Cryptology ePrint Archive: Report 2015/543

Bloom Filters in Adversarial Environments

Moni Naor and Eylon Yogev

Abstract: Many efficient data structures use randomness, allowing them to improve upon deterministic ones. Usually, their efficiency and/or correctness are analyzed using probabilistic tools under the assumption that the inputs and queries are independent of the internal randomness of the data structure. In this work, we consider data structures in a more robust model, which we call the adversarial model. Roughly speaking, this model allows an adversary to choose inputs and queries adaptively according to previous responses. Specifically, we consider a data structure known as "Bloom filter" and prove a tight connection between Bloom filters in this model and cryptography.

A Bloom filter represents a set S of elements approximately, by using fewer bits than a precise representation. The price for succinctness is allowing some errors: for any x in S it should always answer 'Yes', and for any x not in S it should answer 'Yes' only with small probability.

In the adversarial model, we consider both efficient adversaries (that run in polynomial time) and computationally unbounded adversaries that are only bounded in the amount of queries they can make. For computationally bounded adversaries, we show that non-trivial (memory-wise) Bloom filters exist if and only if one-way functions exist. For unbounded adversaries we show that there exists a Bloom filter for sets of size n and error eps, that is secure against t queries and uses only O(n*log(1/eps) + t) bits of memory. In comparison, n*log(1/eps) is the best possible under a non-adaptive adversary.

Category / Keywords: foundations / Bloom filter, One way functions, Cuckoo hashing

Original Publication (with minor differences): IACR-CRYPTO-2015

Date: received 3 Jun 2015

Contact author: eylony at gmail com

Available format(s): PDF | BibTeX Citation

Version: 20150608:212334 (All versions of this report)

Short URL:

Discussion forum: Show discussion | Start new discussion

[ Cryptology ePrint archive ]