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Abstract. Pedersen commitments are important cryptographic primi-
tives. They allow a prover to commit to a certain value without revealing
any information about it and without the prover being able to change its
mind later on. Since the first property holds unconditionally this is an
essential primitive for many schemes providing long-term confidential-
ity. However, the second property only holds computationally. Hence,
in the long run bindingness is lost, making the primitive improper for
long-lived systems. Thus in this paper, we describe a protocol that, in a
sense, prolongs the bindingness of a given Pedersen commitment. More
precisely, we demonstrate how to prove in perfect zero-knowledge that
a new Pedersen commitment - generated with a larger security param-
eter - and a corresponding old commitment both commit to the same
value. We stress that this is a non-trivial procedure. Up until now the
only known perfect zero-knowledge proof techniques for proving mes-
sage equivalence of two commitments work when both commitments use
isomorphic message spaces. However, as we will show in this work, to
prolong the security of Pedersen commitments we cannot tolerate this
restriction. Our prolonging technique works for non-isomorphic message
spaces, is efficient, can be repeated an arbitrary number of times, main-
tains unconditional confidentiality, and allows to preserve the format of
the Pedersen commitments. This makes the construction presented here
an important contribution to long-lived systems. Finally, we illustrate
this by discussing how commitments with prolongable bindingness can
be used to allow for archiving solutions that provide not only integrity
but also confidentiality in the long-term.

Keywords: unconditionally hiding commitments, long-term security, perfect
zero-knowledge proofs, Pedersen commitments

1 Introduction

Problem statement In cryptography, a commitment scheme allows a prover
to commit to a certain value while keeping it hidden from the public (confi-
dentiality) and without being able to change its mind later on (bindingness). A
well-known and widely used commitment scheme is the one proposed by Peder-
sen [39].



One practical application of commitment schemes (among others) is the stor-
age of digital documents. In future IT environments digital archives are needed
that efficiently and securely preserve electronic documents for a long period of
time. Examples include scientific data, medical records, and land registries. Hos-
pitals in the United Kingdom [15] and land registries in Estonia [10], for instance,
have to generate and store an ever-growing amount of data. Data archived must
attain several protection goals to remain useful. It should, for instance, be possi-
ble to prove that a document existed at a certain point in time, proof of existence,
and that it was not changed since, integrity. In addition, in many scenarios, e.g.
medical records, the data stored contains private information, hence the storage
solution must provide some form of confidentiality.

Assume, for instance, the following setting. The owner of a sensitive document
wants to store it such that long-term confidentiality is preserved. The only known
approach to do this is to use proactive secret sharing, see e.g. [29, 26]. Using this
technique the document is split into shares, that are distributed to different
shareholders, and are renewed from time to time. To ensure that the document
cannot be modified by the shareholders during the share renewal process the
owner also sends a Pedersen commitment to the document to each shareholder.
Assume now the owner wants to generate a proof of existence and integrity
of that document, and wishes to do so without revealing any information on
its contents to a notary or the public. In this case, the owner might simply
get the Pedersen commitment timestamped, notarially attested, and published.
Since the commitment scheme is binding the document’s owner can prove to
a verifier that the attestation belongs to the document. Furthermore, since the
commitment is hiding only the verifier gets to see the document.

However, if one is interested in the long-term archiving of sensitive docu-
ments, it is important that the integrity and confidentiality properties of the
above scheme hold unconditionally. Computationally secure cryptography (such
as public-key encryption) is not suitable in this case, as it only guarantees secu-
rity for a certain period of time, given a fixed set of security parameters. Fortu-
nately, in the example above Pedersen commitments already solve part of this
issue, since they happen to be unconditionally hiding: confidentiality is assured
no matter how “weak” the security parameters become in the future. Unfortu-
nately, they are only computationally binding. It is well-known that commitment
schemes cannot enjoy both properties simultaneously. Note that generating an
attestation to a commitment that is only computationally binding leads to a
proof of existence and integrity that is only valid for a certain period of time.
As soon as the commitment can be opened to another value the existence and
integrity of the document can no longer be proven by the owner. In addition, the
computational bindingness of Pedersen commitments also limits the runtime of
the proactive secret sharing protocol. Since this data is crucial for verifiable share
renewal and share reconstruction, security can only be provided as long as the
computational bindingness of the commitment scheme holds. (A more detailed
description of the problem statement with respect to proactive secret sharing
and long-term archiving will be provided in Section 5). One might argue that



such primitives can be instantiated using large security parameters. However,
the period of time this instantiation would be secure can only be estimated and
it can not be excluded that advances in hardware or improved attacks allow to
break the security earlier than expected. Thus, such a limited and approximate
lifetime is not an option when dealing with long-lived systems. It follows that
if the initially chosen parameters’ security is close to fading out, a new com-
mitment scheme with renewed parameters needs to be generated. This must be
done without 1) giving the owner of the document the chance to change the
data committed to, or 2) revealing it to unauthorized parties. Note that to en-
sure unconditional confidentiality the commitment scheme used must provide
this property right from the beginning. If this is not the case an attacker may
capture commitments and store them until the underlying computational prob-
lem can be solved for the parameters chosen. Thus the only approach is to renew
the binding property, which is lost over time, all the while preserving the hiding
property, which always holds.

In this paper, we demonstrate a method to achieve this for Pedersen commit-
ments.

More precisely, let p1 and q1 be large primes such that q1|p1 − 1, and g1
and h1 be random generators of the unique qth1 -order subgroup G1 of Z∗p1 . Using
the Pedersen commitment scheme, a commitment to a message m ∈ Zq1 is
generated by computing c1 = Com1(m, r1) = gm1 h

r1
1 ∈ G1 ⊂ Z∗p1 , where r1 ∈

Zq1 is a random value. To prove that c1 is a commitment to m the prover
only has to open the commitment by revealing m and r1. This commitment is
indeed only computationally binding because the prover’s inability to find two
values m′ and r′, with m′ 6= m, and such that Com1(m′, r′) = c1, rests on
its inability to solve the discrete logarithm problem in G1. The challenge is to
devise a method by which, given a new set of parameters (p2, q2, g2, h2) (with
the same cryptographic roles as p1, q1, g1, and h1), the prover can “transfer” the
commitment c1 ∈ Z∗p1 to m ∈ Zq1 to a commitment c2 ∈ Z∗p2 to m ∈ Zq1 ⊂ Zq2 ,
in a way that is both secure for the prover and potential verifiers. Security for the
prover means that the unconditional confidentiality is maintained even taking
into account leakage of the data generated by the transfer procedure. Otherwise,
using unconditionally hiding commitments to begin with is meaningless. Security
for the verifiers means that the owner of the document cannot use the transfer
to change the document. Later, once the old security parameters become stale,
the new parameters will prevent this from occurring. Indeed, the fact that the
old commitment may then be opened by the user to an arbitrary value is no
longer important, since only the new commitment is to be considered valid.
This effectively “refreshes” the computational bindingness of the overall scheme,
without damaging its unconditional confidentiality.

Some näıve approaches If the prover simply generates a new commitment
c2 to m by computing c2 = Com2(m, r2) = gm2 h

r2
2 ∈ Z∗p2 , a potential verifier

has no way of knowing whether the underlying message m is the same as that
committed to in c1. On the other end of the spectrum, the prover cannot simply



open the old and new commitments to the public at the time when the new
commitment is generated to provide evidence; this clearly violates confidentiality.
Note that when generating c2 the security of c1 is about to fade out. Thus, the
prover can use c2 to commit to another message m′ and at a later point in
time, when it is asked to prove integrity, simply opens both commitments c2
and c1 to message m′. This is possible since c1 is unconditionally hiding and
can therefore be a commitment to any message. It follows that solely generating
new commitments and storing all commitments for evidence does not guarantee
that the message initially committed to cannot be changed. Thus, these trivially
insecure approaches can be discarded and a proof is needed showing that c2 has
been generated correctly while c1 was still secure.

Another attempt exploits existing methods by which the prover can demon-
strate to the public in perfect zero-knowledge that it did not change message
m from one commitment to the other. These are known as proofs of message
equivalence (see e.g. [38]). However, these methods have the restriction that the
message space of both commitments must be isomorphic, and to the best of
our knowledge, they are the only ones that have been discovered so far. Thus,
one could try generating a new commitment with the same message space but
just a larger randomization space. Unfortunately, this approach fails as well be-
cause the message space stays small, allowing computational bindingness to be
violated over time. Furthermore, the commitment is no longer a standard Peder-
sen commitment because the message and randomization spaces defined by the
generators are no longer of equal size.

This shows that the problem is not a trivial one.

Our contribution In this paper we show how the message and randomiza-
tion space of a commitment can be enlarged, such that the correct genera-
tion of the new commitment can be proven in perfect zero-knowledge. To do
this, we essentially exhibit what can be viewed as a perfect zero-knowledge
proof of message equivalence for Pedersen commitments with non-isomorphic
message spaces. On a high-level, we propose the following approach. Given an
old commitment c1 = Com1(m, r1) = gm1 h

r1
1 ∈ Z∗p1 and a new commitment

c2 = Com2(m, r2) = gm2 h
r2
2 ∈ Z∗p2 we generate a third group Z∗p′ that con-

tains one subgroup G′1 that is isomorphic to G1 and one subgroup G′2 that
is isomorphic to G2. Using this third group as a connection between the old
scheme and the new scheme, we can show that both commitments commit to
the same message using a combination of perfect zero-knowledge range proofs
and message-space-isomorphic equivalence proofs. To show that this is an im-
portant contribution to long-lived systems we discuss how our construction can
be used to improve long-term archiving schemes. More precisely, we discuss how
commitments with prolongable bindingness can be used to generate a proof of
existence and integrity for secretly shared data and thus allow to build long-term
archiving systems providing long-term confidentiality.



Remarks and organization Note that our methods rely - as the Pedersen
commitment - on the hardness of the discrete logarithm problem. We are aware
that in some decades it might be possible to build quantum computers that are
capable of computing certain discrete logarithms. Prolonging the security of a
given Pedersen commitment does not protect against this threat. Nevertheless,
since Pedersen commitments are still widely used we will first provide a solution
for this primitive and plan to consider developing corresponding solutions for
post-quantum secure commitment schemes for future work.

The main application scenario of our contribution is that of long-term archiv-
ing, but it may very be useful in other settings as well. Furthermore, this per-
fect zero-knowledge proof of message equivalence for commitments with non-
isomorphic message statements appears to be the first of its kind, and may be
of independent interest.

The remainder of this paper is structured as follows: After an overview of
the preliminaries in Section 2 we provide a detailed description of the protocol
allowing to prolong the security of Pedersen commitments in Section 3. In Section
4 we point out some nice features of our protocol, and prove that it provides
certain properties such as correctness and unconditional confidentiality. Finally,
in Section 5 we discuss how commitments with prolongable bindingness can be
used to provide integrity and confidentiality in long-term archiving solutions,
and we conclude in Section 6.

2 Preliminaries

In the remainder of the paper, for any integer n ≥ 1 we shall use Zn or [0, n− 1]
to designate the set {0, ..., n− 1} ⊂ N.

2.1 Pedersen commitments

The Pedersen commitment scheme [39] works as follows: Let κ be the security
parameter. Then, the algorithm GenCom(1κ) sets up the scheme by generating a
set of common parameters. More precisely, it chooses two primes p and q where
p and q are sufficiently large and q divides p − 1. Then it randomly selects two
generators g and h of the qth-order subgroup G of Z∗p.

To commit to a secret m ∈ Zq the committer chooses a random value r ∈ Zq
- the so called decommitment value - and computes commitment c ∈ Z∗p by
c = Com(m, r) = gmhr mod p. Note that under the assumption that logg h is
unknown to the committer, it needs to have knowledge of the opening values m
and r to open commitment c.

The algorithm Unv(c,m, r) takes as input a commitment c, message m ∈ Zq,
and decommitment value r ∈ Zq, and returns m, if c is a valid commitment to m,
with decommitment value r, i.e. c = Com(m, r), and ⊥ if not. The commitment
scheme is:



Computationally Binding Given a commitment c = Com(m, r), for any
probabilistic polynomial-time adversary P the probability to find a sec-
ond pair of opening values (m′, r′) with m 6= m′ such that Com(m, r) =
Com(m′, r′) is negligible in the security parameter κ.

Unconditionally Hiding For any pair m,m′ ∈ Zq the distribution of the ran-
domized values Com(m, r) and Com(m′, r′) is identical when r, r′ ∈ Zq are
chosen uniformly at random.

Additively Homomorphic For all m,m′ ∈ Zq and r, r′ ∈ Zq a multiplica-
tion of two commitments leads to an addition of their opening values, i.a.
Com(m, r) · Com(m′r′) = Com(m+m′, r + r′).

The first property is the one we are seeking to prolong. The second is vital in
our setting; indeed, it would not make sense to try prolonging computational
hiding commitments since ancient copies of these commitments may have been
compromised anyway. As for the third, we shall see that it comes in handy for
our construction, and is anyway heavily exploited in the zero-knowledge proofs
we employ.

2.2 Perfect zero-knowledge proofs

In this section we provide an overview of the zero-knowledge proofs3 needed
within our protocol. These are all honest-verifier and public-coin zero-knowledge
proofs of knowledge, terms we informally define below. To ensure that the veri-
fier is honest these protocols should be performed publicly, e.g. using a bulletin
board, where the random values and coins are taken from a random beacon. Fur-
thermore, we will describe the proofs as interactive protocols between a prover
and a verifier. Note that they can easily be transferred (in the random ora-
cle model) to non-interactive proofs using the Fiat-Shamir heuristic [21]. There
might be proofs that are better suited to our construction than those described
here. Nevertheless, in this paper we will concentrate on the security of Pedersen
commitments and consider to find more efficient proofs for future work.

Honest-verifier zero-knowledge Proofs of knowledge We first informally
recall the main properties of honest-verifier, (public coin,) zero-knowledge proofs
of knowledge (abbreviated HVZKP). An HVZKP is an interactive proof system
between a polynomial-time prover P and a verifier V . The prover wishes to
convince the verifier V of the truth of the statement that it knows a certain
secret possessing a certain property. In our case, the common input to both P
and V will be mostly one or more commitments, and the secret input to P will
be openings of these commitments. At the end of the interaction between P and
V , V outputs a bit, 1 if the proof is accepted and 0 if not.

HVZKPs have the following properties.

3 Note that since Pedersen commitments are only computationally binding the proofs
are only computationally sound. Thus, to be precise, we use zero-knowledge argu-
ments instead of proofs. However, since in the literature the authors mostly refer to
proofs we will continue using this term.



1. Completeness: If both P and V are behaving honestly and P indeed knows
the secret, V outputs 1. This is a basic correctness requirement.

2. Soundness: If some prover P convinces V with non-negligible probability,
there exists a polynomial-time extractor χ that runs P and V as subroutines
and outputs P ’s knowledge. This requirement ensures that if the proof is
convincing to V , P really “knows” the underlying secret.

3. Perfect Honest-Verifier Zero-Knowledge: Let tr be the random vari-
able consisting of the transcript of exchanged messages produced by P and V .
We require that there exists a polynomial-time machine that, on the common
input to P and V , is able to produce a transcript identically distributed to tr.
This guarantees that the interaction transcript will information-theoretically
leak no information on the secret to the honest verifier. Note that this is true
even if the verifier has unbounded computational power.

That the interaction is public coin simply means that the verifier’s random-
ness consists of uniformly distributed public challenges to the prover. Precise
formal definitions can be found in, e.g. [22, 3].

Proof of knowledge Here, a prover P simply convinces a verifier V that it has
knowledge of the opening values m and r of a public commitment c = Com(m, r).
This can be done similarly to Schnorr’s proof of knowledge [41] by performing
the following steps:

1. P picks a random message m′ ∈ Zq, and decommitment value r′ ∈ Zq and
sends commitment c′ = Com(m′, r′) to V

2. V sends a random challenge e ∈ Zq to P
3. P sends u = m′ + em mod q and v = r′ + er mod q to V
4. V accepts if Com(u, v) = c′ce.

The security properties of this protocol are similar to those of Schnorr’s protocol.
One might argue that if the prover does not know the correct opening values,
it might simply guess the correct answer. However, if the verifier is truly choos-
ing its challenge values at random from Zq, then the probability of extraction is
only 1

q . If q is too small the success probability can be further reduced by repeat-
ing the protocol several times. In addition, this protocol hides m information-
theoretically: even given c′, e, u, and v, an attacker with infinite computation
power is unable to learn anything about m. For any m∗ there exists a message
m′′, such that u = m′ + em = m′′ + em∗, i.e. m′′ = m+ e(m−m∗) mod q.

Range proof In a range proof, a prover P convinces a verifier V that it has
committed to a message m within a certain range, say [0, H]. There are mainly
three families of zero-knowledge range proofs: using some mathematical prop-
erties of positive integers [6, 36, 24, 49], using the decomposition of the secret in
a (multi)-base [4, 14, 42, 37], and using public signatures on the elements within
the range [8, 11, 9].



The first family of range proofs is not suitable for our protocol since for these
approaches the underlying group has to be of unknown order. The second family
uses the idea to decompose the secretm in its binary representationm0, . . . ,ml−1
such that

∑l−1
i=0 2imi = m for mi ∈ {0, 1} and l = log2(H + 1). Assume P knows

the opening values m and r of a public commitment c = Com(m, r) and wants
to convince V that m ∈ [0, 2l − 1] for l = log2(H + 1). It performs the following
steps:

1. For all i ∈ [0, l − 1] prover P picks a random value ri ∈ Zq, commits to
mi by computing ci = Com(mi, ri) = gmihri and sends the commitments
c0, . . . , cl−1 to V

2. V computes c∗ =
∏l−1
i=0 c

2i

i = Com(m,
∏l−1
i=0 2iri)

3. P convinces V in a zero-knowledge that
a) for each i ∈ [0, l−1] either ci = hri or ci/g = hri (showing thatmi ∈ {0, 1})

and that
b) c∗ is a commitment to m

If there is no l such that 2l−1 = H then two range proofs have to be executed
to show that both m and H−m belong to the interval [0, 2blog2Hc+1−1]. Lipmaa,
Asokan, and Niemi [37] improved this result by showing that for some well chosen

coefficients Gi, there exists a set of mi ∈ {0, 1} such that m =
∑blog2Hc
i=0 Gimi.

This allows to prove that m ∈ [0, H] using only one range proof even for an
arbitrary H. Note that it must be ensured that in Step 3.a) and Step 3.b) of
the range proof shown above no information about m is revealed (not even for
a computationally unbounded attacker). This can be achieved, for instance, by
using a perfect witness indistinguishable proof (e.g. [13, 4]) to show that mi ∈
{0, 1} and a perfect zero-knowledge proof of message equality (see Paragraph 2.2)
to show that c∗ commits to m. Depending on the application it might also be
sufficient to require the proofs to be only statistically hiding instead of perfectly
hiding. In this case the statistical zero-knowledge proofs presented in [37] can be
used in both steps 3.a) and 3.b).

Another interesting approach using a similar idea is the (perfect) “zero-
knowledge proof that a committed value is in Z2k” proposed by Moran and Naor
[38]. The basic idea behind this protocol is that P convinces V that the binary
representation of m has only k bits using a proof of valid shuffle and message
equality. They combine the standard cut-and-choose technique together with
perfectly hiding commitments to gain a protocol ensuring perfect hidingness for
the value committed to.

The third family of range proofs works also in the non-binary case. The basic
idea is that the verifier first publishes signatures on all integers in the range
[0, H]. Following this, P provides a proof of knowledge on the signatures of
the elements committed to. This proves that it knows the representation of the
secret with respect to the basis chosen. However, all publications embracing this
approach concentrate on computational zero-knowledge range proofs, making
them unsuitable for our purpose. Furthermore, if a signed value must be provided
on all integers in the range [0, H], thenH cannot be too large; this is incompatible
with our setting as well.



Proof of message equivalence In a proof of message equivalence, a prover
P convinces a verifier V that two commitments c1 = Com1(m, r1) and c2 =
Com2(m, r2) generated using the schemes Com1 and Com2 can be decommitted
to the same message m. As long as the message spaces of both commitment
schemes are isomorphic this can be done using the standard cut-and-choose
technique as proposed by [12, 38]. We denote Zq1 and Zq2 the randomness spaces
of Com1 and Com2 respectively, and, for simplicity, we assume that the schemes
share message space Zq. The following steps are performed:

1. P picks a random message m′ ∈ Zq, and two decommitment values r′1 ∈ Zq1
and r′2 ∈ Zq2 and sends the two commitments c′1 = Com1(m + m′, r1 + r′1)
and c′2 = Com2(m+m′, r2 + r′2) to V

2. V sends a random bit b ∈ {0, 1} to P
3. if b=0
P sends m′,r′1, and r′2 to V
V accepts if c′1 = c1Com1(m′, r′1) and c′2 = c2Com2(m′, r′2)
else
P sends m+m′,r1 + r′1, and r2 + r′2 to V
V accepts if c′1 = Com1(m+m′, r1 + r′1) and c′2 = Com2(m+m′, r2 + r′2)

If the commitments c1 and c2 commit to distinct messages, then this will be
detected with probability 1

2 . Thus, this protocol must be repeated several times
until the probability of not being detected is below a certain threshold value.

3 Prolonging the security of Pedersen commitments

We now present our protocol for prolonging the computational binding prop-
erty of Pedersen commitments. Essentially, the protocol is an honest-verifier,
public-coin, zero-knowledge proof of message equivalence between two Pedersen
commitments with non-isomorphic message spaces. Thus, we describe it in terms
of a prover P and a verifier V .

The prover P is the owner of the document, and the entity that creates
commitment(s) to it. In our context, the verifier’s role is to aid P in passing its
message(s) on from one set of parameters to the next. We assume that parameter
generation is not an issue, i.e. P and V receive both the old and new sets of
parameters, and trust their validity. (A parameter-generating authority could
be used for this, or perhaps P and V can run an interactive protocol to jointly
agree on this data.) On one hand, V ’s role is to make sure that a malicious
P does not change its document during the procedure. On the other hand, an
honest P wants the guarantee that during the procedure, no information on
the document is leaked to an honest V . We will assume for now that V is not
fully malicious, since the zero-knowledge proofs we employ are honest-verifier.
However, in some scenarios it might be of interest to publish all data needed for
verification on a secure and online-accessible bulletin board, so as to also allow
any third party to check correctness. In this case, under the assumption that
the bulletin board is secure and that all challenges come from a trusted random



beacon, a cheating P will be detected with overwhelming probability even in
the presence of a fully malicious V . Thus V ’s role in this scenario is mainly to
ensure robustness by checking that the proof published on the bulletin board is
indeed valid. Furthermore, this also protects an honest P against a cheating V .
Since the correctness of the proofs published by P can by publicly verified by
any third party, a cheating V cannot reject a valid proof without being detected.

Assume P generated and published commitment c1 = Com1(m, r1) =
g1
mhr11 mod p1 and still has knowledge of the opening values m and r1. Fur-

thermore, we assume that the old parameters are still secure. Now, P wants to
use V to prolong the security of its commitment to m such that it is able to
prove in perfect zero-knowledge that m did not change. We denote κ1 the old
security parameter.

1 Selecting new parameters Let κ2 be the new security parameter.

a) Two new primes p2 and q2 are chosen, where p2 and q2 are sufficiently large
and q2 divides p2 − 1.

b) Two generators g2 and h2 of subgroup G2 of Z∗p2 are randomly selected.
c) A prime p′ such that q1q2 divides p′ − 1 is determined.
d) The new cyclic group Z∗p′ has three unique subgroups G′1, G′2, and G′12

of orders q1, q2, and q1q2 respectively. For each group a new generator is
randomly selected, i.e. < g′1 >= G′1, < g′2 >= G′2, and < h′ >= G′12.

e) The full set of new parameters is given to P and V .

2 Generating the new commitment P selects a new random value r2 and
generates a new commitment c2 = Com2(m, r2) = gm2 h

r2
2 mod p2 to message m.

3 Proving message equality What follows is the technical core of the protocol,
the zero-knowledge proof itself.

• Proof parameters: Params = (p1, q1, g1, h1, p2, q2, g2, h2, p
′, g′1, g

′
2, h
′)

• Common input to P and V : (Params, c1, c2)

• Private input to P : (m, r1, r2)

• Statement to prove: P knows (m, r1, r2) such that c1 = Com1(m, r1)
and c2 = Com2(m, r2)

• Protocol:

a) P generates two new commitments to m in group Z∗p′ : one that uses the

message space Zq1 (like c1) and is computed as c′1 = Com′1(m, r′1) =

g′1
m
h′
r′1 mod p′, and one that uses the message space Zq2 (like c2) and is

computed as c′2 = Com′2(m, r′2) = g′2
m
h′
r′2 mod p′. Here, r′1 and r′2 are se-

lected randomly from Zq1q2 .



b) P proves to V that it can open the commitments c1 and c′1 to the same
message.

c) Similarly, P proves to V that it can open the commitments c2 and c′2 to the
same message.

d) V multiplies the commitments c′1 and c′2, i.e. computes c′3 = c′1c
′
2 =

g′1
m
h′
r′1g′2

m
h′
r′2 = (g′1g

′
2)mh′

(r′1+r
′
2) mod p′.

e) P proves to V that it can open c′3 to a message in Zq1 .

The proofs that 1) two commitments can be opened to one message and 2) a
commitment can be opened to a value in Zq are done using honest-verifier, perfect
zero-knowledge proof protocols (see for instance “proof of message equality” and
“range proof” presented in Paragraph 2.2).

4 Properties and proofs

4.1 Convenience

We emphasize here two important practical properties that this scheme enjoys.
First, we find remarkable that the degree of freedom in choosing the new

parameters is essentially optimal. Indeed, aside from the fact that q1, q2, and p′

have to be determined in such a way that q1q2 divides p′ − 1, there are abso-
lutely no constraints on the parameters for the process to be carried out. This
leaves protocol designers the ability to select parameters with other interesting
properties at their leisure. It also avoids potentially having additional algebraic
structure with which to attack the protocol.

Secondly, it is worth noting that the commitment scheme itself is not changed.
This implies directly that the construct presented here can be easily integrated
into other protocols using this scheme. (Some of our previous attempts at solving
this problem yielded schemes that would have altered the Pedersen protocol.)

4.2 An overview of how the transfer procedure works

We call the transfer procedure the steps taken in the “proving message equality”
paragraph above. We briefly go through how these all come together. Prover P ’s
inputs to the transfer procedure are the previously generated commitments c1
and c2.

In Step 3a), two commitments are created in the transfer group Z∗p′ : c′1 ∈ G′1
and c′2 ∈ G′2. In Step 3b), P proves on one hand that it can open c1 and c′1 to
some message m1 ∈ Zq1 , and on the other hand that it can open c2 and c′2 to
some message m2 ∈ Zq2 . Next, P demonstrates in steps 3d) and 3e) that it can
open the product c′1c

′
2 to some message n ∈ Zq1 . Now, simply using the openings

of c′1 to m1, c′2 to m2, and c′1c
′
2 to n ∈ Zq1 , P can form a specific algebraic

equation, and it turns out that P can have m1 6= m2 in this case if and only if it
can compute certain discrete logarithms. Thus, a computationally limited P can
only pass this check if m1 = m2, provided we prohibit it from trying to cheat by
using values outside of Zq1 . This is the role of the range proof on the product.



Finally, V still needs to be convinced that the m1 and m2 values considered
above cannot be different from those used to compute the inputs c1 and c2. But
this is ensured by the computational bindingness of Com1 and Com2.

It will be apparent that several of the discrete logarithm puzzles used in this
construction depend solely on security parameter κ1, but this is not a problem.
Indeed, the transfer procedure’s data only needs to be secured by κ1 during the
procedure itself, which should happen while κ1 is still large enough. After the
message has been passed on to the new set of parameters, only κ2’s size remains
important in the long term.

4.3 Security

In this section, we provide a proof sketch that the protocol above achieves its goal
of prolonging the security of the binding property of a Pedersen commitment,
when the verifier honestly executes the protocol. It is clear that to achieve this,
we only need to prove that the core of our construction is in fact an HVZKP that
two Pedersen commitments with non-isomorphic message spaces can be opened
to the same message. Indeed, the correctness of our protocol follows from the
underlying proof being complete, the fact that binding is prolonged will follow
from soundness, and information-theoretic confidentiality will follow from the
honest-verifier zero-knowledge property.

Correctness Completeness of the protocol follows directly from the complete-
ness of the standard message equivalence and range proofs. Therefore, the con-
struction is correct.

Prolonged binding The aim of this section is to prove the following result:

Theorem 1 The protocol described in Section 3 proves that with overwhelm-
ing probability, P can open c1 = Com1(m, r1) = gm1 h

r1
1 mod p1 and c2 =

Com2(m, r2) = gm2 h
r2
2 mod p2 to one unique message in Zq1 .

Proof of the theorem: We begin by establishing that our interactive proof
described in paragraph 3 is sound. For this, we first need a technical lemma.

Lemma 1 A probabilistic polynomial-time P cannot find triples (m,m∗, n) ∈
Zq1 × Zq2 × Zq1 with m 6= m∗ and (r′1, r

′
2, r
∗) ∈ Z3

q1q2 such that

g′1
m
h′
r′1g′2

m∗
h′
r′2 = (g′1g

′
2)nh′

r∗

Proof of the lemma: Suppose that P was able to find such values. We set
r := r′1 + r′2 mod q1q2. Applying the Chinese Remainder Theorem (CRT), let t

be the unique integer in [0, q1q2− 1] such that g′1
m
g′2
m∗

= (g′1g
′
2)t. We thus have

g′1
t
g′2
t
h′
r

= (g′1g
′
2)th′

r
= g′1

m
g′2
m∗
h′
r

= (g′1g
′
2)nh′

r∗
= g′1

n
g′2
n
h′
r∗

(∗)



We will need the following

Claim a) If t ≡ n mod q1, then n = m and t 6≡ n mod q2.

b) If t ≡ n mod q2, then n = m∗ and t 6≡ n mod q1.

Proof of the claim: If t ≡ n mod q1, then we have n ≡ t ≡ m mod q1. Since
both n and m are in [0, q1 − 1], this yields n = m. Similarly, if t ≡ n mod q2,
this implies that n ≡ t ≡ m∗ mod q2, and since both n and m∗ are in [0, q2 − 1],
this means n = m∗. Therefore, if t ≡ n mod q1 and t ≡ n mod q2, we have
m = n = m∗, a contradiction to the requirement m 6= m∗. �

We return to the proof of the lemma. Suppose that t ≡ n mod q1; thus,
t 6≡ n mod q2 by claim a). We can rewrite equation (∗) as follows:

g′1
n
g′2
t
h′
r

= g′1
n
g′2
n
h′
r∗

or equivalently

g′2
t−n

= h′
r∗−r

Again applying the lemma, we have that t − n is invertible modulo q2; letting
u ∈ [0, q2 − 1] be the unique inverse, we get

g′2 = h′
u(r∗−r)

This shows that if t ≡ n mod q1 and P is able to open the commitment using
the opening values (n, r∗), then it can find the discrete logarithm of g′2 to the
base h′. Since this computation should be infeasible (because the new security
parameter κ2 is large enough), this shows that t 6≡ n mod q1.

Now, suppose that t ≡ n mod q2, implying t 6≡ n mod q1 by claim b). In this
case, (∗) becomes:

g′1
t−n

= h′
r∗−r

and re-applying the lemma gives us this time that t− n is invertible modulo q1,
so similarly to above this shows that if t ≡ n mod q2, P can compute the discrete
logarithm of g′1 to the base h′. Since this should be infeasible (because the old
security parameter κ1 is still large enough), we conclude that t 6≡ n mod q2.

So far, we have proved that if P is able to find some (m,m∗, n, r′1, r
′
2, r
∗) with

the desired properties, then it must have found n such that n − t is invertible
both modulo q1 and modulo q2. But now, using the CRT and letting v be the

unique inverse modulo q1q2 of n− t, we have that g′1g
′
2 = h′

v(r∗−r)
, so P is able

to find the discrete logarithm of g′1g
′
2 to the base h′, which is also infeasible. This

concludes the proof of the lemma. �

We now return to dealing with the soundness of our protocol.

Proposition 1 The interactive proof described in paragraph 3 is sound.



Sketch of proof: We need to show that a suitable polynomial-time extractor
χ exists in case P succeeds in proving its claim to V . We build χ roughly as
follows.

P proves to V that it knows an m1 ∈ Zq1 and m2 ∈ Zq2 such that c1
and c′1 can be opened to m1 and c2 and c′2 can be opened to m2. Thus, using
the soundness of the message equivalence proof, χ extract triples (m1, r1, r

′
1) and

(m2, r2, r
′
2) such that c1 = Com1(m1, r1), c′1 = Com′1(m1, r

′
1), c2 = Com2(m2, r2),

and c′2 = Com′2(m2, r
′
2). P also proves that it can open the product c′1c

′
2 to some

message n ∈ Zq1 . Therefore, by the soundness of the range proof, this time χ
can extract (n, r∗), with r∗ ∈ Zq1q2 , such that c′1c

′
2 = (g′1g

′
2)nh′r

∗
. Now, this

leads to the equality g′1
m1h′

r′1g′2
m2h′

r′2 = (g′1g
′
2)nh′

r∗
, and by Lemma 1, since χ

is a polynomial-time machine, we obtain necessarily that m1 = m2 = n. The
triple we were looking to extract can thus be set to (n, r1, r2). This completes
the proof sketch. �

We can now complete the proof of our theorem. The proposition above shows
that if V is convinced by its interaction with P , then P must be able to open c1 =
Com1(m, r1) = gm1 h

r1
1 mod p1 and c2 = Com2(m, r2) = gm2 h

r2
2 mod p2 to some

message m in Zq1 . Since the commitments Com1 and Com2 are computationally
binding, this message is unique. �

A remark concerning the range proof on c′3: The proof of Lemma 1 shows
how a malicious P could cheat the system if instead of requiring that a range
proof be conducted on c′3 in Step 3e), we simply require that P demonstrate it
can open c′3 to some value in Zq1q2 .

Suppose that P - instead of using m ∈ Zq1 as required - selects some different
message m∗ ∈ Zq2 to commit to in c2 and c′2. Passing Step 3c) of the protocol
is certainly not a problem. Now, P can very well compute the unique value
n ∈ Zq1q2 such that n ≡ m mod q1 and n ≡ m∗ mod q2, and hence demonstrate
in perfect zero-knowledge that it can open c3 even though m 6= m∗. However, it
is the fact that m and m∗ are distinct - even in the case that m∗ ∈ Zq1 - that
guarantees by the CRT isomorphism that n must be greater or equal to q1. This
precisely gives the clue to keep an eye out for: We can thwart malicious behavior
by checking that n ∈ [0, q1 − 1].

A remark concerning the intermediate commitments Com′1 and Com′2:
It may seem strange that the proofs given above do not make use of the fact
that the intermediate commitments Com′1 and Com′2 employed in step 3a) are
computationally binding. In reality, this argument is indeed present; it is just
very well buried in the proof of Lemma 1. Evidence of this can be seen by
observing that to prove the computational bindingness of Com′1 and Com′2, one
reduces it to computing discrete logarithms that depend on parameters κ1 and
κ2 respectively. This is done in very much the same way Lemma 1 relies on both
κ1 and κ2 (in fact, on the smaller of the two).



Unconditional confidentiality Finally, we prove that our scheme maintains
information-theoretic confidentiality. Of course, this relies on the perfect honest-
verifier zero-knowledge property of our interactive proof.

Theorem 2 The protocol described in Section 3 information-theoretically hides
P ’s message from an honest V .

Proof of the theorem: We know that both commitments Com1 and Com2 are
unconditionally hiding, so the only issue is showing that the transfer is perfectly
honest-verifier zero-knowledge. Now, since the proofs of message equivalence
and range are HVZKP, their transcripts leak nothing to V , and it remains to
study the commitments c′1 and c′2. So the only claim to show is that these are
unconditionally hiding. Therefore, we prove the following:

Lemma 2 A commitment of the form c′1 = Com′1(m, r′1) = g′1
m
h′
r′1 mod p′ is

unconditionally hiding.

Proof of the Lemma: Recall that g′1 and h′ are generators of the qth1 -order and
q1q

th
2 -order subgroups G′1 and G′12 of Z∗p′ respectively. It suffices to show that

for every fixed arbitrary c′1 ∈ G′q1q2 and m ∈ Zq1 there exists a unique r′1 ∈ Zq1q2
such that c′1 = g′1

m
h′
r′1 mod p′, since this implies that any element in G′q1q2 can

be uniquely opened as a commitment to any message in Zq1 with respect to the
preset bases. But because G′q1q2 is cyclic, this fact is trivial: the group element

g′1
−m

c′1 is in G′q1q2 , so there exists a unique r′1 ∈ Zq1q2 such that g′1
−m

c′1 = h′
r′1 .

This is indeed equivalent to c′1 = g′1
m
h′
r′1 . �

It can be shown analogously that commitment Com′2 is unconditionally hid-
ing. This completes the proof of the theorem. �

4.4 Performance

Besides proving that important security requirements are fulfilled it is also nec-
essary to show that the protocol proposed works in practice. One essential as-
sumption for our construction is that it is always possible to build a transfer
group between the parameters used for the old and the new commitments. More
precisely, having the old primes p1 and q1 and the new primes p2 and q2 the
prover can always find a new prime p′, such that q1q2|p′ − 1 (Section 3 Step
1c). To show this we use Dirichlet’s theorem. In number theory, his theorem,
also called the Dirichlet prime number theorem, states that for any two positive
coprime integers a and b, there are infinitely many primes of the form a + nb,
where 0 ≤ n. Since in our construction a = 1 and b = q1q2 it follows that
gcd(b, 1) = 1, which is why there should be infinitely many primes p′ allowing
to build a transfer group between the old and the new parameters.

However, the distribution of prime numbers is irregular, because for large
numbers they occur less frequently. To further analyse this, we implemented a



prototype using Mathematica 9 that searches for new parameters. We started
with a randomly chosen q1 of at least 190 bits and a p1 of at least 2049 bits and
simulated the process of selecting new parameters for q2 of size at least 248 bits
and p2 of size at least 4093 bits, q3 of size at least 326 bits and p3 of size at least
8204 bits, and q4 of size at least 427 bits and p4 of size at least 16443 bits. Using
the predictions based on the model presented by Lenstra in [35], these parameters
would allow to prolong the security of the original commitment for around 100
years. Note that we are aware that within the next 100 years quantum computers
might be available that allow to efficiently attack Pedersen commitments. For
now we do not consider this threat, but plan to work on post-quantum solutions
in the future.

We ran 1000 iterations using a 4 x Quad-Core AMD Opteron(tm) Processor
8356 with 64 GB RAM4 and determined the average time needed to find new
parameters and their average bit length. Table 1, Table 2, and Table 3 summarize
our results for the first, second, and third commitment renewal. (The values p′′,
g′′1 , g′′2 , h′′, p′′′, etc. play the same roles as p′, g′1, g′2, etc. in a way that should
be clear to the reader.)

p2 q2 g2 h2 p′ g′1 g′2 h′

average time (in sec) 5.6632 0.0195 0.0596 0.0596 4.8955 0.0599 0.0596 0.0595
average length (in bit) 4093 248 4091 4091 4093 4091 4091 4091

Table 1. First renewal using κ1

p3 q3 g3 h3 p′′ g′′2 g′′3 h′′

average time (in sec) 68.5535 0.0425 0.3819 0.3820 54.0756 0.3821 0.3820 0.3819
average length (in bit) 8204 326 8202 8202 8204 8202 8202 8202

Table 2. Second renewal using κ2

p4 q4 g4 h4 p′′′ g′′′3 g′′′4 h′′′

average time (in sec) 670.1844 0.2203 2.2934 2.2936 621.9710 2.2889 2.2906 2.2905
average length (in bit) 16443 427 16441 16441 16443 16441 16441 16441

Table 3. Third renewal using κ3

Our tests show that in total it takes only ∼ 11 seconds to find parameters
for the first renewal. To determine the parameters for the second and third
renewal the software had to run significantly longer, ∼ 2 minutes and ∼ 22

4 Note that during the tests the RAM was never fully allocated.



minutes respectively. However, the parameters for the Pedersen commitments
can be chosen large enough such that they ensure computationally bindingness
for several decades. So this process does not have to be run often. Furthermore,
until commitments generated with the parameters q2 and p2 have to be renewed
(around 2083 [35]) more efficient hardware will be available.

4.5 An Attack on a Näıve Approach

We conclude the section by showing how an attempt at just increasing the ran-
domness space’s size fails to adequately refresh the binding property of the com-
mitment.

The old parameters are still given by (p1, q1, g1, h1), working in the qth1 -order
subgroup G1 of Z∗p1 . The refreshed parameters are generated first by selecting
a larger prime p2 such that q1 divides p2 − 1, and then picking two random
generators g2 and h2 of the qth1 -order subgroup G2 of Z∗p2 and of Z∗p2 itself,
respectively. The idea is that the message space stays the same - it will be Zq1
- but the randomness space is increased from q1 to p2 − 1.

Committing to message m ∈ Z∗q1 with the new parameters is done by se-
lecting a random r2 in Zp2−1 and setting c2 = Com2(m, r2) = gm2 h

r2
2 . Since the

message space is not changed, proving that the old and new commitments can
be opened by the message owner to the same message is easy to do in perfect
zero-knowledge, see Paragraph 2.2.

Unfortunately, not increasing the message space leads to the following long-
term attack. Suppose the old parameters “run out” of security, and in particular
the malicious prover P can perform q1 operations. We set u := (p2 − 1)/q1.

By assumption, P can successively compute all group elements hut2 for t ∈
Zq1 . It does so, thereby recording a list which equal to G2, since for all t ∈ Zq1
we have (hut2 )q1 = 1. Thus, g2 must have collided with some hut

′

2 , so P now has
in fact computed ` := logh2

g2 = ut′.

Suppose P committed previously to message m ∈ Zq1 using randomness
r2 ∈ Zp2−1. By definition, its commitment c2 is Com2(m, r2) = gm2 h

r2
2 . Now,

suppose P wants to open c2 to a different message m∗ ∈ Zq1 , i.e. find r∗ such
that gm

∗

2 hr
∗

2 = gm2 h
r2
2 . P can simply compute

r∗ := `(m−m∗) + r2 mod p2 − 1

and open c2 to (m∗, r∗). A straightforward calculation shows this works:

gm
∗

2 hr
∗

2 = h`m
∗+r∗

2

= h
`m∗+`(m−m∗)+r2
2

= h`m2 hr22
= gm2 h

r2
2

= c2



5 Integrity and confidentiality preserving long-term
archiving

In this section we discuss in more detail how Pedersen commitments can be used
for long-term archiving. We will first provide an overview of the current solutions
and point out their weaknesses. Afterwards we show how proactive secret sharing
works, how it can be improved using the prolongable bindingness of Pedersen
commitments, and how this approach can be combined with existing archiving
solutions to allow for long-term confidentiality of archived documents.

5.1 State of the art of long-term archiving and storage solutions

To our knowledge the only approach to provide long-term confidentiality for
stored data is to use proactive secret sharing. The basic idea is to split the doc-
uments into shares that are renewed from time to time. This approach has been
introduced by Herzberg et al. in 1995 [29]. Their scheme uses an information
theoretically secure and verifiable secret sharing scheme, such as Shamir’s Se-
cret Sharing [43], combined with Pedersen’s [39] or Feldman’s [20] commitments.
However, a disadvantage of their proposal is that the structure of the sharehold-
ers must be maintained. Desmedt and Jajodia [16] improved this approach by
showing how to redistribute a secret without recovering it, making the dynamic
addition and renewal of shareholders possible. This especially allows to reboot
or reinstall compromised servers. Then, Wong et al. [48] further developed this
scheme by combining it with verifiable secret sharing. It follows that assuming
the majority of the old shareholders to be trustworthy, the new shareholders can
verify the validity of the shares received. This not only protects against mobile
adversaries, but also against active (or Byzantine [33]) adversaries that are able
to alter or replace messages. Nevertheless, correctness of the new shares is only
guaranteed if all new shareholders are trustworthy and verify the data received.
Therefore, Gupta and Gopinath [25] further improved this protocol by adding
a complaint mechanism requiring only a majority of the new shareholders to
be reliable. Since this approach use Feldman’s commitments the public audit
information is only computationally hidden. Therefore, Gupta and Gopinath
also published an information theoretic secure protocol named G2

Its using Ped-
ersen commitments [26]. This protocol provides verifiability, information theo-
retic security, and allows for the dynamic addition and removal of shareholders.
However, a closer look at this protocol reveals that the verifiability relies on a
witness in the form of a Pedersen commitment to the document stored. This
data is crucial to ensure integrity during the share renewal and reconstruction
process. However, the authors do not answer the question of how to proceed,
if the bindingness of this commitment is about to fade out. It follows that this
process can only be run as long as the commitment scheme is secure for the
parameters chosen.

In addition, to provide long-term integrity of data the information stored
must be authenticated, e.g. by using widely visible media [2] or timestamps [28].
Based on either approach many technical specifications for long-term archives



have been proposed, e.g. Cumulative Notarization [34], Content Integrity Service
[27], Advanced Electronic Signatures [19, 18], Evidence Record Syntax [23, 5],
and Attested Certificates [45]. A more detailed description of archiving schemes
providing a proof of existence can be found in [46].

The setup of all these approaches is quite similar. On a high level, three types
of entities are considered: users, archives, and trusted third parties. A user owns
a document that it wants archived. An archive is responsible for archiving the
documents of one or more users. The trusted third party (TTP), upon request,
issues a proof of existence. This proof allows to verify that a document existed at
a certain point in time and has not been changed since. To archive a document
the user sends it to an archive which requests a proof of existence from a TTP and
stores this proof together with the document. However, none of these solutions
provide confidentiality.

Thus, solutions have been proposed using asymmetric encryption schemes
[32, 17, 31] or symmetric encryption schemes [1, 47, 7]. Nevertheless, if data is
encrypted using a standard encryption scheme, it remains confidential only for a
few decades. In some scenarios this might be sufficient, but not when dealing with
highly sensitive data, for instance military and government secrets, industrial
secrets, lawsuit records, election data, and medical records. This information
requires long-term or even everlasting confidentiality.

Therefore several archiving schemes have been proposed that addresses proof
of existence, integrity, and confidentiality. However, they either use only secret
sharing and are therefore not secure in the long-term [44], assume a trusted
party that is allowed to see all shares [30], or grow exponentially in the number
of shareholders and shares [40].

Thus, in this section we show how the proactive secret sharing protocol by
Gupta and Gopinath [26] can be improved using the prolongable bindingness
of Pedersen commitments, and how this allows to combine it with long-term
archiving.

5.2 Long-term storage

Before we discuss how to combine long-term archiving with proactive secret
sharing we provide a brief overview of Gupta and Gopinath’s verifiable secret
redistribution process G2

Its. For details regarding the protocol, such as the tech-
nical details, the complaint mechanism, and the security analysis, we refer to
the publication by Gupta and Gopinath [26]. Their protocol consists of three
subprotocols: initialization, share renewal, and reconstruction.

Initialization During initialization a new document d ∈ M is stored over n
shareholders such that m ≤ n shareholders are needed to reconstruct the
document, while no information about the document can be obtained from
any m− 1 shares. More precisely, the owner C of document d ∈M chooses
a random number r ∈ R and computes commitment c0 = Com(d, r). Then
C splits both opening values d and r of the commitment into shares and
distributes them over the n shareholder using Shamir’s Secret Sharing [43].



In addition, C computes some audit data and broadcasts them together
with the commitment c0 = Com(d, r) to document d. Each shareholder i
then verifies its input by using its share pair and the data broadcast. If the
shareholder found wrongly generated shares, then this is resolved using the
complaint mechanism. If not then it stores the witness c0 together with the
shares to the opening values, that is document share di and random value
share ri.

Share renewal To renew and redistribute the shares to a new set of n′ share-
holders such that m′ ≤ n′ shares are needed to reconstruct document d,
each old shareholder i computes new shares and sends one pair of new shares
(d′i,j , r

′
i,j) to each shareholder j. In addition, each old shareholder i computes

some audit data and broadcasts this together with witness c0 = Com(d, r),
and the commitment to its own shares c′i,0 = Com(di, ri). Afterwards, each
old shareholder deletes its share pair. Each new shareholder j then verifies
the correctness of all received shares and checks whether the set of old shares
was correct using the broadcast commitments c′i,0 and witness c0. Each new
shareholder j takes a subset of shares for which both tests were valid, gener-
ates its pair of shares (d′j , r

′
j), and stores its share pair together with witness

c0.
Reconstruction To reconstruct a document d the retriever R, e.g. the owner of

the document or another authorized person, requests the share pair (di, ri)
from each shareholder i, for i ∈ [1, n] together with witness c0 = Com(d, r)
and checks for each m-subset of shareholders whether the shares are correct
using witness c0. As soon as R finds a set for which this test succeeds it
reconstructs d.

Under the assumption that (1) all communication channels used guarantee
reliable delivery of messages, (2) any two shareholders can communicate via a
private channel, (3) all shareholders can receive messages sent over a broadcast
channel, (4) any shareholder can declare and no shareholder can spoof its iden-
tity, and (5) a majority of the shareholders is trustworthy, the verifiable secret
redistribution protocol ensures correctness of the shares generated and provides
long-term confidentiality for the data stored.

5.3 Long-term archiving of secretly shared data

The protocol described in the last subsection allows storing documents while
preserving long-term confidentiality under the assumption that a majority of
shareholders act honestly and do not reveal their shares stored. This is a standard
assumption for secret sharing inherent to the approach. However, using proactive
secret sharing this is actually not only an assumption for confidentiality, but
also for integrity. In G2

Its each old shareholder sends witness Com(d, r) to d
to each new shareholder. Thus, if a majority of old shareholders is dishonest
and sends a commitment to d′ instead of a commitment to d the document
can be replaced without being noticed. In practise this might not be acceptable
when, for instance, proving the existence and integrity of an industrial secret



to a court. There are trust assumptions made by many long-term archives, e.g.
there exists a trusted third party (TTP) that generates timestamps. However,
here a suitable trusted third party can be chosen, e.g. a civil law notary or a
notary for patents. This is a significant difference to solutions relying on the
trustworthiness of some archiving servers run by a company. Furthermore, this
approach does not provide a proof of existence. Note that, the witness needed
during the share renewal and reconstruction phase is a Pedersen commitment
whose security will fade out if this protocol runs for a long period of time. Thus,
if we do not assume that a majority of shareholders is trustworthy, combining
this time-bounded approach with long-term archiving is meaningless without a
solution to prolong the bindingness of Pedersen commitments.

Thus in this section we show how to obtain an archiving scheme providing
both long-term integrity and confidentiality by combining long-term archiving
solutions with proactive secret sharing. As a basis we use the verifiable secret
redistribution process G2

Its described in the last section and extend the protocol
such that it provides two additional properties. First, it provides a proof of
existence without assuming the trustworthiness of a majority of shareholders
and, second, the process is adapted such that it can be run for a long period of
time using the finding that Pedersen commitments have prolongable bindingness.

With respect to the first task the challenge is to identify which data needs to
be authenticated by the TTP to provide proofs of existence and integrity. Note
that this data should not reveal any information about the content of the docu-
ment shared. Thus, we cannot simply sign the shares since for everlasting confi-
dentiality they must be deleted during the share renewal process. Furthermore,
the TTP and everyone else that gets to see the authenticated data learn some
information about the shares which violates long-term confidentiality. Thus, we
authenticate, using any archiving scheme providing long-term integrity, witness
c0 to the document. The binding property of the Pedersen commitment allows
for long-term integrity while the hiding property ensures everlasting confiden-
tiality. We see in the protocol described above that during share renewal and
during reconstruction integrity is provided with the help of c0. In fact c0 can only
be opened, if the opening values d and r were reconstructed correctly using the
shares received from the shareholders (this is also the statement the security of
G2

Its relies on). This can easily be shown by contradiction, because if an attacker
is able to modify document d to d′, where d 6= d′ and to adapt r′ without being
detected, then it found an efficient algorithm violating the bindingness property
of the commitment scheme used. Thus, proof of existence and integrity can be
gained by authenticating witness c0. Note that this ensures integrity even in the
presence of a majority of untrusted shareholders, since the witness is authen-
ticated by a TTP and can therefore not be modified by the shareholders. In
addition, the Pedersen commitments Com(di, ri) to the latest shares can also be
authenticated. This allows R to identify a cheating shareholder i by checking
whether the shares di and ri the shareholder sent are the correct opening values
to the authenticated commitment Com(di, ri). Note that the ability to delete
the shares and all information about the shares is essential to ensure long-term



confidentiality. However, this is still possible, since Pedersen commitments are
unconditionally hiding and therefore the authenticated commitments Com(di, ri)
do not reveal any information about replaced shares.

On the other hand Pedersen commitments are only computationally binding,
which leads us to the second task. When the document is archived for a long
period of time the witness c0 = Com(d, r) generated and used within the G2

Its
protocol will become insecure for the parameters chosen. This affects the security
of the archived document, because the verifiable secret redistribution process
uses c0 to ensure integrity during the share renewal and reconstruction process.
Thus, the G2

Its protocol has to be adapted such that it deals with the aging of
Pedersen commitments. This can be achieved by adding an additional procedure
to the protocol in which the witness is renewed. More precisely, first the owner
requests the shares, generates a new commitment, and proves correctness to
the TTP . The TTP then generates a new witness by authenticating the old
and the new commitment together with the transcript of the proof. This data
can be used to extend the lifetime of the proof of existence and integrity for
document beyond the lifetime of the initially generated commitment. Afterwards,
the prover generates a new set of shares and sends these shares together with
the new authenticated witness to the shareholders. Finally, the old shareholders
delete their old share pair.

Enhancing the proactive secret sharing protocol by Gupta and Gopinath with
authenticated commitments also further improves the proactive secret sharing
protocol itself. The shareholders, for instance, can make use of the authenticated
commitments while less information must be broadcast for verifiability. This
also shortens the time the retriever R of document d needs for reconstruction.
Instead of finding a correct subset of shares, R can simply reconstruct d and
decommitment value r using a randomly selected subset of shares and check
whether the values open the authenticated commitment Com(d, r).

6 Conclusion and Future work

In this paper, we showed how to efficiently and securely transfer a Pedersen
commitment to a message m from one set of ambient parameters to another,
thereby renewing the security of the computational bindingness. Our construc-
tion essentially amounts to a perfect zero-knowledge proof of message equivalence
for commitments with non-isomorphic message spaces, in particular allowing us
to maintain information-theoretic confidentiality. This makes the method suit-
able for long-lived systems that process confidential data. To illustrate this we
showed how our construction can be used to store a document in a proactive
secret sharing fashion while preserving long-term integrity. Since this can be pro-
vided even in the presence of untrusted shareholders we could use this as a basis
to develop an archiving scheme providing not only proof of existence and long-
term integrity but also long-term confidentiality for the data archived. While we
pointed out long-term archiving as a potential application for this procedure,
it is worth noting that our techniques do not alter the Pedersen commitment



protocol itself - indeed, only the parameters are enlarged. Hence, they may be
easily integrated into other constructs that use these commitments. Also, our
new perfect zero-knowledge proof may be of independent interest.

For future work, it could be first of all interesting to see if our procedure
can be simplified or optimized. An indication that this might be possible is that
some of the zero-knowledge proofs perform overlapping tasks. It could also be
interesting to investigate which concrete protocols for these proofs are the most
suited to this construction. Secondly, we would like to see if a similar protocol can
be devised for other instantiations of commitment schemes, or even generically.
As mentioned before prolonging the security of Pedersen commitments does not
protect against attacks from quantum computers. Therefore, for future work we
plan to further investigate how the security of post-quantum secure commitments
can be prolonged. Furthermore, we would like to examine how a prover could
show that two commitments generated with two different schemes, e.g. a discrete
logarithm-based commitment scheme and a lattice-based commitment scheme,
commit to the same message. Finally, the idea of securely renewing the security
level of deployed schemes should be examined for other cryptographic services.
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