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Abstract. We revisit the classical problem: given a memoryless source
having a certain amount of Shannon Entropy, how many random bits can
be extracted? This question appears in works studying random number
generators built from physical entropy sources.
Some authors use a heuristic estimate obtained from the Asymptotic
Equipartition Property, which yields roughly n extractable bits, where
n is the total Shannon entropy amount. However the best known pre-
cise form gives only n − O(

√
log(1/ε)n), where ε is the distance of

the extracted bits from uniform. In this paper we show a matching
n−Ω(

√
log(1/ε)n) upper bound. Therefore, the loss of Θ(

√
log(1/ε)n)

bits is necessary. As we show, this theoretical bound is of practical rele-
vance. Namely, applying the imprecise AEP heuristic to a mobile phone
accelerometer one might overestimate extractable entropy even by 100%,
no matter what the extractor is. Thus, the “AEP extracting heuristic”
should not be used without taking the precise error into account.
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1 Introduction

1.1 Entropy

Entropy is a measure of randomness in a probability distribution. Since one
notion is not capable of covering all possible applications of randomness, we
use different entropy definitions depending on a situation. In information theory
most widely used is Shannon entropy, which quantifies the encoding length of
a given distribution. In turn, cryptographers use the more conservative notion
called min-entropy, which quantifies unpredictability. In general, there is a large
gap between these two measures: the min-entropy of an n-bit string might be only
O(1) whereas its Shannon entropy as big as Ω(n). However, they are comparable
when we have a stream of independent samples. We will return to this case when
discussing how to extract from a memoryless Shannon entropy source.

1.2 Randomness Extraction

Some important computer applications, like generating cryptographic keys, cout-
nermeasures against side-channel attacks or gambling, demand randomness of



excellent quality, that is uniform or indistinguishable from uniform bits. Un-
fortunately, in practice we do not have access to pure randomness. Even best
physical sources of randomness produce bits that are slightly biased or slightly
correlated. In order to solve this problem, the concept of randomness extrac-
tion has been developed. In a typical setting one considers weak sources, which
produce only high entropy (rather than uniform) output, and special algorithms
called extractors, which are capable of converting long sequences of biased bits
into shorter but uniform (or very close to) sequences. A device which combines
an entropy source and an extractor is called a true random number generator
[Sun09], in contrast to pseudorandom generators which only expand some initial
randomness using deterministic mathematical formulas. The design of a typical
TRNG is illustrated in Figure 1 below.

Weak Entropy Source Extractor Strongly Random Output

collecting bits postprocessing

Fig. 1: True Random Number Generators. The scheme illustrates the typical
design, where the building blocks are: (a) an entropy source (b) a harvesting
mechanism and (c) a posprocessor (extractor).

Entropy Sources In practice, randomness can be gathered based on a physical
phenomena (like radiation [hot], photons transmission, thermal noise [BP99],
atmospheric noise [ran], jitters) or even from a human-device interaction (like
timing events, keystrokes or mouse movements [pgp], shaking accelerators in
mobile phones [VSH11] and other).

Extractors Extractors are functions which transform inputs of some required
entropy amount into an almost uniform string of known length. To extract from
every high-entropy source (that is, to have an extractor of general purpose), one
needs to allow extractors to use small amount of auxiliary randomness, which can
be “reinvested” as in the case of catalysts in chemistry. Also, one has to accept
some small deviation of the output from being uniform (small enough to be
acceptable for almost every application) and some entropy loss [RTS00]. Good
extractors, simple, provable-secure and widely used in practice, are obtained
from universal hash families [CW79]. We refer the reader to [Sha11] for a survey.

1.3 Entropy Estimating

Shannon Entropy vs Min Entropy. For the purpose of cryptographic appli-
cations, the right notion of entropy is min-entropy rather than Shannon entropy.



In fact, one can extract randomness only if the given source distribution is close
to a distribution of high min-entropy [RW04]. However, in order to avoid overes-
timating security, we need to compute how much entropy we have; here Shannon
entropy is much easier to estimate from samples than min-entropy1. In particu-
lar, this is the case of estimating entropy of data streams in an online manner,
at low memory cost. Such estimators are an active research area and find im-
portant applications in learning, data mining or network anomaly detection.
The problem is that Shannon entropy overestimates crytpographic randomness,
being much bigger than min-entropy.

Almost-Equivalence for Stateless Sources. A stateless source (called also
memoryless) is a source which produces consecutive samples independently.
While this is a restriction, it is often assumed by practitioners working on random
number generators (cf. [LRSV12,BKMS09,BL05]) and argued to be reasonable
for some classes of sources. An important result is obtained from a more general
fact called Asymptotic Equipartition Property (AEP). Namelly, for a stateless
source the Shannon entropy per bit is close to its min-entropy per bit.

A variant of the AEP: The min entropy per bit in a squenceX1, . . . , Xn

of i.id. samples from X converges, when n→∞, to the Shannon entropy
of X. More precisely

H∞(X1, . . . , Xn)

n

in probability−→ H(X) (1)

Thus, the AEP is a bridge connecting the heuristic use of Shannon entropy
as a measure of extractable randomness (practice) and the provable security
(extractors theory). The best known quantitative form appears in [Hol06].

Lemma 1 (Asymptotic Equipartition Property [Hol06]). Let X1, . . . , Xn

be i.i.d. samples from a distribution of Shannon entropy k. Then the distribution

of (X1, . . . , Xn) is ε-close to a distribution of min entropy kn−O
(√

log(1/ε)kn
)

.

We can conclude that, up to an error of o(n), the number of extractable bits
(very close to uniform) is at least as big as the Shannon entropy of (X1, . . . , Xn).
But is it safe to assume (heuristically) that the equality (1) holds in practical
parameter regimes?

1.4 Problem statement

We address the problem of finding upper bounds on the extraction rate.

Question: Suppose that we have a source which produces i.i.d samples
X1, X2, . . . each of Shannon entropy k. How much almost uniform bits
can be extracted from n such samples?

This question is well-motivated as no lower bounds to Lemma 1 are known so
far, and because of the popularity of the AEP herustic (1).

1 One can use, for example, techniques based on Markov chains [Cor99]



1.5 Our Result

The Tight No-Go Result We answer the posted question, showing that the
convergence rate in Equation (1) given in Lemma 1 is optimal.

Theorem 1 (An Upper Bound on Bits Extractable from Shannon Sources).
In the above setting, we can extract no more that

N = kn−Θ(
√

log(1/ε)kn) (2)

bits which are ε-close (in the variation distance) to uniform. This matches the
lower bound in [Hol06] (the constant under Θ(·) depends on the source X).

Corollary 1 (A Signifficant Entropy Loss in the AEP Heuristic Es-
timate). In the above setting, the gap between the Shannon entropy and the
number of extractable bits ε-close to uniform equals at least Θ(

√
log(1/ε)kn). In

particular, for the recommended security level (ε = 2−80) we obtain the loss of
kn−N ≈

√
80kn bits, no matter what an extractor we use.

A Practical Example - How Not To Overestimate Security Imagine a
mobile phone where the accelerometer is being used as an entropy source. Such a
source was studied in [LPR11] and the Shannon entropy rate was estimated to be
roughly 0.125 per bit. Since the recommended security level for almost random
bits is ε = 2−80. According to the heuristic (1) we need roughly 128/0.125 = 1024
samples to extract a 128-bit key. However taking into account the true error in
our Theorem 1 we see that we need at least n ≈ 2214 bits!

1.6 Organization

In Section 2 we give some basic facts and auxiliary technical results that will be
used later. The proof of the main result, that is Theorem 1, is given in Section
Section 3. Finally, Section 4 concludes the work.

2 Preliminaries

2.1 Basic Definitions

The most popular way of measuring how two distributions are close is the sta-
tistical distance.

Definition 1 (Statistical Distance). The statistical (or total variation) dis-
tance of two distributions X,Y is defined as

SD (X;Y ) =
∑
x

|Pr[X = x]− Pr[Y = x]| (3)

We also say that X and Y are ε-close.



Below we recall the definition of Shannon entropy and min entropy. The loga-
rithms are taken at base 2.

Definition 2 (Shannon Entropy). The Shannon Entropy of a distribution X
equals H(X) = −

∑
x Pr[X = x] log Pr[X = x].

Definition 3 (Min Entropy). The min entropy of a distribution X equals
H∞(X) = −maxx log Pr[X = x].

Definition 4 (Extractable Entropy, [RW04]). We say that X has k ex-
tractable bits within distance ε, denoted Hε

ext(X) > k, if for some randomize
function Ext we have SD (Ext(X,S);Uk, S) 6 ε, where Uk is a uniform k-bit
string and S is an independent uniform string.

2.2 Technical Facts

Our proof uses the following characterization of “extractable” distributions.

Theorem 2 (An Upper Bound on Extractable Entropy, [RW04]). If
Hε

ext(X) > k then X is ε-close to Y such that H∞(Y ) > k.

The second important fact we use is the sharp bound on binomial tails.

Theorem 3 (Tight Binomial Tails [McK]). Let B(n, p) be a sum of inde-
pendent Bernoulli trials with success probability p. Then for γ 6 3

4q we have

Pr [B(n, p) > pn+ γn] = Q

(√
nγ2

pq

)
· ψ (p, q, n, γ) (4)

with the error term satisfies

ψ (p, q, n, γ) = exp

(
nγ2

2pq
− nKL (p+ γ ‖ p) +

1

2
log

(
p+ γ

p
· q

q − γ

)
+Op,q

(
n−

1
2

))
(5)

where KL (a ‖ b) = a log(a/b) + (1−a) log((1−a)/(1− b) is the Kullback-Leibler
divergence, and Q is the complement of the cumulative distribution function of
the standard normal distribution.

3 Proof of Theorem 1

3.1 Characterizing Extractable Entropy

We state the following fact with an explanaition in Figure 2.

Lemma 2 (Lower bound on the extractable entropy). Let X be a distri-
bution. Then for every distribution Y which is ε-close to X, twe have H∞(Y ) 6
− log t where t satisfies ∑

x

max(PX(x)− t, 0) = ε. (6)



t =?
ε

1 − ε

ε

y = PDF(x)

Fig. 2: The Entropy Smoothing Problem. For a given probability density func-
tion, we want to cut a total mass of up to ε above a possibly highest threshold
(in dotted red) and rearrange it (in green), to keep the upper bound smallest
possible.

The proof follows easily by observation that the optimal mass rearrangement
(which maximizes H∞(Y )) is to decrease probability mass at biggest points.
Without losing generality, we assume from now that X ∈ {0, 1} where Pr[X =
1] = p, q = 1− p. Define Xn = (X1, . . . , Xn). For any x ∈ {0, 1}n we have

Pr[Xn = x] = p‖x‖qn−‖x‖. (7)

According to the last lemma and Theorem 2, we have

Hε
ext (Xn) 6 − log t (8)

where ∑
x

max (PXn(x)− t, 0) = ε. (9)

From now we assume that

t = ppn+γnqqn−γn. (10)

3.2 Determining the Threshold t

The next key observation is that t is actually small and can be ommitted. That
is, we can simply cut the (1− ε)-quantile. This is stated in the lemma below.

Lemma 3 (Replacing the threshold by the quantile). Let x0 ∈ {0, 1}n be
a point such that ‖x0‖ = pn+ γn. Then we have∑

x: ‖x‖>‖x0‖

max (PXn(x)−PXn(x0)) >
1

2

∑
x: ‖x‖>‖x0‖

PXn(x) (11)



To prove the lemma, note that from Theorem 3 it follows that setting

γ′ = γ + n−1 log

(
p

q

)
(12)

we obtain ∑
j>pn+γ′n

(
n

j

)
>

3

4
·
∑

j>pn+γn

(
n

j

)
(13)

when γ is sufficiently small comparing to p and q (formally this is justified by
calculating the derivative with respect to γ and noticing that it is bigger by at
most a factor of 1 + γ√

npq ). But we also have

pjqn−j > 2 · p(p+γ)nq(q−γ)n for j > γ′n (14)

Therefore,

∑
j>pn+γn

(
n

j

)
pjqn−j >

∑
j>pn+γ′n

(
n

j

)
pjqn−j

> 2 · p(p+γ)nq(q−γ)n ·
∑

j>pn+γ′n

(
n

j

)

> 2 · 3

4
· p(p+γ)nq(q−γ)n ·

∑
j>pn+γn

(
n

j

)
(15)

which finishes the proof.

3.3 Putting this all together

Now, by combining Lemma 2, Lemma 3 and the estimateQ(x) ≈ x−1 exp(−x2/2)
for x� 0 we obtain

ε > exp

(
−nKL (p+ γ ‖ p)− log

(
nγ2

2pq

)
+Op,q(1)

)
(16)

which, because of the Taylor expansion KL (p+ γ ‖ p) = γ2

2pq + Op,q(γ
3), gives

us

γ > Ω

(√
log(1/ε)

pqn

)
(17)

Setting γ = c ·
√

log(1/ε)
pqn , with sufficiently big c, we obtain the claimed result.



4 Conclusion

We show an upper bound on the amount of random bits that can be extracted
from a Shannon entropy source. Even in the most favorable case, that is for
independent bits, the gap between the Shannon entropy and the amount of
randomness that can be extracted is significant. In practical settings the Shannon
entropy might be even 2 times bigger than the extractable entropy.
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