemes satisfy concurrent extractability as well.

Using CCA-secure commitment schemes, we consider the following protocol as a starting point.

Stage 1. (V commits to trapdoor)

1. The verifier V chooses random rV ∈ {0, 1}n and commits to rV by using a statistically
binding commitment scheme Com, which can be constructed from one-way functions
[Nao91, HILL99]. Let (rV , d) be the decommitment.

1NMCom need to be non-malleable w.r.t. commitment [DDN00], which roughly says that the committed value of the
commitment that the man-in-the-middle adversary gives is independent of the committed value of the commitment that
adversary receives. Since the definition of non-malleability w.r.t. commitment is meaningless when the committed values
cannot be uniquely determined, NMCom cannot be statistically hiding.

2Specifically, Orlandi et al. [OOR+14] used the scheme such that (i) when the string is sampled from a uniform distri-
bution, the scheme is statistically hiding and (ii) when the string is taken from another (computationally indistinguishable)
distribution, the scheme is non-malleable.
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2. V commits to (rV , d) by using CCA-CECom, where CCA-CECom is a CCA-secure com-
mitment scheme that is also concurrent extractable [CLP10, LP12, Kiy14, GLP+15].

Stage 2. (P proves x ∈ L or knowledge of trapdoor) The prover P proves that it knows a witness
for x ∈ L or a valid decommitment (rV , d) of the Com commitment that V gives in Stage 1.
P proves this statement by using a statistical witness-indistinguishable argument of knowl-
edge sWIAOK, which can be constructed from one-way functions by instantiating Blum’s
Hamiltonian-cycle protocol with the statistically hiding commitment scheme of [HNO+09].

In this protocol, the verifier’s view can be statistically simulated by a simulator that extracts (rV , d)
from CCA-CECom and uses it as a witness in sWIAOK. (During the extraction in Stage 1, the sim-
ulator interacts with the verifier honestly; thus, even if computationally hiding commitment schemes
are used as building blocks in CCA-CECom, the simulator commits to the same values as a honest
prover in these schemes.) Also, intuitively this protocol seems to be CNMZK from the following
reasons.

• The CCA security of CCA-CECom guarantees that the trapdoors of the right sessions are hid-
den from the adversary even when the trapdoors of the left sessions are extracted from the
adversary.

• Then, since the simulated proofs are generated in the left sessions by extracting the trapdoors
of the left sessions, the trapdoors in the right sessions are hidden from the adversary even when
the adversary receives simulated proofs in the left sessions.

• Thus, even when the adversary receives the simulated proofs in the left sessions, the adver-
sary cannot “cheat” in the right sessions, and therefore witnesses for the statements must be
extractable from sWIAOK in the right sessions.

Of course, to formally prove the statistical CNMZK property, we need to show a simulator-extractor
that statistically simulates the adversary’s view and also extracts witnesses for the statements in the
right sessions.

As the simulator-extractor, we consider the following SE.

1. First, SE simulates the view of the adversary A by executing the following simulator S: Sim-
ulator S internally invokes A and interacts with it in the left and right sessions honestly as
provers and verifiers except that in each left session, S extracts (rV , d) by using the concurrent
extractor of CCA-CECom and uses it as a witness in sWIAOK.

2. After simulating the view ofA as above, SE extracts witnesses from the right sessions by doing
the following for each right session. First, SE rewinds S until the point just before S sends the
challenge message of sWIAOK to A.3 Then, SE repeatedly executes S from this point with
flesh randomness until it obtains another accepted transcript of sWIAOK. After obtaining an-
other accepted transcript, SE extracts a witness by using the argument-of-knowledge property
of sWIAOK.

It is not hard to see that SE statistically simulates the real view of A.4 Thus, it remains to show that
SE extracts witnesses for the statements in the right sessions.

To show the witness extractability of SE, a natural approach is to follow the above-mentioned
approach of [BPS06, LPTV10] and show the following.

3Since S rewindsA during the concurrent extraction of CCA-CECom, S may send the challenge message of sWIAOK
of a right session toA multiple times. Here, SE rewinds S until the point just before S sends it toA on the “main thread.”

4Formally, we need to show that in the CCA-CECom commitment of the left session, A commits to a valid decom-
mitment of the Com commitment except with negligible probability. In this overview, however, we ignore this issue for
simplicity. For details, see the formal proof in Section 4.2.
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1. When A receives honest proofs in the left sessions, a witness for the statement is extracted
from the sWIAOK proof in every accepted right session.

2. When the honest proofs in the left sessions are switched to the simulated ones, the value ex-
tracted from sWIAOK does not change in every accepted right session.

Note that here we argue about the extracted values instead of the committed values. At first sight, it
seems that this is not a big difference and therefore it seems that the above can be shown by using an
argument similar to the one used in [BPS06, LPTV10].

However, this approach does not work. In particular, we do not know how to prove the second
part—that is, we cannot show that the extracted values remain to be the same when the honest proofs
in the left sessions are switched to the simulated ones. To see this, observe the following. Since
the witnesses used in sWIAOK are switched in the simulated proofs, we need to use the witness
indistinguishability of sWIAOK of the left sessions to show the indistinguishability of the extracted
values. However, sinceA is rewound during the witness extraction of the sWIAOK proofs of the right
sessions, if the left and the right sessions are scheduled so that the sWIAOK proofs of the left sessions
are executed in parallel with the sWIAOK proofs of the right sessions, the sWIAOK proofs of the left
sessions are also rewound, and thus we cannot use their witness indistinguishability.5

Thus, we instead use the following approach. Informally, the above approach does not work
because the honest proofs and the simulated proofs are “too different.” We thus introduce a hybrid
experiment in which A receives hybrid proofs in the left sessions, where a hybrid proof is generated
by extracting (rV , d) by brute force and using it as a witness in sWIAOK. (Notice that the only
difference between the hybrid proofs and the simulated proofs is how the trapdoors are extracted.)
We then show that (i) witnesses for the statements are extracted in the right sessions whenA receives
hybrid proofs in the left sessions, and (ii) when hybrid proofs are switched to the simulated ones, the
extracted values do not change. More precisely, our analysis proceeds as follows.

• First, we show the second part, i.e., we show that the values extracted in the right sessions
do not change when the proofs in the left sessions are switched from the hybrid proofs to the
simulated ones. Since the only difference between the hybrid proofs and the simulated ones
is how the committed values of the CCA-CECom commitments are extracted (by brute-force
or by the concurrent extractability), we can show this by using the concurrent extractability
of CCA-CECom. We note however that there is a subtlety since CCA-CECom in the left
sessions can be rewound not only by the concurrent extractor of CCA-CECom but also by the
extractor of sWIAOK. Nonetheless, by carefully using a standard technique (the “good prefix”
argument), we can show that the concurrent extractor of CCA-CECom works even in this case.

• Next, we show that in the hybrid experiment, witnesses for the statements are extracted from
the right sessions. Since the simulated proofs can be efficiently generated given access to the
committed-value oracle of CCA-CECom, at first sight it seems that this follows directly from
the CCA security of CCA-CECom and argument-of-knowledge property of sWIAOK—if a
witness for the statement is not extracted, (rV , d) must be extracted, and thus we can break the
CCA security of CCA-CECom. However, there are two problems.

1. Since CCA-CECom in the left sessions can be rewound during the witness extraction
of sWIAOK of the right sessions, the hybrid experiment cannot be emulated even given

5If we use the robust extraction technique [GLP+15], for each left session there exists a rewinding strategy that allows
us to extract witnesses from the right sessions without rewinding sWIAOK of this left session. However, since what we
want to show is that the values extracted in the right sessions by the rewinding strategy that SE uses are unchanged, the
robust extraction technique cannot be used here (unless there exists a rewinding strategy that allows us to extract witnesses
from the right sessions without rewinding the sWIAOK proof of every left session).
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access to the committed-value oracle of CCA-CECom. Hence, the CCA-secure commit-
ments in the right sessions may not be hiding in the hybrid experiment.

2. Since the adversary obtains hybrid proofs, which are generated in super-polynomial time,
the argument-of-knowledge property of sWIAOK may not hold in the hybrid experiment.
We remark that although existing CCA-secure commitment schemes provides robust-
ness, which guarantees that arbitrary “small”-round protocol remains secure even when
adversaries have access to the committed-value oracle, we cannot use robustness here
since CCA-CECom in the left sessions can be rewound during the witness extraction of
sWIAOK of the right sessions and therefore the hybrid experiment cannot be emulated
even given access to the committed-value oracle.

Because of these problems, we cannot use the security of CCA-CECom directly in the analysis.
Thus, instead of using existing CCA-secure commitment schemes in a modular way, we directly
use their building blocks in the protocol and directly use their proof technique in the analysis.
(In particular, we use the robust concurrent extraction technique of [GLP+15] and a one-one
CCA-secure commitment scheme of [KMO14].) The proof techniques of existing CCA-secure
commitment schemes are strong enough to solve the above problems, and thus we can show
that witnesses for the statements are extracted in the hybrid experiment.

From the above two, it follows that even when A receives simulated proofs in the left session, valid
witnesses are extracted in right sessions. This completes the overview of our techniques.

3 Preliminaries

3.1 Notations

We use n to denote the security parameter. For any k ∈ N, let [k] def
= {1, . . . , k}. For any two-party

protocol ⟨A, B⟩, we use viewB
[
A(x)↔ B(y)

]
to denote a random variable representing the view of B

in the interaction between A and B with input x and y respectively, and use outputA,B
[
A(x)↔ B(y)

]
(resp., outputB

[
A(x)↔ B(y)

]
) to denote a random variable representing the joint output of A and B

(resp., the output of B) in the interaction between A and B with input x and y respectively.

3.2 Commitment Schemes

Recall that commitment schemes are two-party protocols between the committer C and the receiver
R. A transcript of the commit phase is valid if there exists a valid decommitment of this transcript.

It is known that a two-round statistically binding commitment scheme ComSB can be constructed
from one-way functions [Nao91, HILL99]. It is also known that a poly(n)-round statistically hiding
commitment scheme can be constructed from one-way functions [HNO+09] and a constant-round one
can be constructed from a family of collision-resistant hash functions [NY89, DPP98].

3.3 Concurrently Extractable Commitment Schemes

Roughly speaking, a commitment scheme is concurrently extractable if there exists a polynomial-
time extractor such that for any adversarial committer that concurrently commits to many values by
using the scheme, the extractor can extract the committed value from the adversarial committer in
every valid commitment.

Micciancio et al. [MOSV06] proposed a ω(log n)-round concurrently extractable commitment
CECom (Figure 1), which is an abstraction of the preamble stage of the concurrent zero-knowledge
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protocol of [PRS02] and can be constructed from one-way functions. The extractor of CECom per-
forms the extraction by rewinding the adversarial committer according to the rewinding strategy of
[PRS02, PTV12]. Specifically, while interacting with the adversarial committer C∗ on the “main
thread” as honest receivers, the extractor rewinds the main thread and generates many “look-ahead
threads” on which it interacts with C∗ again as honest receivers with flesh randomness; at the end of
each commitment on each thread, the extractor extracts the committed values by using the information
collected on the other threads.

CECom can be seen as a concurrent execution of the extractable commitment scheme ExtCom
in Figure 2, which consists of three stages—commit, challenge, and reply—and can be con-
structed from one-way functions.

Commit Phase

The committer C and the receiver R receive common input 1n and parameter ℓ. (In [MOSV06],
ℓ = ω(log n).) To commit to v ∈ {0, 1}n, the committer C commits to v concurrently ℓ times by
using ExtCom as follows.

1. C and R execute commit stage of ExtCom ℓ times in parallel.

2. For each j ∈ [ℓ] in sequence, C and R do the following.

(a) R sends the challenge message of ExtCom for the j-th session.

(b) C sends the reply message of ExtCom for the j-th session.

Decommit Phase

C sends v to R and decommits all the ExtCom commitments.

Figure 1: Concurrently extractable commitment CECom [MOSV06].

Robust Concurrent Extraction.

On the concurrently extractable commitment scheme CECom of [MOSV06], Goyal et al. [GLP+15]
showed a very useful lemma called the robust concurrent extraction lemma. Roughly speaking,
this lemma states that even when the adversarial committer additionally participates in an external
“small”-round protocol, the committed values can be extracted from the adversarial committer with-
out rewinding the external protocol. More precisely, consider any ppt adversarial committer A that
commits to multiple values in concurrent sessions of CECom—these sessions are denoted as the right
sessions—and simultaneously participates in an execution of an arbitrary protocol Π := ⟨B, A⟩ with a
honest B—this session is denoted as the left session. The robust concurrent extraction lemma states
that for everyA, there exists an extractor E that extracts the committed values fromA in every valid
right session without rewinding the external party B in the left session. The extractor E fails with
probability that is exponentially small in ℓ − O(k log n), where ℓ is the parameter of CECom and k is
the round complexity of Π; hence, E fails only with negligible probability if we set ℓ := ω(k log n).
The formal statement of the robust concurrent extraction lemma is given in Appendix A. We remark
that the extractor E shown by [GLP+15] performs the extraction by generating the main thread and
the look-ahead threads as in the rewinding strategies of [PRS02, PTV12].
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Commit Phase

The committer C and the receiver R receive common inputs 1n. To commit to v ∈ {0, 1}n, the
committer C does the following with the receiver R.

commit stage.
For each i ∈ [n], the committer C chooses a pair of random n-bit strings (a0

i , a
1
i ) such that

a0
i ⊕ a1

i = v. Then, for each i ∈ [n] in parallel, C commits to a0
i and a1

i by using ComSB.
For each i ∈ [n] and b ∈ {0, 1}, let cb

i be the commitment to ab
i .

challenge stage.
R sends random n-bit string e = (e1, . . . , en) to C.

reply stage.
For each i ∈ [n], C decommits cei

i to aei
i .

Decommit Phase

C sends v to R and decommits cb
i to ab

i for all i ∈ [n] and b ∈ {0, 1}. R checks whether a0
1 ⊕ a1

1 =

· · · = a0
n ⊕ a1

n = v.

Figure 2: Extractable commitment ExtCom [PW09], which is used as a building block in the concur-
rently extractable commitment scheme CECom of [MOSV06].

3.4 (One-one) CCA-secure Commitment Schemes

We recall the definition of (one-one) CCA security and κ-robustness of commitment schemes [CLP10,
LP12, KMO14].

(One-one) CCA security. Roughly speaking, a tag-based commitment scheme ⟨C,R⟩ (i.e., a com-
mitment scheme that takes an n-bit string—a tag—as an additional input) is CCA-secure if it is hiding
even against adversary A that interacts with the following committed-value oracle: The committed-
value oracle O interacts with A as an honest receiver in many concurrent sessions of the commit
phase of ⟨C,R⟩ using tags chosen adaptively by A; at the end of each session, if the commitment of
this session is invalid or has multiple committed values, O returns ⊥ to A; otherwise, O returns the
unique committed value toA.

More precisely, CCA-secure commitment schemes are defined as follows. Consider the following
probabilistic experiment INDb(⟨C,R⟩,A, n, z) for each b ∈ {0, 1}. On input 1n and auxiliary input z,
adversaryAO adaptively chooses a pair of challenge values v0, v1 ∈ {0, 1}n and an n-bit tag id ∈ {0, 1}n.
Then,AO interacts with the challenger and obtains a commitment to vb with tag id. Let y be the output
ofA. The output of the experiment is ⊥ if during the experiment,A sends O any commitment using
tag id. Otherwise, the output of the experiment is y. Let INDb(⟨C,R⟩,A, n, z) denote the output of
experiment INDb(⟨C,R⟩,A, n, z).

Definition 1. Let ⟨C,R⟩ be a tag-based commitment scheme and O be the committed-value oracle of
⟨C,R⟩. Then, ⟨C,R⟩ is CCA-secure (w.r.t the committed-value oracle) if for any ppt adversaryA, the
following are computationally indistinguishable:

• {IND0(⟨C,R⟩,A, n, z)}n∈N,z∈{0,1}∗

• {IND1(⟨C,R⟩,A, n, z)}n∈N,z∈{0,1}∗ ^
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If ⟨C,R⟩ is CCA secure only against adversaries that start a single session with O, we say that
⟨C,R⟩ is one-one CCA secure. That is, one-one CCA security is defined as follows. Let one-session
committed-value oracle be an oracle that is the same as the committed-value oracle except that it
interacts with the adversary only in a single session of the commit parse of ⟨C,R⟩. Then, one-one
CCA security is defined by replacing the committed-value oracle in the definition of CCA security
with the one-session committed-value oracle.

Robustness. Roughly speaking, a tag-based commitment scheme is κ-robust if for any adversaryA
and any ITM B, the joint output of a κ-round interaction betweenAO and B can be simulated without
O by a ppt simulator.

Definition 2. Let ⟨C,R⟩ be a tag-based commitment scheme and O be the committed-value oracle of
⟨C,R⟩. For any constant κ ∈ N, we say that ⟨C,R⟩ is κ-robust (w.r.t. the committed-value oracle)
if there exists a ppt oracle machine (called simulator) S such that for any ppt adversary A and any
κ-round ppt ITM B, the following are computationally indistinguishable:

•
{
outputB,AO

[
B(1n, x, y)↔ AO(1n, x, z)

]}
n∈N,x,y,z∈{0,1}n

•
{
outputB,SA

[
B(1n, x, y)↔ SA(1n, x, z)

]}
n∈N,x,y,z∈{0,1}n

^

Intuitively, the κ-robustness guarantees that the security of any κ-round protocol (say, the hiding
property of a κ-round commitment scheme) holds even against the adversary that interacts with O. In
fact, it is easy to see that the following proposition holds.

Proposition 1. Let ⟨C,R⟩ be a κ-robust commitment scheme for a constant κ ∈ N, and let B be any
κ-round ppt ITM. Then,for every two sequences {y1

n}n∈N and {y2
n}n∈N such that for every ppt adversary

A′ it holds that

•
{
outputB,A′

[
B(1n, x, y1

n)↔ A′(1n, x, z)
]}

n∈N,x,y,z∈{0,1}n and

•
{
outputB,A′

[
B(1n, x, y2

n)↔ A′(1n, x, z)
]}

n∈N,x,y,z∈{0,1}n

are computationally indistinguishable, then it also hold that for every ppt adversaryA,

•
{
outputB,AO

[
B(1n, x, y1

n)↔ AO(1n, x, z)
]}

n∈N,x,y,z∈{0,1}n and

•
{
outputB,AO

[
B(1n, x, y2

n)↔ AO(1n, x, z)
]}

n∈N,x,y,z∈{0,1}n

are computationally indistinguishable.

Proof. From the definition of κ-robustness, there exists ppt S such that for each b ∈ {1, 2}, the follow-
ing are computationally indistinguishable.

•
{
outputB,AO

[
B(1n, x, yb

n)↔ AO(1n, x, z)
]}

n∈N,x,y,z∈{0,1}n

•
{
outputB,SA

[
B(1n, x, yb

n)↔ SA(1n, x, z)
]}

n∈N,x,y,z∈{0,1}n

Also, from the assumption of the proposition, the following are computationally indistinguishable.
(Notice that SA is ppt since bothA and S are ppt.)

•
{
outputB,S

[
B(1n, x, y1

n)↔ SA(1n, x, z)
]}

n∈N,x,y,z∈{0,1}n

•
{
outputB,S

[
B(1n, x, y2

n)↔ SA(1n, x, z)
]}

n∈N,x,y,z∈{0,1}n

The proposition follows from these two indistinguishabilities. □

10



The scheme we use. From a result shown in [GLP+15], we can obtain a constant-round κ-robust
one-one CCA-secure commitment scheme from one-way functions for every constant κ ∈ N as fol-
lows. In [GLP+15], Goyal et al. constructed a ω(log n)-round CCA-secure commitment scheme from
one-way functions. This scheme has ω(log n) rounds because CECom with parameter ℓ = ω(log n)
is used as a building block. The reason why ℓ is set to be ω(log n) is that in the security analysis, the
committed values of CECom need to be extracted when polynomially many CECom commitments
are concurrently executed. In the setting of one-one CCA security, however, the security analysis
works even if the committed values of CECom are extractable only when a single CECom commit-
ment is executed. Hence, by setting ℓ := O(1), we can obtain a constant-round one-one CCA-secure
commitment scheme. For completeness, we give the protocol and the proof of one-one CCA security
in Appendix B.

3.5 Witness Indistinguishable Proofs and Arguments, and Special Soundness

Definition 3. An interactive proof (or argument) system ⟨P,V⟩ for an NP language L with witness
relation RL is said to be witness indistinguishable if for every probabilistic polynomial-time adver-
sarial verifier V∗ and for every two sequences {w1

x}x∈L and {w2
x}x∈L such that w1

x,w
2
x ∈ RL(x), the

following ensembles are computationally indistinguishable.

•
{
viewV∗

[
P(x,w1

x)↔ V∗(x)
]}

x∈L

•
{
viewV∗

[
P(x,w2

x)↔ V∗(x)
]}

x∈L

If the above ensembles are statistically indistinguishable, ⟨P,V⟩ is said to be statistically witness
indistinguishable. ^

We can obtain a four-round witness-indistinguishable proof system WIPOK from one-way func-
tions by executing Blum’s Hamiltonian-cycle protocol in parallel. Recall that WIPOK consists of three
stages—commit, challenge, and response—and has a useful property called special soundness: Given
two accepting transcripts ⟨α1, α

′
1, β1, γ1⟩ and ⟨α2, α

′
2, β2, γ2⟩ of statement x ∈ L such that α1 = α2,

α′1 = α
′
2, and β1 , β2, we can compute a valid witness for x ∈ L.

We can obtain a statistical witness-indistinguishable argument system sWIAOK from any statisti-
cal hiding commitment scheme by instantiating Blum’s Hamiltonian-cycle protocol with the statisti-
cally hiding commitment scheme. It is easy to see that this argument system satisfies special sound-
ness in the following sense: Let us say that two accepting transcripts ⟨−→α 1, β1, γ1⟩ and ⟨−→α 2, β2, γ2⟩ are
admissible if −→α 1 =

−→α 2 and β1 , β2; then, given admissible transcripts that are generated in polyno-
mial time, we can compute a valid witness. In particular, given admissible transcripts ⟨−→α, β1, γ1⟩ and
⟨−→α, β2, γ2⟩, we can compute a valid witness or we can decommit a commitment given in −→α to two
different values.

3.6 Statistical Concurrent Non-malleable Zero-knowledge Arguments

We recall the definition of (statistical) concurrent non-malleable zero-knowledge from [BPS06, OOR+14],
which is closely related to the definition of simulation extractability of [PR05]. Let ⟨P,V⟩ be an inter-
active argument system for a language L ∈ NP with witness relation RL. For any man-in-the-middle
adversary A, let us consider a probabilistic experiment in which A participates in the following left
and right interactions (see Figure 3). In the left interaction, A interacts with a honest prover P of
⟨P,V⟩ and verifies the validity of statements x1, . . . , xm using identities id1, . . . , idm. In the right inter-
action, A interacts with a honest verifier V of ⟨P,V⟩ and proves the validity of statements x̃1, . . . , x̃m

using identities ĩd1, . . . , ĩdm. The statements proven in the left interaction, x1, . . . , xm, are given to P
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and A prior to the experiment. In contrast, the statements proven in the right interaction, x̃1, . . . , x̃m,
and the identities used in the left and the right interactions, id1, . . . , idm and ĩd1, . . . , ĩdm, are chosen
by A during the experiment. Let viewA(n, x1, . . . , xm, z) be a random variable representing the view
ofA in the above experiment. Then, roughly speaking, ⟨P,V⟩ is statistical concurrent non-malleable
zero-knowledge (statistical CNMZK) if for any adversary A, there exists a ppt machine called the
simulator-extractor that can statistically simulate the view of A in the above experiment while ex-
tracting witnesses for the statements proven byA in the accepted right interactions that use different
identities from the left interactions. The formal definition is given below.

Definition 4. An interactive proof ⟨P,V⟩ for language L with witness relation RL is said to be statis-
tical concurrent non-malleable zero-knowledge if for every polynomial m(·) and every probabilistic
polynomial-time man-in-the-middle adversary A that participates in at most m = m(n) concurrent
executions, there exists a probabilistic polynomial-time machine SE called simulator-extractor such
that the following hold.

1. Let sim-view(n, x1, . . . , xm, z) be a random variable representing the first output ofSE(n, x1, . . . ,

xm, z). Then, the following ensembles are statistically indistinguishable.

• {viewA(n, x1, . . . , xm, z)}n∈N,x1,...,xm∈L∩{0,1}n,z∈{0,1}∗

• {sim-view(n, x1, . . . , xm, z)}n∈N,x1,...,xm∈L∩{0,1}n,z∈{0,1}∗

2. For every n ∈ N, x1, . . . , xm ∈ L∩{0, 1}n, and z ∈ {0, 1}∗, the following holds. Let (view, {w̃i}i∈[m])
denote the output of SE(n, x1, . . . , xm, z). Let x̃1, . . . , x̃m be the statements of the right interac-
tion in view, and let id1, . . . , idm and ĩd1, . . . , ĩdm be the identities of the left and the right in-
teractions in view, respectively. Then, except with negligible probability, we have (x̃i, w̃i) ∈ RL

for every i ∈ [m] such that the i-th right interaction is accepting and ĩdi , id j holds for every
j ∈ [m]. ^

left sessions right sessions

Figure 3: Left sessions and right sessions.

4 Our Statistical Concurrent Non-malleable ZK Argument

We show that a statistical concurrent non-malleable zero-knowledge argument can be constructed
from any statistically hiding commitment scheme.

Theorem 2. Assume the existence of statistically hiding commitment schemes with round complex-
ity RSH(n). Then, there exists an ω(RSH(n) log n)-round statistical concurrent non-malleable zero-
knowledge argument sCNMZK.

Since poly(n)-round statistically hiding commitment schemes can be constructed from one-way func-
tions [HNO+09] and constant-round ones can be constructed from a family of collision-resistant hash
functions [NY89, DPP98], our main theorem (Theorem 1) follows from Theorem 2.
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Proof of Theorem 2. In sCNMZK, we use the following building blocks.

• Two-round statistically binding commitment scheme ComSB.

• Constant-round 4-robust one-one CCA-secure commitment scheme CCACom1:1.

• Four-round witness-indistinguishable proof of knowledge WIPOK, which is a parallel version
of Blum’s Hamiltonian-cycle protocol.

• (RSH(n)+2)-round statistical witness-indistinguishable argument of knowledge sWIAOK, which
is a parallel version of Blum’s Hamiltonian-cycle protocol that is instantiated with a RSH(n)-
round statistically hiding commitment scheme ComSH.

• ω(RSH(n) log n)-round concurrently extractable commitment scheme CECom, which is the scheme
of [MOSV06] with parameter ℓ = ω(RSH(n) log n). From the robust concurrent extraction
lemma [GLP+15], we can extract the committed values from any adversarial committer even
when it additionally participates in any O(RSH(n))-round external protocol.

As explained in Section 3, all of the above building blocks can be constructed from RSH(n)-round
statistically hiding commitment schemes (or from one-way functions, which can be obtained from
statistically hiding commitment schemes).

Protocol sCNMZK is shown in Figure 4. We prove its soundness in Section 4.1 and prove its
statistical CNMZK property in Section 4.2.

4.1 Proof of Soundness

Lemma 1. Protocol sCNMZK is sound.

Proof . Assume for contradiction that there exists an adversarial prover P∗ that breaks the soundness
of sCNMZK. It follows from the argument-of-knowledge property of sWIAOK that we can extract
rV from P∗ in Stage III with non-negligible probability, where rV is the value committed to by the
verifier in Stage I-1. In the following, we consider a sequence of hybrid experiments in which the
verifier is gradually modified so that P∗ receives no information about rV in the last hybrid, and then
we derive a contradiction by showing that rV is still extractable with non-negligible probability in the
last hybrid.

Hybrid H0 is an experiment in which a honest verifier interacts with P∗ and then a witness is ex-
tracted in Stage III by the knowledge extractor of sWIAOK. The output of H0 is the witness
extracted in Stage III. From the above observation, the output of H0 is rV with non-negligible
probability.

Hybrid H1 is the same as H0 except that (i) the committed value rP of the CCACom1:1 commitment
in Stage II-1 is extracted by the one-session committed-value oracle O of CCACom1:1 and (ii)
the committed value of the CECom commitment in Stage II-2 is switched from 0n to rP.

Note that, basically, the only difference between H0 and H1 is the value committed to with
CECom in Stage II-2. However, since the execution of H1 involves a super-polynomial-time
computation (i.e., the extraction of rP), we cannot directly use the hiding property of CECom
to argue that the output of H1 is indistinguishable from that of H0. Nevertheless, since H1
can be executed in polynomial-time given access to the one-session committed-value oracle of
CCACom1:1, we can show the indistinguishability between the output of H1 and that of H0 by
combining the hiding property of CECom with the robustness of CCACom1:1 (cf. Proposition
1 in Section 3.4).
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Input. The common input is statement x ∈ L and identity id ∈ {0, 1}n. The prover’s private input
is witness w ∈ RL(x).

Stage I. (V commits to trapdoor)

1. V chooses random rV ∈ {0, 1}n and commits to rV by using ComSB. Let (rV , d) be
the decommitment of this commitment.

2. V commits to (rV , d) by using CECom.

Stage II. (V proves knowledge of trapdoor)

1. P chooses random rP ∈ {0, 1}n and commits to rP by using CCACom1:1 with tag id.

2. V commits to 0n by using CECom.

3. P decommits the CCACom1:1 commitment in Stage II-1 to rP.

4. V proves the following by using WIPOK:

• the committed value of the CECom commitment in Stage I-2 is a valid decom-
mitment of the ComSB commitment in Stage I-1, or
• the committed value of the CECom commitment in Stage II-2 is rP.

Stage III. (P proves x ∈ L or knowledge of trapdoor)

1. P proves the following by using sWIAOK:

• x ∈ L, or
• there exists (r′V , d

′) such that (r′V , d
′) is a valid decommitment of the Com com-

mitment in Stage I-1.

Figure 4: Statistical concurrent non-malleable zero-knowledge argument sCNMZK.
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Comment: Formally, since CCACom1:1 is robust only w.r.t. 4-round protocols, we need to con-
sider a sequence of intermediate hybrids in which the CECom commitment is gradually mod-
ified by switching the committed values of the ExtCom commitments one by one in CECom.
Since ExtCom has only four rounds, the 4-robustness of CCACom1:1 guarantees that the out-
puts of these intermediate hybrids are indistinguishable.

Hybrid H2 is the same as H1 except that the WIPOK proof in Stage II-4 is computed by using a
witness for the fact that the committed value of the CECom commitment in Stage II-2 is rP.

Similar to the above, the indistinguishability between the output of H2 and that of H1 follows
from the witness-indistinguishability of WIPOK and the robustness of CCACom1:1.

Hybrid H3 is the same as H2 except that in Stage I-2, the committed value of the CECom commit-
ment is switched from (rV , d) to (0|rV |, 0|d|).

The indistinguishability between the output of H3 and H2 follows from the hiding property of
CECom (or, more precisely, the hiding property of ExtCom used in CECom) and the robustness
of CCACom1:1.

Hybrid H4 is the same as H3 except that in Stage I-1, the committed value of the ComSB commitment
is switched from rV to 0n.

The indistinguishability between the output of H4 and that of H3 follows from the hiding prop-
erty of ComSB and the robustness of CCACom1:1.

From the above, the probability that the output of H4 is rV is non-negligible. However, since P∗

receives no information about rV in H4, this probability must be negligible. Thus, we reach a contra-
diction. □

4.2 Proof of Statistical CNMZK Property

Simulator-extractor SE.

Recall that to prove the statistical CNMZK property, we need to show a simulator-extractor that
statistically simulates the view of the adversary A while extracting a witness in every accepted right
session. We construct our simulator-extractor step by step. First, we construct a super-polynomial-
time simulator Ŝ that simulates the view of A but does not extract witnesses in the right seasons.
Next, we construct a super-polynomial-time simulator-extractor ŜE that simulates the view of A by
executing Ŝ and then extracts the witnesses by rewinding Ŝ. Finally, we construct a polynomial-time
simulator-extractor SE that emulates the execution of ŜE in polynomial time.

Remark 1. In the following, we use the hat symbol in the names of simulators and simulator-extractors
if they run in super-polynomial time (e.g., Ŝ and ŜE).

Remark 2. In the following, we use the tilde symbol in the names of the messages of sCNMZK if they
are the messages of the right sessions (e.g., r̃V and r̃P). If necessary, we use subscript to denote the
index of the session.

Super-polynomial-time simulator Ŝ. First, the simulator Ŝ simulates the view of A in super-
polynomial time as follows. Ŝ internally invokes A and interacts with A as provers and verifiers in
the following way.

• In each left session, Ŝ interacts with A in the same way as a honest prover except for the
following. In Stage I-2, Ŝ extracts the committed value (rV , d) of the CECom commitment by
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brute force. (If the committed value is not uniquely determined, (rV , d) is defined to be (⊥,⊥).)
In Stage III, Ŝ checks whether (rV , d) is a valid decommitment of the ComSB commitment in
Stage I-1; if so, Ŝ gives a sWIAOK proof by using (rV , d) as a witness; otherwise, Ŝ terminates
with output fail.

• In each right session, Ŝ interacts withA in the same way as a honest verifier.

Finally, Ŝ outputs the view of internalA. Notice that Ŝ does not rewindA.

Super-polynomial-time simulator-extractor ŜE. Next, the simulator-extractor ŜE simulates the
view of A in super-polynomial time and extracts witnesses in the accepted right sessions as follows.
First, ŜE simulates the view of A by executing Ŝ. We call this execution of Ŝ the wi-main thread.
Next, for each i ∈ [m], if the i-th right session is accepted on the wi-main thread and uses a different
identity from every left session, ŜE extracts a witness from this session as follows.

• ŜE rewinds the wi-main thread until the point just before the challenge message of sWIAOK of
the i-th right session is sent. Then, from this point, ŜE executes Ŝ again with flesh randomness
(i.e., interacts with A as Ŝ does with flesh randomness). ŜE repeats this rewinding until it
obtains another accepting transcript of the i-th right session. We call each execution of Ŝ in this
step a wi-auxiliary thread.

• After obtaining two accepting transcripts of the i-th right session (one is on the wi-main thread
and the other is on an wi-auxiliary thread), ŜE extracts a witness from sWIAOK by using the
witness extractability of sWIAOK. If ŜE fails to extract a witness for x̃i ∈ L (the statement
proven in the i-th right session), ŜE terminates with output failWI. Otherwise, let w̃i be the
extracted witness.

If the i-th right session is not accepted or uses the same identity as a left session, define w̃i
def
= ⊥. The

output of ŜE is (view, {w̃i}i∈[m]), where view is the view ofA on the wi-main thread.

Polynomial-time simulator-extractor SE. Finally, the simulator-extractor SE emulates the execu-
tion of ŜE in polynomial time as follows. First, SE emulates the wi-main thread in polynomial time
as follows.

• SE internally invokes A and interacts with A as Ŝ does except that in each left session, SE
extracts (rV , d) by using the concurrent extractability of CECom instead of by brute force.
Recall that a concurrent extraction of CECom involves the generation of a main thread and
many look-ahead threads. We call the main thread generated during the concurrent extraction
of CECom the cec-main thread, and call the look-ahead threads generated during the concurrent
extraction of CECom the cec-auxiliary threads.6 (See Figure 5.)

Next, for each i ∈ [m], if the i-th right session is accepted on the emulated wi-main thread and uses a
different identity from every left session, SE emulates wi-auxiliary threads as follows.

• SE rewinds the emulation of the wi-main thread until the point just before the challenge mes-
sage of sWIAOK of the i-th right session is sent on the cec-main thread. Then, from this point,
ŜE emulates the wi-main thread again with flesh randomness (i.e., generates the rest of cec-
main thread and cec-auxiliary threads with flesh randomness). SE repeats this rewinding until it
obtains another accepted transcript of the i-th right session on an emulated wi-auxiliary thread.

Let (view, {w̃i}i∈[m]) be the output of the emulated ŜE. Then, SE outputs (view, {w̃i}i∈[m]).

6Note that the wi-main thread is also a cec-main thread.
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WI-main thread

WI-auxliary threads

CEC-main thread

(WI-main thread)

CEC-auxliary threads

Figure 5: wi-main thread, wi-auxiliary thread, cec-main thread, and cec-auxiliary thread.

17



Analysis of poly-time simulator-extractor SE.

To prove the statistical CNMZK property, we show that SE statistically simulates the view ofA and
also extracts witnesses for the statements in the right sessions.

Lemma 2. The view of A simulated by SE is statistically indistinguishable from the view of A
in the real experiment. Furthermore, except with negligible probability, SE outputs witnesses for
the statements proven by A in the accepted right sessions that use different identities from the left
sessions.

Proof . In this proof, we use the following claim, which states that the super-polynomial-time simulator-
extractor ŜE statistically simulates the view of A and also extracts the witnesses from the right ses-
sions.

Claim 1. The view of A simulated by ŜE is statistically indistinguishable from the view of A in the
real experiment. Furthermore, except with negligible probability, ŜE outputs witnesses for the state-
ments proven byA in the accepted right sessions that use different identities from the left sessions.

Before proving this claim, we finish the proof of Lemma 2. Given Claim 1, we can prove Lemma 2
by showing that the output of SE is statistically indistinguishable from that of ŜE. Roughly speaking,
this indistinguishability can be shown by observing the following.

• In SE, the emulation of ŜE is perfect if in every left session that reaches Stage III, the value ex-
tracted by the concurrent extractability of CECom is equal to the value that would be extracted
by brute force.

• In every such left session, the value extracted by the concurrent extractability of CECom is
indeed equal to the value that would be extracted by brute force except with negligible proba-
bility. This is because the CECom commitment in Stage I-2 is valid in every such left session
except with negligible probability, which in turn is because of the soundness of WIPOK in
Stage II-4 and the hiding property of CCACom1:1 in Stage II-1.

We note that there is a subtlety since the concurrent extraction of CECom itself is rewound in SE
when the witnesses are extracted from the right sessions. A formal argument is given below.

Let CEC-BAD be the event that during the execution of SE, in a left session that reaches Stage
III, the value extracted from the CECom commitment in Stage I-2 is different from the value that
would be extracted by the brute-force extraction. Let ϵ be the probability that CEC-BAD occurs during
the emulation of the wi-main thread (i.e., during the emulation of the execution of Ŝ). From the
concurrent extractability of CECom, if the CECom commitment in Stage I-2 is valid except with
negligible probability, CEC-BAD occurs only with negligible probability. Hence, we obtain ϵ = negl(n)
from the following claim.

Claim 2. In Ŝ, the following holds except with negligible probability: In every left session that
reaches Stage III, the CECom commitment in Stage I-2 of this session is valid and its committed
value is a valid decommitment of the ComSB commitment in Stage I-1.

The proof of Claim 2 is given after this proof.
To show the indistinguishability between the output of ŜE and that of SE, we consider the fol-

lowing hybrid simulator-extractor ŜE′ and SE′.

• ŜE′ (resp., SE′) is the same as ŜE (resp., SE) except that for each i ∈ [m], it terminates with
output time-out if it does not obtain another accepting transcript of the i-th right session after
rewinding the wi-main thread (resp., the emulation of the wi-main thread) 1/ϵ1/4 times.
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First, we show that the output of ŜE and that of ŜE′ are statistically indistinguishable. From
the definition of ŜE′, this indistinguishability holds if ŜE′ outputs time-out with at most negligible
probability. Thus, to show this indistinguishability, it suffices to show that the probability that ŜE
rewinds wi-main thread more than 1/ϵ1/4 times during the witness extraction of a right session is
negligible. To show that this probability is negligible, we do the following. For each i ∈ [m], let Ti

be the random variable representing the number of rewinding during the witness extraction of the i-th
right session in ŜE. From a standard “p × 1/p” argument, we can show that we have E [Ti] = 1 for
every i ∈ [m].7 Thus, from Marcov’s inequality, we have

Pr
[
Ti > 1/ϵ1/4

]
≤ ϵ1/4 = negl(n)

for every i ∈ [m]. Thus, from union bound, we have

Pr
[
∃i ∈ [m] s.t. Ti > 1/ϵ1/4

]
≤ m · negl(n) = negl(n) .

As noted above, this implies that the output of ŜE and that of ŜE′ are statistically indistinguishable.
Next, we show that the output of ŜE′ and that of SE′ are statistically indistinguishable. Since the

only difference between ŜE′ and SE′ is how the committed values are extracted from CECom, this
indistinguishability holds if CEC-BAD occurs in SE′ with at most negligible probability. For ℓ ∈ N,
let S Tℓ be the random variable representing the internal state of SE′ at the time that A has sent the
ℓ-th messages on the cec-main thread during the emulation of wi-main thread. Let CEC-BADmain be the
event that CEC-BAD occurs during the emulation of the wi-main thread. We say that an internal state
st of SE′ is good w.r.t. ℓ if we have Pr [CEC-BADmain | S Tℓ = st] ≤ ϵ1/2. Let GOODℓ be the event that
S Tℓ = st holds for an internal state st that is good w.r.t. ℓ. Then, for any ℓ, we have

Pr [CEC-BADmain] ≥ Pr [CEC-BADmain | ¬GOODℓ] Pr [¬GOODℓ] ≥ ϵ1/2 · Pr [¬GOODℓ] .

Then, since we have Pr [CEC-BADmain] = ϵ from the definition of ϵ, we have

Pr [¬GOODℓ] ≤ ϵ1/2 = negl(n)

for every ℓ. Thus, from union bound, we have

Pr

∨
ℓ

¬GOODℓ

 ≤ negl(n) . (1)

Let GOOD be the event that GOODℓ occurs for every ℓ. Then, from Equation (1), we have Pr [GOOD] ≥
1−negl(n). For i ∈ [m], let CEC-BADi be the event that CEC-BAD occurs during the witness extraction of
the i-th right session. Then, since the emulation of each wi-auxiliary thread proceeds identically with
that of the wi-main thread, and since for each i ∈ [m] there are at most 1/ϵ1/4 wi-auxiliary threads
during the witness extraction of the i-th right session, we have

Pr [CEC-BADi | GOOD] ≤ 1
ϵ1/4
· ϵ1/2 = ϵ1/4 .

7 For any prefix ρ of the transcript immediately before the challenge message of sWIAOK of the i-th right ses-
sion, let p be the probability that the i-th right session is accepted when the prefix of the transcript is ρ. Then, we
have E

[
Ti | prefixρ

]
= p · 1/p = 1, where prefixρ is the event that the prefix of the transcript is ρ. Thus, we have

E [Ti] =
∑
ρ E
[
Ti | prefixρ

]
Pr
[
prefixρ

]
= 1.
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Thus, we have

Pr [CEC-BAD] = Pr [CEC-BADmain] +
m∑

i=1

Pr [CEC-BADi]

≤ Pr [CEC-BADmain] +
m∑

i=1

(Pr [¬GOOD] + Pr [CEC-BADi | GOOD])

≤ ϵ +
m∑

i=1

(negl(n) + ϵ1/4)

= negl(n) .

As noted above, this implies that the output of ŜE′ and that of SE′ are statistically indistinguishable.
Finally, we show that the output of SE′ and that of SE are statistically indistinguishable. Since the

output of ŜE′ and that of SE′ are statistically indistinguishable and since ŜE′ outputs time-out with
at most negligible probability, SE′ outputs time-out with at most negligible probability. Then, since
SE′ is identical to SE unless SE′ outputs time-out, the output of SE′ and that of SE are statistically
indistinguishable. □

Proof of Claim 2. Recall that Claim 2 states that during the execution of Ŝ, in every left session that
reaches Stage III, the CECom commitment in Stage I-2 is valid and its committed value is a valid
decommitment of the ComSB commitment in Stage I-1.

Let us say that a left session is bad if it reaches Stage III and either the CECom commitment in
Stage I-2 is invalid or its committed value is not a valid decommitment of the ComSB commitment
in Stage I-1; a left session is good if it is not bad. What we need to prove is that every left session is
good except with negligible probability.

Roughly speaking, the proof proceeds as follows. From the soundness of WIPOK, if a left session
is bad, then in Stage II-2 of this left session, the committed value of the CECom commitment is
rP, which is the committed value of the CCACom1:1 commitment in Stage II-1; thus, before rP is
decommitted to in Stage II-3, we can obtain rP by extracting the committed value from CECom
in Stage II-2. This itself does not contradict the hiding property of CCACom1:1 since Ŝ runs in
super-polynomial time in the brute-force extraction of CECom. Thus, we consider a hybrid simulator
in which the brute-force extraction of CECom is replaced with the concurrent extraction of CECom.
Here, since we want to use the hiding property of CCACom1:1, we use the robust concurrent extraction
of CECom so that the CCACom1:1 commitment in a left session is not rewound. For details, see
below.

Assume for contradiction that there exists i ∈ [m] such that the i-th left session is bad with non-
negligible probability. (Here, the indices of the left sessions are defined by the order in which Stage
II-3 begins; the reason why we define the indices in this way will become clear later.) Then, there
exists i∗ ∈ [m] such that the first (i∗ − 1) left sessions are good except with negligible probability
but the i∗-th left session is bad with non-negligible probability. Note that from the soundness of
WIPOK, when the i∗-th left session is bad, then the CECom commitment in Stage II-2 of the i∗-th left
session is valid and its committed value is rP except with negligible probability, where rP is the value
committed to in Stage II-1 of the i∗-th left session. In the following, we use BAD to denote the event
that the i∗-th left session is bad, and use CHEAT to denote the event that the committed value of the
CECom commitment in Stage II-2 is rP in the i∗-th left session. Then, let us consider the following
hybrids.

Hybrid Ŝ0 is the same as Ŝ. From our assumption, BAD occurs in Ŝ0 with non-negligible probability.
Thus, from the above argument, CHEAT occurs in Ŝ0 with non-negligible probability.
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Hybrid Ŝ1 is the same as Ŝ0 except that Ŝ1 terminates just before Stage II-3 of the i∗-th left session
begins. Clearly, CHEAT still occurs in Ŝ1 with non-negligible probability.

Hybrid S1 emulates Ŝ1 in polynomial time as follows.

• At the beginning, a random left session s is chosen. (Here, we guess that session s is the
i∗-th left session.)

• In every left session, in Stage I-2, the committed value (rV , d) is extracted by the ro-
bust concurrent extractor of CECom in such a way that the CCACom1:1 commitment of
session s is not rewound. In addition, in the left session s, the committed value is also
extracted from the CECom commitment in Stage II-2.

Note that in every left session in which Stage III is executed, the CECom commitment in Stage
I-2 is valid except with negligible probability (since such a session is one of the first (i∗−1) left
sessions and therefore it is good except with negligible probability). Thus, the values extracted
from the concurrent extractor are equal to the values that would be extracted by the brute-force
extraction except with negligible probability; therefore, S1 statistically emulates Ŝ1, and CHEAT

occurs in S1 with non-negligible probability.

Note that session s is the i∗-th left session with non-negligible probability. Then, since CHEAT occurs
in S1 with non-negligible probability, the value extracted from the CECom commitment in Stage II-2
of session s is rP with non-negligible probability, where rP is the value committed to in Stage II-1 of
session s. Then, since the CCACom1:1 commitment in Stage II-1 of session s is not rewound in S1,
we can break the hiding property of CCACom1:1. Thus, we reach a contradiction. □

Analysis of super-poly-time simulator-extractor ŜE.

It remains to prove Claim 1, which states that (i) super-polynomial-time simulator-extractor ŜE sta-
tistically simulates the real view of A and (ii) ŜE also extracts a valid witness from every accepted
right session in the simulated view.

Proof of Claim 1. First, we observe that the output of Ŝ is statistically indistinguishable from the
real view of A. Since ŜE simulates the view of A by executing Ŝ, this implies that ŜE statistically
simulates the real view ofA. Recall that in Ŝ, each left session is simulated by extracting (rV , d) from
the CECom commitment in Stage I-2 and giving a sWIAOK proof in Stage III with witness (rV , d).
From Claim 2 (which states that the CECom commitment in Stage I-2 is a valid commitment to a
valid decommitment of the ComSB commitment in Stage I-1 in every session that reaches Stage III),
the value (rV , d) that is extracted from the CECom commitment in Stage I-2 is a valid decommitment
of the ComSB commitment of Stage I-1 in each left session that reaches Stage III. Thus, from the
statistical witness indistinguishability of sWIAOK, the output of Ŝ is statistically indistinguishable
from the real view ofA.

Next, we show that ŜE outputs failWI with at most negligible probability. Since ŜE outputs
failWI when it fails to extract a witness in an accepted right session, this implies that ŜE extracts
a valid witness from every accepted right session except with negligible probability. Assume for
contradiction that there exists ĩ∗ ∈ [m] such that ŜE outputs failWI during the witness extraction of
the ĩ∗-th right session with non-negligible probability. Then, let us consider the following hybrid
simulator-extractor ŜEĩ∗ .

• ŜEĩ∗ is the same as ŜE except that ŜEĩ∗ tries to extract a witness only from the ĩ∗-th right session
(and therefore rewinds the wi-main thread only from the challenge message of sWIAOK of the
ĩ∗-th right session).
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Clearly, ŜEĩ∗ outputs failWI with non-negligible probability. Then, we reach a contradiction roughly
as follows.

Step 1. First, we show that in ŜEĩ∗ , the probability that r̃V is extracted as a witness during the witness
extraction of the ĩ∗-th right session is non-negligible, where r̃V is the value chosen by the verifier
in Stage I-1 of the ĩ∗-th right session.

Step 2. Next, we define a sequence of hybrid simulator-extractors, where the first hybrid is the same
as ŜEĩ∗ , and we gradually modify the ĩ∗-th right session so that it is independent of r̃V in the
last hybrid.

Step 3. Finally, we show that even in the last hybrid, the probability that r̃V is extracted during the
witness extraction of the ĩ∗-th right session is non-negligible. Since the ĩ∗-th right session is
independent of r̃V in the last hybrid, we reach a contradiction.

Details are given below.

Step 1. Prove that ŜEĩ∗ extracts r̃V . We first prove the following claim.

Claim 3. Let r̃V be the value chosen by the verifier in Stage I-1 of the ĩ∗-th right session. If ŜEĩ∗

outputs failWI with non-negligible probability, then in ŜEĩ∗ the probability that r̃V is extracted during
the witness extraction of the ĩ∗-th right session is non-negligible.

Proof . Assume for contradiction that r̃V is extracted during the witness extraction of the ĩ∗-th right
session with at most negligible probability. Then, since we assume that ŜEĩ∗ outputs failWI with
non-negligible probability, the following occurs in ŜEĩ∗ with non-negligible probability:

• ŜEĩ∗ obtains two accepting transcript of the ĩ∗-th right session (and therefore that of sWIAOK)
such that the commit-messages of sWIAOK are the same,8 but

• from these two transcript, ŜEĩ∗ fails to extract any witness from sWIAOK (i.e., a witness for
x̃ĩ∗ ∈ L or a valid decommitment of the Stage I-1 commitment).

We first show that when the above occurs, the two accepting sWIAOK transcripts are admissible ex-
cept with negligible probability. (Recall that a pair of accepted transcripts of sWIAOK are admissible
if their commit-messages are the same but their challenge-messages are different.) Toward this end,
it suffices to show that ŜEĩ∗ chooses the same challenge-message of sWIAOK on the wi-main thread
and a wi-auxiliary thread with at most negligible probability. This can be shown as follows.

• From a standard argument, we can show that the expected number of rewinding of the wi-main
thread is 1 in ŜEĩ∗ .

9 Thus, the probability that ŜEĩ∗ rewinds the wi-main thread more than 2n/2

times is at most 2−n/2. Furthermore, under the condition that ŜEĩ∗ rewinds thewi-main thread at
most 2n/2 times, the probability that ŜEĩ∗ chooses the same challenge-message on the wi-main
thread and a wi-auxiliary thread is at most 2n/2 · 2−n = 2−n/2. Thus, the probability that ŜEĩ∗

chooses the same challenge-message on the wi-main thread and a wi-auxiliary thread is at most
2−n/2 + 2−n/2 = negl(n).

8Recall that WIPOK consists of three stages: commit, challenge, and response.
9See Footnote 7.
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Thus, with non-negligible probability ŜEĩ∗ obtains two admissible transcripts of sWIAOK from which
no witness can be computed.

We then reach a contradiction as follows. Since sWIAOK is a parallel version of Blum’s Hamiltonian-
cycle protocol, if no witness is extracted from two admissible transcripts of sWIAOK, a ComSH com-
mitment in the commit-messages is decommitted to two different values in the transcripts. Thus, we
derive a contradiction by breaking the binding property of ComSH using ŜEĩ∗ . A problem is that
since ŜEĩ∗ runs in super-polynomial time, the computational biding property of ComSH may not hold
in ŜEĩ∗ . To overcome this problem, we consider hybrid simulator-extractor SEĩ∗ that emulates the
execution of ŜEĩ∗ in polynomial time. Specifically, SEĩ∗ emulates ŜEĩ∗ in the same way as SE emu-
lates ŜE (i.e., by using the concurrent extractability of CECom instead of the brute-force extraction)
except for the following.

• During the emulation of the wi-main thread, the value (rV , d) is extracted in Stage I-2 of each
left session by using the robust concurrent extractability of CECom so that the commit-message
of sWIAOK in the ĩ∗-th right session is not rewound.

As in the proof of Lemma 2, we can show that SEĩ∗ statistically emulates the execution of ŜEĩ∗ . Thus,
with non-negligible probability, SEĩ∗ obtains two valid decommitments of a ComSH commitment
(in the commit-messages of sWIAOK of the ĩ∗-th right session) such that decommitted values are
different. Then, since SEĩ∗ runs in polynomial time and since the commit-messages of sWIAOK (and
therefore the ComSH commitment) of the ĩ∗-th right session is not rewound in SEĩ∗ ,

10 we can break
the binding property of ComSH. Thus, we reach a contradiction. □

Step 2. Introduce hybrid simulator-extractor. Next, we introduce hybrid simulator-extractors.
To clarify the exposition, we first define a sequence of hybrid simulators by gradually modifying Ŝ
and then define the hybrid simulator-extractors by using them. Below, when we refer to a particular
stage of sCNMZK, we always means the corresponding stage of sCNMZK in the ĩ∗-th right session.

Hybrid simulator h-Ŝ0 is identical with Ŝ.

Hybrid simulator h-Ŝ1 is the same as h-Ŝ0 except that r̃P is extracted by brute force in Stage II-1
and the committed value of the CECom commitment in Stage II-2 is switched from 0n to r̃P.

Hybrid simulator h-Ŝ2 is the same as h-Ŝ1 except that in Stage II-4, the WIPOK proof is computed
by using a witness for the fact that the committed value of the CECom commitment in Stage
II-2 is r̃P.

Hybrid simulator h-Ŝ3 is the same as h-Ŝ2 except that in Stage I-2, the committed value of the
CECom commitment is switched from (̃rV , d̃) to (0|̃rV |, 0|d̃|).

Hybrid simulator h-Ŝ4 is the same as h-Ŝ3 except that in Stage I-1, the committed value of the
ComSB commitment is switched from r̃V to 0n.

Then, for each k ∈ {0, . . . , 4}, hybrid simulator-extractor h-ŜEk is defined as follows.

Hybrid simulator-extractor h-ŜEk is the same as ŜEĩ∗ except that the execution of Ŝ is replaced
with that of h-Ŝk. The output of h-ŜEk is the value extracted during the witness extraction of
the ĩ∗-th right session.

Note that the value r̃V is not used anywhere in h-ŜE4.

10Note that the commit-messages of sWIAOK of the ĩ∗-th right session appear only on the wi-main thread.
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Step 3. Prove that r̃V is extracted in every hybrid. Finally, we show that r̃V is extracted with
non-negligible probability in each hybrid. First, we consider h-ŜE1.

Claim 4. Let r̃V be the value chosen by the verifier in Stage I-1 of the ĩ∗-th right session. If ŜEĩ∗

outputs failWI with non-negligible probability, then in h-ŜE1 the probability that r̃V is extracted during
the witness extraction of the ĩ∗-th right session is non-negligible.

Proof . In this proof, we use intermediate hybrid simulator-extractors in which the CECom commit-
ment in Stage II-2 of the ĩ∗-th right session is gradually modified. Again, we first introduce hybrid
simulators. Recall that a CECom commitment consists of ℓ = ω(RSH(n) log n) ExtCom commitments.
Then, the intermediate hybrid simulators h-Ŝ0:0, . . . , h-Ŝ0:ℓ are defined as follows.

Hybrid simulator h-Ŝ0:0 is the same as h-Ŝ0 except that r̃P is extracted by brute force in Stage II-1
of the ĩ∗-th right session.

Hybrid simulator h-Ŝ0:k (k ∈ [ℓ]) is the same as h-Ŝ0:k−1 except that the committed value of the k-th
ExtCom commitment in the CECom commitment of Stage II-2 is switched from 0n to r̃P in the
ĩ∗-th right session.

Then, for each k ∈ {0, . . . , ℓ}, hybrid simulator-extractor h-ŜE0:k is defined as follows.

Hybrid simulator-extractor h-ŜE0:k is the same as h-ŜE0 except that the execution of h-Ŝ0 is re-
placed with that of h-Ŝ0:k.

Note that h-ŜE0:ℓ is identical with h-ŜE1.
Below, we show that for every k ∈ [ℓ], the output of h-ŜE0:k−1 and that of h-ŜE0:k are indistin-

guishable. (Recall that the outputs of h-ŜE0:k−1 and h-ŜE0:k are the value extracted in the ĩ∗-th right
session.) Since the probability that r̃V is extracted in h-ŜE0:0 is non-negligible from Claim 3, this
suffices to prove Claim 4.

Roughly speaking, we show this indistinguishability as follows. Since h-ŜE0:k−1 and h-ŜE0:k
differ only in the committed values of a ExtCom commitment, we use the hiding property of the
ExtCom commitment to show the indistinguishability. A problem is that we cannot use it directly
since h-ŜE0:k−1 and h-ŜE0:k run in super-polynomial time. To overcome this problem, we observe
that the only super-polynomial computations in h-ŜE0:k−1 and h-ŜE0:k are the brute-force extrac-
tion of CCACom1:1 (in the ĩ∗-th right session) and those of CECom (in each left session). Based
on this observation, we first show that the execution of h-ŜE0:k−1 and h-ŜE0:k can be emulated in
polynomial-time by using the one-session committed-value oracle O of CCACom1:1 and the concur-
rent extractability of CECom. We then combine the 4-robustness of CCACom1:1 with the hiding
property of ExtCom (which has only four rounds) to argue that the output of h-ŜE0:k−1 and that of
h-ŜE0:k are indistinguishable. To formally implement this idea, we need to make sure that the ExtCom
commitment and the CCACom1:1 commitment are not rewound during the concurrent extraction of
CECom. Details are given below.

First, we introduce hybrid simulator-extractors h-SEO0:k−1 and h-SEO0:k, where O is the one-session
committed-value oracle of CCACom1:1. Hybrid h-SEO0:k (resp., h-SEO0:k−1) emulates h-ŜE0:k (resp.,
h-ŜE0:k−1) in the same way as SE emulates ŜE except for the following.

• During the emulation of the wi-main thread, the value (rV , d) is extracted in Stage I-2 of each
left session by using the robust concurrent extractability so that the CCACom1:1 commitment in
Stage II-1 and the k-th ExtCom commitment in the CECom commitment of Stage II-2 are not
rewound in the ĩ∗-th right session. In addition, in the ĩ∗-th right session, the committed value
of CCACom1:1 is extracted by forwarding the commitment to O. Note that the CCACom1:1

commitment in the ĩ∗-th right session is not rewound and therefore it can be forwarded to O.
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Next, we show that for each h ∈ {k − 1, k}, the output of h-ŜE0:h and that of h-SEO0:h are indis-
tinguishable. This can be proven in a similar way to Lemma 2. In particular, we can use the same
argument if we use the following claim instead of Claim 2.

Claim 5. In h-Ŝ0:h for each h ∈ {k − 1, k}, the following holds except with negligible probability: In
every left session that reaches Stage III, the CECom commitment in Stage I-2 of this session is valid
and its committed value is a valid decommitment of the ComSB commitment in Stage I-1.

Claim 5 can be proven in a similar way to Claim 2. For completeness, we give the proof below. (Many
texts are taken verbatim from the proof of Claim 2)

Proof of Claim 5. Let us say that a left session is bad if it reaches Stage III and either the CECom
commitment in Stage I-2 is invalid or its committed value is not a valid decommitment of the ComSB

commitment in Stage I-1; a left session is good if it is not bad. What we want to prove is that every
left session is good except with negligible probability.

Roughly speaking, the proof proceeds as follows. From the soundness of WIPOK, if a left session
is bad, then in Stage II-2 of this left session, the committed value of the CECom commitment is
rP, which is the committed value of the CCACom1:1 commitment in Stage II-1; thus, before rP is
decommitted to in Stage II-3, we can obtain rP by extracting the committed value from CECom in
Stage II-2. This itself does not contradict the hiding property of CCACom1:1 since h-Ŝ0:h runs in
super-polynomial time in the brute-force extraction of CECom and CCACom1:1. Thus, we again
replace the brute-force extraction with the concurrent extraction of CECom and an oracle access
to the one-session committed-value oracle O of CCACom1:1, and use the one-one CCA-security of
CCACom1:1 instead of its hiding property. Here, since we want to use the one-one CCA-security of
CCACom1:1, we perform the concurrent extraction of CECom so that the CCACom1:1 commitment
in a left session and the CCACom1:1 in the ĩ∗-th right session are not rewound. Details are given
below.

Assume for contradiction that there exists h ∈ {k − 1, k} such that in h-Ŝ0:h, a left session is bad
with non-negligible probability. (Here, the indices of the left sessions are determined by the order in
which Stage II-3 begins; the reason why we define the indices in this way will become clear later.)
Then, there exists i∗ ∈ [m] such that in h-Ŝ0:h, the first (i∗ − 1) left sessions are good except with
negligible probability but the i∗-th left session is bad with non-negligible probability. Note that from
the soundness of WIPOK, when the i∗-th left session is bad, the committed value of the CECom
commitment in Stage II-2 is rP in the i∗-th left session except with negligible probability, where rP is
the value committed to in Stage II-1 of the i∗-th left session. In the following, we use BAD to denote
the event that the i∗-th left session is bad, and use CHEAT to denote the event that the committed value
of the CECom commitment in Stage II-2 is rP in the i∗-th left session. Then, let us consider the
following hybrids.

Hybrid simulator h-Ŝ0:h:0 is the same as h-Ŝ0:h. From our assumption, BAD occurs in h-Ŝ0:h:0 with
non-negligible probability. Thus, from the above argument, CHEAT occurs in h-Ŝ0:h:0 with non-
negligible probability.

Hybrid simulator h-Ŝ0:h:1 is the same as h-Ŝ0:h:0 except that h-Ŝ0:h:1 terminates just before Stage
II-3 of the i∗-th left session begins. Clearly, CHEAT still occurs in h-Ŝ0:h:1 with non-negligible
probability.

Hybrid simulator h-SO0:h:1 emulates h-Ŝ0:h:1 in polynomial time as follows.

• At the beginning, a random left session s is chosen. (Here, we guess that session s is the
i∗-th left session.)
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• In every left session, in Stage I-2, the committed value (rV , d) is extracted by the robust
concurrent extractor of CECom in such a way that the CCACom1:1 commitment of left
session s and the CCACom1:1 commitment of the ĩ∗-th right session are not rewound. In
addition, in the ĩ∗-th right session, the committed value of CCACom1:1 is extracted by
forwarding the commitment to O.

• In left session s, the committed value is also extracted in Stage II-2 by the robust con-
current extractor of CECom without rewinding the CCACom1:1 commitment of the ĩ∗-th
right session.

Note that when Stage III of a left session is executed, the CECom commitment in Stage I-2
of that session is valid except with negligible probability (since that session is one of the first
(i∗−1) left sessions and therefore it is good except with negligible probability). Thus, the values
extracted from the concurrent extractor are equal to the values that would be extracted by brute
force except with negligible probability; therefore, h-SO0:h:1 statistically emulates h-Ŝ0:h:1, and
CHEAT occurs in h-SO0:h:1 with non-negligible probability.

Note that session s is the i∗-th left session with non-negligible probability. Then, since CHEAT occurs
in h-SO0:h:1 with non-negligible probability, rP is extracted from the CECom commitment in Stage
II-2 of session s with non-negligible probability, where rP is the value committed to in Stage II-1 of
session s. Then, since the CCACom1:1 commitment of session s is not rewound in h-SO0:h:1, we can
break the one-one CCA security of CCACom1:1. Thus, we reach a contradiction. □

As argued above, Claim 5 implies that for each h ∈ {k − 1, k}, the outputs of h-ŜE0:h and h-SEO0:h are
indistinguishable.

To show that the outputs of h-ŜE0:k−1 and h-ŜE0:k are indistinguishable, it remains to prove that
the outputs of h-SEO0:k−1 and h-SEO0:k are indistinguishable. This can be shown as follows. Observe
that h-SEO0:k−1 and h-SEO0:k differ only in the k-th ExtCom commitment of the CECom commitment
of the ĩ∗-th right session, and this ExtCom commitment is not rewound in h-SEO0:k−1 and h-SEO0:k.
In addition, h-SEO0:k−1 and h-SEO0:k run in polynomial time given oracle access to the one-session
committed-value oracle O of CCACom1:1. Thus, from the hiding property of ExtCom and the 4-
robustness of CCACom1:1, the output of SEO0:k−1 and that of h-SEO0:k are indistinguishable.

Thus, we conclude that the probability that r̃V is extracted in h-ŜE1 is non-negligible. This
concludes the proof of Claim 4. □

By using essentially the same argument as in the proof of Claim 4, we can show that r̃V is extracted
with non-negligible probability also in h-ŜE2, h-ŜE3, and h-ŜE4. For example, let us consider h-ŜE2.
Recall that h-ŜE2 differs from h-ŜE1 only in that the different witness is used in WIPOK of the ĩ∗-th
right session. Then, in the same way as in the proof of Claim 4, we can define hybrid simulator-
extractors h-SEO1 and h-SEO2 such that the following hold.

• Given oracle access to the one-session committed-value oracle O of CCACom1:1, both h-SEO1
and h-SEO2 run in polynomial-time.

• For each k ∈ {1, 2}, the probability that r̃V is extracted in h-SEOk is statistically close to the
probability in h-ŜEk.

• h-SEO1 and h-SEO2 differ only in the witness used in WIPOK of the ĩ∗-th right session, and this
WIPOK is not rewound in both h-SEO1 and h-SEO2 .
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Assume for contradiction that r̃V is extracted in h-ŜE2 only with negligible probability. Then, since
r̃V is extracted in h-ŜE1 with non-negligible probability, we can break witness indistinguishability of
WIPOK and the 4-robustness of CCACom1:1 by using h-SEO1 and h-SEO2 . Thus, r̃V is extracted in
h-ŜE2 with non-negligible probability. In this way, we can show that r̃V is extracted also in h-ŜE3
and h-ŜE4 with non-negligible probability.

Concluding the proof of Claim 1. In h-ŜE4, the ĩ∗-th right session is independent of r̃V , and there-
fore the probability that r̃V is extracted is negligible. However, we show above that this probability is
non-negligible. Thus, we reach a contradiction. □

This concludes the proof of Theorem 2. □
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A Robust Concurrent Extraction Lemma [GLP+15]

Below, we give a formal description of the robust concurrent extraction lemma [GLP+15].

The external protocol Π. Let Π := ⟨B, A⟩ be an arbitrary two-party computation protocol. For
security parameter n, let domB(n) denote the domain of the input for B and k := k(n) denote the round
complexity of Π.

The robust-concurrent attack. Let x ∈ domB(n). In the robust-concurrent attack, the adversaryA
interacts with a special (possibly super-polynomial-time) party E called the online extractor. Online
extractor E simultaneously participates in one execution of Π and several executions of CECom,
where E interacts with A as honest B(1n, x) in the execution of Π and interacts with A as a honest
receiver in each execution of CECom. The scheduling of all messages in all sessions—Π as well
as CECom—is controlled by A. When A successfully completes a CECom commitment s, online
extractor E sends a string αs toA.

For n ∈ N, x ∈ domB(n), z ∈ {0, 1}∗, let REALAE,Π(n, x, z) denote the output of the following
probabilistic experiment. On input 1n and auxiliary input z, the experiment starts an execution of A,
which launches the robust-concurrent attack by interacting with E. The output of the experiment is
the view ofA.

The robust concurrent extraction lemma. Informally speaking, the lemma states that there ex-
ists an interactive Turing machine—called robust simulator—whose output is statistically close to
REALAE,Π(n, x, z) even if the value that the online extractor E returns to A at the end of each suc-
cessful CECom commitment is the committed value of this commitment. Furthermore, the robust
simulator does not “rewind” B and runs in time polynomial in total sessions opened byA.

Lemma 3 (Robust Concurrent Extraction Lemma [GLP+15]). There exists an interactive Turing ma-
chine S (called robust simulator) such that for every adversary A and every two-party protocol
Π := ⟨B, A⟩, there exists a party E (called online extractor) such that for every n ∈ N, x ∈ domB(n),
and z ∈ {0, 1}∗, the following conditions hold:

1. Validity constraint. For every output ρ of REALAE,Π(n, x, z) and for every CECom commitment
s appearing in ρ, if there exists a unique value v ∈ {0, 1}n to which the commitment s can be
decommitted, then:

αs = v,

where αs is the value E sends toA at the end of s.

2. Statistical simulation. Let k = k(n) be the round complexity of Π. Then the statistical distance
between REALAE,Π(n, x, z) and outputS

[
B(1n, x)↔ SA(1n, z)

]
is given by

∆(n) ≤ 2−Ω(ℓ−k·log T (n)),

where ℓ := ℓ(n) is the parameter of CECom and T (n) is the number of the CECom commit-
ments betweenA and E. Furthermore, the running time of S is poly(n) · T (n)2.
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B Constant-round One-one CCA-secure Commitment Scheme from OWF

In this section, we observe that from a result by Goyal et al. [GLP+15], it follows almost immedi-
ately that we can obtain a constant-round one-one CCA-secure commitment scheme from one-way
functions.

Theorem 3. Assume the existence of one-way functions. Then, for any constant κ ∈ N, there exists a
constant-round κ-robust one-one CCA-secure commitment scheme CCACom1:1.

We use the following building blocks, where all of them can be constructed from one-way functions.

• Constant-round commitment scheme NMCom that is non-malleable w.r.t. itself and any 4-round
protocol. Specifically, we use the scheme by Lin and Pass [LP11b]. We remark that, like many
other non-malleable commitment schemes, the scheme by [LP11b] also satisfies extractabil-
ity.11 (For the definitions of non-malleability and extractability, see Appendix C.)

• Four-round witness-indistinguishable proof of knowledge WIPOK.

• Constant-round zero-knowledge argument ZKArg [GK96].

• Concurrently extractable commitment scheme CECom of Micciancio et al. [MOSV06] with
parameter ℓ = max(κ, rnm, 4) + 1, where rnm is the round complexity of NMCom.

When ℓ = max(κ, rnm, 4)+ 1 = O(1), CECom does not guarantee concurrent extractability. It is
easy to see, however, that it guarantees the following “robust extractability” property: For any
adversarial committer C∗ that commits to a value in a single session of CECom and simulta-
neously participates an arbitrary max(κ, rnm, 4)-round protocol Π, the extractor can extract the
committed value from C∗ without rewinding Π. For details, see Appendix D.

CCACom1:1 is shown in Figure 6. We remark that CCACom1:1 is almost identical to the CCA-secure
commitment scheme of Goyal et al. [GLP+15]; essentially, the only difference is the parameter ℓ of
CECom. We prove its one-one CCA security in Section B.1 and prove its robustness in Section B.2.

B.1 Proof of One-one CCA Security

For any adversaryA that interacts with the committed-value oracle only in a single session, we show
that the following ensembles are computationally indistinguishable.

• {IND0(⟨C,R⟩,A, n, z)}n∈N,z∈{0,1}∗

• {IND1(⟨C,R⟩,A, n, z)}n∈N,z∈{0,1}∗

Toward this end, we consider a sequence of hybrid experiments in which the left session of
INDb(⟨C,R⟩,A, n, z) is gradually modified so that A receives no information about vb in the last
hybrid.

Hybrid Hb
0(n, z) is the same as INDb(⟨C,R⟩,A, n, z).

Hybrid Hb
1(n, z) is the same as Hb

0(n, z) except for the following.

11In the scheme of [LP11b], the committer proves by a witness-indistinguishable proof of knowledge system that it
knows either the committed value or trapdoor information. Since the scheme is designed so that the trapdoor is hidden from
the committer, the committed value can be extracted by extracting the witness from the witness-indistinguishable proof.
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Below, CECom is the scheme of Micciancio et al. [MOSV06] with parameter ℓ =
max(κ, rnm, 4) + 1, where rnm is the round complexity of NMCom.

Commit Phase

To commit to v ∈ {0, 1}n, the committer C does the following with the receiver R.

Stage 1. R chooses random r ∈ {0, 1}n and commits to r by using CECom. R then prove the
validity of this CECom commitment by using ZKArg.

Stage 2. C commits to v by using CECom.

Stage 3. C commits to 0n by using NMCom.

Stage 4. R decommits the CECom commitment in Stage 1 to r.

Stage 5. C prove the following by using WIPOK:

• the CECom commitment in Stage 2 is valid, or

• the committed value of the NMCom commitment in Stage 3 is r.

Decommit Phase

C decommits the CECom commitment in Stage 2 to v.

Figure 6: Constant-round one-one CCA-secure commitment scheme CCACom1:1.

• In Stage 1 of the left session, the committed value r of the CECom commitment is ex-
tracted by brute force. If the CECom commitment is invalid or has more then one com-
mitted value, r is defined to be a random value.

• In Stage 3 of the left session, the committed value of NMCom is switched from 0n to r.

Hybrid Hb
2(n, z) is the same as Hb

1(n, z) except that in Stage 5 of the left session, the WIPOK proof
is computed by using the witness for the fact that the committed value of the NMCom com-
mitment in Stage 3 is r. (Notice that from the statistical binding property of CECom, the
probability that A correctly decommits the CECom commitment in Stage 1 to a value other
than r is negligible.)

Hybrid Hb
3(n, z) is the same as Hb

2(n, z) except that in Stage 2 of the left session, the committed value
of CECom is switched from vb to 0n.

For each i ∈ {0, 1, 2, 3} and b ∈ {0, 1}, let Hb
i (n, z) be the random variable representing the output

of Hb
i (n, z). From the construction, A receives no information about vb in H0

3(n, z) and H1
3(n, z) and

hence H0
3(n, z) and H1

3(n, z) are identically distributed. Therefore, to show the indistinguishability
between the above two ensembles, it suffices to prove that the outputs of each neighboring hybrids
are computationally indistinguishable.

Our strategy for proving the indistinguishability of each neighboring hybrids is to reduce their
indistinguishability to the security of NMCom, WIPOK, and CECom. The problem of this strategy
is the existence of the committed-value oracle: Since the oracle runs in super-polynomial time, the
security of NMCom, WIPOK, and CECom might not hold against the adversaries that interact with
the oracle. We overcome this problem by showing that the oracle can be emulated efficiently without
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“disturbing” the security of NMCom, WIPOK, and CECom. Specifically, we show that the oracle can
be emulated by extracting the committed value of the CECom commitment in Stage 2 of the right
session using the extractability of CECom; since CECom provides a robust extractability property,
the extraction from CECom does not disturb the security of NMCom, WIPOK, and CECom. We
remark that in the formal argument given below, we first show that A “cheats” in the hybrids only
with negligible probability, meaning that in the right session, the committed value of the NMCom
commitment in Stage 3 is equal to the committed value of the CECom commitment in Stage 1 only
with negligible probability. Showing thatA cheats only with negligible probability is crucial to show-
ing that the oracle can be efficiently emulated. In particular, once we show that A cheats only with
negligible probability, we can use the soundness of WIPOK to argue that the CECom commitment
in Stage 2 is valid in the accepted right session except with negligible probability, and thus we can
conclude that the extracted value is equal to the committed value when the right session is accepted.
The formal argument is given below.

Let us say that A cheats if the committed value of NMCom in Stage 3 is equal to the committed
value r̃ of CECom in Stage 1 in the accepted right session. First, we show that A cheats in Hb

0(n, z)
only with negligible probability.

Claim 6. The probability thatA cheats in Hb
0(n, z) is negligible for each b ∈ {0, 1}.

Proof . Roughly speaking, this claim follows from the hiding property of CECom—when the adver-
sary cheats, we can obtain r̃ by extracting the committed value from NMCom, and thus we can obtain
the committed value of a CECom commitment before it is decommitted to. To formally implement
this idea, it is important that no super-polynomial-time computation is performed during the execu-
tion of CECom in Stage 1 of the right session. Fortunately, in Hb

0(n, z) no super-polynomial-time
computation is indeed performed during CECom of the right session, as super-polynomial-time com-
putation is performed only at the end of the right session. (Recall the in the setting of one-one CCA
security,A interacts with the oracle only in a single session.) The formal argument is given below.

Assume for contradiction that there exists b ∈ {0, 1} such that A cheats in Hb
0(n, z) with non-

negligible probability. Fix any such b. To derive a contradiction, we consider the following hybrid
experiments.

Hybrid Hb
0:1(n, z) is the same as Hb

0(n, z) except that in Stage 3 of the right session, the committed
value of the NMCom commitment is extracted by using the extractability of NMCom.

Clearly, the probability that A cheats is still non-negligible in Hb
0:1(n, z). Hence, from the

extractability of NMCom, the extracted value is equal to r̃ with non-negligible probability.

Hybrid Hb
0:2(n, z) is the same as Hb

0:1(n, z) except that in Stage 1 of the right session, the ZKArg proof
is generated by using the simulator of ZKArg.

From the zero-knowledge property of ZKArg, the probability that r̃ is extracted from NMCom
is still non-negligible in Hb

0:2(n, z).

We derive a contradiction by constructing an adversary B that breaks the hiding property of CECom.
Externally, B interacts with a committer of CECom: It sends random r̃0, r̃1 ∈ {0, 1}n to the committer
and receives a CECom commitment in which either r̃0 or r̃1 is committed. Internally, B invokes A
and emulates Hb

0:2(n, z) for A honestly except that in Stage 1 of the right session, B forwards the
CECom commitment from the external committer to internal A. Finally, if the value extracted from
NMCom is r̃1 in internally emulated Hb

0:2(n, z),B outputs 1, and otherwise, it outputs 0. IfB receives a
commitment to r̃1, it outputs 1 with non-negligible probability from the above argument. On the other
hand, if B receives a commitment to r̃0, it outputs 1 only with negligible probability since internalA
receives no information about r̃1. Hence, B breaks the hiding property of CECom. □
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Next, we show that A cheats only with negligible probability in Hb
1(n, z), and we use it to prove

that Hb
0(n, z) and Hb

1(n, z) are indistinguishable.

Claim 7. For each b ∈ {0, 1}, the following hold.

• The probability thatA cheats in Hb
1(n, z) is negligible.

• {Hb
0(n, z)}n∈N,z∈{0,1}∗ and {Hb

1(n, z)}n∈N,z∈{0,1}∗ are computationally indistinguishable.

Proof . First, we show that A cheats in Hb
1(n, z) with negligible probability for each b ∈ {0, 1}.

Roughly speaking, this follows from the non-malleability of NMCom: Since Hb
1(n, z) differs from

Hb
0(n, z) only in the value committed to in NMCom in the left session, the value thatA commits to by

using NMCom in the right session of Hb
1(n, z) is indistinguishable from the value that A commits to

by using NMCom in the right session of Hb
0(n, z); hence, from Claim 6, the probability thatA cheats

in Hb
1(n, z) is negligible. We remark that since the left session in Hb

1(n, z) involves the brute-force
extraction of CECom in Stage 1, in the formal argument given below we consider a hybrid experi-
ment in which brute-force extraction is replaced with the rewinding extraction. Since we want to use
the non-malleability of NMCom, this extraction is performed in such a way that NMCom in the right
session is not rewound. The formal argument is given below.

Assume for contradiction that there exists b ∈ {0, 1} such that A cheats in Hb
1(n, z) with non-

negligible probability. Fix any such b. To derive a contradiction, we consider the following hybrid
experiment for i ∈ {0, 1}.

Hybrid Gb
i (n, z) is the same as Hb

i (n, z) except for the following.

• In Stage 1 of the left session, the committed value r of the CECom commitment is ex-
tracted by using the extractability of CECom instead of by brute force. Furthermore, this
extraction is performed in such a way that the NMCom commitment in the right session
is not rewound (see Appendix D).

• Gb
i (n, z) terminates immediately after NMCom ends in Stage 3 of the right session.

From the soundness of ZKArg, the CECom commitment in Stage 1 of the left session is valid
when the ZKArg proof in Stage 1 of the left session is accepted. Hence, when Stage 3 is
executed in the left session, the value extracted from the CECom commitment in Stage 1 is
equal to its (unique) committed value. Since the only difference from Gb

i (n, z) and Hb
i (n, z) is

how r is extracted, the view ofA in Gb
i (n, z) is statistically close to that in Hb

i (n, z). Therefore,
A cheats in Gb

0(n, z) with negligible probability from Claim 6, and A cheats in Gb
1(n, z) with

non-negligible probability from our hypothesis.

We then derive a contradiction by constructing an adversary M that breaks the non-malleability of
NMCom. Externally, M interacts with a committer and a receiver of NMCom: It sends 0n and
r ∈ {0, 1}n to the committer and receives a NMCom commitment in which either 0n or r is committed
to; at the same time, it sends a NMCom commitment to the receiver. Internally, M invokes A and
emulates Gb

0(n, z) forA honestly except for the following.

• After r is extracted in Stage 1 of the left session,M sends 0n and r to the external committer.

• In Stage 3 of the left session,M forwards the NMCom commitment from the external commit-
ter to internalA.

• In Stage 3 of the right session, M forwards the NMCom commitment from the internal A to
the external receiver.
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From the construction,M perfectly emulates Gb
0(n, z) when it receives a NMCom commitment to 0n,

and it perfectly emulates Gb
1(n, z) when it receives a NMCom commitment to r. Hence, when M

receives a NMCom commitment to 0n, internal A cheats with negligible probability, and when M
receives a NMCom commitment to r, internal A cheats with non-negligible probability. Then, since
the cheating of A is efficiently recognizable given the view of M and the committed value of the
NMCom commitment in the right session,M breaks the non-malleability of NMCom.

Next, we show that {Hb
0(n, z)}n∈N,z∈{0,1}∗ and {Hb

1(n, z)}n∈N,z∈{0,1}∗ are computationally indistinguish-
able. Roughly speaking, this indistinguishability follows from the hiding of NMCom: SinceA cheats
only with negligible probability both in Hb

0(n, z) and in Hb
1(n, z), the CECom commitment in Stage 2

is valid in the accepted right session in both hybrids; hence the committed-value oracle can be effi-
ciently emulated by extracting the committed value of the CECom commitment in Stage 2, and thus
the indistinguishability follows from the hiding property of NMCom. Here, since we want to use the
hiding property of NMCom, the extraction from CECom is performed in such a way that NMCom in
the left session is not rewound. The formal argument is given below.

Assume for contradiction that there exists b ∈ {0, 1} such that {Hb
0(n, z)}n∈N,z∈{0,1}∗ and {Hb

1(n, z)}n∈N,z∈{0,1}∗
are distinguishable. Fix any such b. From Claim 6 and what is shown above, A cheats only with
negligible probability both in Hb

0(n, z) and in Hb
1(n, z). Hence, from the soundness of WIPOK, the

CECom commitment in Stage 2 is invalid in the accepted right session only with negligible proba-
bility. Therefore, for infinitely many n, there exists z ∈ {0, 1}∗ and a polynomial p(·) such that (i)
Hb

0(n, z) and Hb
1(n, z) are distinguishable with advantage 1/p(n) and (ii) the CECom commitment in

Stage 2 of the right session is invalid in the accepted right session with probability at most 1/2p(n)
in both Hb

0(n, z) and Hb
1(n, z). Fix any such n and z. From an average argument, there exists a partial

transcript ρ of Hb
0(n, z) up until the end of Stage 1 of the left session such that under the condition that

a prefix of the transcript is ρ, both of the above (i) and (ii) hold. Let r be the value that is committed
to in Stage 1 of the left session in ρ. (If the committed value is not uniquely determined, r is a random
value.) We consider the following two cases.

Case 1. Stage 2 of the right session has already started in ρ. Since the committed value of a
CECom commitment is determined by the first message, ρ uniquely determined the committed value
ṽ of the CECom commitment in Stage 2 of the right session. Notice that given ρ, r, and ṽ as auxiliary
input, Hb

0(n, z) and Hb
1(n, z) can be executed from ρ in polynomial time. Hence, we can derive a

contradiction by considering an adversary that breaks the hiding property of NMCom by internally
emulating Hb

0(n, z) from ρ and forwarding a NMCom commitment from the external committer (who
commits to either 0n or r) to internally emulatedA.

Case 2. Stage 2 of the right session starts after ρ. We consider the following hybrid experiment.

In Hybrid Fb
i (n, z), Hb

i (n, z) is executed from ρ honestly except for the following.

• In the left session, brute-force extraction of r is not performed, and hardwired r is used.

• In Stage 2 of the right session, the committed value ṽ of the CECom commitment is
extracted by using the extractability of CECom in such a way that NMCom in Stage 3 is
not rewound in the left session.

• At the end of the right session, the extracted value ṽ is returned to A as the committed
value of the right session.

From the definition of ρ, the CECom commitment in Stage 2 of the right session is invalid in the
accepted right session with probability at most 1/2p(n). Since the output of Fb

i (n, z) differs from that
of Hb

i (n, z) only when the correct committed value is not extracted in the accepted right session (which
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occurs with probability at most 1/2p(n) from the above), from our hypothesis, the outputs of Fb
0(n, z)

and Fb
1(n, z) are distinguishable with advantage 1/2p(n). Then, since Fb

0(n, z) and Fb
1(n, z) differ only

in the value committed to in NMCom and since both experiments run in polynomial time, we can
derive a contradiction by considering an adversary that internally emulates Fb

0(n, z) and forwards a
NMCom commitment from the external committer to internally emulatedA. □

In the same way above, we can prove that the outputs of the other neighboring hybrids are also
indistinguishable.

Claim 8. For each b ∈ {0, 1}, the following hold.

• The probability thatA cheats in Hb
2(n, z) is negligible.

• {Hb
1(n, z)}n∈N,z∈{0,1}∗ and {Hb

2(n, z)}n∈N,z∈{0,1}∗ are computationally indistinguishable.

Proof . This claim can be proven in essentially the same way as Claim 7. First, we can show that
A cheats in Hb

2(n, z) only with negligible probability by using the same argument except that we use
the non-malleability w.r.t. 4-round protocols of NMCom instead of the non-malleability w.r.t. itself.
(Recall that Hb

2(n, z) differs from Hb
1(n, z) only in the witness used in WIPOK, which has four rounds.)

Next, we can show the indistinguishability between {Hb
1(n, z)}n∈N,z∈{0,1}∗ and {Hb

2(n, z)}n∈N,z∈{0,1}∗ by
using the same argument except that we use the witness indistinguishability of WIPOK instead of the
hiding property of NMCom. We omit the formal proof. □

Claim 9. For each b ∈ {0, 1}, the following hold.

• The probability thatA cheats in Hb
3(n, z) is negligible.

• {Hb
2(n, z)}n∈N,z∈{0,1}∗ and {Hb

3(n, z)}n∈N,z∈{0,1}∗ are computationally indistinguishable.

Proof . Like Claim 8, this claim can be proven in essentially the same way as Claim 7. We remark
however that since the round complexity of CECom is much more than four, we need to consider a
sequence of intermediate hybrid experiments in which the committed value of ExtCom in CECom
are switched one by one. We omit the formal proof. □

This concludes the proof of one-one CCA security.

B.2 Proof of κ-robustness

We show that there exists a simulatorS such that for any adversaryA that interacts with the committed-
value oracle only in a single session, and for any κ-round ppt ITM B, the following are computation-
ally indistinguishable:

•
{
outputB,AO

[
B(1n, x, y)↔ AO(1n, x, z)

]}
n∈N,x,y,z∈{0,1}n

•
{
outputB,SA

[
B(1n, x, y)↔ SA(1n, x, z)

]}
n∈N,x,y,z∈{0,1}n

This can be shown easily by using the argument we used in the proof of one-one CCA security.
Roughly, we consider a simulator that emulates O forA efficiently by extracting the committed value
of the CECom commitment in Stage 2 using the robust extractability of CECom in such a way that the
interaction with B is not rewound. (Since we set ℓ = max(κ, rnm, 4) + 1, such extraction is possible.)
To show that this simulator indeed emulates the oracle for A, we need to show that the CECom
commitment in Stage 2 is invalid in the accepted right session only with negligible probability. This
can be shown by using the argument in the proof of Claim 6. Hence, by using this simulator, we can
prove the κ-robustness. The formal proof is omitted.
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C Additional Definitions

In this section, we give the definitions that are used in Appendix B.

C.1 Non-malleable Commitment Schemes

Non-malleability w.r.t. Itself

We recall the definition of non-malleable commitment schemes from [LPV08]. For convenience, we
use a slightly different presentation (based on indistinguishability rather than simulation), which is
used in [LP09, LP11a]. Let ⟨C,R⟩ be a tag-based commitment scheme. For any man-in-the-middle
adversaryM, consider the following experiment. On input security parameter n ∈ N and auxiliary
input z ∈ {0, 1}∗, M participates in one left and one right interactions simultaneously. In the left
interaction, M interacts with the committer of ⟨C,R⟩ and receives a commitment to value v using
identity id ∈ {0, 1}n of its choice. In the right interaction,M interacts with the receiver of ⟨C,R⟩ and
gives a commitment using identity ĩd of its choice. Let ṽ be the value thatM commits to on the right.
If the right commitment is invalid or undefined, ṽ is defined to be ⊥. If id = ĩd, value ṽ is also defined
to be ⊥. Let mim(⟨C,R⟩,M, v, z) denote a random variable representing ṽ and the view ofM in the
above experiment.

Definition 5. A commitment scheme ⟨C,R⟩ is non-malleable if for any ppt man-in-the-middle adver-
saryM, the following are computationally indistinguishable.

• {mim(⟨C,R⟩,M, v, z)}n∈N,v∈{0,1}n,v′∈{0,1}n,z∈{0,1}∗

• {mim(⟨C,R⟩,M, v′, z)}n∈N,v∈{0,1}n,v′∈{0,1}n,z∈{0,1}∗

Non-malleability w.r.t. κ-round Protocols

We recall the definition of non-malleability w.r.t. κ-round protocols from [LP09]. In [LP09], this
property is also referred to as κ-robustness. We refer to this property as non-malleability w.r.t. κ-
round protocols to distinguish it from the κ-robustness for CCA secure commitment schemes, which
is also used in this work.

Consider a man-in-the-middle adversaryM that participates in a left interaction—communicating
with a machine B—and a right interaction—acting as a committer by using the commitment scheme
⟨C,R⟩. As in the standard definition of non-malleability, M can choose the identity in the right
interaction. We denote by mim(⟨C,R⟩, B,M, y, z) the random variable consisting of the view ofM(z)
in a man-in-the-middle execution when communicating with B(y) on the left and a honest receiver on
the right, combined with the values thatM(z) commits to on the right. Intuitively, we say that ⟨C,R⟩
is non-malleable w.r.t. B if mim(⟨C,R⟩, B,M, y1, z) and mim(⟨C,R⟩, B,M, y2, z) are indistinguishable
whenever interactions with B(y1) and B(y2) cannot be distinguished.

Definition 6. Let ⟨C,R⟩ be a commitment scheme and B be a ppt ITM. We say that the commitment
scheme ⟨C,R⟩ is non-malleable w.r.t. B if for every two sequences {y1

n}n∈N and {y2
n}n∈N such that for

all ppt ITMA it holds that{
viewA

[
B(1n, y1

n)↔ A(1n, z)
]}

n∈N,z∈{0,1}∗ ≈
{
viewA

[
B(1n, y2

n)↔ A(1n, z)
]}

n∈N,z∈{0,1}∗ ,

it also holds that for every ppt man-in-the-middle adversaryM,{
mim(⟨C,R⟩, B,M, y1

n, z)
}
n∈N,z∈{0,1}∗ ≈

{
mim(⟨C,R⟩, B,M, y2

n, z)
}
n∈N,z∈{0,1}∗ .

We say that ⟨C,R⟩ is non-malleable w.r.t. κ-round protocols if ⟨C,R⟩ is non-malleable w.r.t. any
machine B that interacts with the man-in-the-middle adversary in κ rounds.
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C.2 Extractable Commitment Scheme

We recall the definition of extractable commitment schemes from [PW09]. Roughly speaking, a com-
mitment scheme is extractable if there exists an expected polynomial-time oracle machine (called an
extractor) E such that for any committer C∗ that generates a commitment, EC∗ extracts the committed
value when the commitment is valid. We note that when the commitment is invalid, E can output an
arbitrary garbage value.

Formally, extractable commitment schemes are defined as follows. A commitment scheme ⟨C,R⟩
is extractable if there exists an expected polynomial-time extractor E such that for any ppt committer
C∗, extractor EC∗ outputs a pair (τ, σ) such that

• τ is identically distributed with the view of C∗ interacting with honest receiver R in the commit
phase.

• If τ is accepted, then σ , ⊥ except with negligible probability.

• If σ , ⊥, then it is statistically impossible to decommit τ to any value other than σ.

D On the Robust Extractability of CECom

In this section, we observe that for any constant κ ∈ N, CECom with parameter ℓ = κ + 1 satisfies the
following robust extractability property: For any adversarial committer C∗ that commits to a value
in a single session of CECom and simultaneously participates an arbitrary κ-round protocol Π, the
extractor can extract the committed value from C∗ without rewinding Π. This property is used to
obtain constant-round one-one CCA-secure commitment scheme in Appendix B.

Recall that in CECom, the extractable commitment scheme ExtCom of [PW09] is executed ℓ
times in the following schedule:

1. First, the commit-stage messages of all sessions (of ExtCom) are exchanged in parallel.

2. Subsequently, the challenge-stage message and the reply-stage message of the i-th session
are exchanged for each i ∈ [ℓ] in sequence.

Let us call the pair of the challenge-stage message and the reply-stage message of a ExtCom com-
mitment a slot. Since the committed value of a ExtCom commitment can be extracted by rewinding
the slot and obtaining a new pair of the challenge-stage message and the reply-stage message (see
Figure 2 in Section 3.3), the committed value of a CECom commitment can be extracted by rewinding
any of the ℓ sequential slots.

Consider the following extractor E against any adversarial committer C∗. Externally, E partic-
ipates in a κ-round protocol Π. Internally, E invokes C∗ and forwards all messages of Π from the
external party to internal C∗ and vice verse; additionally, E interacts with C∗ in a session of CECom
as a honest receiver. (Without loss of generality, we assume that after C∗ sends a message of Π [resp.,
a message of CECom], C∗ immediately receives the next message of Π [resp., the next message of
CECom].) When the session of CECom ends, E extracts the committed value of the session by
rewinding C∗ in a slot that does not “interleave” with any message of Π (i.e, a slot such that C∗ does
not exchange any message of Π after receiving the challenge message of the slot until it sends the
reply-message of the slot; notice that such a slot always exists because there are ℓ = κ+ 1 sequential
slots). Specifically, E continues to rewind such a slot until it obtains a new pair of the challenge-
stage message and the reply-stage message. If C∗ requires a message of Π after being rewound, E
cuts off the execution of C∗ immediately and rewinds C∗ again. After obtaining a new pair of the
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challenge-stage message and the reply-stage message, it extracts the committed value by using
them.

From the construction, E perfectly emulates the view of C∗ and does not rewind the external pro-
tocol Π. Also, from the extractability of ExtCom, the extraction fails only with negligible probability.
Hence, it remains to show that E runs in (expected) polynomial time. This can be shown easily by
using the standard “p × 1/p” argument as follows. For any i ∈ [ℓ] and any partial view ρi of C∗ from
which the i-th slot starts, let prefixρi

be the event that in the execution of E, the view of internal C∗

up until the beginning of the i-th slot is ρi. Let Ti be the random variable representing the number
of rewinding in the i-th slot in E, and let pρi be the probability that under the condition that prefixρi

occurs, the i-th slot is accepting and it does not interleave with any message of Π. We then have

E
[
Ti | prefixρi

]
≤ pρi · 1/pρi = 1

for any ρi. Thus, we have

E [Ti] =
∑
ρi

E
[
Ti | prefixρi

]
Pr
[
prefixρi

]
≤
∑
ρi

Pr
[
prefixρi

]
≤ 1 .

Hence, from the linearity of expectation, the expected number of rewinding of C∗ in the execution of
E is at most ℓ, and thus the expected running time of E can be bounded by a polynomial.
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